A JACOBIAN CRITERION FOR NONSINGULARITY
IN MIXED CHARACTERISTIC

By MELVIN HOCHSTER and JACK JEFFRIES

Abstract. We give a version of the usual Jacobian characterization of the defining ideal of the singular
locus in the equal characteristic case: the new theorem is valid for essentially affine algebras over a
complete local algebra over a mixed characteristic discrete valuation ring. The result makes use of
the minors of a matrix that includes a row coming from the values of a p-derivation. To study the
analogue of modules of differentials associated with the mixed Jacobian matrices that arise in our
context, we introduce and investigate the notion of a perivation, which may be thought of, roughly, as
a linearization of the notion of p-derivation. We also develop a mixed characteristic analogue of the
positive characteristic I'-construction, and apply this to give additional nonsingularity criteria.

1. Introduction. The Jacobian criterion is a familiar tool for finding the
singular locus of a finitely generated algebra over a perfect field: for an equidimen-
sional variety, the singular locus is cut out by minors of the Jacobian matrix whose
entries are partial derivatives of the defining equations. There is a long history
in the literature of Jacobian criteria to compute the singular locus various classes
of algebras over fields, including [3, 17, 21, 25] (see also the references of [3]);
these are based on including additional derivations along with the partial deriva-
tives of the variables. For example [3] gives criteria, in terms of derivations, for
Ay to be a formally smooth k-algebra in the p-adic topology when £ is an F'-finite
field, A = S/I, S is a polynomial ring over a formally smooth, local, complete
k-algebra R and p € Spec(S) with I C p. The proof of this result depends on a
regularity criterion for A when R is also assumed regular.

In this paper, we give a Jacobian type criterion for nonsingularity in mixed
characteristic. One notable feature of this result is that, in contrast to equal charac-
teristic, nonsingularity cannot be characterized in terms of smoothness over some
base. Our criterion describes the singular locus in terms of minors of matrices in-
volving partial derivatives and p-derivations (in the sense of Buium [4] and Joyal
[11]) of the generators. We recall the definition of p-derivation in Section 2 below;
as an example, if V' is the p-adic integers, and T' = V'[zy,...,z,] or V[[z1,..., 2],
the map J given by

flxr,omn) = (F@h, o 2l) = fx,..z0)P) /p

is a p-derivation.
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THEOREM A (Theorem 4.9). Let (V,pV, K) be a discrete valuation ring with
uniformizer p € Z. Let T be a polynomial ring over a power series ring over V.
in n variables (polynomial and power series variables) 1, ...,x, total. Let R :=
T/I for some ideal I = (fi,...,f,)T of pure height h. Then, for a prime q of R
containing p, the local ring Ry is nonsingular if and only if q does not contain the
h x h minors of the matrix with columns

o [5(f1),...,8(f)]T, for some p-derivation mod p* on V extended to T,

. [(gg)p,..., (gi‘z_)p]T,fori =1,...,n,

b [(%)pa ce (%)p]T,for A € A for a p-base A of K.

Note that for primes that do not contain p, 1?4 is nonsingular if and only if g
does not contain the h x h minors of the usual Jacobian matrix; see Theorem 4.9.
We remark also that any choice of §, any choice of A, and any choice of generators
fi,..., fo for I, and any presentation R = T'/I with T as above is valid for the
result above.

The use of p-derivations to study singularities is motivated by [5], where p-
derivations were used to extend a classical theorem of Zariski and Nagata on sym-
bolic powers. In fact, Theorem A in the special case of a principal ideal I follows
from the main result of [5]. We note that, as our statement of Theorem 1 is based
on p-derivations, which generally do not exist in equal characteristic, there is no
completely characteristic-free statement that subsumes this.

The cokernel of the classical Jacobian matrix is just the module of Kéhler dif-
ferentials. In the case of algebras over a perfect field, the Jacobian criterion char-
acterizes the regular locus as the locus on which the module of Kéhler differentials
is free of the “correct” rank. Theorem A admits a similar interpretation along these
lines. Given a ring A with a p-derivation ¢ and an A-algebra R, we define a mod-
ule O R|A; In the situation of Theorem A, this is just the cokernel of the matrix
that appears in the statement. This module represents a functor of maps that satisfy
simple functional identities analogous to derivations or p-derivations; we call these
maps perivations, and the module Q R|A the universal perivation module. In this
language, we obtain the following version of Theorem A.

THEOREM B (Theorem 4.13). Let V be a discrete valuation ring with uni-
formizer p € Z and F-finite residue field (i.e., the Frobenius map on V/pV is of
finite index). Let (R,m,k) be a local ring with p € m that is essentially of finite
type over a complete V -algebra.

The local ring R is regular if and only if §R|Z is free of rank dim(R) +
log,, [k : kP].

In equal characteristic p > 0, the notion of I'-construction allows one to elimi-
nate F'-finiteness hypotheses from various statements; for an algebra R essentially
of finite type over a complete local ring, there is an F'-finite faithfully flat purely
inseparable extension R! that preserves many of the properties of R. In Section 5
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below, we recall key properties of the I'-construction, and develop a mixed char-
acteristic analogue that we call the I-construction with many of the same prop-
erties. Using the I-construction, we state a version of Theorem B without any
F'-finiteness hypothesis.

THEOREM C (Corollary 5.10). Let V' be a discrete valuation ring with uni-
formizer p € Z. Let (R,m k) a local ring with p € m that is essentially of finite
type over a complete V -algebra. Let A bea lift to V' of a p-base for V/pV'.

The local ring R is regular if and only if, for sufficiently small cofinite r - A,
QRF\Z is free of rank dim(R) +10gp[k(RF) : k‘(RF) |, where k:(RF) denotes the

residue field of Rr.

Note that the equal characteristic Jacobian criteria of [3, 17] are also phrased
in terms of cofinite subfields.

A preliminary version of these results, namely Theorem A in the case of finitely
generated unmixed algebras over complete unramified discrete valuation rings with
perfect residue fields, was announced in the MSRI Fellowship of the Ring Semi-
nar in May 2020. Our original method was based on the argument in Section 4.2.
These results were extended to the complete case and the essentially-of-finite-type-
over-complete case by a Néron-Popsecu desingularization [1, 19, 24] argument in
an earlier version of this manuscript, along with a version of Theorem B in the
corresponding cases. In the meanwhile, we learned of the work of Saito [20], who
established the analogue of Theorem B with the additional hypotheses that R/pR
is essentially of finite type over an F'-finite field and that R is flat over Z,. After
learning of Saito’s results, we used some of his ideas to give a different argument
for Theorems A and B that does not require any hypotheses on V/pV, and that does
not require the use of Néron-Popsecu desingularization to address the cases where
R is complete or essentially of finite type over a complete ring. We have kept the
original argument for the affine case here in Section 4.2 for heuristic reasons.

We note that the universal perivation modules defined here appear as modules
of FW-differentials in [20], as total pz—differentials in [6], and implicitly as an
extension class in [26, §4.2]; they are also closely related to the construction in
[7,§9.6.12].

Acknowledgments. The authors thank Elofsa Grifo and Zhan Jiang for helpful
comments on a draft of this article. We also thank the referee for many valuable
comments.

2. p-derivations and perivations.

2.1. p-derivations. We recall first the notions of p-derivation and §-ring, in
the sense of Buium [4] and Joyal [11].
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Notation 2.1. For a prime integer p, we set

XPryr—(X+Y)y 24

p —

(]

p
Cp(X,Y) = (;Xtii c Z[X,Y].

More generally, we set

XV o+ XP— (X + -+ Xp)P

Cp(Xl,...,Xt) = p
(a1,” a0)
=- ) Len®Z X0 XM € X, ..., Xy
a)+-+at=p p
ay,...,at#p

For all p, we have
() Cp(X,Y)e(XY)Z[X,Y] and Cp(Xl,...,Xt)G(X,...,Xt)zz[Xl,...,Xt].

Definition 2.2. Let R be a ring, and p a prime integer. Amap d: R — Risa
p-derivation if, for all x,y € R, we have

(1) 5(0) = 6(1) =0,

(2) d(z+y) =0d(x) +3(y) + Cp(z,y), and

3) 0(zy) = 2P5(y) +yPd(z) +pd(x)d(y).

A d-ring is a pair (R, ), where R is a ring, and ¢ is a p-derivation on R.

Note that if 0 is a p-derivation, then
) S(xi+-+x) =0(x1)+---+(xy) + Cpln,...,2¢).
If (R,¢) is a d-ring, then the map
®:R— R, ®(r)=rP+pi(r)

is a ring homomorphism, and if p € I is not a unit, then the diagram

R -2, R

| !

