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ABSTRACT: Spins in strongly frustrated systems are of intense
interest due to the emergence of intriguing quantum states
including superconductivity and quantum spin liquid. Herein, we
report the discovery of a cascade of phase transitions and large
magnetic anisotropy in the averievite CsCICusP,0, single crystals.
Under a zero field, CsClCusP,0,, undergoes a first-order
structural transition at around 224 K from high-temperature
centrosymmetric P3ml to low-temperature noncentrosymmetric
P321 followed by an AFM transition at 13.6 K, and another AFM
transition at ~2.18 K. Based upon magnetic susceptibility and
magnetization data with magnetic fields perpendicular to the ab
plane, a phase diagram, consisting of a paramagnetic state, two
AFM states, and two field-induced states including two magnet-
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ization plateaus, has been constructed. Our findings demonstrate that the quasi-2D CsCICusP,0,, exhibits rich structural and
metamagnetic transitions, and the averievite family is a fertile platform for exploring novel quantum states.

B INTRODUCTION

Understanding the origin of high-temperature superconductiv-
ity remains a big challenge and is among the current research
frontiers.' ™ Nearly 40 years ago, Anderson proposed that the
pre-existing magnetic singlet pairs of quantum spin liquid
(QSL), which is an insulating magnetic state favored by low
spin, low dimensionality, and magnetic frustration,* could
become charged superconducting pairs when it is doped
sufficiently strongly.” Anderson’s theory has not been tested up
to now.®”” The main obstacle is that no existing materials have
been confirmed to be QSL due to the lack of smoking-gun
evidence;'” only a few materials are proximate QSL candidates,
including k-(ET),Cu,(CN)s;, herbertsmithite ZnCu;(OH)4Cl,,
and a-RuCly.”"""* Herbertsmithite, which does not show any
long-range magnetic order or spin glass behavior down to 20
mK, ">~ is probably one of the most studied QSL candidates.
Theoretically, electron doping with Ga on the Zn site in
herbertsmithite was predicted to produce novel states
including f-wave superconductivity and a correlated Dirac
metal,'® and hole doping with Li or Na on the Zn site was
predicted to host a fractional quantum Hall effect.'’
Experimentally, attempts to dope electrons/holes by sub-
stitution via various techniques in this material ended in
unsuccess; one reason is that the removal of Zn from the three-
dimensional (3D) crystal structure leads to decomposition.">"*
One notable progress was the report of lithium intercalation in
herbertsmithite; however, this did not lead to metallization,
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not to mention superconductivity.'” Thus, it is desirable to find
other QSL candidates that maintain the key ingredients of
herbertsmithite (kagome lattice with Cu**S = 1/2) but do not
have its issues.

Geometrically frustrated systems such as triangular, honey-
comb, kagome, hyperkagome, and pyrochlore are fertile
playgrounds for the exploration of novel quantum phases
including quantum spin liquid.® Averievite, an oxide mineral
represented by the formula (MX),Cu;T,0;y, (M = K, Rb, Cs,
Cy;y X=CLBr,;n=1; T =P, V)ZO_23 that contains trangle-
kagome-triangle trilayers of Cu®" (S = 1/2), is a geometrically
frustrated system and has been proposed to host QSL.** More
importantly, unlike the 3D network in herbertsmithite,”
averievite exhibits a quasi-2D crystal structure consisting of
triangle-kagome-triangle trilayers of Cu and MO, layers
between them, potentially overcoming the doping issues
encountered in herbertsmithite. CsClCu;V,0, polycrystalline
powders were reported to crystallize in the P3m1 space group
at high temperatures and undergoes a structural transition to
P2,/c at 310 K and then to an unknown structure below 127 K
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Figure 1. Single crystals and crystal structures of CsCICusP,0;, from synchrotron X-ray single crystal diffraction. (a) Photos of a typical piece of an
as-grown single crystal, (b) crystal structure of CsCICusP,0,, at 300 K in the ball-and-stick model, (c) kagome layer consisting of the Cul at 300 K
and Cul local environment in the ellipsoid model, (d) triangle layer consisting of Cu2 with P atoms residing in the middle of Cu triangles at 300 K
and the Cu2 local environment in the ellipsoid model, (e) triangle-kagome-triangle trilayer at 300 K, (f) distorted kagome layer consisting of the
Cul at 100 K and Cul local environment in the ellipsoid model, (g) triangle layer consisting of the Cu2 at 100 K and Cu2 local environment in the

ellipsoid model, and (h) triangle-kagome-triangle trilayer at 100 K.

