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Abstract

Tackling image degradation due to atmospheric turbu-
lence, particularly in dynamic environments, remains a
challenge for long-range imaging systems. Existing tech-
niques have been primarily designed for static scenes or
scenes with small motion. This paper presents the first
segment-then-restore pipeline for restoring the videos of dy-
namic scenes in turbulent environments. We leverage mean
optical flow with an unsupervised motion segmentation
method to separate dynamic and static scene components
prior to restoration. After camera shake compensation
and segmentation, we introduce foreground/background en-
hancement leveraging the statistics of turbulence strength
and a transformer model trained on a novel noise-based
procedural turbulence generator for fast dataset augmen-
tation. Benchmarked against existing restoration meth-
ods, our approach restores most of the geometric distor-
tion and enhances the sharpness of videos. We make
our code, simulator, and data publicly available to ad-
vance the field of video restoration from turbulence:
riponcs.github.io/TurbSegRes

1. Introduction
Atmospheric turbulence poses a considerable impediment
to high-fidelity long-range imaging, inducing geometric
distortions and blur that severely compromise image qual-
ity [7, 11, 49]. This issue becomes particularly acute in
long-range horizontal and slant path imaging in environ-
ments with extreme temperature gradients. Such unpre-
dictable variations in air density and velocity induce char-
acteristic distortions including random pixel displacements,
referred to as tilt [6], blur, and contrast reduction. This
presents a formidable challenge for current vision algo-
rithms to consistently detect, classify, and delineate objects
within such degraded images.

Conventional multi-frame techniques such as “lucky
frame” or geometric stabilization [13, 17, 18, 31, 33, 36]

perform well in static or slightly dynamic scenes but strug-
gle in highly dynamic environments with significant scene
or camera motion. Supervised deep learning-based meth-
ods [38, 56] leverage turbulence simulators to generate
training data [8, 37]. While these models show potential,
they often exhibit temporal artifacts when applied to real-
world dynamic video sequences with moving objects.

The limitation of previous methods for dynamic video
stems from the compounded effect of object motion and at-
mospheric turbulence. These factors disrupt optical flow
maps which makes image registration difficult for multi-
frame techniques. In this paper, we address this challenge
by proposing a unique segment-then-restore pipeline. This
method utilizes integrated optical flows computed between
frames for unsupervised motion segmentation, which then
enables the individual processing of static background and
dynamic foreground elements. We use a weighted im-
age stacking technique for background enhancement, and
a transformer model for both foreground and background
sharpening trained on data from a novel tilt-and-blur turbu-
lence simulator. Our approach notably reduces background
distortions while maintaining the clarity of foreground de-
tails throughout the sequence.

Our specific contributions include:

• An unsupervised segmentation method that utilizes inte-
grated optical flow with optimized number of frames cal-
culated to segment a frame into static background and
moving foreground.

• An adaptive Gaussian-weighted image stacking method
for background processing which utilizes physics-based
turbulence strength statistics for optimal frame selection
across a range of turbulence intensities.

• An image restoration transformer model trained on simu-
lated data generated from a novel turbulence video simu-
lator that incorporates both tilt and adaptive blur based on
procedural noise to generate plausible turbulence effects.

To validate our approach, we conduct experiments on two
well-established datasets, CLEAR [2], OTIS [19]. We also
augment the recent URG-T [45] segmentation dataset with
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additional real videos captured in the wild that feature ex-
treme turbulence conditions. We compare to state-of-the-
art baselines for video restoration in this domain. Finally,
we release the code, simulator, and data for our study:
riponcs.github.io/TurbSegRes

2. Related Work
Modeling and Simulating Turbulence: The physics of
turbulence was first detailed by Kolmogorov [27, 28], and
we refer the reader to several reference books [25, 53]
including imaging through turbulence [29, 49]. Ihrke et
al. [24] and Gutierrez et al. [21] helped advance the under-
standing and simulation of refractive and atmospheric phe-
nomena, respectively.