R/pR —~— R/pR

commutes, where F' is the Frobenius map on R/pR; we call the map ® the lift
of Frobenius on (R,0). Conversely, if p is a nonzerodivisor on R, and @ is a ring
endomorphism of R for which the previous diagram commutes, then the map
O(r) — P
SRR, ()= 2=
p

is a p-derivation.
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We note a few rings on which p-derivations exist (cf. [5, Proposition 2.6]):

Example 2.3. (1) On Z, for any p, the identity map is the unique lift of Frobe-

nius, and 0(n) = "%Lp is the unique p-derivation.
(2) Similarly, on the ring of p-adic integers V' = Z/(;), the identity map is the
unique lift of Frobenius, and §(n) = ”%Lp is the unique p-derivation.

(3) Generalizing the last example, the ring of Witt vectors W (k) over a field &k
of positive characteristic admits a p-derivation.

(4) Any lift of Frobenius ® on a ring R extends to a lift of Frobenius ® on
R[xy,...,x,) by setting ®(z;) = 2¥ +pf; for arbitrary elements f; € R[x1,...,xy).

(5) Any lift of Frobenius ® on a p-adically complete ring R extends to a
lift of Frobenius ® on R[[zy,...,z,]] by setting ®(z;) := 2¥ + pf; for arbitrary
elements f; € R[[x1,...,zy,]], since R[[xy,...,z,]] is complete with respect to
(PyT1yeenyTp)-

Remark 2.4. Let § be a p-derivation on R.

(1) If § maps a set of generators of an ideal a of R into a’ D a, then § maps a
into a’.

(2) If a and b are ideals of R such that § maps a into ¢’ D a and § maps b into
b’ D b then § maps ab into a’b’.

(3) If § maps a set of generators of an ideal a of R into a’ O a, then § maps a¥
into a’* for every positive integer k.

(4) If a is an ideal containing p, then § maps a**! into a* for all k£ € N.

(5) If a C o are ideals with §(a) C o’ and = s modulo a, then §(r) = 4(s)
modulo d'.

(6) If p€ a, k €N, and 7 = s modulo a**!, then 6(r) = 6(s) mod aF.

(7) For any element r € R, §(pr) = P modulo pR.

(8) Forry,...,rn € R, 6(r1---1n) =31 ([1;475)3(ri) modulo pR. Hence,
for any r € R, §(rP) = 0 modulo pR.

Proof. Parts (1) and (2) are straightforward consequences of (&), (<>), and part
(3) of Definition 2.2. Part (3) follows from (1) and (2) by induction. For (4), we
induce on k, with the base case k = 1 trivial. Take a generating set aj,...,a; for
a and a generating set cy,...,cs for a¥, so a¥*! is generated by elements of the
form a;c;. Then d(aic;) = af'd(c;) + ¢6(ai) +pé(a;)d(c;) € a* by the induction
hypothesis. Part (5) is immediate from part (1) of Definition 2.2 and (é). Part
(6) follows from (4) and (5). Part (7) follows from part (3) of Definition 2.2 and
§(p) = 1—pP~1. Part (8) follows from part (3) of Definition 2.2 by a straightforward
induction on n. O

We refer the reader to [2, §2] for some basic properties of J-rings, and [2, §3]
for connections between the theory of d-rings and perfectoid spaces.
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2.2. Derivations of inseparability. We briefly recall some basics of deriva-
tions in positive characteristic. We refer the reader to [15, Section 36] for the facts
below. A p-base of a field K of positive characteristic is a set of elements A C K
such that {A]"--- XY [ A1,...,\r €A, 0<ay,...,a; < p} forms a KP-basis for K.
Such a set exists, by an application of Zorn’s Lemma, and the cardinality of any
two p-bases for a field K are equal.

Given a p-base A for a field K, one obtains a derivation for each ele-
ment Ao € A: explicitly, #ﬂo is the KP-linear map that maps Ay°AJ"---A{* to
ao)\g"_lz\?l s At forall Ap, .., 0 € AN{ Mo}, 0 <ap,ar,...,a; <Dp.

The module of differentials of K has a K -vector space basis {d\ | A € A} such
that the dual element in Homg (g, K) to d)o is ﬁio.

2.3. p-derivations modulo p?.

Definition 2.5. We say that a map 6 : R/p*R — R/pR is a p-derivation mod
p? on R if ¢ satisfies the axioms (1)—(3) of Definition 2.2.
A mod p* §-ring is a pair (A, §), where J is a p-derivation mod p® on A.

We note that the conclusions of Remark 2.4 also hold for a p-derivation mod
p?, since we may apply these statements to R/p’R.

If R/p*R is flat over Z/p’Z, e.g., if p is a regular element on R, then p-
derivations mod p? are in bijection with lifts of Frobenius to R/p’>R. By Re-
mark 2.4, any p-derivation induces a p-derivation mod p?. However, existence of a
p-derivation mod p? is less stringent than existence of a p-derivation. This follows

from the following lemma and subsequent example.

LEMMA 2.6. Let (A,0) be a 6-ring, with p a regular element on A, and let S be
a smooth A-algebra. Then there exists a p-derivation mod p* on S that extends 6.

Proof. Let ¥ be the lift of Frobenius associated to A. There is a commutative
diagram

S —— S/pS —— S/pS

I I

A—Yy A — §/p%s.
By smoothness, there is a ring homomorphism S — S/p?S that makes the diagram
commute; such a map is a lift of Frobenius mod p?. U

On the other hand, we note:

Example 2.7. Let

— _ _ Altlsasy
V—Z(p), p#2,3, A—V[y], and R—m
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Note that R is a standard étale extension of A. To extend the p-derivation § on A
that sends y to 0, we need g € R such that x — 2P + pg,y — yP yields a V-algebra
homomorphism. For this, we need (2 4 pg)? 4+ y” (2 4+ pg) + p = 0 in R. That is,
g must be a solution of

P*g* + (2pa? +pyP)g + (a7 +yPaP +p) =0
in R. In the fraction field of 12, we may apply the quadratic formula to obtain

(2pa? +py?) £pV/y*® —4dp _ —(2aP +yP) £V y* —4p
2p? N 2p '

Since g must be in R, \/y*’ —4p € R. We will show that this is false. First note
that B = A[z]/(2® +yx +p) = A[f] where § = (—y +0)/2 and o is a square root
of y?> —4p. Then B = A[o], since 2 is a unit in V. Since A is a UFD and y* — 4p
is squarefree in A, B is normal. Hence, if y?” — 4p has a square root in the fraction
field of B (which contains R), it has a square root in B, and this will have the form
ao+ajo, with each a; € A. Since B = A® Ao, it is clear that (ag+ ajo)? is not in
B unless ag = 0 or a; = 0. We cannot have ag = 0, since y2p —4p is not a square in
A. We cannot have ag = 0, or else y*” — 4p = a?(y* — 4p). This is a contradiction,
since substituting 3> = 4p in y*” — 4p does not yield 0: its value is (4p)P —4p # 0.
We conclude that no such g exists, and hence no such extension of § exists.

We now aim to show that any discrete valuation ring with uniformizer p
admits a p-derivation modulo p?>. Our construction is a variation on Saito [20,
Lemma 1.3.1] in the case of a perfect residue field. We require a lemma first.

LEMMA 2.8. For any ring R, prime integer p, and elements x,y € R,
(x+)” +pCylz,y)’ =a” +y7  mod p’R.

2 2 . .
Proof. We have (z+y)?" = ;. ;_» (% )2'y’. By Kummer’s Theorem [12]
2 divides (*) unless p divides i h P = )PP mod
p* divides (%) unless p divides i, so we have (z+y)P = Ditjmp (pi)ac y?? mo
p?R. We have that (5;2) = (:;L) mod p?Z, (cf. [23, Exercise 1.6(c)]), so

2 p . 2 2

(@+y) =) <Z> Pyl = +y” —pCp(a?,yP)
i+j=p

modulo p?R. U

PROPOSITION 2.9. Let (V,pV,K) be a discrete valuation ring with uni-
formizer p. Let {yx | A € A} be a set of elements in V' that maps bijectively to a
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p-base for K. Then the map

o( D amyapb) = 30 b
aeZd aeZbA
0<a)<p 0<a) <p

is a lift of Frobenius modulo p* on V. Hence, the map § : V — K given by 6(f) =

W is a p-derivation modulo p* on'V.