followed by an antiferromagnetic transition at 24 K.** In
contrast, Kornyakov et al. reported a four-time large unit cell
with a P3 space group at 296 K.** By substituting 20% Cu with
Zn to form CsClCu,ZnV,0, polycrystalline powders did not
show conventional magnetic order or spin glass behavior down
to 1.8 K.***° Theoretical calculations predicted that the further
doped averievite CsClCu3Zn,V,0,, is a QSL candidate.”*
Moving from V to P, it was reported that the antiferromagnetic
transition Ty of CsClCusP,0,, powders was suppressed to 3.8
K and the structural transition was shifted to 12 K.*'
Theoretical calculations revealed that substitution of V by P
in averievite causes chemical pressure, leading to stronger
interlayer coupling between Cu kagome and Cu triangle atoms
and larger degree of magnetic frustration.”” To address the
existing key fundamental questions including the temperature-
dependent crystal structure, whether Zn-doped averievites are
QSL candidates, and the direction-dependent physical proper-
ties, bulk single crystals are highly demanded; however, up to
date, only submillimeter-sized single crystals of averievite
CsCICugV,0,, (0.42 X 0.40 X 0.05 mm?) and CsCICusP,0,,
(0.12 x 0.12 X 0.03 mm?®) have been reported.20

In this contribution, we report the successful growth of
CsClICusP,0, single crystals with dimensions of 3—5 mm on
edge (Figure 1a) using a flux method. The availability of bulk
CsCICusP,0y, single crystals not only promotes structural
study across first-order transitions but also provides an ideal
platform for measurements of direction-dependent physical
properties for a deep understanding of this averievite.
Combining synchrotron powder X-ray diffraction and single
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crystal diffraction, we report a previously unidentified first-
order structural transition at 224 K, transforming from the
high-temperature centrosymmetric P3ml to low-temperature
noncentrosymmetric P321 space group. Such a transition was
corroborated by a pair of peaks in the differential scanning
calorimetry curves, an anomaly in heat capacity and thermal
hysteresis between warming and cooling in magnetic
susceptibility. Strong anisotropic magnetic properties were
observed for the first time in averievite. A magnetic phase
diagram, consisting of a paramagnetic state, two antiferromag-
netic states, and two field-induced states, has been constructed
based upon the magnetic susceptibility and magnetization data
with magnetic fields perpendicular to the ab plane. Our
findings suggest that quasi-2D CsCICusP,0, is an excellent
platform for exploring novel quantum states.

B MATERIALS AND METHODS

Crystal Growth. Single crystals of CsClCusP,0,, were grown
using a flux method for the first time in sealed quartz tubes. CuO
(Macklin, AR), Cu,P,0,-H,0 (Macklin, 99.99%), and CsCl
(Macklin, AR) were weighed with a molar ratio of 3:1:1 and then
mixed with flux in a mass ratio of 1:5 where the flux is CsCl/CuCl, =
7:3 (mass ratio). The CuCl, was obtained by preheating CuCl,-2H,0
(Aladdin, AR) at 150 °C for 12 h. The mixture was loaded into a
quartz tube, sealed, then heated to 600 °C, held at this temperature
for 1 day, and then cooled to 400 °C at a rate of 2 °C/h followed by
furnace cooling to room temperature. Black hexagonal single crystals
were obtained after removing flux using deionized water. Figure la
shows a typical hexagonal black CsClCusP,0, single crystal with
dimensions of 3.12 X 2.86 X 0.97 mm?> grown from CsCl/CuCl, flux.
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The directions of the as-grown single crystals were determined by
using X-ray diffraction (Figure S1).