In addition to modeling, there has been concerted ef-
fort to simulate the effects of turbulence. Potvin et al. [43]
presented a parametric model for simulating turbulence ef-
fects on imaging systems. Similarly, Repasi and Weiss [47]
proposed a computer simulation of image degradations by
atmospheric turbulence for horizontal views. Reinhardt et
al. [46] developed computationally efficient techniques to
simulate optical atmospheric refraction phenomena.

Instead of simulating 3D random turbulence fields,
Schwartzman et al. [52] directly created 2D random
physics-based distortion vector fields. A series of sim-
ulators that utilize Zernike coefficents have been devel-
oped [8, 37] culminating in a real-time phase-to-space sim-
ulation [9]. In our work, we do not utilize these physics-
based simulators because they are targeted for single image
creation, but develop a procedural noise-based turbulence
video simulator for coherent turbulence effects.

“Lucky Image” Reconstruction Methods: Fried [15]
introduced the concept of “lucky imaging” for astronomical
imaging through turbulence, and these frames are typically
short-exposure to minimize blur [4]. Lucky fusion com-
bines sharp image patches to form the final diffraction lim-
ited image using a variety of methods [2, 3, 55, 61]. How-
ever, these techniques require a static scene with no motion
for lucky imaging to be effective.

Contrasting prior work, Mao et al. [36] pioneered
restoration for dynamic sequences leveraging optical-flow
guided lucky imaging coupled with blind deconvolution.
We avoid lucky image techniques in favor of a segment-
then-restore framework for dynamic scene restoration.

Deep Learning for Turbulence Restoration: With the
help of the synthetic datasets, several supervised neural net-
works have recently been proposed to address turbulence
restoration. A complex-valued convolutional neural net-
work was proposed [1] for reducing geometric distortions
and subsequent refinement of micro-details. AT-Net uti-
lized epistemic uncertainty in their network design for sin-
gle frame reconstruction [56]. Mao et al. [38] introduced
TurbNet, a physics-inspired transformer model for single

frame restoration. Zhang et al. [60] also proposed an effi-
cient transformer-based network but for video sequences.

In addition, there have been unsupervised models pro-
posed in the literature. Li et al. [34] utilize implicit neural
representations (INRs) to estimate grid deformation for sin-
gle image restoration. Jiang et al. [26] extended this INR
approach to have a more realistic tilt-and-blur model, but
still targeted to static scenes.

Segmentation in Atmospheric Turbulence: Segmenta-
tion in atmospheric turbulence is relatively understudied in
the literature. Cui and Zhang [12] developed a supervised
network for semantic segmentation in turbulence, trained
on synthetic datasets. Recently Qin et al. [45] proposed a
two-stage unsupervised segmentation for the video affected
by atmospheric turbulence, but is computationally expen-
sive. Our segmentation, while conceptually simple, per-
forms near state-of-the-art while having very low latency.

3. Method

Our method is driven by the observation that in dynamic
scenes, moving objects and the static background experi-
ence distinct motion types: moving objects are influenced
by their own motion plus turbulence and camera move-
ments, while the static background is solely affected by tur-
bulence and camera motions. We efficiently segment mov-
ing objects from the static background, even amidst turbu-
lence, and apply targeted enhancement strategies to each.

In a nutshell, our full method, visualized in Fig. 1 per-
forms the following steps: (1) video stabilization to reduce
camera motion; (2) motion segmentation into dynamic fore-
ground regions and static background; (3) weighted image
stacking for the static background; (4) Poisson blending
to merge the enhanced background with the dynamic fore-
ground regions; and finally (5) sharpening the entire image
using a trained transformer model.

3.1. Stabilization Methodology

Long range imaging with high focal length cameras are ex-
tremely sensitive to vibrations which leads to camera mo-
tion. Most existing video stabilization methods [48] rely
on local feature detection/matching (e.g. SIFT, SURF, and
ORB) prone to error due to turbulence-induced distortions.
We instead implement a simple, yet effective method of es-
timating global camera motion via cross-correlation and ap-
plying the estimated translation to stabilize the frame.