Proof. First, we show that the map ¢ is well-defined. We have that

Visv= @  (V/pV)T

a€ZM 0<ay<p
so any element in V can be written as a finite sum »_ ahy® + pb for some elements
o, be V. If
> ay +pb= Y Ay +pd,

aeZ® aeZ®
0<ax<p 0<ax<p

then Zaeng’Oga)\<p(ag —ch)y* € pV, so each ah, — ch, € pV by KP-linear inde-
pendence of the images of the elements ), and hence a,, — ¢, € pV by injectivity
of the Frobenius on K. Substituting back, we have that

po—d)ye Y ((ah+pea)’ —ab)y*

Q€Z%N 0<ary <p

for some elements e, € V, and hence this is in p?>V. Since p is a regular element
on V,b—d € pV as well. Well-definedness of the map is then evident.
We check now that ¢ is additive. We have

W (Z Al +pb+ Y by +pd)
= (3 ((@a+ )" +pCpl(aasca)) 1 +p(b+d) )
= (Z(aa + )Py p(b+d+ Zcp(aa,ca)ya))
= (a0 +ca)” P +pb+d+ Y Cplaa, ca)r®)
=D (@8 + ™+ p (b + )
= (Yt pb) + (3 +pd),

where the equivalence in the penultimate line is modulo p?V/, using the previous
lemma and the fact that p(X +Y + Z)? = p(XP +YP 4 ZP) modulo p?.

The verification of multiplicativity modulo p?V is straightforward, and omit-
ted. g
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Combining this with Example 2.3, we obtain:

COROLLARY 2.10. Let V be a discrete valuation ring with uniformizer p € Z.
Any polynomial ring in arbitrarily many variables, power series ring in finitely
many variables, or polynomial ring over a power series ring in finitely many vari-
ables over V admits a p-derivation mod p*. Explicitly, one may take a p-derivation
mod p* as constructed in Proposition 2.9 and extend by prescribing arbitrary val-
ues to the variables.

Indeed, by parts (4) and (5) of Example 2.3 and the previous proposition,
there is a p-derivation modulo p? on V[[z]][y], for a finite set of variables z
aAnd an arbigary set of variables y. Since we have canonical isomorphisms
VIl /o V [lallly) = VIilliyl/p'V [[allly] for i = 1,2, such a map can be
identified with a p-derivation modulo p? on V'[[z]][y].

2.4. Perivations. In this subsection, we discuss the notion of perivation,
which is essentially the same as that of total p-derivations in the sense of Dupuy,
Katz, Rabinoff, and Zureick-Brown [6], and the notion of FW-derivation of Saito
[20].

Definition 2.11 (cf. [6, Definition 2.1.1]). Let R be aring, and p a prime integer.
Let M be an R/pR-module. A map «: R — M is a perivation if for all z,y € R,
we have

(1) a(0)=a(1) =0,

2) ale+y) = a(z) +aly) + Cy(x, y)a(p). and

@) a(ay) =aPaly) +yPa(z).
We call a(p) the distinguished element of o. If additionally, (A,§) is a mod p?
0-ring, with A a subring of R, and

4) a(a) =d(a)a(p) forall a € A,
then we say « is a perivation over A.

Example 2.12. 1f (R,§) is a mod p* §-ring, then the composition R %R
R/pR is a perivation with distinguished element 1. More generally, if M is an
R/pR-module, and t € M, then the map R SRY Misa perivation with distin-
guished element ¢; in this setting, we call a perivation of this form trivial. Thus,
condition (4) above says that the restriction of a to A is trivial.

Example 2.13. Given a ring R, consider the ring homomorphism 3 given as
the composition R — R/pR LN R/pR, where F is the Frobenius map. If R/pR
is considered as an R-algebra via 3, then any derivation of R into an R/pR-
module is a perivation with distinguished element zero. Conversely, a perivation
to an (R/pR)-module with distinguished element zero is a derivation (with re-
spect to 3). We call such a map a derivation of the Frobenius for short. We write
Der§| 4 (M) for the collection of A-linear derivations of the Frobenius from R into
an (R/pR)-module M.
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If R has characteristic p, then for any perivation, we have a(p) = a(0) =0, so
a perivation is just a derivation of the Frobenius.

Remark 2.14. Any perivation on a ring R is a perivation over Z. Indeed, the
unique p-derivation on Z is given by the rule 6(n) = (n —nP)/p, and by a simple
induction, we have a(n) = na(l) + Cp(1,...,1)a(p) = (n —n”)/p- a(p). Thus,
we lose no generality by restriction to the relative setting of perivations over a
d-ring; we may take Z as the base ring.

We record a few basic observations on perivations.

Remark 2.15. (1) If M is an R/pR-module, then the collection of periva-
tions from R to M admits a natural R/pR-module structure by postmultiplication,
and likewise for perivations over a mod p? d-ring A. We denote these modules by
Perr(M) and Perg (4 5) (M), respectively.

(2) If a: R — M is a perivation, and ¢ : M — N is an R-module homomor-
phism, then ¢ o « is a perivation, as is readily verified from the definition.

Discussion 2.16 (p-linear maps and the Peskine-Szpiro functor). Recall that
if R is a ring of prime characteristic p > 0, a map 7 between two R-modules M
and N is p-linear if it is additive and n(rm) = rPn(m) for all r € R and m € M.
If F: R — R is the Frobenius map on R, let !(—) : R—mod — R—mod be the
functor of restriction of scalars through F', and Fr(—) : R—mod — R—mod be the
functor of extension of scalars through F.

A map n: M — N is p-linear if and only n : M — ' N is R-linear. By Hom-
tensor adjunction, there is a natural isomorphism

Hompg(M,'N) =2 Homg(Fr(M),N)
N ((r@m) — rn(m));

thus, we can identify p-linear maps from M to N with R-linear maps Fr(M) —
N. By abuse of notation, we will use the same name for maps we identify in this
way.

LEMMA 2.17. Let (A,5) be a mod p? 6-ring, R be an A-algebra, and I be an
ideal of R. Let o : R — M be a perivation over A.

(1) « descends to a well-defined perivation & : R/(1>+pI) — M/IM.

(2) The restriction of & to I/(I*> +pl) — M/IM is a p-linear map over
R/pR.

(3) If a(I) C IM, then o descends to a perivation o/ : R/I — M /IM.

(4) If IM =0, then there is a natural bijection between perivations from R/
to M and perivations from R to M that map I to 0.
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Proof. For part (1), let r € R, and ag,ay,...,at,a},...,a; € I. Then

a(r+pao+2aia;)— (r)+ a(pag) + « Zaz )+ Co( rpao,Zal (p)

)

a(r)+a(pag) +Z a(a;al) + Cp( rpao,ZaZ (p)

+Cp(ala/l7' . 'aata;)a(p)‘

Since Cp(r,pag,y_,; a;al) and Cp(aidl,...,a:ay) lie in I+ (p), we have, modulo
IM,

a(r+ pao+ Z a;a) = ar) +a(pag) + Za(aia;)

a(r)+pPa(a) + aba(p —I—Za’pa a; +Za ala
= a(r).
For part (2), we note that
a(rag) =rPa(ag) + aba(r) = rPa(ag) modulo IM.

Part (3) is clear. For part (4), we note first that given a perivation from R/I to
M, the map from R to M obtained by precomposing with the quotient map is a
perivation from R to M that maps I to 0. Conversely, by part (3), a perivation from
R to an R/I-module that sends I to O factors through the quotient map. U

In particular, any perivation R — M factors through R/p’R.

3. Universal perivation modules. In this section, we study universal ob-
jects for perivations.

Definition 3.1. Let (A,§) be a mod p? d-ring, and R be an A-algebra. We
say that a perivation « : R — M is a universal perivation over A and M is a
universal perivation module over A if for any perivation 5 : R — N over A there
isa unlque R-module homomorphism ¢ : M — N such that 8 = ¢ o . We will
write d R|(As) - R — Q R|(A,s) for a universal perivation.

In particular, for a universal perivation module Q R|(A,s)» there are natural iso-
morphisms Per g4 5) (M) = HomR(QR‘(A,C;), M) for all R-modules M.

Universal perivations for A = Z were constructed in [6] (where universal
perivation modules are called fotal p-differentials), and were used there to study
existence of p-derivations on Z/p’Z-algebras. In particular they always exist;
a construction for these modules appears below. These modules appear in [20]
as modules of FW-differentials; many of the properties established below also
appear there. They also appear implicitly in the work of Zdanowicz [26, §4.2] on



12 M. HOCHSTER AND J. JEFFRIES

existence of lifts of Frobenius/p-derivations on Z /p*Z-algebras, and are related to
a construction of Gabber and Romero [7, §9.6.12].

In this section, we record some basic properties of universal perivations. Many
of these results overlap with [6, 20].

By uniqueness of representing objects (i.e., Yoneda’s Lemma), universal
perivation modules are unique up to natural isomorphism. Moreover, if ¢ : R — .S
is an A-algebra homomorphism, and M is an S/pS-module, we obtain a map

Perg)(a,6)(M) — Pergya,5)(M)

Qo

which induces the natural map

_ i ~
QR)(4,6) 4 Qs)(4,5)-

Remark 3.2. If R has characteristic p > 0, then
PerR|(A75) (M) = Derg/pRM/pA(M)?

and hence QR|(A,6) = FR/pR(QR/pR\A/pA)'
We record some analogues of the fundamental sequences for differentials.

