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Abstract. We give a version of the usual Jacobian characterization of the defining ideal of the singular

locus in the equal characteristic case: the new theorem is valid for essentially affine algebras over a

complete local algebra over a mixed characteristic discrete valuation ring. The result makes use of

the minors of a matrix that includes a row coming from the values of a p-derivation. To study the

analogue of modules of differentials associated with the mixed Jacobian matrices that arise in our

context, we introduce and investigate the notion of a perivation, which may be thought of, roughly, as

a linearization of the notion of p-derivation. We also develop a mixed characteristic analogue of the

positive characteristic Γ-construction, and apply this to give additional nonsingularity criteria.

1. Introduction. The Jacobian criterion is a familiar tool for finding the

singular locus of a finitely generated algebra over a perfect field: for an equidimen-

sional variety, the singular locus is cut out by minors of the Jacobian matrix whose

entries are partial derivatives of the defining equations. There is a long history

in the literature of Jacobian criteria to compute the singular locus various classes

of algebras over fields, including [3, 17, 21, 25] (see also the references of [3]);

these are based on including additional derivations along with the partial deriva-

tives of the variables. For example [3] gives criteria, in terms of derivations, for

Ap to be a formally smooth k-algebra in the p-adic topology when k is an F -finite

field, A = S/I , S is a polynomial ring over a formally smooth, local, complete

k-algebra R and p ∈ Spec(S) with I ¦ p. The proof of this result depends on a

regularity criterion for A when R is also assumed regular.

In this paper, we give a Jacobian type criterion for nonsingularity in mixed

characteristic. One notable feature of this result is that, in contrast to equal charac-

teristic, nonsingularity cannot be characterized in terms of smoothness over some

base. Our criterion describes the singular locus in terms of minors of matrices in-

volving partial derivatives and p-derivations (in the sense of Buium [4] and Joyal

[11]) of the generators. We recall the definition of p-derivation in Section 2 below;

as an example, if V is the p-adic integers, and T = V [x1, . . . ,xn] or V [[x1, . . . ,xn]],

the map ¶ given by

f(x1, . . . ,xn) 7→ (f(xp1, . . . ,x
p
n)−f(x1, . . . ,xn)

p)/p

is a p-derivation.
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THEOREM A (Theorem 4.9). Let (V,pV,K) be a discrete valuation ring with

uniformizer p ∈ Z. Let T be a polynomial ring over a power series ring over V

in n variables (polynomial and power series variables) x1, . . . ,xn total. Let R :=

T/I for some ideal I = (f1, . . . ,fa)T of pure height h. Then, for a prime q of R

containing p, the local ring Rq is nonsingular if and only if q does not contain the

h×h minors of the matrix with columns

• [¶(f1), . . . , ¶(fa)]
T , for some p-derivation mod p2 on V extended to T ,

•
[( ∂f1

∂xi

)p
, . . . ,

(∂fa
∂xi

)p]T
, for i= 1, . . . ,n,

•
[(∂f1

∂λ

)p
, . . . ,

(∂fa
∂λ

)p]T
, for ¼ ∈ Λ for a p-base Λ of K.

Note that for primes that do not contain p, Rq is nonsingular if and only if q

does not contain the h×h minors of the usual Jacobian matrix; see Theorem 4.9.

We remark also that any choice of ¶, any choice of Λ, and any choice of generators

f1, . . . ,fa for I , and any presentation R ∼= T/I with T as above is valid for the

result above.

The use of p-derivations to study singularities is motivated by [5], where p-

derivations were used to extend a classical theorem of Zariski and Nagata on sym-

bolic powers. In fact, Theorem A in the special case of a principal ideal I follows

from the main result of [5]. We note that, as our statement of Theorem 1 is based

on p-derivations, which generally do not exist in equal characteristic, there is no

completely characteristic-free statement that subsumes this.