Let \protect \mathbf  {V} = \{\mathbf {V}_i\}   be the sequence of video frames, each
normalized to [0, 1] . We perform the following steps: (1)
subtract the mean intensity of the entire video sequence
from each frame:  \mathbf {V}'_i = \mathbf {V}_i - \mu 

    ; (2) select the first frame
 \mathbf {F}_{\text {ref}} = \mathbf {V}'_1  

; (3) crop each frame as \protect \mathbf  {V}_{\text {crop}}^{(i)}

 with a border of

50 pixels (representing the maximum camera shift possi-
ble) to avoid edge effects; (4) calculate the cross-correlation
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Figure 1. Our pipeline processes dynamic video frames by first stabilizing image sequences using normalized cross-correlation, followed by
segmenting moving objects using average optical flow. The background is processed with adaptive filtering and blended with a separately
extracted foreground. The background and segmented foreground are seamlessly merged using Poisson pyramid blending. Finally, a
transformer architecture, trained on our simulator, refines the combined images.

(xcorr2d) of the cropped frame and the reference frame (im-
plemented as a convolution in practice without flipping the
kernel), and extract the coordinate positions of the maxi-
mum correlation:

 \mathbf {H}^{(i)} = \text {xcorr2d}\left (\mathbf {F}_{\text {ref}}, \mathbf {V}_{\text {crop}}^{(i)}\right ) 







(1)

  (\Delta x_i, \Delta y_i) = \arg \max (\mathbf {H}^{(i)}) - \left (\frac {H}{2}, \frac {W}{2}\right )  










(2)

With the extracted (∆xi,∆yi), we translate the selected
frame via a matrix multiplication in homogeneous space to
perform video stabilization.

This stabilization method, both simple and effective
as demonstrated in the supplemental material, gains ef-
ficiency through our GPU-accelerated convolution ap-
proach, improving upon the CPU-based scikit-image
match template function in SciPy. This adaptation
achieves a 1000× speedup in the convolution phase, sig-
nificantly enhancing processing speed for high-resolution
images. Tested on videos with camera motion between 0 to
110 pixels and on 1080p synthetic video with max 400 pix-
els vibration, it ensured error-free vibration compensation.

3.2. Motion Segmentation in Turbulent Conditions

We introduce an automated motion segmentation technique
that effectively discriminates between turbulence-induced
distortions and inherent object motion for dynamic scenes.
Our approach accounts for the Gaussian distribution na-
ture [14, 16] of turbulence effects, which often makes cap-
turing object movements challenging [6, 45].

The cornerstone of our method is a multi-frame opti-
cal flow analysis based on pre-trained RAFT [54]. Con-
ventional frame-by-frame optical flow struggles in the face
of turbulence. Our technique computes the average opti-
cal flow (AOF) across a dynamically determined number of

neighboring frames, formulated as follows:

  \text {AOF} = \frac {1}{N} \sum _{i=1}^{N} ||OF(F_{\text {current}}, F_{i})||, 







   (3)

where  F_{\text {current}}  is the current frame,  F_{i}  denotes the  i -th neigh-
boring frame, and ||OF (·, ·)|| is the magnitude of the optical
flow. The value of  N is adaptively selected to enhance the
segmentation clarity between static and dynamic regions.
This optimization is achieved by maximizing the average
distance of the normalized optical flow values from a me-
dian value of 0.5, ensuring a clear separation between static
(near 0) and dynamic (near 1) elements:

  N_{\text {opt}} = \arg \max _{N} \left ( \frac {1}{M} \sum _{i=1}^{M} \left | \text {AOF}(N)_i - 0.5 \right | \right ),  










 


 (4)

where  M is the total number of pixels in the optical flow
mask, and \protect \text  {AOF}(N)_i, representing the optical flow magni-
tude value for the  i -th pixel normalized to the range [0, 1] .
This allows for an adaptive response to varying motion dis-
placements within turbulent scenes.