PROPOSITION 3.3 (First fundamental sequences). (1) Let (A,d) be a mod p*

0-ring. Let R % S be an A-algebra homomorphism. Then there is a natural exact
sequence

S®r ﬁR\(A,é) - ﬁsm,a) = Fs/p5(Qs/ps|r/pr) — 0

() Let (A,6) — (B, e) be a mod p* 6-ring homomorphism (i.e., a ring homo-
morphism 1) such that o d = o), and B — R be a ring homomorphism. Then
there is a natural exact sequence

R®5 Fp/pp(Qp/ppiaspa) = Qa5 = QR0 — 0.
Proof. (1) First, we claim that there are natural exact sequences
0— Derg/pS‘R/pR(M) — PCI'S‘(A,(;)(M) — PCI'R|(A75)(M)

for S/pS-modules M. We have the first inclusion, since Derk IpS|R/p r(M) is nat-

urally isomorphic to Derg‘ (M), and the latter naturally embeds as a subset in
Perg(4,5)(M). For exactness in the middle, we need to see that a perivation that
vanishes on R is an R-linear derivation of the Frobenius. For such a perivation, the
distinguished element is O (since p € R), so it is a derivation of Frobenius, and the
claim is then clear.
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Now, since
Homg (S ®g Qp|(a,5), M) = Hompg(Qg(4,5), Homg(S, M)) = Perg) 4,5 (M)

and Homgj(4,5)(Fs/ps(Qs/ps|r/pr)s M) = Derg‘R(M) for all S/pS-modules M,
by Yoneda’s Lemma, there is a complex as in the statement, which must be exact.

(2) Along the same lines, it suffices to show that for every R/pR-module M
we have an exact sequence

0— PerRKB,g) (M) — PerR|(A75)(M) — Derg‘A(M).

For the map Perp4,4) (M) — Derg| 4 (M), we send a perivation a to the map
B = a— a(p)e. One verifies immediately that this is an A-linear derivation of the
Frobenius on B, and that § is zero if and only if « restricted to B is a trivial
perivation. O

Remark 3.4. As a particular case of the first fundamental sequence, when R =
A, we have

S/pS = Qs1a = Fs/ps(Qs/psia/pa) — 0.
This exact sequence was considered in [6] and implicitly in [26] in connection with
existence of lifts of Frobenius/p-derivations modulo p?. In particular, this sequence

is split exact if and only if § extends to a p-derivation mod p? on R: such a map is
a splitting from Qg4 5y — S/pS.

PROPOSITION 3.5 (Second fundamental sequence). Let (A,0) be a mod p* §-
ring. Let R be an A-algebra, and I an ideal of R. Then there is a natural exact
sequence

Fryrpr)(I/I*+pI) = R/T@r Qgias) — QUryras — O
Proof. For the first map above, we consider the perivation given as the compo-
sition:
J ~ ~
R = Qpjas) —~ R/TORQR|(4,6);

by Lemma 2.17 (2), this induces a p-linear map from I/(I*>+ pI) to R/I ®r
YR|(4,5), Which by Discussion 2.16, yields the map above.
Observe that if M is an R/(I 4+ pR)-module, then

Per a5 (M) 22 Homp (Qp (4 5), M) = Homp(R/I © 5 Qpy(a.5), M).

Thus, along the same lines as the proof of Proposition 3.3, it suffices to show that
we have natural exact sequences

0 — Perp g6 (M) — Pergy (a6 (M) = Homp, (Fr(14pr) (I/(I* +pI)), M)
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for all R/(I + pR)-modules M. By Lemma 2.17 (4), any nonzero perivation of
R/I into M pulls back to a nonzero perivation of R into M, so exactness holds at
the first nonzero spot. A perivation of R into M maps to zero in

Homp, 1 (Fry(14+pr)(I/(I* +pI)), M)

exactly if its restriction to I is zero; by Lemma 2.17 (4), this happens if and only if
it is the image of a perivation from R/ to M. O

See also [20, Proposition 2.3] for a version of a second fundamental sequence.
We note that by [20, Proposition 2.6], if (R, m, k) is local, with k of characteristic
p >0, and A = Z, the sequence

F(m/m*) = k®©r Qpyz.5) = Uiz, = 0

is split-exact.
Our next goal is to give a construction of universal perivation modules.

CONSTRUCTION 3.6. Let (A,8) be a mod p* §-ring. Let T be an A-algebra
with

(1) €, a p-derivation mod p* on T extending 6, and

(2) {tx} CT suchthat {dty | X € A} form a free basis for Qg7 a/pa-
Let {0y | A € A} be the dual basis to {dt} in Derr 1 a/pa(T/pT).

We set QT|(A,5) to be the free T /pT-module with basis {dp} U {dty | X € A}.

Let JT‘( A6+ T'— Qpy(a,5) be the perivation given by

dry(as) () =e(t)dp+ ) _(Ox(t))Pdty.
AeA

Note that since this is a sum of a p-derivation mod p* and derivations of the Frobe-
nius, it is indeed a perivation.

PROPOSITION 3.7. In the setting of Construction 3.6, the map JT‘(A,(;) is a

universal perivation, and Sy 4 s) is a universal perivation module.

Proof. For any T'/pT-module M, and any collection {m,} U{my | A € A} of
elements of M, there is a unique 7'/pT-module homomorphism ¢ : QT‘( A6 — M
such that the composition o o d7 is a perivation that sends p to mp and Ty to myy.
Thus, it suffices to show that any perivation is uniquely determined by its values
onpand {t\ |\ € A}.

To see this, let « be a perivation, and let 3 = oo — «(p)e. Then [ is a derivation
of the Frobenius, so we can write 3 =y odr/pr|4/pa, Where drpria/pa 1s the
universal derivation T'/pT" — Qr/p714/p4, and 7 is p-linear. As +y is determined
by its values on {dt) | A € A}, 5 is determined by its values on {t) | A € A}, as
required. (]
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Remark 3.8. Construction 3.6 applies in the following settings:

(1) Let T'= A[{x) | A € A}] be a polynomial ring in an arbitrary set of vari-
ables over A. Then, for QT‘( A,5)» We may take {t»} to be the set of variables, and
{0} = {35} for Qry(a,6)-

(2) Let T =V[{z | A € A}] be a polynomial ring in an arbitrary set of vari-
ables over a discrete valuation ring V' with uniformizer p. Then, for ﬁT‘(Z,(g), we
may take {t)} to be S| U.S,, where S| is the set of variables, and S, = {, } is a set
of elements of V' that maps bijectively to a p-base for V/pV. Then {0)} = D; U D,
where D is the set of derivations of the form %, and D, is the set of derivations
{ %} obtained from the p-base.

(3) Let T =V{[z1,...,2x]][y1,---,Ym] be a polynomial ring over power series
ring over a discrete valuation ring with uniformizer p. Then, as in the previous case,
for §T|(Z75), we may take {t)} to be the union of the variables (both power series
and polynomial) and a lift of a p-base, and {0, } to be the union of the derivations
with respect to the variables and the derivations induced by the p-base.

CONSTRUCTION 3.9. Let (A,0) be a 6-ring, and R be an A-algebra. Let T be
an A-algebra with R = T'/I for some ideal I, and

(1) &, a p-derivation mod p* on T extending 6, and

(2) {tr} C T suchthat {dty | X € A} form a free basis for Qg a/pas
such a T always exists by Remark 3.8. Let {0y | A € A} be the dual basis to {dt)}
in Derryria/pa(T/pT).

We set Q R|(A,5) f0 be the quotient of the free R/pR-module Pr with basis
{dp}U{dty | X € A} by the submodule N of elements of the form

a)dp+ Y (Ox(a))Pdty |a €I}
AEA

note that N is generated by the set of elements of this form as a varies though any
generatzng set of I.
Let dR|(A,5) R— QR|(A 5) be the perivation given by

dR|(as(r) =e(r)dp+ Z(@,\(r))pcﬁk.
AEA

PROPOSITION 3.10. In the context of Construction 3.9, the map JR‘(A@ is a

universal perivation, and )y 4,s) is a universal perivation module.

Proof. Write 7 : T — R for the quotient map. Let M be an R/pR-module,
and o : R — M be a perivation. Then aor is a perivation from 7" to M, so there
is a unique T-linear ¢ : QT|(A 5) — M such that po dT‘(A 5) = QoT. Since, by

construction € R|(A,5) 1s a quotient of QT|( 4,5) and the map d R|(A,5) 1s consistent
with dT|( A,5) Via this quotient, it suffices to show that ¢ factors through O R|(A,)-
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Since M is an R/pR-module, ¢ factors through R @7 QT|( A,5)- Note that by
construction R|(A,5) 18 the quotient of R & QT‘( A,5) by the image of I under

dT|(A75). But then, 0 = an(I) = @dT‘(Aﬁ)( ), so ¢ indeed factors through this
quotient. O

We note that in [6, 20], the corresponding universal module is constructed dif-
ferently, though our construction agrees with those in the case (A,§) = (Z, ), since
they satisfy the same universal property.

