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Abstract—To alleviate the performance and energy overheads of
contemporary applications with large data footprints, we propose
the Two Level Perceptron (TLP) predictor, a neural mechanism that
effectively combines predicting whether an access will be off-chip
with adaptive prefetch filtering at the first-level data cache (L1D).
TLP is composed of two connected microarchitectural perceptron
predictors, named First Level Predictor (FLP) and Second Level
Predictor (SLP). FLP performs accurate off-chip prediction by
using several program features based on virtual addresses and
a novel selective delay component. The novelty of SLP relies on
leveraging off-chip prediction to drive L1D prefetch filtering by
using physical addresses and the FLP prediction as features. TLP
constitutes the first hardware proposal targeting both off-chip
prediction and prefetch filtering using a multi-level perceptron
hardware approach. TLP only requires 7KB of storage.

To demonstrate the benefits of TLP we compare its performance
with state-of-the-art approaches using off-chip prediction and
prefetch filtering on a wide range of single-core and multi-core
workloads. Our experiments show that TLP reduces the average
DRAM transactions by 30.7% and 17.7%, as compared to a
baseline using state-of-the-art cache prefetchers but no off-chip
prediction mechanism, across the single-core and multi-core
workloads, respectively, while recent work significantly increases
DRAM transactions. As a result, TLP achieves geometric mean
performance speedups of 6.2% and 11.8% across single-core and
multi-core workloads, respectively. In addition, our evaluation
demonstrates that TLP is effective independently of the L1D
prefetching logic.

I. INTRODUCTION

Emerging workloads from various domains [10], [17], [18],

[19], [24] have large data footprints that are orders of magnitude

larger than the capacity of current cache hierarchies [15]. These

workloads frequently trigger DRAM accesses, spending a large

portion of their execution time waiting for data transfers to

and from DRAM to complete with a detrimental effect on

performance and energy [6], [8], [9], [12], [51], [57].

Prior work has proposed several techniques to mitigate the

performance and energy overheads of these applications. These

techniques can be broadly classified into four categories: (i) off-

chip prediction schemes that predict whether a memory access

will result in a DRAM access or hit in the cache hierarchy

[13], [26], [34], [42], [54], (ii) aggressive data prefetching with

adaptive filters to ensure that only correct prefetches will be

issued [14], (iii) cache bypassing that avoids caching blocks that

will not be referenced in the near future [25], [30], [32], [45],

[48], [52], and (iv) disruptive cache designs and optimizations

for specific workload types [5], [20], [23], [36], [38], [41],

[47], [56]. This work focuses on the first two categories and

aims at combining their benefits in a cost-effective manner.

Despite their potential for determining the location of

requested data in the memory hierarchy, previously proposed

off-chip predictors [13], [26] have important drawbacks that

undermine their potential for boosting the performance of the

memory subsystem while hindering their implementation in

real-world designs. For example, the state-of-the-art off-chip

predictor [13] triggers two memory accesses, one to DRAM

and a second regular request to the cache hierarchy, when it

predicts that the corresponding load access will be served from

DRAM. While this approach can potentially reduce the latency

of a load request that ends up being served from DRAM, it may

also significantly increase the number of DRAM transactions.

This work shows that, although effective, the state-of-the-art

off-chip predictor significantly increases the number of DRAM

transactions, which is a critical aspect in bandwidth-constrained

scenarios. In addition, our analysis indicates that a large fraction

of the inaccurate off-chip predictions is actually served by the

first-level data cache (L1D). Therefore, a microarchitectural

scheme that selectively delays the off-chip predictions with

modest confidence until the L1D lookup is resolved has

potential to significantly reduce the number of useless DRAM

transactions and deliver higher performance.

Previous approaches have successfully applied prefetch

filtering at the lower level caches [14], [43], [44], [58]. However,

these approaches are not agile since they are typically optimized

on top of specific prefetch engines, incur significant area

overheads, and are not exposed to program features that are

very valuable to produce accurate predictions (e.g., a complete

sequence of accessed virtual addresses). This work argues that

the concept of off-chip prediction can be leveraged to form
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effective prefetch filters for L1D. Specifically, our analysis

demonstrates that the vast majority of the L1D prefetch requests

served from DRAM are inaccurate.

To address our findings and improve the performance

or memory-intensive workloads, we propose the Two Level

Perceptron (TLP) predictor. TLP constitutes the first hardware

proposal targeting both off-chip prediction and prefetch filtering

using a multi-level perceptron hardware approach. TLP is

composed of two connected microarchitectural perceptron

predictors: the First Level Predictor (FLP) and the Second

Level Predictor (SLP). FLP is a perceptron hardware predictor

located near the core that employs a novel mechanism to reduce

the number of DRAM accesses by selectively delaying off-chip

predictions when needed. SLP is a perceptron predictor located

alongside the L1D. The novelty of SLP relies on leveraging off-

chip prediction to drive L1D prefetch filtering using physical

addresses as well as the FLP prediction as features. Our

evaluation illustrates that TLP yields significantly higher

performance than the state-of-the-art off-chip predictor [13] and

prefetch filtering scheme [14] across a large set of single-core

and multi-core workloads.

This paper makes the following contributions:

• We design and propose Two Level Perceptron (TLP)

predictor, a scheme composed of two connected perceptron

predictors: FLP and SLP. FLP reduces the pressure on the

memory subsystem using a novel selective delay mechanism.

SLP leverages off-chip prediction to guide prefetch filtering

in the L1 data cache. TLP is the first hardware proposal

targeting both off-chip prediction and prefetch filtering. TLP

only requires 7KB of storage.

• We compare TLP with the state-of-the-art off-chip

predictor, Hermes [13], the state-of-the-art prefetch filter, PPF

[14], and a combination of both. Our evaluation considers 55

single-core and 200 multi-core workloads. When considering a

system that uses IPCP [39] as L1D prefetcher, TLP reduces the

average number of DRAM transactions by 30.7% and 17.7%,

as compared to a baseline that uses IPCP as L1D prefetcher

but no off-chip prediction mechanism, across the single-core

and multi-core workloads, respectively, while state-of-the-art

approaches significantly increase DRAM transactions. As a

result, TLP achieves geometric mean performance speedups of

6.2% and 11.8% across single-core and multi-core workloads,

respectively. When considering a scenario with the Berti [37]

L1D prefetcher, TLP also outperforms Hermes, PPF, and a

combination of them in both single-core and multi-core contexts

since it significantly reduces DRAM accesses.

II. BACKGROUND

A. Off-Chip Prediction

Emerging workloads spanning various domains [10], [17],

[18], [19], [24], have a key property in common: massive

working set sizes that do not fit in the existing cache hierar-

chies [15], making cache management a major performance

bottleneck for processor design. Indeed, recent work [6], [8],

[9], [12], [51], [57] shows that these workloads spend up to

80% of their total execution time waiting for DRAM.

To address the high-latency load requests of these emerging

applications, prior work [13], [26], [34], [42], [54] has

introduced the concept of off-chip prediction. The core idea

behind off-chip prediction is to predict whether a memory

access will eventually result in a DRAM access or in a hit

in the cache hierarchy (L1D, L2C, LLC). Prior work in the

domain can be classified in two categories depending on their

prediction strategy: i) predict which cache level (L1D, L2C,

LLC) will provide a hit, if any [26], [42], and ii) predict

whether the cache hierarchy as a whole will provide a hit

or not [13]. A representative work from the first category is

Level Prediction (LP) [26], a scheme that dynamically predicts

where in the memory hierarchy a demanded memory block is

most likely to be found. A representative scheme of the second

category is Hermes [13], an adaptive perceptron-based off-chip

predictor that routes demand load requests directly to DRAM

when it is confident that the load will miss in all cache levels.