Finally, we threshold our calculated AOF to separate
the video into static background and dynamic background.
While this segmentation technique is simple (leveraging av-
erage optical flow), we find it highly effective in practice as
shown in Fig. 2, which displays segmentation results across
three distinct frames of a video clip. We also conducted
ablation on the choice of segmentation in Sec. 5.3 that jus-
tify this simpler method is competitive with state-of-the-art
unsupervised methods [10, 35, 45, 57] for turbulent video
while having lower latency.

3.3. Background Processing

For static backgrounds, we implement tilt correction via
weighted averaging, guided by atmospheric turbulence
strength as indicated by C_n^2

 [51] values derived from video
analysis. This method adapts Gaussian weighted averaging
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Figure 2. Visual representation of motion segmentation across
consecutive frames in a video sequence. Our proposed method ef-
fectively separates moving subjects (students walking) visualized
by the golden outlines.

relative to detected turbulence, targeting precise stabiliza-
tion and geometric distortion reduction in the background.
C_n^2

 can be calculated via image information via the follow-
ing equation [51, 58]:

  C_n^2 = \frac {PFOV^{2} \times D^{\frac {1}{3}}}{L\times P} \times \frac {\sigma (\mathbf {V})^{2}}{Grad(\mathbf {V})}, \label {eq:cn2} 


 







 (5)

where  \mathbf {V} is the sequence of images,  PFOV  is the pixel field
of view,  D is the lens aperture diameter,  L is the distance
to target, and  P is the turbulence constant parameter, ad-
justed based on the scale of turbulence [58]. Lower C_n^2

 val-
ues, indicative of minimal turbulence, necessitate smaller
Gaussian windows as the distortion is negligible. Higher C_n^2



values signal stronger turbulence, requiring larger windows
to average more frames for effective distortion correction.
Simplified to C_n^2 \propto \frac {\sigma (\mathbf {V})^{2}}{Grad(\mathbf {V})}

 

 , this adaptive process culmi-
nates in an averaged background with notably reduced geo-
metric distortion. It efficiently addresses a spectrum of tur-
bulence strengths, facilitating optimal correction automati-
cally without needing manual hyperparameter adjustments.

3.4. Video Restoration

After segmentation and background enhancement, our
pipeline’s final step is restoration, where we merge the dy-
namic foreground into the background using Poisson blend-
ing [41]. We train a transformer-based model to per-
form restoration for both the foreground and background
simultaneously. This is the only supervised part of our
machine learning pipeline, and thus requires a dataset of
images without distortion paired with the corresponding
turbulence-degraded images. Since real data is difficult to
acquire such ground truth pairs, in the following subsections
we describe our novel simulator based on simplex noise for
rapidly generating data for our training. Then we proceed to
describe the transformer model that is trained on this data.

3.4.1 Turbulence Video Simulator

There have been existing turbulence-distortion simulators
introduced in the prior literature [5, 8, 20, 22, 23, 32,
44, 47, 50, 52]. However, these simulators are targeted

mostly for single image generation, and thus suffer from co-
herency or temporal artifacts when applied frame-by-frame
for video. Recent hybrid or physics-based simulators show
promise [8, 37], however, we find their latency restrictive
when generating varying levels of turbulence for each im-
age for fast data creation1.

Tilt Simulation: Our approach is tailored to model tur-
bulence for image restoration purposes, focusing on cre-
ating plausible turbulence warp/tilt and blur effects rather
than simulating turbulence with high physical accuracy.
By employing 3D simplex noise, a procedural noise func-
tion from computer graphics for creating textures and volu-
metric effects [40], we generate temporally coherent dis-
tortions. This method offers better scalability for high-
dimensional noise and low latency and memory require-
ments, making it ideally suited for fast data creation for
training models. The utilization of simplex noise reflects
our focus on plausible video distortions over precise physi-
cal modeling of turbulence [30]:

  s(x, y, t) = \sum _{i=0}^{N-1} 2^i A_i \cdot \text {snoise}(f_i \cdot x, f_i \cdot y, f_i \cdot t) \label {eq:noise}   




           (6)