The cokernel of the classical Jacobian matrix is just the module of Kähler dif-

ferentials. In the case of algebras over a perfect field, the Jacobian criterion char-

acterizes the regular locus as the locus on which the module of Kähler differentials

is free of the “correct” rank. Theorem A admits a similar interpretation along these

lines. Given a ring A with a p-derivation ¶ and an A-algebra R, we define a mod-

ule Ω̃R|A; in the situation of Theorem A, this is just the cokernel of the matrix

that appears in the statement. This module represents a functor of maps that satisfy

simple functional identities analogous to derivations or p-derivations; we call these

maps perivations, and the module Ω̃R|A the universal perivation module. In this

language, we obtain the following version of Theorem A.

THEOREM B (Theorem 4.13). Let V be a discrete valuation ring with uni-

formizer p ∈ Z and F -finite residue field (i.e., the Frobenius map on V/pV is of

finite index). Let (R,m,k) be a local ring with p ∈ m that is essentially of finite

type over a complete V -algebra.

The local ring R is regular if and only if Ω̃R|Z is free of rank dim(R) +

logp[k : kp].

In equal characteristic p > 0, the notion of Γ-construction allows one to elimi-

nate F -finiteness hypotheses from various statements; for an algebra R essentially

of finite type over a complete local ring, there is an F -finite faithfully flat purely

inseparable extension RΓ that preserves many of the properties of R. In Section 5
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below, we recall key properties of the Γ-construction, and develop a mixed char-

acteristic analogue that we call the Γ̃-construction with many of the same prop-

erties. Using the Γ̃-construction, we state a version of Theorem B without any

F -finiteness hypothesis.

THEOREM C (Corollary 5.10). Let V be a discrete valuation ring with uni-

formizer p ∈ Z. Let (R,m,k) a local ring with p ∈ m that is essentially of finite

type over a complete V -algebra. Let Λ̃ be a lift to V of a p-base for V/pV .

The local ring R is regular if and only if, for sufficiently small cofinite Γ̃¦ Λ̃,

Ω̃
RΓ̃|Z is free of rank dim(R)+ logp[k(R

Γ̃) : k(RΓ̃)p], where k(RΓ̃) denotes the

residue field of RΓ̃.

Note that the equal characteristic Jacobian criteria of [3, 17] are also phrased

in terms of cofinite subfields.

A preliminary version of these results, namely Theorem A in the case of finitely

generated unmixed algebras over complete unramified discrete valuation rings with

perfect residue fields, was announced in the MSRI Fellowship of the Ring Semi-

nar in May 2020. Our original method was based on the argument in Section 4.2.

These results were extended to the complete case and the essentially-of-finite-type-

over-complete case by a Néron-Popsecu desingularization [1, 19, 24] argument in

an earlier version of this manuscript, along with a version of Theorem B in the

corresponding cases. In the meanwhile, we learned of the work of Saito [20], who

established the analogue of Theorem B with the additional hypotheses that R/pR

is essentially of finite type over an F -finite field and that R is flat over Z(p). After

learning of Saito’s results, we used some of his ideas to give a different argument

for Theorems A and B that does not require any hypotheses on V/pV , and that does

not require the use of Néron-Popsecu desingularization to address the cases where

R is complete or essentially of finite type over a complete ring. We have kept the

original argument for the affine case here in Section 4.2 for heuristic reasons.

We note that the universal perivation modules defined here appear as modules

of FW-differentials in [20], as total p2-differentials in [6], and implicitly as an

extension class in [26, §4.2]; they are also closely related to the construction in

[7, §9.6.12].

Acknowledgments. The authors thank Eloı́sa Grifo and Zhan Jiang for helpful

comments on a draft of this article. We also thank the referee for many valuable

comments.

2. p-derivations and perivations.

2.1. p-derivations. We recall first the notions of p-derivation and ¶-ring, in

the sense of Buium [4] and Joyal [11].
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Notation 2.1. For a prime integer p, we set

Cp(X,Y ) :=
Xp+Y p− (X+Y )p

p
=−

p−1∑

i=1

(
p
i

)

p
XiY p−i ∈ Z[X,Y ].