Synchrotron X-ray Single Crystal Diffraction (SXRD). SXRD
data were collected with a 1 M Pilatus area detector using synchrotron
radiation (1 = 0.41328 A) at 300, 200, 100, and 6 K at Beamline 15-
ID-D (NSF's ChemMatCARS) at the Advanced Photon Source,
Argonne National Laboratory. The data collected at 300, 200, and
100 K are from the same single crystal (sample #1), while the data
collected at 6 K are from another single crystal (sample #2). Single
crystals were mounted to the tip of glass fiber and measured using a
Huber 3-circle diffractometer. Indexing, data reduction, and image
processing were performed using Bruker APEX4 software.”® The
structure was solved by direct methods and refined with full matrix
least-squares methods on F% All atoms were modeled using
anisotropic ADPs, and the refinements converged for I > 20(I),
where I is the intensity of reflections and o(I) is the standard
deviation. Calculations were performed using the SHELXTL
crystallographic software package.”® Details of crystal parameters,
data collection, and structure refinement at 300, 200, 100, and 6 K are
summarized in Table S1, and selected bond lengths (A) and angles
(deg) are presented in Table S2. Further details of the crystal
structure investigations may be obtained from the joint CCDC/FIZ
Karlsruhe online deposition service by quoting the deposition
numbers CSD 2263860, 2263800, 2263806, and 2263799.

In-house X-ray Powder Diffraction (PXRD). In-house X-ray
powder diffraction was carried out on a Bruker AXS D2 Phaser X-ray
powder diffractometer. Pulverized CsClCusP,0, single crystals were
measured at room temperature using Cu Ka radiation (A=1.5418 A)
in the 26 range of 5—70° with a scan step size of 0.02° and a scan time
of 0.1 s per step.

High-Resolution Synchrotron X-ray Powder Diffraction
(HRPXRD). High-resolution synchrotron X-ray powder diffraction
data of CsCICusP,0,, were collected in the 26 range of 0.5—50° with
a step size of 0.001° and a step time of 0.1 s at 100, 200, and 295 K
with an X-ray wavelength of A = 0.45903 A at Beamline 11-BM at the
Advanced Photon Source, Argonne National Laboratory. Samples
were prepared by loading pulverized crystals into an @ 0.8 mm
Kapton capillary, which was then installed on a magnetic sample base
used by the beamline sample changer. The sample was spun
continuously at 5600 rpm during data collection. An Oxford
Cryostream 700 Plus N, gas blower was used to control temperature
below room temperature. Diffraction patterns were recorded on
warming, first at 100 K and then at 200 and 295 K. Data were
analyzed with the Rietveld method using GSAS-II software.”” Crystal
structures from SXRD were used as starting models, and the refined
parameters include scale, background, unit cell parameters, domain
size, microstrain, atomic positions, and thermal parameters. Isotropic
domain sizes and generalized microstrain models were used.

Differential Scanning Calorimetry (DSC). DSC was used to
check whether there was any structural phase transition in
CsClCuyP,0,,. Data between 113 and 353 K was collected on a
Mettler Toledo TGA/DSC3+ with 28.03 mg of CsClCusP,0,
pulverized crystals placed in an Al pan at a rate of 10 K/min on
warming/cooling.

Heat Capacity (Cp). Cp of CsClCuiP,0,, was obtained on a
Quantum Design PPMS in a temperature range of 2—20 K. For single
crystal measurement (5.9 mg), Apiezon-N vacuum grease was
employed to fix crystals to the sapphire sample platform. The specific
heat contribution from the sample holder platform and grease was
determined before mounting the sample and subtracted from the total
heat capacity. For powder measurement, a piece of single crystal (~1
mg) was ground into powder, mixed with N grease, and then
transferred to a sample stage. Data was collected between 19.8 and 1.8
K with a step size of 0.1 K.

