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ABSTRACT performing fundamental cognitive tasks [8, 42]. In the context of

In software engineering, interruptions during tasks can have signif-
icant implications for productivity and well-being. While previous
studies have investigated the effect of interruptions on productivity,
to the best of our knowledge, no prior work has yet distinguished
the effect of different types of interruptions on software engineering
activities.

This study explores the impact of interruptions on software en-
gineering tasks, analyzing in-person and on-screen interruptions
with different levels of urgency and dominance. Participants com-
pleted code writing, code comprehension, and code review tasks
while experiencing interruptions. We collect physiological data
using the Empatica EmbracePlus wristband and self-perceived eval-
uations through surveys. Results show that on-screen interruptions
with high dominance of requester significantly increase time spent
on code comprehension. In-person and on-screen interruptions
combined significantly affect the time spent on code review, with
varied effects based on specific interruption combinations. Both
interruption type and task significantly influence stress measures,
with code comprehension and review tasks associated with lower
stress measures compared to code writing. Interestingly, in-person
interruptions present a positive impact on physiological measures,
indicating reduced stress measures. However, participants’ self-
perceived stress scores do not align with physiological data, with
higher stress reported during in-person interruptions despite lower
physiological stress measures. These findings shed light on and
emphasize the potential importance of considering the complex
relationship between interruptions, objective measures, and subjec-
tive experiences in software development. We discuss insights that
we hope can inform interruption management and implications on
stress among software engineers.

(ChatGPT was used to revise and shorten paragraphs in this manuscript.)

1 INTRODUCTION

Interruptions have been studied in many fields such as social sci-
ence, psychology, and cognitive science [14, 18, 38, 41, 56]. Many
have measured interruptions according to their negative effect as
a physical or emotional burden or difficulty. Interruptions lead
to more stress, higher frustration, time pressure, and effort when
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software engineering, interruptions can have a significant impact
on developers’ perception of a good workday and their productiv-
ity [45, 46, 48], which affect their perceived happiness and work
satisfaction [27-29]. This implies that interruptions can potentially
trigger affective states in developers, which can subsequently influ-
ence their productivity, overall performance and satisfaction.

Software development involves common software engineering
activities including writing code, comprehending code, and review-
ing code [30]. Indeed, during a typical workday, approximately
one-fourth of a software developer’s time is dedicated to tasks
like reading, editing, navigating code, and other code-related ac-
tivities [46]. Amidst the significance of these code-related tasks,
developers often encounter interruptions as they perform them.
Logistic duties, such as attending to emails, planning, assisting
co-workers, and holding meetings, can divert their attention from
coding. Meyer et al. reported that the duration of uninterrupted
coding time significantly influence developers’ perceived quality
of the workday [45]. Consequently, interruptions may have a sub-
sequent impact on their productivity and job satisfaction. This
implies different types of interruptions might have varying impact
on programmers’ productivity.

To better understand the impact of interruptions, we designed
an IRB-approved human study focused on two common types of
interruptions: on-screen and in-person. We design on-screen inter-
ruptions following commonly-encountered interruptions during
workdays like email notifications [9, 19] and, more recently, adver-
tisement pop-ups on websites like StackOverflow and Quora. We
also design in-person interruptions to reflect a manager or colleague
discussing work.

Notably, the COVID-19 pandemic has prompted a significant
shift in work patterns, with 35.2% of the workforce working entirely
from home in May 2020 [11]. This shift may lead to an increase in
interruptions during work due to the added complexity of coordi-
nating activities virtually [50]. Indeed, Leroy et al. found a large
increase in interruptions since-COVID, with women reporting a
greater increase in interruptions [40].

Understanding the effects of interruptions requires a multidis-
ciplinary approach that considers various factors such as the type
of interruption, individual differences in attention and response to
interruptions, and the context of the software engineering activity.
Some interruptions may be more disruptive than others depending
on their source and urgency. For instance, a notification from a
messaging app might be less disruptive than a phone call from a
manager. Furthermore, the type of software engineering activity
being performed can affect the impact of interruptions. For instance,
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an interruption during code review might be less disruptive than
an interruption when writing code. Individual factors such as at-
tention span, cognitive load, and experience can also influence how
interruptions affect software engineers. Some developers may be
more easily distracted and have a harder time resuming their work
after an interruption, while others may be better at multitasking
and able to handle interruptions more efficiently. To fully under-
stand the impact of interruptions on software engineers, we take
a comprehensive approach that considers the various factors at
play. In doing so, we hope to develop interventions and strategies
to mitigate the negative effects of interruptions and promote more
productive and healthy work environments for software engineers.

In this paper, we investigate the influences of interruptions in
software engineering activities by analyzing the productivity and
the quality of the work as well as relating them to physiological data
and affective states. In particular, we are interested in the following
three research questions:

RQ1: What is the effect of different interruptions on developers’
performance across different software engineering tasks?

RQ2: What is the effect of different interruptions on stress mea-
sures across different software engineering tasks?

RQ3: Is there a correlation between objective measures of devel-
opers’ physiological states and their self-reported feelings
for different interruptions and tasks?

We perform a controlled human study with 20 participants. In
this study, we invite participants to complete a pre-survey followed
by a 2-hour in-person session, during which physiological measures
were recorded through Empatica EmbracePlus wristband!. Partici-
pants complete three self-paced, indicative software engineering
tasks—code writing, code comprehension, and code review—with
the presence of interruptions.

In summary, we note the following findings from our study:

e On-screen interruptions with high dominance of requester
notably increase the time spent on code comprehension prob-
lems. Moreover, the combined effect of in-person and on-
screen interruptions significantly influences the time spent
during the code review process.

e Interruptions during code comprehension and code review
tasks are associated with higher physiological measures com-
pared to the code writing task. In-person interruptions lead
to an increase in physiological measures.

o Participants’ self-perceived stress measures exhibit a contra-
diction with the objective physiological data.

All the study materials, code and de-identified data are available at
https://doi.org/10.6084/m9.figshare.24944568.v2.