More generally, we set

Cp(X1, . . . ,Xt) :=
Xp

1 + · · ·+Xp
t − (X1 + · · ·+Xt)

p

p

=−
∑

a1+···+at=p
a1,...,at ̸=p

(
p

a1,...,at

)

p
Xa1

1 · · ·Xat
t ∈ Z[X1, . . . ,Xt].

For all p, we have

(♣) Cp(X,Y )∈(XY )Z[X,Y ] and Cp(X1, . . . ,Xt)∈(X1, . . . ,Xt)
2Z[X1, . . . ,Xt].

Definition 2.2. Let R be a ring, and p a prime integer. A map ¶ : R→ R is a

p-derivation if, for all x,y ∈R, we have

(1) ¶(0) = ¶(1) = 0,

(2) ¶(x+y) = ¶(x)+ ¶(y)+Cp(x,y), and

(3) ¶(xy) = xp¶(y)+yp¶(x)+p¶(x)¶(y).

A ¶-ring is a pair (R,¶), where R is a ring, and ¶ is a p-derivation on R.

Note that if ¶ is a p-derivation, then

(♢) ¶(x1 + · · ·+xt) = ¶(x1)+ · · ·+ ¶(xt)+Cp(x1, . . . ,xt).

If (R,¶) is a ¶-ring, then the map

Φ :R→R, Φ(r) = rp+p¶(r)

is a ring homomorphism, and if p ∈R is not a unit, then the diagram

R
Φ−−−−→ R

y
y

R/pR
F−−−−→ R/pR

commutes, where F is the Frobenius map on R/pR; we call the map Φ the lift

of Frobenius on (R,¶). Conversely, if p is a nonzerodivisor on R, and Φ is a ring

endomorphism of R for which the previous diagram commutes, then the map

¶ :R→R, ¶(r) =
Φ(r)− rp

p

is a p-derivation.
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We note a few rings on which p-derivations exist (cf. [5, Proposition 2.6]):

Example 2.3. (1) On Z, for any p, the identity map is the unique lift of Frobe-

nius, and ¶(n) = n−np

p is the unique p-derivation.

(2) Similarly, on the ring of p-adic integers V = Ẑ(p), the identity map is the

unique lift of Frobenius, and ¶(n) = n−np

p is the unique p-derivation.

(3) Generalizing the last example, the ring of Witt vectors W (k) over a field k

of positive characteristic admits a p-derivation.

(4) Any lift of Frobenius Φ on a ring R extends to a lift of Frobenius Φ̃ on

R[x1, . . . ,xn] by setting Φ̃(xi) = xpi +pfi for arbitrary elements fi ∈R[x1, . . . ,xn].

(5) Any lift of Frobenius Φ on a p-adically complete ring R extends to a

lift of Frobenius Φ̃ on R[[x1, . . . ,xn]] by setting Φ̃(xi) := xpi + pfi for arbitrary

elements fi ∈ R[[x1, . . . ,xn]], since R[[x1, . . . ,xn]] is complete with respect to

(p,x1, . . . ,xn).

Remark 2.4. Let ¶ be a p-derivation on R.

(1) If ¶ maps a set of generators of an ideal a of R into a′ § a, then ¶ maps a

into a′.
(2) If a and b are ideals of R such that ¶ maps a into a′ § a and ¶ maps b into

b′ § b then ¶ maps ab into a′b′.
(3) If ¶ maps a set of generators of an ideal a of R into a′ § a, then ¶ maps ak

into a′k for every positive integer k.

(4) If a is an ideal containing p, then ¶ maps ak+1 into ak for all k ∈ N.

(5) If a ¦ a′ are ideals with ¶(a) ¦ a′ and r ≡ s modulo a, then ¶(r) ≡ ¶(s)

modulo a′.
(6) If p ∈ a, k ∈ N, and r ≡ s modulo ak+1, then ¶(r)≡ ¶(s) mod ak.

(7) For any element r ∈R, ¶(pr)≡ rp modulo pR.

(8) For r1, . . . , rn ∈R, ¶(r1 · · ·rn)≡
∑n

i=1(
∏
j ̸=i r

p
j )¶(ri) modulo pR. Hence,

for any r ∈R, ¶(rp)≡ 0 modulo pR.