Magnetic Susceptibility. DC and AC magnetic susceptibility
data of CsCICu;sP,0,, using a single crystal of 16.4 mg were collected
using a Quantum Design MPMS3 instrument at the Synergetic
Extreme Condition User Facility (SECUF), Institute of Physics,
Chinese Academy of Sciences. For a magnetic field perpendicular to
the ab plane (u,HLab), the crystal sandwiched between two quartz
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was then inserted and fixed in a brass tube. ZFC-W (zero-field
cooling, data collection on warming), FC-C (field cooling, data
collection on cooling), and FC-W (field cooling, data collection on
warming) were collected between 1.8 and 30 K with a heating rate of
3 K/min under an external magnetic field of 0.001, 0.01, 1.0, 2.0, 2.5,
3.0, 3.5, 3.65, 3.8, 40, 45, 50, 54, and 7.0 T, respectively.
Magnetization data as a function of the magnetic field were collected
between —7 to +7 T with a sweep mode of 150 Oe/s at 1.8, 2.15, 2.5,
6.0, 10.0, 12.6, 13.6, and 15.0 K. For the magnetic field parallel to the
ab plane (poH||ab), the hexagonal surface of the crystal was attached
to the plane of semicircular quartz columns by using GE varnish.
ZFC-W, FC-C, and FC-W data were collected between 1.8 and 30 K,
and the heating rate was 3 K/min under magnetic fields of 0.001, 0.01,
and 1.0 T. AC magnetic data was collected between 8.8 and 9 K with
a step size of 0.02 K at 10, 97, 497, 747, and 997 Hz. The Quantum
Design PPMS Dynacool-9 was used to measure the DC magnetic
susceptibility of CsClCusP,0, single crystals between 2 and 300 K
for a magnetic field perpendicular to the ab plane and parallel to the
ab plane. ZFC-W, FC-C, and FC-W data were collected using the
sweep mode with a heating rate of 3 K/min under a magnetic field of
2000 Oe. Magnetization vs magnetic field data was collected between
—9 and +9 T using the sweep mode with a rate of 150 Oe/s at 2.0,
3.0, 5.0, 10.0, 12.0, 15.0, 20.0, 30.0, and 300 K. Measurements on
other single crystals were performed to confirm the magnetic
properties of the material (Figure S2).

Bl RESULTS AND DISCUSSION

Crystal Structure. The crystal structure of CsClCu;P,0,,
at various temperatures was determined using synchrotron X-
ray single crystal diffraction at NSF's ChemMatCARS at
Argonne National Laboratory. At room temperature,
CsCICugP,0,, crystallizes in the trigonal space group P3ml
(no. 164) with lattice parameters of a = b = 6.1139(1) A and ¢
=8.1433(3) A and Z = 1 (Table S1). These lattice parameters
are smaller than those of Rietveld refinement from powder
diffraction (see Table S3), which is likely due to the zero shift
in the single crystal diffraction at 15-ID-D. Figure 1b shows the
crystal structure of CsClCusP,0;, at room temperature by
using the ball-and-stick model. There are two Cs atoms, two
Cu atoms, one Cl atom, one P atom, and three O atoms in the
asymmetric unit. Cs atoms are surrounded by 12 oxygen atoms
and 2 Cl atoms, and Cs atoms are disordered with an
occupancy of 0.59(11) for Cs1 at (0, 0, 1) and 0.21(S) for Cs2
at (0, 0, 0.946(3)). There are two types of local environments
for Cu: one (Cul) is coordinated by four O atoms with a bond
length of 1.8340(9)—2.002(2) A (planar environment) and the
other (Cu2) is surrounded by five O atoms with a bond length
in the range of 1.822(4)—2.131(3) A (trigonal bipyramids).
The P atom is coordinated by four O atoms, forming a
tetrahedra with P—O bond distances in the range of 1.485(4)—
1.523(3) A (Table S2). The four-coordinated Cul atoms form
a kagome lattice in the ab plane with a Cu—Cu distance of
3.05695(5) A (Figure 1c), and the five-coordinated Cu2 atoms
form triangles with a Cu—Cu distance of 6.11390(11) A
(Figure 1d). The Cul on each triangle is connected to Cu2
with Cul—Cu2 = 2.9301(5) A, forming triangle-kagome-
triangle trilayers (Figure le). These trilayers stagger along the ¢
direction, with 3.4656 A between adjacent trilayers, forming a
quasi-2D structure with O, Cs, and ClI for charge balance.

The diffraction data collected at 200 and 100 K reveal a
different symmetry compared to that at room temperature.
The mean |[E*1| values are 0.815 and 0.666 for 200 and 100 K,
respectively. These two values are closer to 0.736 (0.968
expected for the centrosymmetric structure vs 0.736 for
noncentrosymmetric), suggesting a noncentrosymetric struc-
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ture. By lowering symmetry from P3m1, P3 and P321 are two
possible candidates, and their combined figures of merit are

low (the lower this value, the better the collected data set).
The structures at 200 and 100 K were solved using both P3
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and P321. Considering the smaller R; and higher symmetry of
P321, we chose this symmetry to describe the structure at 200
and 100 K (Table S4).