Hermes [13] is the state-of-the-art microarchitectural off-

chip prediction scheme. At the core of Hermes, there is a

perceptron predictor composed of several prediction tables,

one per selected program feature, similar to prior work on

perceptron-based microarchitectural prediction: from branch

prediction [21], [28], [29] to cache replacement policies [30],

[48] and other intelligent modules [14].

Hermes is consulted to provide a prediction upon demand

load requests. If the prediction is positive (i.e., the demand load

request is predicted to go off-chip), the core issues two requests:

one regular request to the cache hierarchy, that might go down

to DRAM, and another speculative request that fetches the

cache line from DRAM in an attempt to hide the latency cost

of accessing the caches. When a demand request eventually

returns to the core to be consumed, the training logic of Hermes

compares the original prediction with the actual outcome and

accordingly updates the weights in the prediction tables.

B. Prefetch Filtering

Hardware prefetching is a technique that proactively fetches

blocks in the cache hierarchy before they are explicitly

requested by a core. Hardware prefetchers need to deal with

two metrics that are at odds with one another: miss coverage

and prefetching accuracy. Aggressive prefetchers typically have

high coverage but low accuracy while conservative prefetchers

tend to have low coverage and high accuracy.

To handle the coverage-accuracy trade-off, smart prefetch

filters and throttling schemes able to accurately identify useless

prefetch requests and discard them have been proposed [14],

[43], [44], [58]. An effective prefetch filter would increase

the accuracy of a hardware prefetcher without harming its

coverage, resulting in higher performance by enabling better

cache management.

The state-of-the-art prefetch filter is the Perceptron-based

Prefetch Filter (PPF) [14], a perceptron predictor that uses

several program features to filter out inaccurate prefetch

requests, increasing the accuracy of the underlying prefetcher.

Although effective, PPF has two limitations. First, PPF is built

and optimized on top of a specific prior prefetcher [33], thus
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Fig. 1: MPKI of all caches (L1D, L2C, LLC) across the SPEC

(SPEC CPU 2006 and SPEC CPU 2017) and GAP workloads.

it requires significant engineering effort as well as feature

exploration and tuning to make it filter effectively the requests

of other prefetchers. Second, PPF incurs 40KB of storage

overhead, which hinders its adoption by commercial designs.

III. MOTIVATION

This section motivates the need for better off-chip predictors

and highlights the potential of leveraging the concept of off-

chip prediction to apply effective prefetch filtering for the

L1D cache. Section III-A characterizes the cache behavior of

contemporary applications, showing that a large fraction of the

memory accesses that miss in the L1D result in a DRAM access.

Section III-B analyzes the behavior of Hermes [13], the state-

of-the-art off-chip predictor presented in Section II-A, in both

single-core and multi-core contexts. Our analysis indicates that

Hermes significantly increases DRAM bandwidth consumption,

especially in multi-core contexts. Therefore, performance

improvements are possible by reducing the number of additional

DRAM transactions triggered by Hermes. Section III-C focuses

on L1D cache prefetching and characterizes the inaccurate

prefetches issued by two state-of-the-art L1D prefetchers, and

reveals that off-chip prediction can drive the design of effective

prefetch filters for L1D. Section V presents in detail our

simulation infrastructure and all the considered workloads.

A. Cache Behavior of Modern Workloads

Prior work discussed in Section II-A shows that the majority

of demand load requests of applications featuring huge data

working sets miss in all levels of the cache hierarchy, triggering

many DRAM accesses. This section analyzes the cache

behavior of all single-core workloads presented in Section V.

Figure 1 shows the average Misses per Kilo Instruction

(MPKI) rates of L1D, L2C and LLC. On average the MPKIs

of L1D, L2C, and LLC are 45.0, 34.1, and 15.6, respectively.

Therefore, 34.7% of L1D misses eventually require a DRAM

access. Remarkably, workloads from domains such as graph

processing put more pressure on the cache hierarchy, resulting

in more frequent DRAM accesses. Indeed, Figure 1 reveals

that, on average, the graph-processing (GAP) workloads trigger

a DRAM access for 39.7% of the L1D misses.

Finding 1. A large fraction of the demand load requests

triggered by applications with large working set sizes miss

in all cache levels.
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Fig. 2: Increase in DRAM transactions due to Hermes off-chip

predictions relative to a baseline without off-chip prediction

mechanism. Lower is better.
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Fig. 3: Increase in DRAM transactions due to Hermes off-chip

predictions relative to a baseline without off-chip prediction

mechanism in the 4-core context. The x-axis ticks represent 200

different 4-core workload mixes of SPEC and GAP workloads.

Lower is better.

B. Impact of Hermes

This section quantifies the impact of Hermes on the number

of DRAM transactions processed by the main memory in both

single-core and multi-core contexts and identifies features that

can potentially increase Hermes’ efficiency and performance.

This analysis is conducted using the methodology and the set

of workloads presented in Section V.

1) DRAM Transactions: Figures 2 and 3 illustrate the impact

of Hermes on the number of DRAM transactions in single-

core and multi-core contexts, respectively. The x-axis display

different SPEC and GAP workloads. Both SPEC and and

GAP workloads are separately sorted considering the LLC

MPKI. The y-axis displays the increase in terms of DRAM

transactions that Hermes incurs over a baseline without any

off-chip predictor.

Figures 2 and 3 indicate that Hermes places high pressure

on DRAM, especially in the multi-core scenario, since it issues

many speculative DRAM requests. Regarding the single-core

evaluation, Hermes increases the number of DRAM transactions

by 5.2%, 6.6%, and 6.4% over the baseline system that does

not use any off-chip predictor for the SPEC, GAP, and all

workloads combined, respectively. Figure 3, which presents

the impact of Hermes on DRAM transactions in a multi-core

context, shows that Hermes significantly increases DRAM

transactions. Specifically, Hermes increases the average number

of DRAM transactions by 2.2%, 9.6%, and 6.0% over the multi-

core baseline for the SPEC mixes, GAP mixes, and all mixes,

respectively. Notably, the increase in DRAM transactions for the

GAP workloads is significantly higher than the increase for the

SPEC workloads; this happens because the GAP suite is made

of graph-processing applications that have much larger data

working sets than the general-purpose SPEC CPU workloads.
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Fig. 4: Location of a block upon a Hermes off-chip prediction.

Finding 2. Hermes significantly increases the number of

DRAM accesses in both single-core and multi-core contexts,

especially for graph-processing applications.