2 RELATED WORK

In this section, we discuss three lines of related work: (1) productiv-
ity in software engineering, (2) effect of interruption on developers’
performance, and (3) objective physiological sensors in software
engineering studies.

https://www.empatica.com/embraceplus/
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2.1 Productivity in Software Engineering

Productivity has been investigated in various software engineering
contexts. Murphy-Hill et al. conducted a study across three differ-
ent companies, using 48 questionnaire items as predictors to assess
which factors better predict developers’ self-rated productivity [48].
They found job enthusiasm, peer support for new ideas, useful feed-
back about job performance to be the top three factors. Although
“I have few interruptions or distractions while working” appears
as one of the predictors and is evident to cause disruptive effects,
the concept of interruptions is very general and broad. The specific
impact of interruptions on work can vary depending on the con-
text and the individual, and Murphy-Hill et al. did not distinguish
different types of interruptions. Furthermore, the study results are
completely based on self-reported measures.

Beller et al. compared self-reported productivity and its attributes
with time spent working on different applications by software en-
gineers at Microsoft [10]. They reported a gap between perceived
productivity and objective measures, and their final model was able
to explain less than half of the variance contained in self-reported
productivity when expressed as objective measures. Therefore, it is
important to build comprehensive method from both objective and
subjective productivity measures.

In this study, we encompass time-based metrics to evaluate ob-
jective productivity. We also assessed self-perceived productivity
in the survey at the conclusion of each software engineering task.

2.2 Effect of Interruptions on Developers’
Performance

Although interruptions are generally perceived as a factor that in-
fluences productivity, few studies have thoroughly investigated the
impact of different sources of interruptions in software engineering.
Abad et al. investigated the disruptiveness of task switching in
software engineering and requirements engineering through five
different studies [2-6]. They found no difference in the influence
of interruptions of different duration no matter what types of tasks
are being performed. They also performed a retrospective analysis
and found that self interruptions (voluntary task switching) are
more disruptive than external interruptions. While these investiga-
tions shed light on the general influence of self-interruptions and
external interruptions, they did not consider the impact of interrup-
tions on different software engineering tasks, nor do they consider
urgency or power dynamics associated with interruptions.

Our study takes a novel approach by analyzing the effects of
external interruptions, including in-person and on-screen interrup-
tions, on three essential software engineering tasks: code writing,
code comprehension, and code review. By exploring interruptions
within the context of these specific activities, we aim to provide a
deeper understanding of their influence on productivity and stress
measures among developers. Moreover, we carefully distinguish ex-
ternal interruptions and consider their urgency or power dynamics,
ensuring a comprehensive examination of their impact.

2.3 Objective Sensors in Software Engineering

Some studies in software engineering make use of objective phys-
iological measures such as eye-tracking, functional magnetic res-
onance imaging (fMRI), and smart wristbands to access objective
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measurement of physiological responses. Huang et al. used fMRI
and functional near-infrared spectroscopy (fNIRS) to understand
mental processes associated with data structure manipulation [33].
Similarly, Krueger et al. used fMRI to find the dissimilarity in prose
and code writing [37]. Later, Huang et al. also used eye-tracking
technology and fMRI to find the differences in code reviews con-
ducted by men and women [32].

Few studies used other objective physiological sensors. Miiller et
al. relied on a combination of eye tracking tehnology, an Empatica
wristband, and an Electroencephalography (EEG) headband to clas-
sify developers’ emotions and perceived progress during software
development change tasks [47]. Girardi et al. used the Empatica E4
wristband to measure the electrodermal activity and heart activity
to recognize developers’ emotions during programming [25].

In our research, we build upon these previous studies by using
the Empatica EmbracePlus wristband to obtain objective measure-
ments of developers’ affective states during software engineering
tasks. By capturing physiological data such as Heart Rate Vari-
ability (HRV), we aim to gain a comprehensive understanding of
how interruptions and task types influence developers’ stress re-
sponses. Furthermore, we compare these objective measurements
with participants’ self-perceived assessments, providing a nuanced
examination of the interplay between subjective experiences and
physiological reactions in the software development context.

3 METHOD

In this section, we present a detailed description of the experi-
mental design and procedures used to investigate the impact of
interruptions on software engineering tasks. With the approval
of the Institutional Review Board (IRB), we specifically recruited
individuals from Vanderbilt University who are either majoring
or minoring in Computer Science to complete tasks in C++. Fur-
thermore, we conducted a pre-screening process to confirm that
participants possessed the necessary basic knowledge of C++ to suc-
cessfully complete all tasks in our study. Specifically, participants
are required to have completed the university’s data structures
course in C++ or an equivalent course as a prerequisite for partici-
pating in the study. The data structures course corresponds to CS2
in the ACM Computing Curricula. Before the study, participants
complete a pre-survey that asks them about basic demographic
information, the Social Interaction Anxiety Scale (SIAS), and the
Cognitive Failures Questionnaire (CFQ) (Section 3.2). Participants
who complete the pre-survey come to a lab designed to replicate an
office environment and complete an assessment on the lab computer
consisting of indicative software development tasks (Section 3.3).
As participants complete each task, we deploy (1) in-person inter-
ruptions in which a confederate goes into the lab to ask innocuous
questions of the participant, and (2) on-screen interruptions such as
notification pop-ups (Section 3.4). During the study, participants
wear an Empatica EmbracePlus Wristband that collects their physi-
ological data (Section 3.5). After completing each task, participants
complete a post-task survey (Section 3.6). Participants do not know
interruptions are designed and intentional until the debriefing ses-
sion after the study. We discuss each step below in more detail.
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3.1 Recruitment

We recruited participants by sending emails to departmental mail-
ing lists and by giving 2-minute presentations at the start of various
computer science classes with instructor permission. Potential par-
ticipants enrolled by sending an email to the study coordinator, at
which point they were given the pre-survey materials to complete.
Participant identities were not stored in any research data, and was
only used to track compensation of participants. Participants were
compensated $40 for their time upon completing the study.

3.2 Pre-survey

Before participants come to the lab and complete the software
engineering task, they complete a pre-survey electronically. Upon
completion of the pre-survey, the participant is scheduled for a two-
hour block for the in-person portion of the study. We collect several
pieces of information about the background of the participant as
described below.

Basic Information. The pre-survey gathers information related
to basic demographic details (i.e., age, gender), English proficiency,
and programming experience. We require participants to be fluent
in English because the instructions and survey instruments are all
in English. Programming experience is measured by asking par-
ticipants to indicate the number of years they have been engaged
in programming activities [22]. We also did not proceed with par-
ticipants unless they completed the data structures course (or an
equivalent) at the university.