Where Ai is the amplitude that scales the influence of each
octave and fi is the frequency that dictates the granularity
of the noise pattern. Utilizing an N = 8   octave simplex
noise method in Eq. (6), we generate two sets of 3D noise,
\protect \mathcal  {N}_x(H, W, T)   and \protect \mathcal  {N}_y(H, W, T)   where H is height, W is
weight, T is time, to simulate turbulence in the X and Y
directions, respectively. This structure ensures that each
pixel (x, y)  in the input image is dynamically shifted ac-
cording to these noise sets across frames, effectively mim-
icking atmospheric turbulence tilt over time. Employing the
snoise function2 ensures spatial and temporal coherence.
With frequency ranges (f_i) from 1.5% to 6%, our approach
simulates a spectrum of turbulence effects from mild to in-
tense, ensuring qualitative fidelity to advanced models with
operational simplicity and efficiency.

Blur Simulation: Adopting a similar approach to tilts,
we utilize a set of 3D Perlin noise [42] to impose atmo-
spheric blurring on tilt-adjusted frames. Generating Perlin
noise with parameters such as width, height, depth, base
frequency, and a level count of 11 allows dynamic modula-
tion of blur intensity. This ensures spatial and temporal co-
herence with tilt magnitudes, enhancing realism. Adaptive
Gaussian blurring adjusts the blur (\sigma ) based on the 3D Per-
lin noise map and tilt map values, effectively simulating the
variability of atmospheric scattering. This results in frames

1At the time of publication, a real-time physics-based simulator code
implementation [9] was made available that could also potentially be used
for training our transformer

2We utilize the Github package https : / / github . com /
caseman/noise
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(a) Original (b) Noise (c) Turbulence

Figure 3. Comparison of the original image, noise-added image,
and the image with simulated turbulence.

exhibiting authentically-varied blur levels, contributing to
the simulation’s overall authenticity.

Simulation Results and Comparisons: Our tilt-and-
blur video simulator, capable of processing 200 × 200 res-
olution videos at interactive rates (> 14 fps) on a consumer
desktop, sets a new standard for efficiency and flexibility
in turbulence simulation. Unique in its ability to produce
coherent time-dependent distortions, it generates frames in
just 100ms without precomputation, enabling the rapid cre-
ation of 100K short clips at up to 1024 × 1024 resolu-
tion for transformer model training. This performance sur-
passes general-purpose simulators and demonstrates sub-
stantial advantages over methods like the PS2 simulator [8],
particularly in generating training data with realistic tem-
poral dynamics and without extensive pre-computation. A
sample result is illustrated in Fig. 3, with qualitative com-
parisons to a physics-based simulator shown in supplemen-
tary materials.

3.4.2 Training the Transformer Model

Our pipeline is compatible with any supervised deblurring
model that can be trained from scratch on our procedurally
generated, simulated turbulence data. For the final version
of our pipeline, we leverage the image restoration trans-
former model, Restormer [59], due to its specific advan-
tages in handling the complexities of turbulence-induced
distortions. The Restormer model is particularly adept at
dealing with the unpredictable and diverse nature of turbu-
lence, thanks to its efficient attention mechanism that can
focus on different regions of an HD image with varying dis-
tortion levels. Additionally, its capability to preserve and
restore high-frequency details is crucial in maintaining the
integrity of fine features in HD images, which are often ad-
versely affected by turbulence.

4. Datasets and Implementation

4.1. Datasets

CLEAR Dataset [2]: The CLEAR dataset is a common
benchmark for atmospheric turbulence mitigation [2]. The

data includes (1) eight sequences capturing a variety of ob-
jects 3.5m away with turbulence induced by a set of 8 gas
stoves, and (2) three scenes captured outdoors at various
long distances with actual atmospheric turbulence. The
sequences were captured with a Canon EOS-1D Mark IV
camera with 105mm lens for (1) and 400mm lens for (2).

OTIS Dataset [19]: The OTIS dataset includes image
sequences specifically designed for atmospheric turbulence
mitigation studies. It features (1) controlled sequences with
synthetic turbulence affecting various objects, generated
through heat sources, and (2) natural scenes captured under
real-world atmospheric turbulence. These images were cap-
tured with high-quality cameras, offering diverse scenarios
to test turbulence mitigation techniques.