2) Analysis of Hermes Predictions: This section charac-

terizes the off-chip predictions of Hermes (i.e., cases where

Hermes triggered a speculative DRAM request), and motivates

potential design and functionality enhancements. To do so,

we categorize the off-chip predictions of Hermes depending

on where the corresponding block is located in the memory

hierarchy (L1D, L2C, LLC, DRAM). Specifically, we consider

the following categories: (i) block resides in L1D, (ii) block

resides in L2C, (iii) block resides in LLC, and (iv) block

resides in DRAM. Predictions belonging to categories (i), (ii),

and (iii) correspond to inaccurate off-chip predictions since

the block is located in the cache hierarchy while category (iv)

represents accurate off-chip predictions since the block is not

present in the caches. Figure 4 presents this breakdown for both

SPEC and GAP single-core workloads, using the methodology

that Section V describes. Both SPEC and GAP workloads are

separately sorted based on LLC MPKI, similar to Figure 2.

Figure 4 shows that 42.2% of the total off-chip predictions

are inaccurate since the corresponding blocks reside in the

cache hierarchy (L1D , L2C, or LLC). Notably, a large

fraction of the load requests corresponding to an inaccurate

off-chip prediction are served by the L1D cache. Specifically,

17.7% of the total off-chip predictions are useless since their

corresponding block resides in the L1D. In other words,

delaying Hermes to issue an off-chip prediction after the L1D

lookup completion would significantly reduce DRAM trans-

actions. However, constantly delaying the off-chip predictions

of Hermes until the L1D lookup is completed would result in

suboptimal performance gains since more than 50% (57.8%

on average in Figure 4) of the Hermes off-chip predictions

are accurate. In these cases, issuing the DRAM access before

the L1D access is resolved provides latency benefits. Thus, a

mechanism to decide whether or not an off-chip prediction

of Hermes should be issued before or after the L1D access

completion has the potential to significantly reduce the number

of useless DRAM accesses triggered by Hermes.

Finding 3. Selectively delaying Hermes off-chip predictions

until the L1D lookup is resolved has the potential to signif-

icantly reduce the number of useless DRAM transactions

and deliver higher performance.
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Fig. 5: Location where the inaccurate L1D prefetch requests

are served across two state-of-the-art L1D prefetchers. Both

SPEC and GAP workloads are separately sorted based on LLC

MPKI, similar to Figure 2.
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Fig. 6: Location where the accurate L1D prefetch requests are

served across two state-of-the-art L1D prefetchers. Both SPEC

and GAP workloads are separately sorted based on LLC MPKI,

similar to Figure 2.

C. Off-Chip Prediction for L1D Prefetch Filtering

This section characterizes the inaccurate prefetches issued

by L1D prefetchers across the considered single-core SPEC

and GAP workloads. To do so, we consider two state-of-the-

art L1D prefetchers: (i) the Instruction Pointer Classification

Prefetcher (IPCP) [39], and (ii) the Berti prefetcher [37].

Figure 5a presents the breakdown of the inaccurate L1D

prefetches issued by IPCP depending on where in the memory

hierarchy (L2C, LLC, DRAM) the corresponding prefetch

request is served. To do so, we use the Prefetches Per Kilo

Instruction (PPKI) metric. Overall, 18.2%, 3.8%, and 78% of

the total inaccurate prefetch requests are served by L2C, LLC,

and DRAM, respectively. We observe that the majority of the
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inaccurate prefetch requests are the ones that were served from

DRAM. This behavior is more prevalent for the GAP workloads

since these workloads have more complex patterns than SPEC.

In addition, we compare the accurate L1D prefetches of IPCP

that were served from DRAM with the inaccurate ones. Our

analysis indicates that, on average, 95.2% of the prefetches

that were served from DRAM are inaccurate (the rest 4.8%

is accurate prefetches) for our set of workloads; the ratio is

higher for the GAP benchmarks (96.7%) than for the SPEC

(82%) since the former exhibit more complex memory access

patterns. Figure 5b presents the breakdown of Berti’s inaccurate

prefetches depending on where in the memory hierarchy the

corresponding request is served, similar to Figure 5a. Overall,

we observe the same behavior. The vast majority of Berti´s

useless prefetch requests are served from DRAM and there is

high probability for a prefetch that goes all the way to DRAM

to fetch a block to be inaccurate, making a strong case for

exploiting the off-chip prediction technique to design an L1D

prefetch filter. Figure 6 indicates how the overall number of

accurate prefetchers served from DRAM (1.7 and 0.5 PPKI for

IPCP and Berti) is much smaller than the inaccurate prefetchers

served from DRAM (35.6 and 6.6 for IPCP and Berti).

Thus, we conclude that accurately predicting whether a

prefetch will be served from DRAM can provide a useful

hint regarding the usefulness of the corresponding prefetch.

Consequently, an accurate off-chip predictor can be leveraged

as an L1D prefetch filter. Finally, we observe similar behavior

in the multi-core context.

Finding 4. Off-chip prediction can be leveraged to design an

effective prefetch filtering scheme for L1D.

These four findings demonstrate that the state-of-the-art

approach for off-chip prediction incurs a significant overhead

in terms of additional DRAM transactions, and that there are

opportunities to eliminate this overhead and boost performance

by unifying off-chip prediction and prefetch filtering. Section IV

presents a novel approach that unifies these two techniques in

a single method.

IV. TWO LEVEL PERCEPTRON PREDICTION

This paper proposes the Two Level Perceptron (TLP) predic-

tor, a two level cooperative prediction scheme that leverages

neural methods to perform cost-effective off-chip prediction for

demand load requests combined with adaptive L1D prefetch

filtering. TLP is composed of two microarchitectural perceptron

predictors named First Level Perceptron (FLP) predictor and

Second Level Perceptron (SLP), respectively. TLP is motivated

by the four findings of Section II.

Findings 1 and 2 demonstrate that Hermes exacerbates the

pressure on the memory subsystem that modern workloads

inject, particularly for memory intensive workloads from

domains like graph-processing. In addition, Finding 3 indicates

that a selective delay mechanism can potentially mitigate

this pressure. The FLP design, described in Section IV-A,

is motivated by these three findings. FLP includes a novel

selective delay mechanism to only trigger speculative requests

Legacy Hermes features

• PC ⊕ cacheline offset
• PC ⊕ byte offset
• PC + first access
• Cacheline offset + first access
• Last-4 load PCs

Leveling feature • FLP prediction + cacheline offset

TABLE I: List of features used by the FLP and the SLP.

Feature1

Hash

Weight

Table1

Featurei

Hash

Weight

Tablei

Featuren

Hash

Weight

Tablen

... ...

Sumw1 wn

wi

>Thigh
issue DRAM

request
Y>Tlow

Y

N

L1d
miss

Y

>Thigh
issue DRAM

request
YY>Tlow

Y

N

L1d
miss

YY

Fig. 7: Flowchart of FLP. Diamonds indicate decision points.

to DRAM for highly confident off-chip predictions. Finding

4 indicates the potential of guiding prefetch filtering via off-

chip prediction. The SLP design, described in Section IV-B,

exploits this potential and incorporates a novel feature based

on FLP output. Section IV-C presents our complete proposal,

TLP, a multi-Level perceptron combining FLP and SLP. TLP

is novel in three ways: i) it incorporates a new selective delay

mechanism to reduce pressure on the memory subsytem; ii) it

leverages off-chip prediction to guide prefetch filtering; and

iii) it constitutes the first hardware proposal targeting both

off-chip prediction and prefetch filtering. In addition, TLP is

the first multi-level perceptron hardware approach that can be

effectively applied due to its low area requirements. Finally,

Section IV-D details the hardware requirements of TLP.