Psychological Measures. To account for effects associated with
mental health, we employed the Social Interaction Anxiety Scale
(SIAS) [43] to establish a baseline anxiety level. The SIAS survey
consists of 20 questions, each rated from 0 to 4, resulting in total
scores ranging from 0 to 80. Generally, higher SIAS scores indicate
elevated anxiety and fears related to general social interactions. In
particular, when facing in-person interruptions involving face-to-
face interactions, individuals with social interaction anxiety might
experience greater challenges in effectively managing the inter-
ruptions. They may interpret interruptions as more threatening
or disruptive, leading to heightened stress levels. Our participant
pool is diverse, encompassing a range of SIAS scores as shown in
Figure 4, allowing us to explore the potential impact of individual
mental health on developers’ responses to interruptions. This un-
derstanding can inform the development of targeted interventions
and support mechanisms for developers in software development
environments. To assess the frequency with which participants
experienced cognitive failures, we included the Cognitive Failures
Questionnaire (CFQ) [12]. The CFQ measurement contain 25 ques-
tions rated from 0 to 4, yielding a score from 0 to 100. Scores on the
scale predict episodes of absent-mindedness, including slow perfor-
mance on focused attention tasks, work accidents, and forgetting to
save one’s data on the computer. All participants scored less than
60, which suggests that, on average, they experienced relatively
fewer cognitive failures or lapses in their cognitive functioning.

3.3 Software Engineering Assessment

After completing the pre-survey, participants scheduled a 2-hour
in-person session. During their 2-hour session, the participant com-
pletes three different software tasks in an office setting with a lab
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computer that collects their responses. The assessment contains (1)
a code writing (programming) task, (2) a code comprehension task,
and (3) a code review task, all implemented in C++.

Prior to commencing the first task, participants were instructed
to relax and view a soothing video featuring natural scenes, lasting
two minutes and 40 seconds, following the methodology of Fritz
et al’s study [24]. This approach was chosen as it has been demon-
strated to effectively return participants’ physiological features to
a baseline level after approximately one minute.

We implemented the assessment instrument using Python Flask.
Participants view a web interface containing relevant elements for
completing each task, such as text entry fields with C++ syntax
highlighting, buttons for building and executing code against a
held-out test suite, and buttons for accepting or rejecting proposed
code changes. We describe each task below.

3.3.1 Code Writing Task. In the code writing task, the participant
is asked to program a Tic-Tac-Toe game in C++ that involves a
single file implementation with about 137 lines of code to read,
which includes pre-defined functions and structures and instruc-
tions. The participant had to complete support for a two-player
3x3 Tic-Tac-Toe game in which players take turns specifying their
symbols on the board and validating when a player formed a hori-
zontal, vertical, or diagonal sequence of their symbol. We showed a
video introducing the requirements of the Tic-Tac-Toe game before
starting.

We created a web-based Integrated Development Environment
(IDE) similar to platforms such as LeetCode [39]. We provided
enough structure to the participant that they only needed to com-
plete specific functions defined in the starter code according to the
requirements they were given. For example, participants had to im-
plement logic to evaluate the board state to determine if a winning
condition had been met. This IDE enabled users to submit their
code by clicking a button — the browser would submit the code
to our server, which would automatically build and evaluate their
code against a held-out test suite of 5 test cases. Participants were
shown the output of the test cases so that they could refine their
solution. For expediency and to encourage thoughtful task comple-
tion, we limited participants to 5 submissions total. We stored all
submissions and test outputs, as well as every individual keystroke
made by the participant.

3.3.2 Code Comprehension Task. In the code comprehension task,
participants were presented with three sets of C++ code snippets,
each corresponding to a LeetCode problem. The problems were
carefully selected to cover a diverse range of important topics in soft-
ware engineering and were categorized as either easy or medium
difficulty based on LeetCode’s classification [39]. The order of the
code snippets was randomized for each participant to minimize
any potential order effects. Table 1 summarizes the three LeetCode
problems selected for this task. To gauge the difficulty level of each
problem, we considered the acceptance rate, which represents the
percentage of LeetCode submissions that pass all the test cases for a
particular problem. LeetCode problems with lower acceptance rates
are generally considered more challenging, as they may require
a deeper understanding of the problem and a more sophisticated
solution. The acceptance rate served as an approximation for the
difficulty level of each problem.
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Table 1: Description of code comprehension problems [39].

Problem Titles Difficulty Acceptance % Related Topics
Single Number Easy 70.9% Array,
Bit Manipulation
Majority Element Easy 63.9% Array, Hash Table,
Divide and Conquer,
Sorting, Counting
Subarray Sum Equals K Medium 43.6% Array, Hash Table,

Prefix Sum

The participants are shown two different approaches to solving
the same LeetCode-style coding problem. To assess their compre-
hension, participants were required to answer four questions related
to each pair of approaches: two questions related to expected output
given a specific input, and two qustions focused on time complexity
(i.e., Big-O notation) of the provided approaches. Participants had
the opportunity to submit their answers up to 5 times for expedi-
ency and to accommodate issues with formatting (e.g., specifying
Big-O notation in a brower text input field is nontrivial). After each
submission, the number of questions they answered correctly is dis-
played. An example of the questions that participants encountered
for a given problem is shown in Figure 1.

3.3.3 Code Review Task. The code review task contains two parts:

e First, participants are asked to write test cases for a C++
Adelson-Velsky and Landis (AVL) tree implementation in a
single C++ file of approximately 250 lines [7].

e Second, participant decide whether to accept proposed changes
made to this AVL tree implementation. To ensure a clear un-
derstanding of the different rotations of AVL trees, we pro-
vided an introductory video on AVL trees before they started
the code review task.

First, participants write test cases to cover four different types of
AVL tree rotations (i.e., Left, Right, Left-Right, and Right-Left Rota-
tions [20]) and one edge case in which the same value is inserted
twice. Similar to the code writing task, participants use a web-based
IDE to write test cases as unit tests. We seeded defects in the AVL
tree implementation to contain logical errors that are corrected by
proposed changes described in the second part. Participants can
submit their test cases, which are evaluated with respect to line and
branch coverage over the given implementation. The coverage is
provided to the participant by showing whether each rotation type
or edge case was evaluated by their provided test suite. Participants
could submit their test cases up to five times.