Augmented URG-T Dataset [45]: The URG-T
dataset [45] consists of 20 videos recorded in outdoor en-
vironments at long-range with corresponding ground truth
masks for motion segmentation [45]. Scenes include ur-
ban outdoor scenes including moving vehicles, airplanes,
and pedestrians. Each clip features up to 56 frames at
1920× 1080 resolution, shot with a Nikon Coolpix P1000,
utilizing a 539mm focal length (effectively 3000mm due to
sensor crop).

The URG-T dataset [45] lacks scenes with static back-
grounds, essential for testing our restoration pipeline. To
compensate, we added a collection of static videos captur-
ing various atmospheric turbulence levels, using a Nikon
Coolpix P1000 with 125× zoom. We filmed additional
scenes in a desert under summer conditions, with subjects
placed 100 meters to 1 kilometer away, at 1080p resolution.

4.2. Training Details

We run our method on an NVIDIA A100 GPU, using the
AdamW optimizer with a 0.0003 initial learning rate for up
to 60,000 iterations. Batch and patch sizes dynamically ad-
just, ranging from 28 to 4 and 128 to 384 pixels, respec-
tively, following a predefined schedule. Training is com-
pleted approximately in one day.

4.3. Comparison to State-of-the-Art

We compare our method to the following state-of-the-art
methods for turbulence restoration:
1. AT-Net [56]: Deep learning framework that employs

epistemic uncertainty analysis for effective restoration of
images affected by atmospheric turbulence.

2. TCI 2020 [36]: Physics-based models that integrates
space-time non-local averaging for enhanced turbulence
mitigation in both static and dynamic sequences.

3. TurbNet [38]: Transformer-based model designed for at-
mospheric turbulence imaging, adept at extracting dy-
namic distortion maps and restoring turbulence-free im-
ages.
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4.4. Latency

Our final pipeline’s latency per frame for each stage is listed
in Tab. 1 for 100%, 50%, and 25% of 1080p resolution. The
main bottleneck is the calculation of the AOF and corre-
sponding segmentation, due to pre-trained RAFT [54] and
the forward pass through the sharpening transformer. For
competing methods, the latency per frame for 1080p resolu-
tion on a NVIDIA RTX 3090 GPU is: TCI - 4200s; AT-Net
- 80s; Turbnet - 5s, while our pipeline latency per frame is
5.71s on a NVIDIA A100 GPU.

Table 1. Per frame latency for operations at different resolutions

Operations Size (pixels)

1920x1080 960x540 480x270

Read/Convert 0.08s 0.08s 0.08s
Vibration Calc. 0.03s 0.014s 0.006s
Stabilize 0.12s 0.05s 0.03s
Segmentation 1.06s 1.06s 1.06s
Gaussian Mean 0.34s 0.09s 0.02s
Combine BG/FG 0.38s 0.11s 0.026s
Sharpening 3.7s 1.0s 0.25s

Total 5.71s 2.404s 1.472s

4.5. Quantitative Metrics

For evaluating performance on the CLEAR dataset with
available turbulence-free images, we employ standard met-
rics such as PSNR and SSIM, alongside IoU metrics to as-
sess our pipeline’s segmentation efficacy against URG-T’s
benchmarks [45].

Line Deviation Metric: For real-world scenarios lack-
ing ground truth, we introduce a novel metric focusing
on a system’s capacity to preserve the integrity of straight
lines during image restoration under turbulence. This
metric, rooted in the observation that accurate restoration
should correct distortions affecting straight structural el-
ements (e.g., building edges), leverages Canny edge de-
tection and the Probabilistic Hough Line Transform [39]
to quantify angular deviations from true vertical/horizontal
orientations. A reduced mean deviation score per image in-
dicates superior performance in maintaining geometric fi-
delity in turbulent conditions, with our method’s effective-
ness quantified through rolling mean and standard deviation
across sequences.