A. First Level Perceptron (FLP) Predictor

FLP is an off-chip predictor based on a micro-architectural

hashed perceptron predictor that dynamically decides whether

to consume the off-chip prediction in the core (i.e., in

parallel with the L1D lookup since L1D caches are typically

implemented as VIPT structures), or upon an L1D miss. This

delayed decision mechanism is driven by two threshold values:

τhigh and τlow. Perceptron confidence values greater than τhigh
indicate a high probability for the corresponding load request

to miss in all cache levels, values lower than τlow indicate

the opposite, and intermediate values indicate the need for

delaying the decision upon an L1D miss. FLP takes into account

several program features to predict whether a demand load

532

Authorized licensed use limited to: Texas A M University. Downloaded on March 19,2025 at 11:22:37 UTC from IEEE Xplore.  Restrictions apply. 



request will miss in the cache hierarchy or not. Our exploration

indicates that the features used in the original Hermes [13]

work provide good predictions and that adding more features

provides marginal benefits. Thus, FLP uses the same set of

features as the original Hermes prediction, presented in Table I

(c.f.: Legacy Hermes features). The selected features correlate

the probability of a demand load request going off-chip with

a history of PCs and accessed memory regions. Each FLP

feature is associated with a weight table which is composed

of confidence counters.

Figure 7 presents a flowchart of FLP’s operation and

illustrates how the confidence value produced by FLP is used to

drive the off-chip prediction mechanism. Upon a demand load

request, FLP is consulted by the core. FLP uses the selected

program features to index its weight tables, then reads out

and sums the corresponding weights to produce a confidence

value. Then, the confidence value is compared to the τhigh
threshold. A confidence value greater than τhigh indicates a

high probability for the corresponding load request to miss in

all caches. In this case, FLP issues a speculative DRAM request

from the core in parallel with the L1D lookup as first-level

caches are typically implemented as VIPT structures. However,

if the confidence value does not exceed τhigh but does exceed

the τlow threshold, the probability of the load demand request

to miss in all cache levels is not considered high enough to

benefit from a speculative DRAM request. Thus, the request

is flagged as predicted off-chip and is sent to the L1D cache.

In Section III-A, we observed that the probability of a load

demand requiring an access to the DRAM tends to rise with

each successive cache level traversed. Therefore, if this request

results in an L1D miss, the flag bit is read, and a speculative

DRAM request is issued from the L1D. Thus, FLP addresses

our third analysis finding and avoids sending useless DRAM

requests for loads that might hit in the on-chip caches. Finally,

if the confidence value exceeds none of the two thresholds, the

demand load request continues like a normal request without

triggering speculative DRAM access.

The FLP is trained upon completing a memory access, (i.e.,

when the memory block is returned to the core from the cache

hierarchy). When the request comes back to the core, the FLP

checks if the request was a true off-chip load request (i.e., if

this request required a DRAM access). If the request was a true

off-chip load request, the predictor’s corresponding weights

are trained positively. Conversely, if the request was not a true

off-chip load request, the predictor’s corresponding weights

are trained negatively.

B. Second Level Perceptron (SLP) Predictor

The SLP is a perceptron-based off-chip predictor conceived

to be used in the context of L1D prefetch filtering. The SLP

design is motivated by the observation that off-chip prediction

can be leveraged to design effective L1D prefetch filters.

Section III-C justifies this observation. SLP can be used to

improve the performance of any generic L1D prefetcher since

it makes no assumption regarding the L1D prefetcher design.

Feature1

Hash

Weight

Table1

Featurei

Hash

Weight

Tablei

Featuren

Hash

Weight

Tablen

... ...

Sumw1 wn

wi

>Tpref issue prefetch
Y

discard prefetch >Tpref issue prefetch
YY

discard prefetch
N

Fig. 8: Flowchart of SLP. Diamonds indicate decision points.

SLP uses several program features to perform effective

prefetch filtering at L1D. Our feature exploration indicates that

FLP’s features can be also used in the context of L1D prefetch

filtering. Therefore, SLP uses the same as FLP, presented in

Table I, but these features are adapted to use physical addresses

in place of virtual addresses as SLP is placed after the L1D

cache. Additionally, SLP makes use of a new feature denoted

as FLP prediction + offset in Table I. This feature combines

the FLP output bit of the cache block from which the prefetch

request originated with the offset of the prefetched cache block

in its physical memory page. The rationale of this feature is

to correlate the probability of an L1D prefetch request going

off-chip when a certain cache line offset is touched with the off-

chip prediction decision related to the block that triggered the

prefetch request. The SLP produces a binary off-chip prediction

when an L1D prefetch request is issued.

Figure 8 presents a flowchart of the SLP operation. SLP is

consulted when the L1D prefetcher issues a prefetch request.

The confidence value is built similarly to the FLP. The output

value is compared to the τpref threshold. If it exceeds τpref , the

prefetch is considered as eventually requiring a DRAM access

and, therefore, likely useless. In this situation, the prefetch

request is discarded. Conversely, if the confidence value does

not exceed τpref , the prefetch request is processed as usual by

the cache hierarchy.

SLP is trained in a similar way as FLP (cf. Section IV-A).

Upon the completion of an L1D prefetch request, the predictor’s

weights are trained positively or negatively depending on

whether or not the prefetch request was served off-chip.

C. Building a Multi-Level Perceptron Predictor

This section presents our complete proposal, Two Level

Perceptron (TLP) predictor, a hierarchical neural prediction

scheme that combines FLP and SLP predictors, presented in

Sections IV-A and IV-B, respectively.

Figure 9 shows the design and the operation of TLP. Upon

a load demand access, the core consults FLP to obtain a

confidence value Conf driving the off-chip prediction 1 . This

prediction can give one of the three following outcomes: (i) the

load request is predicted to be off-chip with high confidence

(Conf > τhigh), thus a speculative DRAM request is thrown
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Fig. 9: Organization and operation of the Two Level Perceptron (TLP) prediction mechanism.

from the core 2 besides the regular load demand access; (ii)

the load request is predicted to be off-chip with low confidence

(τlow ≤ Conf ≤ τhigh), thus the speculative DRAM request

will be thrown only if the load misses in the L1D 3 ; (iii) the

load request is predicted to be on-chip; therefore no additional

action is taken 4 besides triggering the regular demand access.

Metadata relative to the prediction (hashed PC, history of last

load PCs, and perceptron confidence value) are stored in the

matching Load Queue entry for later training and an off-chip

prediction tag is set in the load request thrown to the cache

hierarchy depending on the FLP prediction.

SLP is consulted upon L1D prefetch requests 5 . To make

a prediction, SLP takes as input the metadata attached to the

prefetch request and the off-chip prediction tag attached to the

demand load request from which the prefetch request originates.

This information is used to produce an off-chip Conf predic-

tion specific to L1D prefetch request. This prediction can result

in two possible outcomes: i) the prefetch request is predicted

to be off-chip (Conf < τpref ) and the prefetch request is

discarded 6 , and ii) the prefetch request is predicted to be

on-chip (Conf ≥ τpref ) and the prefetch request is processed

as usual by the cache hierarchy 7 . Similarly to FLP, SLP

stores metadata relative to its prediction in the L1D MSRH

entries for later training.

The training routines of the FLP and the SLP are triggered

upon completion of the corresponding requests, (i.e., for FLP

when the load request returns to the core and SLP when the

prefetch request is served), as Sections IV-A and IV-B explain.