Second, participants are informed that there are defects in the
provided AVL tree implementation, and must determine whether to
accept or reject proposed changes to the implementation. Sadoski
et al. [52] showed that many changes to source code made during
code reviews were relatively small in size, often modifying only a
single line of code. Thus, we show participants 7 different proposed
changes to the AVL tree implementation, each of which involved
4 lines of code or fewer. While two of these proposed changes
fix existing errors, the other five changes introduce new defects.
The combination of both fixes and the introduction of new defects
ensures a comprehensive evaluation of participants’ code review
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capabilities. Participants are required to evaluate each proposed
change and decide whether to accept it based on its impact on the
code’s correctness and functionality.

3.4 Interruptions

We implemented interruptions based on previous methods. Mc-
Farlane examines four methods for deciding when to interrupt
someone during multi-tasked computing, including immediate (re-
quiring an immediate user response), negotiated (user chooses
when to attend), mediated (an intelligent agent might determine
when best to interrupt) and scheduled (interruptions come at pre-
arranged time intervals) interruptions [44]. Those four methods
of interruptions are based on multiple complex factors such as the
urgency of the information being conveyed, the participant’s pref-
erence or availability, and the participant’s behavior and context.
We adapt McFarlane’s framework in designing interruptions of
software engineering tasks in a controlled setting.

In our study, we implement four types on-screen interruptions
(an example is shown in Figure 2) and two types in-person inter-
ruptions. We further adopt the Eisenhower decision matrix [35] to
categorize our interruption methods. Similar to the two dimensions
of Eisenhower decision matrix, this matrix evaluates interruptions
along two dimensions: urgency of request and dominance of requester.
Figure 3 depicts the estimated urgency of request and dominance
of requester for the six interruptions. These interruptions are de-
scribed in Table 2.

During the execution of the software engineering tasks, we ran-
domly show on-screen interruptions, labeled as On-screen 1-4,
which appeared randomly and in various orders throughout the
different tasks. On-screen 1 (Experiment Invitation) and On-screen
3 (Sum-up Meeting) were intentionally designed to exhibit a high
level of dominance from the requester, simulating messages from
the Principal Investigator (PI), while On-screen 2 (ML Ads) and
On-screen 4 (Post-survey Reminder) exhibit low dominance of the
requester. Additionally, On-screen 3 was crafted with a sense of
urgency, requiring participants to promptly fill out their availability.
Each on-screen interruption message consists of no more than 100
words. These design choices were made to approximate aspects of
real-life real-life situations where software engineers encounter
interruptions from authority figures or urgent requests.

Table 2: Description of interruption types used in this study.

Label Description of the Content

On-screen 1 A message claims the PI wants to invite the participant

to another experiment.

On-screen 2 An advertisement to invite the participant to a seminar.

On-screen 3 A message asking the participant to provide their avail-

ability for a follow-up meeting about the study.

On-screen 4 A reminder to fill out the post-task survey after the task.

In-person 1  Student confederate enters the room to check on the
participant.
In-person 2 Professor confederate enters the room to ask the partici-

pant about their availability to meet after the study.
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In addition, we also consider in-person interruptions facilitated
by a confederate student and a professor. For In-person 1 (Student),
the confederate student, a 20-year old Asian female, played the role
of a peer entering the room to assess the participant’s progress
during the task (although all progress is stored and tracked on the
backend). For In-person 2 (PI), the confederate professor, a 34-year
old White male who is a faculty in the department, played the role
of an authority figure entering the room to ask the participant about
their availability to meet after completing the study. Participants
are aware of the confederate professor’s occupation as the confed-
erate introduces himself at the beginning of the interruption. Both
these In-person interruptions were intentionally designed with a
high sense of urgency, demanding immediate responses, but with a
varying degree of requester dominance (i.e., student vs. professor
confederate). To keep the consistent study design, the student and
professor confederate remain the same for all participants (see Sec-
tion 5.2 for discussions on limitations). The specific timing of their
entry into the room was also randomized to mimic unexpected
interruptions that engineers may encounter in their actual work
environments.

We note that participants experienced one to three interrup-
tions during each task, and we ensured that two interruptions did
not occur simultaneously. This approach aimed to approximate
aspects of real-life real-world interruptions, where engineers may
face multiple interruptions over time. Our design choices, incorpo-
rating both on-screen and in-person interruptions, were intended
to capture the diverse effects of interruptions from various sources
and contexts on participants’ software engineering activities. By
simulating these interruptions realistically, we aimed to create an
environment that closely resembles the challenges and distractions
software engineers may encounter during their day-to-day work.

3.5 Physiological Measures

Physiological measures such as electrodermal activity and heart-
related measures provide a objective way to measure each par-
ticipant’s emotional state and cognitive load [1, 26]. We use the
Empatica EmbracePlus Wristband to measure heart rate variability
(HRV) as it has been widely used in research to collect physiological
data [25, 51, 54, 62]. It is a medical-grade wearable device that offers
real-time physiological data acquisition, which we use to conduct in-
depth modeling, analysis and visualization. The wristband embeds
3-axis accelerometer, electrodermal activity, temperature and gyro-
scope sensors?. It is a non-invasive device worn like a wristwatch,
minimizing any discomfort during usage. However, participants
are informed of potential mild irritation due to prolonged contact
with the band material on the skin, as well as possible fatigue from
wearing the wristband. These risks are similar to those associated
with smartwatch devices. All data collected from the wristband was
stored in encrypted storage and de-identified from each participant.

3.6 Post-task Survey

During the study, participants complete three post-task surveys
interspersed after each task completion. We note that participants
were unaware that the interruptions were intentional during the
study. Therefore, in compliance with the IRB protocol, a debriefing

Zhttps://www.empatica.com/embraceplus/
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Code Comprehension Task
Two solutions are provided as below to solve the same question:

Solution 1: Solution 2:

Code Snippet 1

Code Snippet 2

1. For input X, what is the output? 3. What is the time complexity for Solution 1?

2. For input Y, what is the output? 4. What is the time complexity for Solution 2?

Figure 1: Layout of the code comprehension task stimulus.
Each code snippet provided in this assessment consists of
fewer than 30 lines of code shown in a browser.

session is conducted at the conclusion of the study to inform par-
ticipants about the purpose and design of the study, including the
intentional nature of the interruptions. Following the debriefing,
participants are asked to complete a final survey, which provides
them with an opportunity to reflect on their overall experience and
provide any additional feedback or comments.