Proof. Parts (1) and (2) are straightforward consequences of (♣), (♢), and part

(3) of Definition 2.2. Part (3) follows from (1) and (2) by induction. For (4), we

induce on k, with the base case k = 1 trivial. Take a generating set a1, . . . ,at for

a and a generating set c1, . . . , cs for ak, so ak+1 is generated by elements of the

form aicj . Then ¶(aicj) = api ¶(cj)+ c
p
j¶(ai)+ p¶(ai)¶(cj) ∈ ak by the induction

hypothesis. Part (5) is immediate from part (1) of Definition 2.2 and (♣). Part

(6) follows from (4) and (5). Part (7) follows from part (3) of Definition 2.2 and

¶(p)= 1−pp−1. Part (8) follows from part (3) of Definition 2.2 by a straightforward

induction on n. □

We refer the reader to [2, §2] for some basic properties of ¶-rings, and [2, §3]

for connections between the theory of ¶-rings and perfectoid spaces.
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2.2. Derivations of inseparability. We briefly recall some basics of deriva-

tions in positive characteristic. We refer the reader to [15, Section 36] for the facts

below. A p-base of a field K of positive characteristic is a set of elements Λ ¢K

such that {¼a1

1 · · ·¼att | ¼1, . . . ,¼t ∈ Λ, 0 f a1, . . . ,at < p} forms a Kp-basis for K.

Such a set exists, by an application of Zorn’s Lemma, and the cardinality of any

two p-bases for a field K are equal.

Given a p-base Λ for a field K, one obtains a derivation for each ele-

ment ¼0 ∈ Λ: explicitly, ∂
∂γλ0

is the Kp-linear map that maps ¼a0

0 ¼
a1

1 · · ·¼att to

a0¼
a0−1
0 ¼a1

1 · · ·¼att for all ¼1, . . . ,¼t ∈ Λ∖{¼0}, 0 f a0,a1, . . . ,at < p.

The module of differentials ofK has aK-vector space basis {d¼ | ¼∈Λ} such

that the dual element in HomK(ΩK ,K) to d¼0 is ∂
∂γλ0

.

2.3. p-derivations modulo p2.

Definition 2.5. We say that a map ¶ : R/p2R→ R/pR is a p-derivation mod

p2 on R if ¶ satisfies the axioms (1)–(3) of Definition 2.2.

A mod p2 ¶-ring is a pair (A,¶), where ¶ is a p-derivation mod p2 on A.

We note that the conclusions of Remark 2.4 also hold for a p-derivation mod

p2, since we may apply these statements to R/p2R.

If R/p2R is flat over Z/p2Z, e.g., if p is a regular element on R, then p-

derivations mod p2 are in bijection with lifts of Frobenius to R/p2R. By Re-

mark 2.4, any p-derivation induces a p-derivation mod p2. However, existence of a

p-derivation mod p2 is less stringent than existence of a p-derivation. This follows

from the following lemma and subsequent example.

LEMMA 2.6. Let (A,¶) be a ¶-ring, with p a regular element onA, and let S be

a smooth A-algebra. Then there exists a p-derivation mod p2 on S that extends ¶.

Proof. Let Ψ be the lift of Frobenius associated to A. There is a commutative

diagram

S −−−−→ S/pS
F−−−−→ S/pS

x
x

A
Ψ−−−−→ A −−−−→ S/p2S.

By smoothness, there is a ring homomorphism S→ S/p2S that makes the diagram

commute; such a map is a lift of Frobenius mod p2. □

On the other hand, we note:

Example 2.7. Let

V = Ẑ(p), p ̸= 2,3, A= V [y], and R=
A[x]2x+y

(x2 +yx+p)
.
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Note that R is a standard étale extension of A. To extend the p-derivation ¶ on A

that sends y to 0, we need g ∈R such that x 7→ xp+pg,y 7→ yp yields a V -algebra

homomorphism. For this, we need (xp+pg)2 +yp(xp+pg)+p= 0 in R. That is,

g must be a solution of

p2g2 +(2pxp+pyp)g+(x2p+ypxp+p) = 0

in R. In the fraction field of R, we may apply the quadratic formula to obtain

g =
−(2pxp+pyp)±p

√
y2p−4p

2p2
=

−(2xp+yp)±
√
y2p−4p

2p
.