We note also (cf. [20, Proposition 2.5]):

LEMMA 3.11. Let (A,5) be a mod p* §-ring.
) IfR= l'ﬂ)\ Ry is a direct limit of A-algebras, then

Qpias) IEQR,@ (A5)-

(2) If W C R is multiplicatively closed, then QWqR‘(A,(;) = W*IQRKA#;).

Proof. (1) One can construct a universal perivation from R to lig)\ Q RA|(A,6)
using the universal properties. Namely, since the direct limits hﬂ N R, and
l'ﬂ)\ QR (4,6 can be computed at the level of sets, there is a canonical function
lilg/\ Ry — lilg/\ QR,|(A,5); since any pair of elements =,y € R are in the image of
some Ry, and the canonical map from R) — ligq/\ Q Ry |a satisfies the conditions of
Definition 2.11, the canonical map lig)\ Ry — lig/\ QR,|(a,5) does as well. Now,
given a perivation from R to M, we obtain a consistent system of perivations from
Ry to M which induces a unique consistent system of Rj-linear homomorphisms
from Q Ry|(A,5) to M. This induces a unique factorization through 1113/\ Q Ra|(A5)-

(2) Since we can write W~'R = hg few Ry, it suffices to check for princi-
pal localizations. Moreover, using the second fundamental sequence, it suffices to
check for the case of a polynomial ring. In this case, we can apply Construction 3.9
to the polynomial ring with one extra variable ¢ modulo a relation of the form ft— 1
and verify directly. O

Remark 3.12. Since formation of € commutes with localization, Construc-
tion 3.6 is valid for localizations of polynomial rings over power series rings over
unramified discrete valuation rings.

4. Jacobian criterion.

4.1. Theorem A. In this section, we prove Theorem A from the introduc-
tion. We also give a self-contained proof of the analogous criterion for the singular
locus among primes that do not contain p, which is originally a result of Seydi [22].

Definition 4.1. Let (V,pV,K) be an unramified discrete valuation ring of
mixed characteristic (0,p). Let 7" be a polynomial ring over a power series ring
over V with n total variables xy,...,x, of both types combined, and let § be a
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p-derivation mod p? on T'; cf. Corollary 2.10. In particular, we allow T to be a
polynomial ring or a power series ring. Fix a sequence of elements {7, } of V' that
map bijectively to a p-base of K.

For a sequence of elements f = (f1,..., fo) in R, the mixed Jacobian matrix
of f is the matrix J(f) over T'/pT with

e rows indexed by { fi,..., fa},

e columns indexed by {p} U{xy,...,x,} U{7,}, and

e the entry in the row indexed by f; and column indexed by g is §(f;) if g = p,
and (%—?)p if g # p.
The maps 0/0, are the derivations discussed in Remark 3.8.

We note that the terminology “mixed Jacobian matrix” is used in the sources
[17,21, 25] to denote Jacobian matrices in equal characteristic that include deriva-
tions of inseparability akin to those discussed in Remark 3.8. As the term in this
does not seem to be in common usage currently, we use it here for this new notion
in mixed characteristic.

Remark 4.2. 1f (V,pV, K) is a discrete valuation ring with K perfect, then
0, e}

S(f) (G e (Bl

J(f) — . . . .

0(fa) (B2 oo (SLeyp

Remark 4.3. The mixed Jacobian matrix depends on the choice of § and the
choice of a p-base for K, although these are suppressed from the notation. How-
ever, the cokernel of the matrix .J(f) considered as a matrix over T/(p, )T, is
isomorphic to the module QT‘(Z@ by Construction 3.9 and Remark 3.8, and thus is
independent of these choices. Cf. [17, Footnote 4] for this observation in the equal
characteristic case.

Definition 4.4. In the same setting as Definition 4.1, we write J(f) for the
classical Jacobian matrix, with

e rows indexed by {fi,..., fa},

e columns indexed by {zy,...,z,}, and

e the entry in the row indexed by f; and column indexed by g is %J;' .

Discussion 4.5. We briefly discuss the notion of module of K#hler differentials
for quotients of polynomial rings over power series rings that we will need for
primes not containing p in Theorem 4.9. We refer the reader to the book of Kunz
[14] for more details on the notions discussed here; see also [10] for a concise
treatment of these notions.

Let (V,pV,K) be a complete discrete valuation ring, S a power series ring
over V, and T a polynomial ring over .S, and p a prime ideal of T". Then, there is
a universally finite derivation 0 : S — Q’Slvz a derivation such that for any finitely
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generated S-module M and derivation ¢, there is a unique S-module homomor-
phism ¢ such that ¢ = ¢ o d. There is a universal extension O T, — Qr,jp of O:
for every T-module M and S-module homomorphism w : Qig\v — M and deriva-
tion o : T'— M such that the restriction of o to R is wo d, o factor through d
compatibly with the other maps.

By [14, Corollary 4.22], we can identify {17, |5 with (€27)9)y, and by [14, For-
mula 4.11(b) and Example 12.7], we can realize QT\a as a free module with basis
given by dz; for each variable z;, and 9 : T — Q7)p as ) =3, %dmi.

LEMMA 4.6. Let (V,pV,K) be a complete discrete valuation ring with uni-
formizer p € Z, and T be a polynomial ring over a power series ring over V
in n variables xy,...,xy total. Let I be an ideal of R, with generating set f =
(f1,--+y fa), and let p be a prime of R containing I, but not containing p. Then, the
K(p)-vector space dimension of the image of IT, in pT, /p*T,, is equal to the rank
of the Jacobian matrix J(f) considered as a matrix in k(p).

Proof. In the notation of Discussion 4.5 by [14, Proposition 13.14], the map
pTy /p° T — Q1,160 @1, K(P)

induced by dis injective. Thus,

. . : . b
dim,y(,) (im(ITy — pTp/p*Ty)) = dimyyp) (im(IT, = Q9 @7 K(p)))-

By Discussion 4.5, this image is the #(p)-subspace of Q79 @7 1 (p) generated by
the rows of the classical Jacobian matrix (with free basis for Q79 @7 k(p) as in
Discussion 4.5). O

Applying the universal perivation modules, we obtain a similar result for
primes that contain p.

LEMMA 4.7. Let (V,pV, K) be a discrete valuation ring with uniformizer p €
Z, and T be a polynomial ring over a power series ring over V in n variables
Z1,..., Ty total. Let I be an ideal of R, with generating set f = (fi,..., fa), and
let p be a prime of R containing I and p. Let § be a p-derivation modulo p* on
T such a § exists by Corollary 2.10. Then, the k(p)-vector space dimension of the

image of IT, in pT,/ 132T,J is equal to the rank of the mixed Jacobian matrix J(f)
considered as a matrix in k(p).

Proof. By [20, Proposition 2.6], the map F ) (pTy /p*Ty) — SNZTPKZ@ Q7 k(p)
induced by the universal perivation on T}, is injective.
dim, ) (im(ITy — pT}, /p°T}))
= dim, ) (im(ITy/(p°Ty NIT,) — pT/p7T3))
= dim, () (im(Fyp)(ITp/ (p°Tp N IT})) = Fr) (pT/0°T)))
= dim, () (im(Fjyp) (IT,/ (p° T, N IT})) — QT,,\Z @1, £(p))),
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where the map on the second line is induced from the previous map by applying
the Frobenius functor, and the last map is obtained from the previous map by post-
composing with the map p. It remains only to note that, by Construction 3.6, the
image of this map is the x(p)-subspace of ﬁTpm ®7;, k(p) generated by the rows of
the mixed Jacobian matrix (given a compatible choice of free basis for Q7,777
in Construction 3.6 and p-base in Definition 4.1).

We will also need the following fact.

PROPOSITION 4.8. Let V. — W be a local map of discrete valuation rings
of mixed characteristic p, and let B denote a local V -algebra such that B has
maximal ideal pB + b and is complete with respect to b. Let C = W@?/B be
the completion of W @y B with respect to the image of b. Then C[1/p] is ge-
ometrically regular over B[1/p|. In particular, if x,...,xq are indeterminates,
Vlzi,...,zd][1/p]) = W][z1,...,2z4]][1/p] is geometrically regular.