3.6.1 Code Writing Survey. The first post-task survey is associated
with the tic-tac-toe writing task. We ask participants’ current affec-
tive states by adapting the Positive and Negative Affect Schedule
(PANAS) scale [61]. The PANAS scale consists of 20 items that are
rated on a scale of 1 to 5. These items are divided into two categories:
positive affect and negative affect, with 10 items in each category.
However, as the PANAS scale is commonly used to assess a person’s
affective state over a longer period, following previous studies, we
made necessary modifications to capture participants’ immediate
affective experiences during the task [15]: we asked them to select
the PANAS items that best described their current affective state
while working on the tic-tac-toe task. This adaptation allowed us to
capture participants’ current emotional state in response to the task
and any encountered interruptions. Additionally, to gain insights
into participants’ perceived productivity and level of distraction
or focus during the task, we included rating scales from 1 to 5 on

A
On-screen 1 [ . Onscreen 3 ] [ o In-Person 2 ]

(experiment invitation) (Sum-up Meeting) (PI)

Information sent from Immediate response inquired
a dominant authority by a dominant authority

Urgency of request

non-dominant authority by a non-dominant authority

o In-Person 1
(Student)

Information sent from a } [ Immediate response inquired }

+On-screen 2 } [

On-screen 4
(ML Ads)

.
(Post-survey Reminder)

Dominance of requester

Figure 3: Interruption Matrix Based on Eisenhower Decision
Matrix. This matrix evaluates interruptions along two di-
mensions: urgency of request and dominance of requester.
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-

Code Comprel =~~~

Two solutions are pro
Solution 1:

We are resuming our ML Lunch Seminars next week! We have a
very exciting upcoming talk by Prof. X from University Y. X is one of
the most brilliant researchers working at the intersection of
medicine and machine learning...

[ ok |

3. What is the time complexity for Solution 1?

answer here

4. What is the time complexity for Solution 2?

answer here

1. For input X, what is the output?

answer here

2. For input Y, what is the output?

answer here

Figure 2: Layout of an on-screen interruption. The light gray
box depicts the pop-up that appears on the screen randomly
during the task, which can be dismissed by clicking the ‘OK’
button or providing the requested input.

these factors. Open-ended questions were also included to gather
more detailed qualitative feedback, such as “What was the biggest
challenge you faced while implementing the tic-tac-toe task and
why?” These open-ended questions provided participants with an
opportunity to share their experiences, challenges, and perceptions
related to the task and the interruptions they encountered.

3.6.2 Code Comprehension Survey. After completing the code com-
prehension task, we asked PANAS scale items (as in the code writing
task). We also asked participants to rate the difficulty of each prob-
lem on a scale of 1-100 using a slider element and to rank the
difficulty of the three problems.

3.6.3 Code Review Survey. After the code review task, we follow a
similar survey structure. Participants were asked to complete the
PANAS scale, and then to rate their productivity, distractedness,
and level of focus, each on a scale of 1 to 5, and provide feedback
through open-ended questions. They were also asked to rank the
difficulty for the 7 accept/reject changes questions.

3.6.4 Debriefing Survey. Finally, as participants learned that all
interruptions were purposeful, we asked them to rate the level of
distraction and level of stress caused by those intentional interrup-
tions. We also included open-ended questions such as “Other than
the distractions we designed on purpose, was there anything else
you found distracted?” to allow participants to provide feedback.

By including these post-task surveys, we aimed to gather com-
prehensive feedback and insights from participants regarding their
perceived affective states, task perceptions, and experiences during
each task in the study.

4 EVALUATION

In this section, we present a comprehensive analysis of the data
collected during our study on the impact of interruptions on de-
velopers’ performance and physiological measures in software en-
gineering tasks. Our participant pool comprised a group of 20 un-
dergraduate (n=17) and graduate (n=3) computer science students,
with 11 male and 9 female, ranging in age from 19 to 23 years.
To assess their social interaction anxiety levels, we employed the
Social Interaction Anxiety Scale (SIAS), the scores of which are
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Figure 4: Distribution of SIAS among all subjects. These
scores indicate the level of social interaction anxiety expe-
rienced by the participants, with higher scores indicating
a higher level of anxiety. The SIAS scores of our subjects
ranged from 20 to 53, with a mean of 35.35 (SD = 9.64).

distributed as depicted in Figure 4. The distribution aligns with pre-
vious studies on social anxiety among general engineering students
in colleges [16, 34]. We aim to address our research questions:

RQ1: What is the effect of different interruptions on developers’
performance across different software engineering tasks?
RQ2: What is the effect of different interruptions on stress
measures across different software engineering tasks?

RQ3: Is there a correlation between objective measures of de-
velopers’ physiological states and their self-reported feelings
for different interruptions and tasks?

4.1 Performance and Productivity

In this study, we first measure time spent on each task as an in-
dication of participant efficiency and productivity. Informally, a
developer who completes tasks within a shorter time frame may be
considered more productive than one who takes longer. When mea-
suring time spent on tasks, we exclude in-person interruption time
as participants are not able to work on the task during in-person
interruptions. Furthermore, relying solely on one metric can lead
to an incomplete understanding of productivity [23]. It is crucial
to use a combination of quantitative and qualitative measures to
obtain a well-rounded assessment of a developer’s productivity.
Therefore, we also assess their self-reported productivity through
post-task surveys, although no significant result was found. Below,
we discuss specific results of participant productivity with respect
to the Code Comprehension and Code Review tasks (Section 3.3).
Code Comprehension. There are three problems in code com-
prehension task as shown in Table 1. To investigate the effect of
different interruptions, we conducted a rigorous mixed-effects mod-
eling analysis. We first investigated the relationship between types
of interruptions and time spent on the problem. We specified that
there is individual variability in the baseline level of the time spent
among different participants. Subsequently, we employed linear
mixed-effects models to predict the time spent on the problem. The
model results suggest that On-screen 1 (Experiment Invitation) and
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On-screen 3 (Sum-up Meeting) have a significant effect on time
spent. For problem with the occurrence of On-screen 1 (Experiment
Invitation), the expected difference of time spent on the problem
is 164.50 seconds (SE = £72.82, p = 0.028) compared to the time
spent on the problem without any interruption. For problem with
the occurrence of On-screen 3 (Sum-up Meeting), the expected
difference of time spent on the problem is 164.50 seconds (SE =
+62.90, p = 0.0499) compared to the time spent on the problem
without any interruption. These findings conclusively demonstrate
that encountering these two types of interruptions, both with high
dominance of requester, led to a significant increase in the time
participants spent on the problem. For in-person interruptions, we
find no significant effect on time spent.