At 100 K, the symmetry of CsCICusP,0,, is lowered and
characterized by noncentrosymmetric space group P321 (no.
150). The asymmetric unit contains two Cs atoms, two Cu
atoms, one Cl atom, one P atom, and three O atoms. Cul is
still coordinated by four oxygen atoms; however, Cul and the
four oxygen atoms no longer lie in the same plane (Figure 1f).
The Cul atoms in the ab plane form a distorted kagome lattice
with Cu—Cu—Cu angles of 100.55(5)° and 139.45(5)° and a
distance of 3.0799(3) A between the nearest Cul atoms
(Figure 1f). The distortion increases with decreasing temper-
ature, and angles of 97.256(14)° and 142.744(14)° are
obtained at 6 K (Figure S3). Cu2 is surrounded by five
oxygen atoms to form trigonal bipyramids (Figure 1g). Cul—
O, Cu2-0, and P—O polyhedra form a trangle-distorted
kagome-trangle trilayer, and these trilayers stagger along the ¢
direction (Figure 1h) to form a quasi-2D structure with Cs and
Cl for charge balance.

First-Order Structural Transition. The structural tran-
sition between 300 and 100 K is reported here for the first
time. High-resolution synchrotron powder X-ray diffraction
data were collected at 11-BM at the Advanced Photon Source,
Argonne National Laboratory, to verify the existence of a
structural transition. Figure 2 shows the variable temperature
diffraction data in the range of 3.0—30.0°. Clearly, extra
diffraction peaks are observed at 200 and 100 K, indicating a
lower symmetry compared with 295 K. Table SS lists selected
diffraction peaks calculated from single crystal structural
models. Such a structural transition occurring between 295
and 200 K has not been reported previously, and an
asymmetric peak shape is observed at 200 and 100 K, which
is consistent with the previous report by Winiarski et al.*'

Figure 3a shows the Rietveld refinement of powder
diffraction data collected at 295 K using the single crystal
structural model as a starting point. The Rietveld refinement
converged to = 8.76% and GOF = 1.48 with lattice
parameters of a = b = 6.179572(10) and ¢ = 8.236771(6) A.
The obtained lattice parameters are consistent with Winiarski
et al.”'Figure 3b shows the Rietveld refinement of data at 100
K using the P321 space group from SXRD, and all peaks are
indexed. Rietveld refinement converged to R, = 11.687% and
GOF = 2.15, and the obtained lattice parameters are a = b =
6.131495(9) A and ¢ = 8.242389(7) A. Table S3 summarizes
the crystallographic data and Rietveld refinement on the high-
resolution synchrotron powder X-ray diffraction data (11-BM,
APS) at various temperatures.

X-ray diffraction on single crystals and powders unambig-
uously demonstrates the existence of a structural phase
transition in CsClCusP,0}, on cooling. To further understand
at what temperature the transition occurs, we carried out DSC
measurements. Figure 4a shows the low-temperature DSC
curves between 200 and 250 K. An endothermic peak at 227 K
in the heating curve and a corresponding exothermic peak at
223 K in the cooling curve were observed. A pair of
endothermic and exothermic peaks in DSC strongly supports
that the transition is first order in nature. Figure 4b shows an
anomaly at 224 K in specific heat, which is indicative of the
presence of a first-order transition. This first-order transition is
corroborated by thermal hysteresis in the temperature-
dependent magnetic susceptibility data shown in Figure 4c.
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Figure 4. (a) DSC data measured on cooling and warming in the
temperature range of 200—250 K. (b) Specific heat data as Cp/T
measured on cooling in the temperature range of 200—250 K. (c)
Magnetic susceptibility in the range of 200—250 K showing thermal
hysteresis.

Magnetic Properties with the Magnetic Field Parallel
to the ab Plane. Figure Sa shows the in-plane temperature-
dependent DC magnetic susceptibility under an applied field of
0.2 T in the temperature range 15—300 K. Curie—Weiss fit in
the range 50—200 K leads to pr.g = 1.99 pp and Oy = =82 K
and g = 1.74 pg and Ocy = —56 K in the range 230—300 K
(Figure S4). The negative Weiss temperature indicates strong
antiferromagnetic interactions. For Cu?", the expected effective

moment is calculated to be 1.73 g based on p = g+/S(S + 1)
, where spin only § = 1/2 and isotropic Landé g-factor §= 2,
3