Proof. It suffices to prove geometrically regularity when B has the special
form A =V{[xy,...,z4]]: one may then get the general case by a base change from
a suitable choice of A to B. Flatness is obvious in the case of A, even if we do not
localize at p. We are in equal characteristic 0, and so it suffices to show that the fiber
of B — C' over a prime ¢ not containing p is regular. Thus, we may replace B by
B/q, and we only need to consider the generic fiber. We change notation and use B
for the base domain. We may extend p to a system of parameters uy,...,up formp
where the «; € b. Then we may map a new choice of A, namely, V[[z1,...,23]], to
B as an V-algebra so that x1,. ..,z map to uy,...,uy, using the completeness of
B with respect to b. Then B is module-finite over this choice of A, and the problem
of proving geometric regularity reduces to checking regularity of the generic fiber
for this choice of A, i.e., for V[[zy,...,x3]] = W][x1,...,z1]]. This is obvious
since the target ring is now regular. g

Part (1) of the following Theorem is originally due Nagata [18] in the affine
case and to Seydi [22] in the generality below.

THEOREM 4.9. Let (V,pV,k) be a discrete valuation ring with uniformizer
p and T be a polynomial ring over a power series ring over V in n variables
Zl,...,Tp total. Let I = (f1,..., fa)T be an ideal of pure height h in T, and R =
T/I. Then, for a prime p of R,

(1) If p & p, then Ry, is regular if and only if the image of the ideal Iy,(J(f))
of h x h minors of the classical Jacobian matrix J( f) is not contained in p;

(2) If p € p, then Ry, is regular if and only if the image of the ideal Ih(jT(_f))
of h X h minors of the mixed Jacobian matrix J (f) is not contained in p.

Proof. In the first case, we note that by Proposition 4.8, we can reduce to the
case where V' is complete. Indeed, the map from R to V@A@?/R, where b is the ideal
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generated by the power series variables, is geometrically regular after inverting p,
so the singular locus of the source expands to the singular locus of the target; the
classical Jacobian matrix is also the same for both rings.

Then, we compute

p = dim, () (pRp/p* Rp) — dim(Ry).
We observe that dim(R,) = ht(p) — h and

dim,, () (pRy/p* Ry) = dim, ) (p/p*) — dim,, () (im(1 — p/p?)).

Using Lemma 4.6 and regularity of Ry, we have that dim,,) (p R,/ p2R,) is equal
to dim(R,) minus the rank of the classical Jacobian matrix J(f) considered as a
matrix over £(p). Thus,

= "h—rank(J(f)())-

Thus, Ry is regular if and only if x = 0, which happens if and only if the rank of
J(f) considered as a matrix over x(p) is equal to h, and this in turn happens if and
only if p does not contain the ~ x h minors of J(f).

In the latter case, we proceed similarly. In this case, we use Lemma 4.7 to
conclude that dim,(,) (p Ry /p® Ry) is equal to dim(R,,) minus the rank of the mixed

Jacobian matrix .J(f) considered as a matrix over «(p). Thus,
g =h—rank(J () s(p))s

and Ry, is regular if and only if the rank of J (f) considered as a matrix over x(p) is
equal to h, which in turn happens if and only if p does not contain the h x h minors
of J(f). O

Z
Example 4.10. Let R = [x] = Z[\f | for n € Z a squarefree nonunit. Set
22 —

f = 2* —n. For p prime, we take J [5 (f) (2x) ] where 9, is the unique
p-derivation on Z extended to Z[z] via (5 »(z) =0. Observe that

Gp(a? —n) = 0y(—n) — Cp(a?,n) € 6p(—n) + ().
For p odd,

Vi(p, 11 (J())) 2 Vap) (p,65(£), (22), 2% —n) = Va9, 6,(f), 2,27 = n)
= Va1a)(p: 0p(f), 2,1) = Vi (p,n, 6p(—n)).

If p { n, this is empty since (p,n) = Z. If p|n, since p? { n, we have p{ d,(—n), so
this locus is empty again.
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For p =2,

Ve, 11(J(f))) = Vi) (2,02(f), 22)P, 27 —n) = Vy)(2,02(f), 2% — n)
= V(2] (2,02(=n) + na?,z? —n).

If n =1 mod 4, then §,(—n) = —”2;" is odd, so
VZ[QB] (2752(_”‘) +nx2,1:2 - n) = VZ[J:] (27'1;2 - 1)

is nonempty, corresponding to the singular maximal ideal (2,\/n—1) C R.
If n = 2 mod 4, then d,(—n) is odd, so

VZ[x] (27 52(—71) + nxzv a? — n) = VZ[J}] (2> 171;2)
is empty. If n = 3 mod 4, then d,(—n) is even, so
VZ[J}] (27 52(—1’L) + nl‘za a? — n) = VZ[Z’] (2a :L'za x? — 1)

is empty. Of course, this agrees with the basic number theory fact that for a square-
free nonunit n, Z[/n] is integrally closed in its fraction field (and equivalently
regular, as R is a one-dimensional domain) if and only if n # 1 mod 4.

Remark 4.11. Theorem 4.9 can be used to give a quick proof that for any
finitely generated algebra over any complete local ring of mixed characteristic, the
singular locus is closed, given the result in equal characteristic. We can write such a
ring as a quotient of a polynomial ring over a power series ring over an unramified
discrete valuation ring (V,pV'), say T'. Given a primary decomposition Q1 N -+ N
@, of the presenting ideal I, the localization at any prime p that contains two @Q);’s
or some (); that is not a minimal prime is not a domain, and hence not regular: this
is a closed set, and the remainder of the singular locus is the singular locus of the
quotients by the minimal primes, so we can reduce to the case that the ring 7'/Q
is a domain. If p € @), we reduce to the equal characteristic case. Otherwise, the
singular locus of R =T'/(Q is described by Theorem 4.9. A priori, this describes
the singular locus as the union of a closed set and a locally closed set, but Nagata’s
openness criterion [15, Theorem 24.2] applies readily to the complement.

4.2. Elementary proof. We now provide a concrete self-contained proof
of Theorem A in the affine case. For simplicity, we assume that the residue field
of the base discrete valuation ring is algebraically closed, though the perfect case
follows easily.

THEOREM 4.12. Let (V,pV,K) be an unramified discrete valuation
ring of mixed characteristic. Assume that K is algebraically closed. Let
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T = Vlz1,...,7,), and § be a p-derivation mod p* on T extending the p-
derivation mod p* on V. Let I = (f1,..., f.) be an ideal of pure height h in T,
and R="T/I. Let p be a prime ideal of R with p € p.

Then, the mixed Jacobian matrix J(f) considered in r(p) has rank at most h,
and equality holds if and only if Ry is regular.

Proof. First, we consider the case where p is a maximal ideal m. Let n be
the preimage of m in 7. It follows from the Nullstellensatz that the image of n in
T/pT is of the form (x; — ay,...,z, — a,) for some ay,...,a, € K, sonis of the
form n = (p,x; —vy,...,2, —v,) for some vy,...,v, € V with v; = a; +pV, and
fi(vi,...,vp) €pViforj=1,...,a.

We aim to compute the dimension of m/m? as a K-vector space. To this end,
there is a short exact sequence

I n

LN
n2nI ’

0— 27 m
s0 Ry, is regular if and only if the K -vector space dimension of 1/(n?>N 1) is equal
to dim(7y,) — dim(Ry,). Since Ty, is catenary, and each minimal prime of I has the
same height, we have that dim(7y,) — dim(Ry) =ht(IT,) = hforn D I.

Write #; = x; —v; fori=1,...,n, so that n = (p, Z1,..., %, ). Using Taylor’s
formula, for each f;, we get

oot tom f . .
fi= Z o (U1, 0y ) B O

« o
0T D

Efj(vl,...,vn)—l—za :(vl,...,vn):ﬁi mod n°.
7

By Remark 2.4 (6) we then have

5(fj) Eé(fj(vl,---,vn)-Fng: (Ul,...,vn)i”i> mod n.

i=1

Since fj(vi,...,v,) € pV Cn, we have

Cp(fj(vl,...,vn), (Zn:gg(vl,...jvn)ia) en,

SO

§(fi)=6(fj(vi,...,v0)) +5<Z g:cl (vl,...,vn)a”:Z) mod n.
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Likewise, since Z; € n, C ({8f (vi,...,0,)%;}) € n, and hence

6(fj)E (f] U1y..-,0 +Z(5<8x Vly...,U )1) mod n.

By the product rule for p-derivations, we then have

6(fj)=0(fi(vr,... v +Z<af] LU ))pé(ii) mod n.