In addition to examining the impact of interruptions, we sought
to explore how the difficulty of the problems influences developers’
responses during the code comprehension task. To address this,
we performed separate ANOVA analyses for each problem, com-
paring the average time spent by participants when encountering
interruptions versus completing the problem without any interrup-
tion, while also accounting for individual differences. The outcomes
shown in Table 3 demonstrate that interruptions had a more sig-
nificant effect on simpler problems compared to their impact on
more complex ones. This observation suggests that the presence
of interruptions had a more pronounced influence on participants’
performance and time allocation for easier problems, while the
effect was relatively diminished for problems of higher difficulty.

Code Review. In the code review task, detailed in Section 3.3.3,
we introduced a combination of in-person and on-screen inter-
ruptions. To assess the impact of these interruptions on the time
spent during the code review, we employed a rigorous mixed-effects
ANOVA analysis. This allowed us to investigate the potential signif-
icance of different types of in-person and on-screen interruptions,
as well as their interaction. The results of the mixed-effects ANOVA
analysis indicated a significant interaction effect (p = 0.043) be-
tween in-person and on-screen interruptions on the time spent
during the code review task. Although the individual main effects
of in-person interruptions and on-screen interruptions were not
statistically significant on their own, their combined influence sig-
nificantly impacted the time spent during the code review process.

To understand the interaction, we conducted a post-hoc analysis,
focusing on pairwise comparisons between different combinations
of on-screen interruptions and in-person interruptions. The post
hoc analysis revealed compelling insights into the differences in es-
timated means for time spent on the task under various interruption
scenarios. When On-screen 2 (ML Ads) occurred in conjunction
with in-person interruptions, participants spent 1812.3 seconds less

Table 3: Differences in mean time spent by groups with mi-
nus without interruptions (seconds). The percentage of the
difference is shown in parentheses.

Problem Title Difference (s) Standard Error p-value
Single Number 230.0 (142.9%) +72.1 0.0053
Majority Element 89.5 (40.5%)  +93.5 0.3522
Subarray Sum Equals K = 24.2 (9.3%) +56.6 0.6747
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time (SE = £711, p = 0.027) on the task compared to scenarios with
no in-person interruptions. Conversely, without the presence of
in-person interruptions, participants spent 1575 seconds more time
(SE = +487, p = 0.0346) when encountering On-screen 2 (ML Ads)
compared to On-screen 4 (Post-survey Reminder).

These findings suggest that the interaction between in-person
and on-screen interruptions plays a significant role in influencing
the time spent during the code review task. The specific combina-
tions of interruptions have varying effects on the task duration,
indicating the complexity and nuanced impact of interruptions
on developers’ code review activities. By thoroughly examining
both in-person and on-screen interruptions in this mixed-effects
ANOVA analysis, we gain a comprehensive understanding of how
different interruptions interact to affect developers’ code review
performance.

Finding 1: Specific on-screen interruptions with high dominance
of requester significantly increase the time spent on code com-
prehension problems, and interruptions in general have a more
pronounced effect on time spent on simpler code comprehen-
sion problems compared to more complex ones. The combined
influence of in-person and on-screen interruptions significantly
impact the time spent during the code review process, and spe-
cific combinations of interruptions result in varying effects on
the task duration.

4.2 Heart Rate Variability and Stress Measures

Studies have shown the connection between heart rate variabil-
ity (HRV)’s time domain features and stress levels in healthy hu-
man participants [17, 60]. In particular, the short-term SDNN and
RMSSD have been found to exhibit significant changes in response
to stress [13, 21, 31, 36, 49, 55]. SDNN is the standard deviation
of Inter-Beat Intervals (IBIs) measured in milliseconds, where NN
means “normal” beats, i.e, removing abnormal or false beats. RMSSD
calculates the difference between successive inter-beat-intervals
(IBI) in milliseconds, squares these values, and takes the root of
the mean. Punita et al. [49] suggested that SDNN and RMSSD were
reduced with increased intensity of stress, and Sin et al. found that
individuals with more pronounced affective reactivity to stressors
had lower levels of SDNN and RMSSD [55]. We are interested in
examining the effect of types of interruptions on developers’ stress
measures and whether it varies among different types of software
engineering tasks. We thus estimated participants’ objective stress
measures using HRV and compared them with their self-reported
stress scores in the post-survey.

The participants’ physiological data was collected using an Em-
patica EmbracePlus wristband during our study. Specifically, we
focused on extracting time domain features of Heart Rate Variability
(HRV) from the collected data. To extract the time domain features,
we used hrvanalysis, a Python module specifically designed for
HRYV analysis. We captured the 30-second window both before and
after each interruption that occurred during the assessment. The
30-second window measurement taken before the interruption was
designated as the baseline for subsequent comparisons. By estab-
lishing a baseline, we aimed to assess any changes or deviations in
physiological responses resulting from the interruptions.

Yimeng Ma, Yu Huang, and Kevin Leach

First, we report the differences of SDNN and RMSSD for the mea-
surements before and after each interruption. We perform paired
t-tests with different types of interruptions and software engineer-
ing tasks. The results show that, in general, after an interruption,
the participant’s SDNN and RMSSD increase by 12.0 ms (SE = +9.5,
p = 0.013) and 14.6 ms (SE = +11.7, p = 0.015), indicating a de-
crease in stress measures. Specifically, regardless of the type of
tasks being performed, In-person 1 (Student entering the room)
have a significant positive effect on RMSSD, causing RMSSD to
increase by 32.6 milliseconds (SE = +28.9, p = 0.029). The increase
in RMSSD indicates a decrease in stress measures.

To further investigate the impact of different interruptions, we
conducted a rigorous mixed-effects modeling analysis. Initially, we
performed an ANOVA analysis using random effects structures to
identify the best-fitting model to account for the inherent variabil-
ity in our data. We treat individual subjects as random effects. This
was achieved through the inclusion of random intercepts for tasks
and random slopes for subjects influenced by the types of tasks
they performed. After finalizing the random effects structure, we
proceeded to fit linear mixed-effects models aimed at predicting
SDNN and RMSSD. We consider the following two linear mixed
effects models to determine whether types of interruptions and
types of tasks can predict SDNN and RMSSD. By employing these
models, we aim to gain deeper insights into the complex relation-
ship between interruptions, software engineering tasks, and their
joint influence on the participants’ SDNN and RMSSD measures.