and the observed value falls in the range of 1.7—2.2 " The
obtained effective moments in our case are consistent with the
literature.”’Figure Sb shows the in-plane DC magnetic
susceptibility as a function of temperature in the range of
1.8—15 K under magnetic fields of 0.001, 0.01, and 1.0 T
(Figure SS). The feature at around 13.6 K is indicative of
antiferromagnetic order, and the bifurcation between ZFC and
FC at around 8.9 K suggests either ferromagnetic order or spin
glass behavior. Preliminary AC magnetic susceptibility data
(Figure S6) in the range 10—997 Hz show a peak around 8.9
K, but no apparent frequency dependence is observed. The
magnetization as a function of applied magnetic field at 1.8 K
exhibits a hysteresis loop between —0.057 and 0.057 T (Figure
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Figure 5. Magnetic properties of CsCICusP,0,, with an applied magnetic field parallel to the ab plane. (a) Magnetic susceptibility under a
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fields of 0.001, 0.01, and 1 T. (c) Magnetization as a function of applied magnetic field at various temperatures (1.8, 2, 3, S, 10, 12, 15, 20, 30, and
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Figure 6. Magnetic properties of CsCICusP,0,, with applied magnetic fields perpendicular to the ab plane. (a) Temperature dependence of the
magnetic susceptibility (ZFC-W, FC-C, and FC-W) at 0.01 T. (b) Specific heat of single crystals in the temperature range 1.8—15 K. (c)
Magnetization as a function of magnetic fields (blue: +7 to —7 T, red: —7 to +7 T) at 1.8 K and first-order derivatives of magnetization from +7 to
—7 T. (d) Net magnetization with linear components subtracted at 1.8 K, showing two magnetization plateaus. (e) Magnetization as a function of
magnetic fields (blue: +7 to —=7 T, red: —7 to +7 T) at 6 K and first-order derivatives of magnetization from +7 to —7 T. (f) Magnetization as a
function of magnetic fields (blue: +7 to —7 T, red: —7 to +7 T) at 13.6 K and first-order derivatives of magnetization from +7 to —7 T.

Sc, Figure S7), indicating weak ferromagnetism possibly from
canted antiferromagnetism. Figure S8 shows the magnetic
phase diagram of CsClCu,P,0, with pH||ab, which consists
of three states. The temperature dependence of the magnet-
ization of the anomaly at different magnetic fields serves as a
dividing line between state I (antiferromagnetic) and para-
magnetic states. The maximum magnetic fields of the
hysteresis loop at various temperatures serve as markers to
distinguish state I from state II (ferromagnetism). State II may
be attributed to canted AFM, the magnetic configuration of
which remains to be determined through neutron diffraction.

Magnetic Properties with the Magnetic Field
Perpendicular to the ab Plane. Figure S9a shows the
out-of-plane magnetic susceptibility of CsClCusP,O0,y as a
function of temperature under an external magnetic field of 0.2
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T. Above 15 K, a slope change and thermal hysteresis at
around 224 K are observed (Figure 4b). We performed the
Curie—Weiss fit (Figure S9b) for temperatures above and
below the structural transition at around 224 K: (1) in the
range 50—200 K, the fit leads to pt.4 = 1.76 uy and Oy = —59
K, and (2) in the range 230—300 K, the fit results in y 4 = 1.89
pp and Oy = —111 K. The calculated effective moments are all
close to the expected value of 1.73 yy for Cu® with S = 1/2.
The negative Weiss temperatures indicate strong antiferro-
magnetic interactions. Note that across the structural transition
at ~224 K, the change of Weiss temperature is remarkable,
suggesting that the structural change strongly affects the
interaction of the magnetic moments out of the ab plane.
Now, we move to a magnetic susceptibility below 15 K.
Figure 6a shows the temperature dependence of the magnetic
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susceptibility (ZFC-W, FC-C, and FC-W) under 0.01 T in the
temperature range of 1.8—15 K (see Figure S9c for magnetic
susceptibility under other fields), and Figure S9d presents the
first-order derivatives of the corresponding magnetic suscept-
ibility. Three anomalies (13.6, 3.71, and 2.18 K) are observed
under 0.001 T. The anomaly at 13.6 K under a magnetic field
of 0.001 T is suppressed to 9.55 K under 3 T and then to
below 1.8 K under 7 T. The strong response to the magnetic
field indicates that this anomaly is of long-range antiferro-
magnetic order (labeled Ty;). The Figure 6a inset shows the
temperature dependence of the magnetic susceptibility on
warming and cooling in the temperature range of 1.8—5 K
under 0.01 T (for other magnetic fields, see Figure S10). A
hysteresis between 3.71 and 2.28 K is clearly observed,
implying a first-order phase transition. The loop changed to
1.81—5.49 K under 3 T and then to below 1.8 K under 4.5 T.
For the third anomaly at 2.18 K, it also exhibits a response to
the magnetic field (2.18 K under 0.001 T to below 1.8 K under
2.5 T), indicating another antiferromagnetic transition (labeled
Typ)- Figure 6b shows the heat capacity data of CsClCusP,0,,
in the temperature range of 2—15 K under the zero magnetic
field, and Figure S11 shows the heat capacity of powders. Two
anomalies (13.6 and 2.15 K) are observed, consistent with the
magnetic susceptibility data shown in Figure 6a. The entropy
change across the 13.6 K transition is 0.896 J/mol-K, which is
far below the expected entropy change of three-dimensional
antiferromagnetism of spin 1/2 (0.896/(SRX In 2) = 3.1%).
These data suggest that only a small proportion of the
magnetic moments antiferromagnetically orders, which is
consistent with the strongly frustrated structure of Cu. A
similar phenomenon has been reported in the averievite
CsCICu3V,0,,.>*