Note that, for o € V', by Remark 2.4 (7), if we write
fi(vi,...,0n) = pa modeV,

we obtain that §( f;(vi,...,v,)) =P in K = V/pV. Thus,

0
a=8(f;)"P - afj( -, 0)8(%) P mod n.
Using this equivalence to substitute in for f;(vi,...,v,) in the first expression for

f; modulo n? above, we get that the K-linear expression for [f;] € n/n? in terms
of the basis

(o], [1 =S (1) 7], ..., [ — p3 () V7]

af;

=5 b ]+8xl<v>[g~;l_p5(fl)1/p]+,_‘+afj o

o ()0 = po(0) ',

where bars denote images modulo n. Thus, the dimension of I/(n*>N1) as a K-
vector space is the rank of the matrix

S’ L) ... )
W L) ... )

)" ) ... ()
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Raising elements to pth powers in K does not affect which minors are zero, so the
rank of the matrix above is the same as that of

P ofi (\F

() L@ ... )

SR 2w ... ()

|
|

0(fa)) F2() ... fl2(v)

This is just the image of J(f) in 7'/n = R/m, and thus the K -dimension of I/
(n2N1) is equal to the rank of J(f) considered in r(m).

Since the K-vector space dimension of I/(n?>N 1) is less than or equal to the
height with equality if and only if Ry, is regular, the theorem is established in the
case of a maximal ideal.

Now, the inequality on the rank of J(f) for general prime ideals follows by
a basic semicontinuity argument, since maximal ideals are dense in Vz(p). Like-
wise, the characterization of equality in terms of nonsingularity follows, since R is

excellent, and so the singular locus is closed. O

4.3. Theorem B. We now give the proof of Theorem B.

THEOREM 4.13. Let V be a discrete valuation ring with uniformizer p, and
F-finite residue field. Let (R,m,k) a local ring with p € m that is essentially of
finite type over a complete V -algebra.

The local ring R is regular if and only if §R|(Z,5) is free of rank dim(R) +
log,, [k : kP].

Proof. Let K =V/pV, and set a = log,[K : K?] and b = log, [k : kP]. Write
R=(T/I),, where T is a polynomial ring over a power series ring over V', and p
is a prime ideal of 7" that contains /. We observe that J (f) is a presentation matrix
for ) R|(z,5)> With dim(T") + a generators.

First, we claim that dim(7") + a = height(I,,) +dim(R) 4 b. We use the formula
log,[#(q) : 5(q)P] —log,[#(q") : x(q')?] = height(q'/q) for q C ¢’ in an F-finite ring
of positive characteristic; cf. [13], [15, Lemma 42.7]. Applying this in 7" with the
maximal ideal generated by the variables and the zero ideal, and then with p and
the zero ideal, we have that

dim(7") + a = log, [frac(T") : frac(T")"] = height(p) +b.

Since dim(R) = height(p) — height(I,,), the claim holds.
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Now, by the characterization of locally free modules via Fitting ideals (cf. [14,
Proposition D.8]), 2|z, s) is locally free of rank dim(R) + b if and only if

Fdim(R)-i—b(ﬁRKZ,é)) =R and F<dim(R)+b(§R\(Z,5)) =0.

Using the equality above and the presentation by the mixed Jacobian matrix,
QR|(z,s) is locally free of rank dim(R) + b if and only if

Iheight(lp)(j(f)) =R and I>height(1p)(j(f)) =0.

Now, if Tyeign(s,)(7(£)) = R. then by Lemma 4.6, dimy(im(I, — p/p?)) =
height(1,), so I, can be generated by height(/,) elements; in this case we can
replace f by such a generating set and the latter condition above is automatic.

Thus, gz is locally free of rank dim(R) + b if and only if Ineignyz,)(J(f)) = R,
which happens if and only if hejgny(z,) (j (f)x) = k, which by Lemma 4.6 again is
equivalent to dimg(image(I, — p/p?)) = height(,). But this just means that the
image of I in T}, is minimally generated by a regular system of parameters, so this
is equivalent to nonsingularity of R. g

5. Lifting the I'-construction to mixed characteristic. The hypothesis of
Theorem B in Section 1 (Theorem 4.13) requires that the discrete valuation ring
have an F'-finite residue field. Let R be essentially of finite type over a complete
local K-algebra whose residue class field is K of characteristic p > 0. In [9] a con-
struction is given in terms of a p-base A for such a field K of characteristic p and
a sufficiently small but cofinite subset " of A to give a faithfully flat purely insep-
arable extension of R, denoted R', such that certain properties of R are preserved
by the extension, e.g., being reduced, a domain, regular, or Gorenstein F'-regular.
See (6.3)—(6.13) of [9]. Since R — R! is purely inseparable, the prime spectra of
the two rings may be identified, and if I' is sufficiently small the singular locus is
preserved. Note that certain results of [9] stated for K-algebras of finite type over
a complete local K-algebra extend at once to the case of K -algebras essentially
of finite type. Also note that the term “I"-construction” is not used in [9], but has
become standard in a number of papers where it has been utilized.

In this section we discuss lifting this construction to mixed characteristic,
which broadens the applicability of Theorem B. Instead of working over a field
K of positive prime characteristic, we work over a mixed characteristic unrami-
fied discrete valuation ring (V,pV, K). We fix a p-base A for K and a lifting A of
that p-base to V. We consider a local ring B containing V' complete with respect
to an ideal b such that pB + b is the maximal ideal of B (for example, B might
be V|[[z1,...,2,]] whether or not V' is complete) and an algebra R essentially of
finite type over B. We construct a faithfully flat extension R" of R such that the



26 M. HOCHSTER AND J. JEFFRIES

defining ideal of the singular locus in R extends to the defining ideal of the sin-
gular locus in RT when T is a sufficiently small cofinite subset of A. Moreover,
Rf/pRF =~ (R/pR)".

We first review the I'-construction in characteristic p, and then discuss the
mixed characteristic version.

5.1. The I'-construction in positive prime characteristic.

Discussion 5.1. Fix a field K of positive prime characteristic p, and fix a p-
base A for K. Let e denote an integer varying in N. If \;,... A, are elements
of the p-base A, then K P° [Al,..., An] has degree p™¢ over K- P or, equivalently,
K [)\}/ LA AP e] has degree p®" over K, where the elements )\; /7" are taken in
a suitably large algebraic field extension of K. It follows that if the z) are indeter-
minates indexed by A, then for any subset Ag C A, K[A'/7: A€ Ag] = K[z): A €
Aol/(Z = A:x e Ag).

Let K and A be as in Discussion 5.1. In the sequel, I" will always denote a
subset of A, usually cofinite in A, i.e., a subset such that A \ T is finite. Let K
denote the field extension K [y!/? : v € I'. If (B,mp) is a complete local K-
algebra with residue class field K, let BL := K&y B, where for a field extension
K— L, L® kB denotes the completion of L @ B with respect to mp(L Q@
B). If we write B as a module-finite extension of A = K{[z1,...,24]], then AL &
K![z1,...,24]], B =2 B4 AL.If R is any ring essentially of finite type over B,
we define Rl = R®@p BL. R may also be viewed as essentially of finite type over
A, and it is also correct that R = R®4 AL Finally, we define

R":=| JR{.

We also have
R'~RepB"~Re4A".

In characteristic p > 0, we say that R — S is purely inseparable if every element
in S has a p°th power in R for some e, which may depend on the element. This
implies Spec(.S) 2 Spec(R): the unique prime of S lying over P in R is the radical
of PS. Note that

AL :UKE[[xl,...,xd]]

is regular, with maximal ideal generated by x1,..., 4, and that it is purely insepa-
rable over A. It is shown in [9] that A is F-finite, and it follows that B" and R"
are F-finite as well. Since A" is evidently faithfully flat over A, it follows that R"
is faithfully flat over R in general. We summarize these facts as well as some other
results proved in [9] in the next theorem.
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Notation 5.2. We let (B,mp, K) be a complete local ring K -algebra, and K
be a field of positive prime characteristic p, so that K C B is a coefficient field. Let
A be a fixed p-base for K, let R be an algebra essentially of finite type over B, and
let I" be a varying cofinite subset of A, so that R' := B" @ R is defined.

THEOREM 5.3. Let notation be as in 5.2. Then:

(1) R = BY ®p R is an F-finite ring that is a faithfully flat purely inseparable
extension of R.

(2) If (A,mu, K) is a complete local K-algebra such that A — B is a local
module-finite homomorphism, then A" @ s R~ B" @3 R = R".

(3) If T C Ty are cofinite in A, then R* — R is faithfully flat and purely
inseparable.

(4) If I is an ideal of R, then (R/I)" = R" /IR'.

(5) Given finitely many prime or radical ideals in R, there exists I cofinite in
A such that for all T C T cofinite in T, the expansions of these ideals to R" remain
prime or reduced, respectively. In particular, if R is a domain or reduced, one can
choose T so that R' is a domain or reduced, respectively, for all T C Ty cofinite
in I'y.

For (c), note that for complete local rings of the form A = K[[z,...,x,]], the
faithful flatness of AT — A0 is clear, and the general case follows by base change
to R.

We note that part (e) reduces to the case of one prime ideal, which may be
taken to be (0), since a radical ideal is a finite intersection of prime ideals, and
the various choices of I for individual primes may be intersected. For the proof
part (e), see (6.13) of [9] (the extension from finite to essentially finite algebras is
immediate).