D. TLP Hardware Requirements and Latency

Table II breaks down the hardware requirements of TLP into

its various components. TLP only requires 6.98KB of additional

storage per core. Similar to Hermes [13], FLP requires 3.21KB

of storage for its prediction tables and 0.42KB of storage for

the metadata in the Load Queue entries for training purposes.

SLP requires 3.29KB of storage for its prediction tables as we

Component Description Size

FLP
• Perceptron weight tables: 2.58KB
• Page buffer: 0.63KB 3.21KB

SLP
• Perceptron weight tables: 2.66KB
• Page buffer: 0.63KB 3.29KB

Load Queue metadata
Hashed PC: 32b; Last-4 PC: 10b; First
access: 1b; perceptron confidence value:
5b

0.42KB

L1D MSHR metadata
Hashed PC: 32b; Last-4 PC: 10b; First
access: 1b; perceptron confidence value:
5b; prediction: 1b

0.06KB

Total 6.98KB

TABLE II: Storage overhead of TLP.

make the addition of a new feature, and 0.06KB of additional

storage in the L1D MSHR entries for training purposes. In total,

TLP requires only 6.99KB of extra storage, making it a low

overhead design combining off-chip prediction and prefetch

filtering. Similarly to previous work [13], we consider a 6-

cycles latency when either FLP or SLP trigger a speculative

DRAM access.

V. EXPERIMENTAL METHODOLOGY

A. Simulation Methodology

We evaluate our proposal using ChampSim [22], a detailed

trace-based simulator that models a 4-wide out-of-order CPU.

We consider a baseline system similar to the Intel Cascade

Lake microarchitecture [1]. Table III presents the specific con-

figuration details of the baseline system. Regarding hardware

prefetching, we use state-of-the-art prefetchers in both the L1D

and the L2C. At the L1D level we consider both the Instruction

Pointer Classification Prefetcher (IPCP) prefetcher [39] and

the Berti prefetcher [37]. At the L2 level we use the SPP

prefetcher [33], which brings prefetched blocks into either the

L2C or the LLC depending on its internal prefetch logic.

B. Workloads

Our evaluation considers a large set of applications spanning

different benchmark suites. Specifically, we consider workloads
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Component Description

Branch Predictor hashed-perceptron

CPU 3.8GHz, 4-wide out-of-order processor
6-stage pipeline, 224-entries re-order buffer

L1 ITLB 64-entry, 4-way, 1cc, 8-entry MSHR, LRU

L1 DTLB 64-entry, 4-way, 1cc, 8-entry MSHR, LRU

L2 TLB 1536-entry, 12-way, 8cc, 16-entry MSHR, LRU

L1I Cache 32 kB, 8-way, 4cc, 10-entry MSHR, LRU

L1D Cache 32 kB, 8-way, 4cc, 10-entry MSHR, LRU, IPCP [39] or Berti [37]

L2 Cache 1MB, 16-way, 10cc, 16-entry MSHR, LRU, SPP [33]

LLC 1.375MB per core, 11-way, 36/56cc, 64-entry MSHR, LRU

16GB, DDR4 SDRAM
DRAM single-core data-rate: 12.8GB/s per core

multi-core data-rate: 3.2GB/s per core
tRP = tRCD = tCAS = 24 cycles

TABLE III: System configuration.

from SPEC CPU 2006 [2] and SPEC CPU 2017 [3] benchmark

suites. In addition, we consider graph-processing applications

included in the GAP benchmark suite [11]. Specifically, we use

six graph-processing kernels from GAP: Breadth-First Search

(BFS) is a fundamental graph traversal algorithm; Page Rank

(PR) iteratively updates per-vertex ranks until convergence;

Connected Components (CC) applies the Shiloach-Vishkin [46]

algorithm to compute the largest connected components of

the graph; Betweenness Centrality (BC) uses the Brandes

algorithm [16] to approximate the per-vertex centrality scores;

Triangle Count (TC) counts the number of triangles in the

graph; and, finally, Single-source Shortest Paths (SSSP) uses δ-

stepping [35] to return the distance of all vertices of a graph to

a given source vertex. Table IV shows the main characteristics

of these six applications, including the size of property array

elements, and input parameters such as the execution style

(push or pull), or the use of frontiers.

For each graph-processing kernel, we consider 6 different

input graphs that feature different sizes and distributions of

node degrees (e.g., power-law, normal, etc.). Different degree

distributions produce different memory access patterns. For

instance, when node degrees are distributed following a power-

law function, there are a few highly connected graph nodes

that yield more data reuse opportunities than vertices with a

few connections. Table V lists all considered input graphs.

In addition, we only consider workloads for which the

baseline system shows LLC MPKI greater than 1. This filters

out workloads and leaves us with 31 GAP workloads and 24

SPEC workloads.

All workload traces have been obtained using the SimPoint

methodology [40] to identify at least one SimPoint representa-

tive of each workload. Each SimPoint is 1 billion instructions

long and characterizes a different phase of these workloads,

similar to prior work [30], [32], [45], [49].

Section VI refers to SPEC 2006 and SPEC 2017 workloads

as SPEC and to GAP workloads as GAP.

C. Single-Core Evaluation

Our set of single-core workloads contains 55 distinct work-

loads: 31 possible combinations of graph-processing kernels

and input graphs, described in Section V-B, and 24 SPEC CPU

BC [11] BFS [11] CC [11] PR [11] TC [11] SSSP [11]

irregData ElemSz 8B + 4B 4B 4B 4B 4B 4B

Execution style Push-Mostly Push & Pull Push-Mostly Pull-Only Push-Only Push-Only

Use Frontier Yes Yes No No No Yes

TABLE IV: Graph kernels

Web [11] Road [11] Twitter [11] Kron [11] Urand [11] Friendster [53]

# Vertices (in M) 50.6 23.9 61.6 134.2 134.2 65.6

# Edges (in M) 1,949.4 58.3 1,468.4 2,111.6 2,147.4 3,612.1

TABLE V: Input Graphs

2006 [2] and SPEC CPU 2017 [3] benchmarks. All considered

workloads experience at least 1 Miss per Kilo Instructions

(MPKI) in the baseline system that Table III describes. Each

workload is executed for 100 million instructions to warm

up the memory hierarchy and the other microarchitectural

structures, and it is executed for an additional set of 100

million instructions to obtain performance data. We run

experiments evaluating the impact of using larger numbers

of instructions (500 million warmup instructions, 1 billion

simulation instructions), and observe identical trends with

negligible differences in terms of IPC.

D. Multi-Core Evaluation

We generate multi-core workload mixes using the same

methodology as previous work [13]. We consider either single-

core GAP workloads or single-core SPEC workloads to create

both homogeneous and heterogeneous multi-core workload

mixes. To generate the homogeneous ones, we randomly

select 50 single-core workloads and run four instances of

each workload, one per core. For the heterogeneous mixes, we

randomly select 50 combinations of four single-core workloads.

In total, we consider 50 homogeneous and 50 heterogeneous

four-core workloads. We do this process for both SPEC

and GAP benchmark suites, meaning that our multi-core

evaluation campaign is composed of 200 workloads. Finally,

our multi-core experiments use the same number of warmup

and simulation instructions as the single-core scenario.