Magnetization Plateau. Figure 6¢ shows the out-of-plane
magnetization as a function of magnetic field at 1.8 K, and the
bottom shows the first-order derivative of the magnetization
curve (see Figures S12 and S13 for MH curves at other
temperatures). At temperatures higher than 13.6 K (Figure
S$13), the magnetization is linear, and no hysteresis is observed,
consistent with a paramagnetic state. As the temperature
decreases, the magnetization deviates from linear behavior.
The field-dependent magnetization exhibits a single step
between 13.6 and S K (Figures 6e,f and S13) and two steps
below S K. By subtracting the linear component, two
magnetization plateaus were obtained (see Figure 6d and
Figures S14—S16). Specifically, magnetization at 1.8 K consists
of five parts in the first quadrant: three linear components and
two steps. In our system, only a small proportion of the
magnetic moments antiferromagnetically orders. The system
exhibits a substantial degree of paramagnetic and disordered
spins, which contributes to the linear component of the MH.
To obtain a ferromagnetic signal, we first fit the linear parts
using M = apyH+ b and then subtract au H from the original
data. Similar data analysis has been reported previously.”'
Interestingly, the magnetization M = 0.02 y per Cu®* between
3.2 and 4.7 T (plateau 1) is exactly one-third of M = 0.06 y;
per Cu’* between 5.9 and 7.0 T (plateau 2). The intercept of
the fitted curve on the y-axis in Figure S12a corresponds to the
magnetization plateaus. The estimated saturated moment of
per Cu®" is Mg = gSug = 2 X 1/2 p = 1.0 py. The two plateaus
M = 0.02 and 0.06 pg per Cu** are only 1/50 and 3/50 of the
saturated Mg (see Figure 6d), suggesting the existence of two
quantum magnetic states. Such small magnetic moments are
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consistent with the highly frustrated kagome and triangle
lattice.

Magnetic Phase Diagram with u,H Lab. Figure 7 shows
the magnetic phase diagram of CsClCu;P,0,, with a magnetic
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Figure 7. Magnetic phase diagrams of CsClCusP,0,, with poHLab.