Consider a property P of rings (e.g., Cohen-Macaulay, Gorenstein, or regular).
We are interested in the existence of I'g cofinite in A such that for all I" C Iy cofinite
in I, the locus of primes p where R has property P is the same in R as in R'. If
the locus is closed and defined by I C R, this is equivalent to the assertion that the
corresponding locus is defined by IR" in R

Discussion 5.4. Recall that if one has a flat local map (R, m) — (S,n) then S
is Cohen-Macaulay if and only if both R and the closed fiber S/mS are Cohen-
Macaulay, in which case the type of S is the product of the types of R and S/mS.
Moreover, if S is regular, then R is regular; cf. [15].

We now recall some important properties of the I'-construction in positive char-
acteristic. The result below overlaps substantially with [8, 9, 16], though we include
it for completeness.

THEOREM 5.5. Let notation be as in 5.2. Let P be a property of Noetherian

rings such that
(1) R has P if and only if all of its localizations have P.
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(2) If R is essentially of finite type over an excellent local ring, the locus where
R has P is open.

(3) If Rto S is a flat local homomorphism and S has P then R has P.

@) If R to S is a flat, purely inseparable, local homomorphism such that R

has ‘P and the closed fiber is a field, then S has P.
Then there exists a cofinite subset g of A such that for all cofinite subsets I' C Ty,
the locus where R has property ‘P (and, consequently, the locus where R does
not have property P) is the same as the corresponding locus for R' under the
identification Spec(R) = Spec(RV).

Hence, if the locus where R does not have ‘P is Zariski closed with defining
ideal I, for all ' C T’y cofinite in A, the locus where RY does not have P is closed
and defined by IR".

In particular, this is the case if P is the property of being any of the following:

(i) regular

(i) Cohen-Macaulay

(iii) Cohen-Macaulay of type at most h

(iv) Gorenstein

(v) Gorenstein and F'-regular.

Proof. As T' cofinite in A decreases, the locus where R' has P is ascend-
ing by Theorem 5.3(c). Since open sets in Spec(R) have ACC, we can choose I'y
for which this locus is maximal. We claim that this choice of I'y has the required
property. If not, there is some prime p in R corresponding to q in R'° such that
Ry, has property P by Rg“ does not. But we may choose I'; cofinite in 'y such
that q; = pR"" is prime. This implies that the closed fiber of the flat local map
Ry — (RM)g, is a field, since q; = pR'!. Thus, the set of points of Spec(R!)
where P holds has increased strictly to contain the point ) corresponding to P,
contradicting the maximality of the P locus corresponding to I'y.

The fact that we may apply this result in cases (i)—(iv) follows from Discus-
sion 5.4. In the case of (v) we need check (4). Note that in the excellent Gorenstein
case, weakly F'-regular and F'-regular are equivalent, and in the local case it suf-
fices to check that the ideal I generated by one system of parameters fi,..., fg
is tightly closed. Let the image of u be a socle generator in R/(f1,..., fq). Since
the closed fiber is a field, the image of u is a socle generator in S/1S as well. Let
c be a test element in S. After replacing ¢ by ¢®* we may assume that ¢ € R. If
u is in the tight closure of .S then cu? € (I5)l9) = Il9S for all ¢ >> 0, and so
cu? € 1SN R = I'9 for all ¢ >> 0, contradicting that R is weakly F-regular. [J

5.2. The I'-construction in mixed characteristic.

Notation 5.6. Let (V,pV, K) be a discrete valuation ring of mixed character-
istic p. Let A be a p-base for K, and A be a fixed lifting to V. We denote the
by X the element lifting A\ € A. For each subset I' of A we have a correspond-
ing set T in A. We shall eventually restrict I' to be cofinite in A, but this is not
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needed in the definitions. We assume that we have, for every e > 1, a family of
indeterminates Z5 _ indexed bijectively by the elements of A. Of course, they are
also in bijective correspondence with the elements of A. We define V! to be the
ring V[Z5,.:7 € F]/(de —7:7 €T). Note that there is a V'-algebra injection
ofNVGF — Velll that sends the image of Z5 . to the image of Z%”e L1~ We define

VI =, VI using these injections.
We first note:

PROPOSITION 5.7. All of the rings Vef as well as VT are discrete valua-
tion rings with maximal ideal generated by p. Moreover, VeF / pVeF = KeF , and
VU /pVl = KV, For e’ > e, and " T, The inclusion maps among the rings

(1) Veavlavl vl oyt
are all free local maps.

Proof. Since the extension V — VI is integral, all maximal ideals of V" must
lieoverpV.

Modulo pV!', we obtain K[Zz]/ (de — v €T). Since the extensions of K
obtained by adjoining p“th roots of a p-base are linearly disjoint, the quotient mod
pV.I is the field K!. To show this is a discrete valuation ring with maximal ideal
generated by p, it suffices to show this for finite subsets of I, and take a direct limit.
But in the case where where we adjoin p®th roots for a finite subset of I', we obtain
a module-finite extension, free over V', which is local with maximal ideal (p), and
p is not nilpotent. These hypotheses suffice to guarantee that the extension ring is
a discrete valuation ring. Likewise, by a direct limit argument, VT is a discrete
valuation ring with maximal ideal QVF and residue class field K.

The freeness assertions for VA over V' follows because one has a free basis
consisting of all monomials ij‘ . XZS where \;,,...,\;, are distinct, s varies, and
the «; are positive rational numbers less than 1 whose denominators are powers
of p. One gets a basis for each V! (respectively, V') by using the part of the
basis involving only monomials with \;, € I' (respectively, and the exponents in
the denominators are most p. Descriptions of the free bases in the remaining cases
are left to the reader. g

CONSTRUCTION 5.8. Let A :=V|[[zy1,...,x4]]. We let
AL = VST A= V(2. 2],

where &" is completion with respect to the expansion of the ideal (x1,...,xq). We
then let AV ==, AL.

There is an
extra left
delimiter or a
missing right
one.



30 M. HOCHSTER AND J. JEFFRIES

Now suppose that R is essentially of finite type over A. We define

RU:=Af®@4R and R :=A"w,R=|]JRL,
e

since ® 4 commutes with direct limit.

We also describe a more invariant formulation that does not directly utilize
formal power series.

Let B denote a local V -algebra with residue class field K such that B is com-
plete with respect to an ideal b such that p+ b is the maximal ideal of B.

Then there is a V-algebra surjection A = V[[xy,...,24]] = B such that the
x;j map to generators of °B. Then we can construct B! using the fact that B is an

image of A, or directly, as the completion of VF ®v B with respect to the expansion
of *B, which we denote VF®VB

Likewise, we may construct Br by thinking of B as an A-algebra, or directly
as |, BF Now, if R is essem‘lally of finite type over B, it does not matter whether
we take RF (respectively RF) as BF ®p R (respectively, Br Qv R) oras AF QAR
(respectively, AT ®v R). It also follows that if we have two choices of B, say B —
C with the map local and C module-finite over the image of B, and R is essentially

of finite type over C' and, hence, B, we may calculate R. or R" using either B
or C.

THEOREM 5.9. Let notation be as in Construction 5.8. For all sufficiently small
cofinite I' C A, the defining ideal of the singular locus in R expands to the defining
ideal of the singular locus in R'.

Proof. Choose I' so that the set of primes q containing p where R; and Rg
are both regular is maximal. Note that we may identify Vz(p) = Spec(R/pR) with
Ver(p) & Spec(R'/(p)) = (R/pR)"': here q denotes the unique prime of R' lying
over g. One can do this since the open sets in Spec(R/pR) have ACC.

For primes of R containing p the maximality of I" implies that the regular locus
in R is identified with the regular locus of primes in RT containing p: if this fails
for g, one may decrease I' so that R" = q (the issues may be considered modulo p,
where the statement follows from the corresponding result for the I'-construction).
Hence, the regular loci for primes containing p agree for this I' or any other smaller
cofinite choice of I'. At primes not containing p, one may localize both rings at the
element p. The map is then geometrically regular, and one has regularity at a prime
of the target if and only if one has regularity at its contraction. O

We conclude by applying the mixed characteristic I'-construction to give a
regularity criterion without any F'-finiteness hypotheses on the residue field. The
following is Theorem C from the introduction.
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COROLLARY 5.10. Let V be an unramified discrete valuation ring of mixed
characteristic, and let (R, m, k) be essentially of finite type over a complete local
V-algebra with p € m. We retain the notation of Construction 5.8.

The ring R is regular if and only if for any sufficiently small cofinite subset
[ CA, (~2Rf|(z’5) is free of r~cznk dim(R) + log,[k(R") : k(R")P], where k(R")
denotes the residue field of R .
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