Our performance results concerning multi-core workloads

report the weighted speedup normalized to the baseline. This

metric is commonly used to evaluate multi-core workloads [30],

[45], [50] since it avoids performance overestimation due to

high-IPC threads. The metric is computed as follows: for each

single-core workload, we compute its IPC in a multi-core

scenario shared with the other co-running single-core workloads

(IPCshared), and its IPC running in isolation on the same

system (IPCsingle). We then compute the weighted IPC of

the mix as the weighted sum of IPCshared/IPCsingle for all

the benchmarks in the mix, and we normalize this weighted

IPC with the weighted IPC of the baseline design.

E. Alternative Techniques

Besides TLP, we consider the following techniques in

our evaluation: (i) the Perceptron-based Prefetch Filtering

(PPF) [14], a perceptron-based predictor that filters inaccurate

prefetch requests, thus increasing the accuracy of the underlying
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Fig. 10: Performance evaluation in the single-core scenario.

prefetcher. PPF is located at the L2C since it is built on top

of the SPP prefetcher. When using PPF, we configure SPP as

previous work indicates [14] to fully exploit the advantages of

PPF. (ii) Hermes [13], the state-of-the-art off-chip predictor

that removes long-lasting load requests from the critical path

by issuing speculative requests to the DRAM controller. (iii)

Hermes+PPF, a scheme that uses both Hermes as off-chip

predictor and PPF as a prefetch filter.

VI. EVALUATION

A. Single-Core Evaluation

This section evaluates TLP in the single-core context

following the methodology that Section V presents. Figure 10

shows the performance gains provided by PPF, Hermes,

Hermes+PPF, and TLP in the single-core context over a

baseline described in Section V, which has no off-chip predictor

neither L1D prefetch filter. Specifically, Figures 10a and 10b

present performance results when using IPCP and Berti as L1D

prefetchers, respectively. Both figures display speedup with

respect to the baseline system in the y-axis. The x-axis shows

the selected SPEC and GAP workloads. For each benchmark

suite we sort workloads in increasing order of MPKI in the

baseline system. This evaluation indicates that TLP significantly

outperforms state-of-the-art approaches for off-chip prediction

(Hermes), prefetch filtering (PPF), and a combination of

them (Hermes+PPF). In the scenario considering IPCP as

L1D prefetcher, TLP yields 6.2% geometric mean speedup

with respect to the baseline system while PPF, Hermes, and

Hermes+PPF bring -0.2%, 5.2%, and 4.7% geometric mean

speedups, respectively. When considering the Berti prefetcher,

TLP yields 8.1% geometric mean speedup as compared to

1.7%, 4.8%, and 6.1% for PPF, Hermes, and Hermes+PPF,

respectively. TLP achieves larger performance gains for GAP

than SPEC. Since GAP workloads are strongly memory bound,

the reductions in terms of DRAM transactions that TLP

achieves compared to Hermes particularly benefit GAP.

To identify the source of TLP performance improvements we

quantify the impact of PPF, Hermes, Hermes+PPF, and TLP
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Fig. 11: Increase in DRAM transactions in the single-core

scenario. Lower is better.

in terms of number of DRAM accesses. Figure 11 shows this

evaluation. Specifically, Figure 11a presents results obtained

using IPCP, while Figure 11b considers Berti. The y-axis

displays the increase in DRAM transactions processed by

the memory controller in the single-core context while the

x-axis shows the SPEC and GAP workloads sorted in terms of

MPKI. When using IPCP, TLP reduces DRAM transactions by

an average of 30.7% over the baseline while PPF, Hermes,

and Hermes+PPF increase average DRAM transactions by

7.7%, 5.2%, and 13.3%, respectively. When considering

Berti, TLP reduces the number of DRAM transactions by an

average of 14.2% over the baseline, while PPF, Hermes, and

Hermes+PPF trigger of 8.8%, 9.6%, and 16.9% additional

DRAM transactions, respectively.

To further explain the performance gain obtained by TLP,

we evaluate the accuracy of the considered L1D prefetchers

(IPCP and Berti) when PPF, Hermes, Hermes+PPF, and

TLP operate in the system. Figure 12 presents the results.

Specifically, Figures 12a and 12b present the accuracy of the

IPCP and Berti prefetchers, respectively. The key takeaway

of this comparison is that TLP increases the accuracy of the

L1D prefetchers. Across all SPEC and GAP workloads, IPCP

experiences an average accuracy of 20.6%, 20.6%, 20.3%,

and 38.0% when PPF, Hermes, Hermes+PPF, and TLP

operate in the system, respectively. Finally, we observe similar

behavior for the Berti prefetcher; Figure 12b reveals that Berti

experiences the highest accuracy with TLP.

Data in Figures 11 and 12 indicate that TLP successfully

reduces the number of DRAM transactions that state-of-the-art

off-chip prediction and prefetch filtering approaches trigger.

B. Multi-Core Evaluation

This section evaluates the performance of TLP in the

multi-core scenario following the methodology that Section V

presents. In addition, this section indicates the contribution of

each specific TLP component to final performance (Section
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Fig. 12: Accuracy of the L1D prefetchers.

VI-B1), and evaluates TLP considering different DRAM

bandwidth scenarios (Section VI-B2).

Figure 13 shows the performance gains provided by PPF,

Hermes, Hermes+PPF, and TLP in the multi-core context

over the baseline system that Section V describes. Specifically,

Figures 13a and 13b present performance results considering

IPCP and Berti, respectively. Both figures display speedup

over the baseline system in the y-axis. The x-axis shows the

multi-core SPEC and GAP workloads sorted in increasing

order in terms of MPKI. The sorting is done independently

within each benchmark suite. Considering the IPCP prefetcher,

TLP improves geometric mean performance by 11.5% as

compared to -3.3%, 3.0%, and -0.5% for PPF, Hermes,

and Hermes+PPF, respectively. When considering Berti as

L1D prefetcher we observe similar trends. Specifically, TLP

yields a 11.8% geometric mean speedup over the baseline

as compared to -1.5%, 1.0%, and -0.3% for PPF, Hermes,

and Hermes+PPF, respectively. The main takeaway of this

experiment is that TLP provides significantly higher multi-core

performance than all considered prior proposals.

To explain the source of TLP performance improvements

in the multi-core context, we quantify the impact of PPF,

Hermes, Hermes+PPF, and TLP on the number of DRAM

accesses. Figure 14 shows the increase in terms of DRAM

transactions over the baseline system that Section V describes.

Figures 14a and Figure 14b show the impact on DRAM

transactions when IPCP and Berti operate at L1D, respectively.

Considering the IPCP prefetcher, TLP reduces the number

of DRAM transactions by an average of 17.7% over the

baseline while PPF, Hermes, and Hermes+PPF increase

DRAM transactions by 6.5%, 6.0%, and 13.4%, respectively.

We observe a similar behavior when Berti is used as L1D

prefetcher: TLP reduces the average DRAM transactions

by 6.3% while PPF, Hermes, and Hermes+PPF increase

DRAM transactions by 9.8%, 1.4%, and 7.8%, respectively. The

main takeaway is that TLP outperforms prior approaches for

off-chip prediction and prefetch filtering in multi-core contexts

since it significantly reduces the DRAM pressure.
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Fig. 13: Performance improvement in the multi-core scenario.
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Fig. 14: Increase in DRAM transactions in the multi-core

scenario. Lower is better.