field perpendicular to the ab plane, summarizing magnetic
susceptibility and magnetization data in the temperature range
of 1.8—300 K and field range of 0—9 T. As can be seen, the
magnetic phase diagram consists of five regions. Under the
zero magnetic field, the material exhibits a paramagnetic state
at high temperatures; when the temperature is decreased, it
undergoes two successive antiferromagnetic transitions at 13.6
and 2.18 K (state I between 13.6 and 2.18 and state II between
2.18 and 1.8 K). At 1.8 K, when an external magnetic field is
applied, the material exhibits two metamagnetic transitions, the
first starting at ~2.5 T (state III) and the second starting at
~5.5 T (state IV). Above ~6 T, the material likely enters a
partially spin polarized state. A fully polarized state may be
achieved under a very high magnetic field.**~*° The boundary
between state I and the paramagnetic state can be obtained via
Ty, the peak of the first-order derivative of y. The dividing
line between states I (AFM1) and II (AFM2) is Ty,. The
upper and lower boundaries of state III (Figure S17) are
determined by the positions of the peaks in the first-order
derivatives of the MH curves y,H, and poH,. The upper limit
of III coincides with that of Ty;. There is a region between III
and IV due to the slopy metamagnetic transitions, as can be
seen from the MH curve (Figures 6ce and S17). The
boundary between IV and paramagnetism is determined by the
critical magnetic field (4oHc) in the MH curve (Figures S15
and S16). Considering the relatively small magnetic moments,
tiny entropy change, and highly frustrated structure, it is
challenging to build spin models for different magnetic states.
To determine the magnetic structures of CsClCusP,0,, under
various magnetic fields, single crystal and/or powder neutron
diffraction data are required.

It is well-known that the averievite compounds show
structural and magnetic transitions on cooling,*"*****” for
example, two structural transitions and one antiferromagnetic
transition were found in polycrystalline V-averievite,”" and
double antiferromagnetic transitions were reported in poly-
crystalline RbCICuP,0,,.°” However, no study on anisotropic
properties has been found. Here, we succeed in growing bulk
CsClICusP,0y, single crystals and report for the first time the
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large anisotropic magnetic properties and field-induced
quantum magnetic states. This is related to the triangle-
kagome-triangle trilayer, which is a common feature of the
averievite family, and the smaller ion size of P.*” It has been
reported that the magnetization plateau is the result of the
interaction of competingg phases in the system from a disorder
to an ordered state.”®*” For example, 1/6, 1/3, 2/3, and 5/6
plateaus were observed in kagome-lattice HoAgGe.*’ Spin-
gapped solid phases were previously reported at 1/9, 3/9, 5/9,
or 7/9 magnetization plateaus due to the crystallization of
magnons induced by kinetic frustration.*"** Taking the one/
third plateau in the triangular lattice with S = 1/2 for example,
the magnetic moment is partially polarized under the magnetic
field, forming an “up-up-down” spin structure, so the
macroscopic magnetization is exgressed as one/third of the
saturation magnetic strength.4 For CsClCusP,0,y, the
magnetization plateau is 1/50 and 3/50 of the saturated
moment of Cu** (S = 1/2), suggesting a different mechanism
compared with other common magnetization plateaus (1/6, 1/
9, 3/9, 5/9, 6/9, 7/9, and 5/6). 1t is intriguing to explore
magnetic plateaus in CsCICusP,0}, under high magnetic fields
as well as in other averievite compounds.

B CONCLUSIONS

In summary, we report for the first time the cascade of
structural and field-induced transitions in quasi-2D averievite
CsClCusP,0,, single crystals. A previously unreported
structural transition from centrosymmetric P3ml to non-
centrosymmetric P321 was determined by combining synchro-
tron X-ray single crystal and powder diffraction, differential
scanning calorimetry, and magnetic properties. The non-
centrosymmetric crystal structure (P321 space group) below
the first-order transition in single crystals suggests that the
averievite material may have potential applications in the fields
of nonlinear optics and piezoelectricity. Large anisotropy was
observed in the magnetic properties of CsCICusP,0,, due to
the availability of bulk single crystals. A magnetic phase
diagram, consisting of a paramagnetic state, two antiferromag-
netic states, and two field-induced states including two
magnetization plateaus, has been constructed based upon the
magnetic susceptibility and magnetization data with a magnetic
field perpendicular to the ab plane. CsCICusP,0, is the first
member of the averievite family showing large anisotropic
magnetic properties and a rich magnetic phase diagram under
external magnetic fields. Determination of the magnetic
structures in the phase diagram will require other techniques
such as neutron diffraction. It is of great interest to investigate
other members of the averievite family, (MX),CusT,0,y (M =
K, Rb, Cs, Cu; X = Cl, Br, I; n = 1; T = P, V). Although
CsCICusP,0,, deviates from the long-sought quantum spin
liquid state, the substitution of copper in the triangle layers
using nonmagnetic ions such as Zn and Mg provided an
effective strategy for exploring novel quantum states including
quantum spin liquid.
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nation of phase boundaries in the magnetic phase

diagram with goHLlab (DOCX)
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