Model 1: Do types of interruptions predict SDNN and RMSSD?
The model results suggest that the in-person interruptions have a
significant impact on SDNN and RMSSD. For SDNN, the interrup-
tion “In-person 1” shows a statistically significant effect (p = 0.0098)
with an expected difference of 25.4 milliseconds (SE = £9.7) com-
pared to the baseline measurements taken before the interruption
occurred. Similarly, the interruption “In-person 2” also has a statis-
tically significant effect (p = 0.0107) with an expected difference
of 23.9 milliseconds (SE = +9.2) compared to the baseline measure-
ments. For RMSSD, The interruption “In-person 1” demonstrates
a statistically significant effect (p = 0.0045) with an expected dif-
ference of 34.8 milliseconds (SE = +12.1) compared to the baseline
measurements taken before the interruption occurred. Addition-
ally, the interruption “In-person 2” has a statistically significant
effect (p = 0.0432) with an expected difference of 23.4milliseconds
(SE = +11.5) compared to the baseline measurements. Remarkably,
both in-person interruptions are positive predictors, indicating that
when these interruptions occur, the developers’ SDNN and RMSSD
tend to increase, and their stress measures tend to decrease. This
suggests that the presence of students or the PI in the room may
have a beneficial effect on the developers’ physiological indicators,
potentially reducing stress levels.

Model 2: Do types of interruptions and types of software
engineering activities predict SDNN and RMSSD? The model
suggests that both the type of interruptions, specifically the two
in-person interruptions, and and the type of task have a significant
impact on RMSSD and SDNN. During interruptions, the expected
difference in SDNN compared to code writing task for code com-
prehension task is 25.0 milliseconds (SE = 9.6, p = 0.0027); The
expected difference in SDNN compared to code writing task for
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On-screen 4 (Post-survey Reminder) l:l:'—
On-screen 3 (Sum-up Meeting)
On-screen 2 (ML Ads) l:l:'—

On-screen 1 (Experiment Invitation) l:l:'—

In—-person 2 (PI)

1 5

Type of Interruptions

2 3 4
Stress Score (ranges from 1 to 5)

Figure 5: Self-perceived stress scores among all subjects. The
graph illustrates the distribution of self-rated stress scores,
ranging from 1 (least stressed) to 5 (most stressed).

code review task is 53.6 milliseconds (SE = +7.5, p = 4.8¢~7). The ex-
pected difference in RMSSD compared to code writing task for code
comprehension task is 23.9milliseconds (SE = £9.4, p = 0.0151);
the expected difference in RMSSD compared to code writing task
for code review task is 54.8 milliseconds (SE = +10.2, p = 2.52¢°).
These results suggest that developers experience lower stress mea-
sures during interruptions when performing code comprehension
and code review tasks compared to the code writing task. The
positive predictors for both tasks suggest lower stress measures,
with the code review task showing a particularly pronounced effect.
However, it is important to consider the sequential nature of the
tasks performed. Since tasks were completed in a specific order, it
is possible that developers became less stressed as they progressed
to the later tasks.

Finding 2: Both the type of interruptions and the type of task
significantly affect developers’ objective stress measures. Specifi-
cally, interruptions in code comprehension and code review tasks
are associated with lower stress measures compared to the code
writing task. The presence of in-person interruptions has a signif-
icant positive impact on the physiological measures, suggesting
a reduction in stress measures when these interruptions occur.

4.3 Comparing Self-Reported and Physiological
Data

In the post-survey for each task, participants rate the level of stress
caused by each interruption from 1 to 5, where 1 is the least stressed,
and 5 is the most stressed. We noted a disparity between the objec-
tively measured stress indicators and the self-reported stress scores.
The distribution of reported stress scores is shown in Figure 5. In
this subsection, we compare between these self-reported measures
and the objective stress measurements reported in Section 4.2.

Using a linear mixed-effect model, we investigate the relationship
between on-screen/in-person interruptions and participants’ self-
reported stress scores. The analysis revealed in-person interruptions
have a significant effect on participants’ self-reported stress scores,
as participants’ self-reported stress scores are 1.43 (SE = +0.25,
p < 0.0001) higher when they encountered in-person interruptions
compared to on-screen interruptions.

Surprisingly, the findings contradict the objective physiologi-
cal measurements. Participants, on average, perceived in-person
interruptions as substantially more stressful than on-screen in-
terruptions in contrast to their actual physiological data showing
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Table 4: Pairwise comparisons for the self-reported stress
(from 1 to 5) between different types of in-person and on-
screen interruptions using Tukey’s Honestly Significant Dif-
ference (HSD). Delta is calculated by subtracting the self-
reported stress for on-screen interruptions from in-person
interruptions. Significant results are highlighted in bold.

On-screen 1 On-screen 2 On-screen 3 On-screen 4

Delta (Exp.Inv.) (ML Ads) (Sum-up Mtg.) (Survey Rem.)

In-person 1, 0, 1.492 1.242 0.965
(Student)

In- 2

wp (e;f)on 3.064** 2.939** 2.689** 2.412*

(*p < 0.05, "*p < 0.01)

their stress measures decrease during in-person interruptions (Sec-
tion 4.2). This discrepancy prompted further investigation into
potential factors influencing this contradiction.

We then performed an ANOVA analysis on the effect of spe-
cific types of interruptions on stress scores with the use of nested
error term to appropriately account for the dependency between
repeated measures on the same subjects: the different types of inter-
ruptions have a significant impact on participants’ self-perceived
stress score (p < 0.001). We then used Tukey’s Honestly Significant
Difference (HSD) Method to perform pairwise comparisons for the
self-perceived stress score between groups, as shown in Table 4.
The results suggest that the In-person 2 (PI) interruption type is
associated with higher self-perceived stress scores compared to
On-screen 1-4 interruption, but there is no significant difference
in self-perceived stress scores between In-person 1 (Student) and
any On-screen interruption (see Section 5.2 for limitations).

Participants’ affective states for each task were assessed using the
PANAS scale, which includes 10 positive and 10 negative items. Pos-
itive scores were incremented by 1 for each positive item selected,
while negative scores were incremented by 1 for each negative item
selected. However, we found no significant differences in positive
and negative scores across the three tasks. This result suggests that
participants’ perceived affective states remained relatively consis-
tent throughout the different software engineering tasks, regardless
of the presence of interruptions.