1) Performance Contribution of Each TLP Component:

This section evaluates the contribution of each specific TLP

component to the final performance. To do so, we consider five

different scenarios besides TLP: i) FLP, which consits of just

the FLP predictor without the selective delay mechanism. ii)

SLP, which consists of just the SLP predictor. iii) Two-Step

Predictor (TSP), which consists of FLP without the

selective delay mechanism, and SLP without the feature based

on FLP output. TSP consumes FLP predictions before the

completion of L1D accesses , as Hermes does. Therefore, the

difference between TSP and Hermes is the use of SLP. iv)

Delayed TSP, a technique similar to TSP with the exception

that always delays the consumption of FLP predictions upon

L1D misses. v) Selective TSP, an evolution of Delayed

TSP that uses selective delay. Finally, we consider TLP. The

difference between TLP and Selective TSP is that TLP

uses a feature based on the output of FLP to drive the

predictions of SLP. Figure 15 shows the performance of these
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Fig. 16: Impact of DRAM bandwidth on geometric mean

performance and average number of DRAM transactions in

the multi-core context.

six approaches when IPCP operates at L1D. We observe that

by incrementally adding parts of our design to form our

final proposal, TLP, we can compound performance as FLP,

SLP, TSP, Delayed TSP, and Selective TSP yield

respectively 2.9%, 6.9%, 8.4%, 10.2%, and 11.4% geometric

mean speedups over the baseline. Our final proposal, TLP

provides a 11.5% speedup over the baseline, justifying our

design choices. Although the difference between TLP and

Selective TSP in terms of geometric mean speed-ups

is rather small, it becomes larger for workloads with high

correlation between off-chip load demand requests and off-

chip L1D prefetch requests like bc.road. We observe a very

similar behavior when we consider Berti as L1D prefetcher.

2) Sensitivity Analysis on DRAM Bandwidth: This section

evaluates TLP, PPF, Hermes, and Hermes+PPF on scenarios

with 1.6 GB/s per core up to 25.6 GB/s per core. Figures 16a

and 16b show the geometric mean performance and the impact

on DRAM accesses of TLP of these four approaches in the

multi-core context, respectively.

Figure 16a indicates that TLP outperforms the other ap-

proaches under memory bandwidth regimes between 1.6 and

6.4 GB/s per core. The improvement achieved by TLP in

the 1.6 GB/s scenario is 21.2%, while TLP obtains a 6.9%

geometric mean speedup over the baseline when there are 25.6

GB/s per core available. Even in scenarios with unrealistically

large memory bandwidth per core ratios (e.g., 12.8 or 25.6

GB/s per core), TLP outperforms Hermes and PPF since it

avoids cache pollution due to inaccurate prefetching. In these
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Fig. 17: Performance improvement of designs enhanced with

TLP’s storage budget.

scenarios, the unrealistic aboundance of memory bandwidth

allows Hermes+TLP to deliver larger performance than TLP.

Figure 16b shows the impact in terms of DRAM transactions

for all considered approaches on five memory bandwidth

per core scenarios. TLP achieves a remarkable reduction in

terms of DRAM transactions over the baseline in all scenarios.

Specifically, TLP decreases DRAM transactions from 24.8%

(1.6 GB/s core scenario) to 17.6% (25.6 GB/s per core scenario)

as compared to the baseline.

C. Designs Enhanced with TLP’s Storage Budget

In addition to the results provided in the previous sections,

we also evaluate other designs leveraging 7KB of extra storage

over IPCP, Berti, and Hermes. We compare them to TLP.

Figure 17 shows the evaluation of these designs in both single-

core and multi-core contexts. In the single-core context, adding

7KB of extra storage to IPCP and Berti does not leverage

any performance benefits over the baseline. When Hermes is

enhanced with 7KB of extra storage, it provides performance

improvements close to the baseline Hermes, i.e., 5.2% and

4.8% geometric mean speedup for IPCP and Berti, respectively.

In comparison, TLP leverages 6.2% and 8.1% geometric mean

speedup for IPCP and Berti. In the multi-core context, we

observe a similar behavior where adding extra storage to

the prefetchers does not leverage performance improvements.

Finally, we observe that Hermes shows a similar behavior as

its counterpart using no extra storage.

VII. RELATED WORK

To the best of our knowledge, this is the first work to provide

a cooperative solution for off-chip prediction and adaptive

prefetch filtering using neural methods. Sections II, III-B,

and VI describe, analyze and compare our proposal against

Hermes [13], the state-of-the-art off-chip predictor, respectively.

Sections II and VI compare our proposal against PPF [14], the

state-of-the-art prefetch filter. This section focuses on other

related work targeting memory hierarchy optimizations.
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Hit/Miss Prediction. Jalili and Erez [26] proposed LP, a

scheme that uses a flat-array to track the residency of cache

lines in the cache hierarchy. This flat-array is stored in a

reserved section of DRAM, and a small cache keeps recently

used entries of the flat-array for future predictions. LP presents

several challenges. First, it can have a high false-positive

prediction rate. Second, the size of LP can grow very large,

leading to significant latency and storage overheads. Third, LP

does not address the large bandwidth consumption of cache

prefetchers. In contrast, TLP requires only 4KB per core of

storage overhead, and 56 additional bits per prefetch request,

while producing accurate off-chip predictions for both load

and prefetch requests. With its more streamlined approach,

TLP offers a promising solution to the challenges presented

by other prefetching methods, paving the way for improved

performance and efficiency in modern computing systems.

Data Prefetching. Stream and strided cache prefetchers are

unable to effectively prefetch for the indirect memory access

patterns of graph-processing workloads [7], [10]. Yu et al.

[55] propose a microarchitectural prefetcher that identifies and

prefetches indirect memory access patterns without requiring

any application nor software information. Ainsworth et al. [6]

propose a prefetcher that leverages application-level information

to capture indirect memory access patterns. Basak et al. [10]

propose DROPLET, a physically decoupled prefetcher that takes

into account the reuse distances when applying prefetching

for different graph types. Although effective, these hardware

prefetchers increase memory bandwidth consumption. In con-

trast, our proposal reduces the cost of hardware prefetching

while keeping its advantages, as Section VI shows.

Cache Bypassing. Recent research has proposed several

complex cache replacement and bypassing policies [25], [30],

[45], [52], that have demonstrated significant performance gains

in general-purpose computing applications. However, recent

studies [27] show that these policies are ineffective when

applied to workloads managing irregular and sparse structures

like graphs due to the irregularity of the memory access patterns

that these workloads display.

Memory Optimizations for Graph-Processing Applications.

Recent work demonstrates the benefits of optimizing the

memory hierarchy for graph applications. Ozdal et al. [38] use

scratchpads to store vertex and edge data of graph-processing

applications, while Gonzalez et al. [23] employ a large eDRAM

scratchpad to accommodate larger volumes of graph data than

the conventional SRAMs. Several prior works [5], [20], [36],

[47], [56] reduce the latency cost of graph memory accesses

by executing graph-processing operations close to DRAM,

partially hiding the latency cost of the corresponding memory

accesses. TLP complements these works since it improves the

cache management of a wide range of applications.

Redesigning the Cache Hierarchy. The Distill Cache [41]

approach reserves a section of the L2C to place the used

words of a cache line when that line is elected for eviction.