5. Experimental Results
5.1. Qualitative Comparison

Visual Results on Real Turbulence Video: In Fig. 4,
we showcase zoomed in regions from single frames of two

video sequences captured as part of the URG-T dataset. AT-
Net and Turbnet are single-frame deep learning approaches
that, while effective in some respects, introduce a significant
number of artifacts into the processed images (see exagger-
ated sharpening effects on the edges of objects). TCI3, is a
multi-frame approach that excels at removing distortion but
struggles with moving objects, e.g. the missing moving car
in the first region or distortion in the second car.

Our method, in contrast, maintains the integrity of sev-
eral object edges, presenting them solidly with minimal dis-
tortion, and importantly, it also accurately renders moving
objects like cars, preserving their visibility and detail. We
recommend viewing the supplemental video to closely eval-
uate our restoration performance across scenes.

OTIS Reconstruction Results: In Fig. 5, we showcase
two scenes from the OTIS dataset (each video containing
300 frames): (1) a star chart target imaged under turbulence,
and (2) a house entrance with a fence partially occluding
it. The input images exhibit significant distortion, yet our
method manages to produce images with the sharpest edges
and without artifacts. For instance, in the Door image, the
staircases appear crooked in results from other methods, and
the foliage is indiscernible behind the fence. In contrast, our
method leverages all 300 frames to correct the alignment of
the staircase, and a closer examination shows we uniquely
render the fence visible across the images with a continuous
straight line.

5.2. Quantitative & Qualitative Comparison

Temporal Consistency Comparison: Our Turb-Seg-Res
method demonstrates remarkable stability in the time do-
main, effectively mitigating the common issue of pixel fluc-
tuation or the “image dancing” effect typically observed in
turbulent conditions. This stability is evident when visu-
ally comparing video sequences, as our approach maintains
consistent pixel behavior across frames as shown in Fig. 6.

Table 2. In the CLEAR dataset evaluation, images smaller than
400 × 400 pixels are excluded due to the fixed size requirements
of AT-Net (256 × 256) and Turbnet (400 × 400). Larger images
were processed using a patch-based approach. When we included
all images of clear dataset, we got an average PSNR of 28.09 and
SSIM of 0.935.

Turb. PSNR (dB) SSIM
AT-Net Turbnet Ours AT-Net Turbnet Ours

Low 22.91 18.86 26.48 0.737 0.572 0.853
Medium 23.37 18.99 26.50 0.770 0.589 0.867

High 22.62 19.15 24.82 0.759 0.588 0.828

CLEAR Dataset Comparison: We ran quantitative
evaluation of our method on the CLEAR dataset in Tab. 2.

3Note that TCI reconstructs in grayscale per the original paper [36]. We
also developed a color extension for the TCI method by running on color
channels independently, which we show in the supplemental material.

25291



Figure 4. Comparative visualization of turbulence mitigation methods: AT-Net and Turbnet introduce artifacts, failing to clearly define
edges of the road, while TCI maintains edge integrity but blurs moving objects. Our method shows minimal distortion with clear depiction
of both static and dynamic elements.

Figure 5. Analysis of the OTIS dataset reveals distinct outcomes.
The upper row, featuring ‘Pattern16’ (300 frames, 135× 135 pix-
els), demonstrates notable clarity in our method compared to AT-
Net and TurbNet, which exhibit significant distortion in finer de-
tails. The lower row, showcasing ‘Fixed Background (Door)’ (300
frames, 520 × 520 pixels), highlights our approach’s superiority
in maintaining geometric integrity, especially in fence structures
and the brickwork of stairs and doors. While TCI performs well
on the fence, it distorts the circular patterns. Our method excels in
preserving straight lines and enhancing edge definition in circular
patterns, offering the clearest and least distorted results.