The observed discrepancy between self-perceived stress scores
is not limited to different types of interruptions but also extends to
different tasks. Specifically, based on the results from Section 4.2,
developers appear to experience a higher SDNN and RMSSD, indi-
cating lower stress measures when engaged in code comprehension
and code review tasks compared to the code writing task accord-
ing to their physiological data. Interestingly, despite the lower
objective stress measures during the code review task, we note
that in the post-survey’s open-ended question, 9 out of 20 partici-
pants mentioned some degree of disliking for the code review task.
These contrasting results raise interesting questions regarding the
relationship between stress, task preferences, and subjective ex-
periences. While the quantitative data point towards lower stress
during code review, the qualitative responses highlight participants’
aversion or discomfort towards this particular task.
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The combination of objective physiological data and self-reported
measures provides a comprehensive understanding of the impact
of interruptions on developers’ stress measures and affective states
during software engineering tasks. The observed discrepancy be-
tween subjective self-perceived stress scores and objective physio-
logical responses underscores the potential need for considering
multiple measures when evaluating stress in the software develop-
ment context.

Finding 3: The self-perceived stress levels reported by partici-
pants show a discrepancy against objective physiological data.
While developers reported higher stress levels during in-person
interruptions compared to on-screen interruptions, their objec-
tive physiological data indicate a lower stress level. While par-
ticipants’ physiological responses suggest that they experienced
lower stress levels during code comprehension and code review
tasks compared to code writing tasks, about half of the partici-
pants reported aversion towards the code review task. This might
suggest the necessity to further understand the relationship be-
tween stress, task preferences, and subjective experiences in
software development environments.

5 DISCUSSION

In this section, we discuss our study’s implications for the software
engineering community (Section 5.1) as well as the threats to valid-
ity (Section 5.2) to identify potential limitations and weaknesses
that could affect the validity of the study’s findings.

5.1 Implications

Our study’s results have several implications for both researchers
and practitioners in the field of software engineering.

First, the study reveals that different interruptions influence de-
velopers’ stress measures and productivity during various software
engineering tasks. Companies may consider adopting interruption
management strategies to minimize stress. For example, providing
customizable notification mechanisms for on-screen interruptions
and implementing interruption-free periods for developers working
on critical tasks can foster a less stressful work environment.

The study further opens up new research avenues for exploring
the complex effect of interruptions on stress and task performance
in software development. Further investigations into productivity,
stress management techniques, and the effects of different types of
interruptions can lead to more tailored interventions and strategies
to support developers in their work.

5.2 Threats to Validity

In this subsection, we address four threats to validity in our study.
First, the nature of the interruptions used in our study, while in-
spired by real-life scenarios, may not fully capture the complexity
and nuance of interruptions that occur in natural work settings. In
alaboratory setting, certain aspects such as the intensity, frequency,
and unpredictability of real-life interruptions may not be entirely
replicable. While an in-situ study design could provide insights
more reflective of real-life interruption dynamics, it also introduces
complexities in controlling and measuring variables. This study
chose a lab-based approach to balance the need for experimental
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control with the objective of examining interruption effects. Fu-
ture research could explore in-situ methodologies to complement
and extend our findings. Next, we used the Empatica EmbracePlus
wristband to measure participants’ physiological responses, which
inherently entails several limitations and measurement errors that
could affect the HRV measurements. Despite this, the Empatica Em-
bracePlus wristband has been widely used in previous research (Sec-
tion 3.5), with multiple studies supporting its validity [51, 53, 57].
Third, the sample size of 20 participants is a potential threat to exter-
nal validity. We chose 20 participants after considering the study’s
complexity and time requirements. Previous studies with similar
sample sizes have found significant results in studying physiolog-
ical measures and stress [58, 59]. This participant count allowed
for in-depth analysis while managing the logistical challenges of
intensive data collection and personalized attention during the lab
sessions. Further, we note that we have reported statistically signif-
icant findings from our 20 participant cohort. Moreover, we note a
potential limitation lies in the relatively small number of problems
in the code comprehension task. We initially included an additional
hard Leetcode-style problem, but excluded it based on pilot study
results due to extended and unpredictable completion times. While
this allowed us to examine the impact of interruptions on stress and
productivity across different complexity levels, the limited number
of problems may affect the generalizability of our findings. More-
over, approximating problem difficulty based on acceptance rate
could be influenced by factors beyond inherent difficulty, such as
problem popularity. Nonetheless, by carefully selecting problems
of varying complexity levels, our findings remain relevant for un-
derstanding the intricate relationship between interruptions, task
complexity, and developer experiences in software development
environments. Lastly, the design of the dominance of requester
for in-person interruptions might be affected due to stereotypes
and implicit biases about gender and race. There could be societal
expectations or stereotypes about how different genders and races
communicate, which could impact how interruptions from a white
male professor and an Asian female student are interpreted.

6 CONCLUSION

We conducted a controlled study on the effects of interruptions on
software engineering tasks. Participants completed code writing,
code comprehension, and code review tasks while experiencing six
different in-person and on-screen interruptions. We collected their
physiological data with the Empatica EmbracePlus wristband and
gathered self-perceived evaluations through surveys. Our findings
reveal that specific on-screen interruptions, especially those with a
high dominance of requester, significantly increase the time spent
on code comprehension tasks. The combined influence of in-person
and on-screen interruptions significantly impact the time spent
during the code review process, with various interruption combina-
tions leading to different effects on task duration. Developers’ stress
measures are affected by the type of interruptions and tasks. Code
comprehension and code review tasks are associated with higher
physiological measures, and thus lower stress measures compared
to the code writing task. Surprisingly, in-person interruptions pos-
itively impact physiological measures, indicating reduced stress
measures. However, participants’ self-perceived stress scores do
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not align with the objective physiological data. Developers reported
higher stress scores during in-person interruptions, but physiologi-
cal data suggests otherwise.

These results shed light on the nuanced impact of interruptions
on developers’ performance and stress measures during software
engineering tasks. Understanding these complexities can inform
the design of interruption management strategies, task assignments,
and stress reduction interventions in software development settings.
The findings also underscore the importance of considering both
objective physiological data and self-perceived stress measures
when evaluating developers’ well-being and productivity.
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