This design improves the use of cache storage capacity by

evicting just the unused words of each cache line. In contrast,

our proposal manages the pervasiveness of highly irregular

access patterns and dynamically classifies memory accesses as

either regular or irregular. By labeling some memory accesses

as not cache-friendly, we avoid cache pollution and useless

cache look-ups. The Victim Cache [31] proposal is a small

fully-associative cache, found on the refill path of the LLC. It

contains eviction victims of the cache to which it is attached

and tries to decrease conflict misses. On LLC misses, both

the LLC and the Victim Cache are looked-up; if the requested

cache block is found in the Victim Cache, the LLC victim and

the Victim Cache entry are swapped, thus lowering the miss

latency. On a Victim Cache miss, the block is fetched from

DRAM and the LLC victim is inserted in the Victim Cache.

While the Victim Cache has been proven effective at improving

the performance of SPEC workload [2], [3], it relies heavily

on spatial locality as it inserts caches victims. Our proposal

does not rely on locality assumptions and shortcuts the cache

hierarchy when it is predicted to be inefficient.

VIII. CONCLUSIONS

This work introduces Two Level Perceptron (TLP) predictor,

a neural approach that leverages two perceptron predictors

to apply off-chip prediction to both demand and prefetch

requests. This technique prevents memory bandwidth waste due

to inaccurate prefetch requests or wrong off-chip prediction,

and avoids cache pollution due to prefetching. We evaluate

TLP against several previous approaches (PPF [14] and Her-

mes [13]) considering 55 single-core workloads, 200 multi-core

workloads, and two state-of-the-art L1D prefetchers, IPCP [39]

and Berti [37]. TLP achieves a 11.5% geometric mean speedup

when deployed on a multi-core system using the IPCP L1D

prefetcher, while the best previous approach, Hermes, delivers

3.0%. When considering Berti, Hermes delivers 0.9% geometric

mean speedup while TLP obtains 11.8% improvement. Our

evaluation also demonstrates that TLP significantly reduces

the overhead in terms of DRAM bandwidth transactions that

previous approaches incur in all considered scenarios.
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APPENDIX

A. Abstract

Our artifact provides i) the implementation of TLP, ii) the

simulation infrastructure, iii) the set of workloads, iv) scripts

for launching the experiments, and v) Python scripts bundled

in Jupyter notebooks to exploit the simulation results and

reproduce some of the key figures of this paper.

B. Artifact check-list (meta-information)

• Program: Memory traces of SPEC 2006 [2], SPEC 2017 [3],
and GAP [11] workloads.

• Compilation: GNU GCC and CMake.
• Metrics: Performance improvements, reduction in DRAM

transactions, statistics on inaccurate off-chip predictions, L1D
useful & useless prefetches, and L1D prefetchers’ accuracy.

• Output: We provide scripts that generate all single-core figures
(Figures 1, 2, 4, 5, 6, 10, 11, 12).

• Experiments: We provide scripts that submit the required jobs.
The only requirement is a SLURM manager.

• How much disk space required (approximately)?: 140GB.
• How much time is needed to prepare workflow (approxi-

mately)?: About 1 hour.
• How much time is needed to complete experiments (approx-

imately)?: About 12 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?:
• Workflow framework used?: SLURM for job management.
• Archived (provide DOI)?: The code is available at

https://doi.org/10.5281/zenodo.10100304. The trace set is avail-
able in 3 volumes:

– Volume 1: https://doi.org/10.5281/zenodo.10083542
– Volume 2: https://doi.org/10.5281/zenodo.10088347
– Volume 3: https://doi.org/10.5281/zenodo.10088525

C. Description

1) How to access: Our artifact is available at

https://doi.org/10.5281/zenodo.10100304.

2) Hardware dependencies: Any hardware capable of com-

piling and running ChampSim [4].

3) Software dependencies: Our artifact depends on the

following tools: CMake, Jupyter, Python 3.8.10, matplotlib,

and SLURM.

4) Data sets: Memory traces of SPEC 2006 [2], SPEC

2017 [3], and GAP [11] workloads.

D. Installation

First, Download the artifact from our GitHub repository using

the appropriate git clone command. Second, download the

trace set from the following Zenodo records:

• Volume 1: https://doi.org/10.5281/zenodo.10083542

• Volume 2: https://doi.org/10.5281/zenodo.10088347

• Volume 3: https://doi.org/10.5281/zenodo.10088525

E. Experiment workflow

To reproduce all the single-core figures of this work, take

the following steps:

• cd TLP-HPCA30-artifact

• Move the three volumes of the traces artifact to the root

of the code’s artifact.

• Extract the traces using tar -xMf

TLP-HPCA30-artifact-traces.VOLUME1.tar.

This command is interactive and will request you to

provide the name of the next archive’s volume as follows

TLP-HPCA30-artifact-traces.VOLUME2.tar,

etc. A new directory named traces/ will be present in

the artifact directory.

• set paths and username in scripts/-

run_single_core.sh (lines 4, 7, 8, 10, and 11),

scripts/run_single_core_legacy.sh (lines 4,

7, 8, 10, and 11), scripts/run_single_core.job

(lines 6, 9, 10, and 12).

• Execute ./scripts/compile_single_core.sh

to compile the binaries.

• Execute scripts/run_single_core.sh and

scripts/run_single_core_legacy.sh to

launch all single-core simulations.

Running all the jobs takes around 12 hours, depending on

the cluster and the number of jobs that can be launched in

parallel.

F. Evaluation and expected results

When all jobs are finished, generate the single-core figures

using the Jupyter notebooks provided in the notebooks

directory. We recommend using the Jupyer extension in the VS

Code editor, as it is how the workflow was originally designed.

The single-core figures will be available in the plots/

directory.

G. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-

review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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“Bit-level perceptron prediction for indirect branches,” in Proceedings of

the 46th International Symposium on Computer Architecture, ser. ISCA
’19. New York, NY, USA: Association for Computing Machinery, 2019,
pp. 27–38. [Online]. Available: https://doi.org/10.1145/3307650.3322217

[22] N. Gober, G. Chacon, L. Wang, P. V. Gratz, D. A. Jimenez, E. Teran,
S. Pugsley, and J. Kim, “The championship simulator: Architectural
simulation for education and competition,” 2022.

[23] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “GraphX: Graph Processing in a Distributed Dataflow
Framework,” in Proceedings of the 11th USENIX Conference on

Operating Systems Design and Implementation, ser. OSDI’14. USA:
USENIX Association, 2014, p. 599?613.

[24] C. T. Have and L. J. Jensen, “Are graph databases ready for
bioinformatics?” Bioinformatics, vol. 29, no. 24, pp. 3107–3108, 10
2013. [Online]. Available: https://doi.org/10.1093/bioinformatics/btt549

[25] A. Jaleel, K. B. Theobald, S. C. Steely, and J. Emer, “High Performance
Cache Replacement Using Re-Reference Interval Prediction (RRIP),” in
Proceedings of the 37th Annual International Symposium on Computer

Architecture, ser. ISCA ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 60–71. [Online]. Available:
https://doi.org/10.1145/1815961.1815971

[26] M. Jalili and M. Erez, “Reducing load latency with cache level prediction,”
in 2022 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), April 2022, pp. 648–661.

[27] A. V. Jamet, L. Alvarez, D. A. Jiménez, and M. Casas, “Characterizing
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