As one can see, our method achieved superior PSNR and
SSIM values compared to competing methods, showing the
benefit of our background processing and sharpening trans-
form. Note that we do not need to perform segmentation as

Figure 6. Demonstration of the Turb-Seg-Res method’s stability
in the time domain, highlighting its effectiveness in reducing pixel
fluctuations in turbulent conditions.

there is no dynamic scene motion in the CLEAR dataset.
Line Deviation Metric Comparison: Fig. 7 reveals

that for a single image sequence, our method attains a sig-
nificantly lower average line deviation score than Turb-
net and AT-Net. This quantitative metric, complemented
by qualitative analysis in Fig. 4, confirms the superior-
ity of our approach in preserving straight line integrity
across frames. Specifically, we report a deviation score
of Our: 1.89(±0.39), outperforming AT-Net: 3.33(±0.33)
and Turbnet: 5.79(±0.20). This underscores the enhanced
geometric accuracy of our image restoration process.

5.3. Ablation Study

Importance of Segmentation: In Fig. 8, we highlight
the relative importance of performing segmentation + back-
ground enhancement prior to restoration with our trained
transformer. The pipeline with segmentation results in
sharper background reconstructions on the static STOP sign
while still maintaining fidelity for the moving car. Choos-
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Figure 7. Probabilistic Hough Line Transform-based line devia-
tion metric comparison. Our method exhibits minimal image dis-
tortion, particularly in maintaining straight lines, leading to a sig-
nificantly lower line deviation score compared to competitors.

ing the optimal segmentation algorithm for our pipeline
raises a crucial question. Despite the simplicity of our AOF
method, an ablation study demonstrates its competitiveness
with top unsupervised segmentation models in turbulence.
In Tab. 3, we compare it against RGA [45], TMO [10],
Deformable Sprites [57], and DS-Net [35], where it ranks
second in performance but boasts significantly lower la-
tency than the leading RGA method [45]. Note that cre-
ating precise ground truth masks is very challenging for hu-
man annotators due to the inherent fuzziness of edges in
turbulence-distorted images, leading to potential nuisance
factors during annotation.

Table 3. Mean IOU Scores for Different Segmentation methods on
the URG-T dataset [45].

Video Name RGA [45] TMO [10] DSNet [57] DSprites [35] Ours
Mean IoU 0.696 0.468 0.277 0.334 0.627

Importance of Stabilization: When applied across the
entire CLEAR dataset [2], stabilization markedly improved
our network’s performance. The PSNR value rose from
26.80 to 28.09, and SSIM increased from 0.888 to 0.935,
demonstrating stabilization’s significant role in enhancing
overall image quality.

Additional Results: The supplement provides ablation
studies on optical flow choice, visualization of line devia-
tion metrics, a comparison with the P2S simulator [8], qual-
itative video comparisons, analysis of restoration network
choices, and the impact of stabilization and segmentation.

6. Conclusion
This paper presents the first segment-then-restore pipeline
for dynamic videos with atmospheric turbulence to obtain
enhanced visual reconstruction including the mitigation of
geometric distortion as well as recovering high frequency
sharpness. In addition to showing the value of segmen-
tation for this problem, our paper introduces a novel tilt-
and-blur simulator based on procedural noise (Simplex and

Figure 8. Comparative analysis of image restoration methods in
atmospheric turbulence conditions. Panel (A) displays the out-
come of a single-frame approach without segmentation, result-
ing in noticeable artifacts. Panel (B) exhibits the efficacy of our
segmentation-based restoration pipeline, significantly enhancing
the fidelity of the stop sign with minimal distortions.

Perlin) which enables large scale video dataset creation for
training. Compared to state-of-the-art dynamic reconstruc-
tion methods, our pipeline is able to synthesize higher qual-
ity reconstructions with relatively low latency (≈ 1-2 min-
utes per video) for 1080p resolution video. We release
open-source code, simulator, and data available at this link:
riponcs.github.io/TurbSegRes.

We acknowledge potential negative societal impacts,
such as privacy concerns arising from enhanced long-range
surveillance. We did conduct our research with an ASU IRB
STUDY00018456 human subject research exemption.

Future work will explore enhancing segmentation accu-
racy with more annotated data, closing the gap between
noise-based and physics-based simulation training, and de-
veloping real-time restoration for applications in robotics
and embedded systems.
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