Since g must be in R,
√
y2p−4p ∈ R. We will show that this is false. First note

that B =A[x]/(x2 +yx+p) =A[¹] where ¹ = (−y+Ã)/2 and Ã is a square root

of y2 − 4p. Then B = A[Ã], since 2 is a unit in V . Since A is a UFD and y2 − 4p

is squarefree in A, B is normal. Hence, if y2p−4p has a square root in the fraction

field of B (which contains R), it has a square root in B, and this will have the form

a0+a1Ã, with each ai ∈A. Since B =A·AÃ, it is clear that (a0+a1Ã)
2 is not in

B unless a0 = 0 or a1 = 0. We cannot have a0 = 0, since y2p−4p is not a square in

A. We cannot have a0 = 0, or else y2p−4p= a2
1(y

2 −4p). This is a contradiction,

since substituting y2 = 4p in y2p−4p does not yield 0: its value is (4p)p−4p ̸= 0.

We conclude that no such g exists, and hence no such extension of ¶ exists.

We now aim to show that any discrete valuation ring with uniformizer p

admits a p-derivation modulo p2. Our construction is a variation on Saito [20,

Lemma 1.3.1] in the case of a perfect residue field. We require a lemma first.

LEMMA 2.8. For any ring R, prime integer p, and elements x,y ∈R,

(x+y)p
2

+pCp(x,y)
p ≡ xp

2

+yp
2

mod p2R.

Proof. We have (x+ y)p
2

=
∑

i+j=p2

(
p2

i

)
xiyj . By Kummer’s Theorem [12]

p2 divides
(
p2

i

)
unless p divides i, so we have (x+y)p

2 ≡
∑

i+j=p

(
p2

pi

)
xpiypj mod

p2R. We have that
(
pn
pm

)
≡
(
n
m

)
mod p2Z, (cf. [23, Exercise 1.6(c)]), so

(x+y)p
2 ≡

∑

i+j=p

(
p

i

)
xpiypj ≡ xp

2

+yp
2 −pCp(xp,yp)

modulo p2R. □

PROPOSITION 2.9. Let (V,pV,K) be a discrete valuation ring with uni-

formizer p. Let {µλ | ¼ ∈ Λ} be a set of elements in V that maps bijectively to a
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p-base for K. Then the map

È
( ∑

α∈Z·Λ

0fαλ<p

apαµ
α+pb

)
=

∑

α∈Z·Λ

0fαλ<p

ap
2

α µ
pα+pbp

is a lift of Frobenius modulo p2 on V . Hence, the map ¶ : V →K given by ¶(f) =
ψ(f)−fp

p is a p-derivation modulo p2 on V .

Proof. First, we show that the map È is well-defined. We have that

V/pV =
⊕

α∈ZΛ,0fαλ<p

(V/pV )pµα,

so any element in V can be written as a finite sum
∑
apαµα+pb for some elements

aα, b ∈ V . If ∑

α∈Z·Λ

0fαλ<p

apαµ
α+pb=

∑

α∈Z·Λ

0fαλ<p

cpαµ
α+pd,

then
∑

α∈Z·Λ,0fαλ<p
(apα−cpα)µα ∈ pV , so each apα−cpα ∈ pV by Kp-linear inde-

pendence of the images of the elements µλ, and hence aα− cα ∈ pV by injectivity

of the Frobenius on K. Substituting back, we have that

p(b−d) ∈
∑

α∈Z·Λ,0fαλ<p

((apα+peα)
p−apα)µα

for some elements eα ∈ V , and hence this is in p2V . Since p is a regular element

on V , b−d ∈ pV as well. Well-definedness of the map is then evident.

We check now that È is additive. We have

È
(∑

apαµ
α+pb+

∑
cpαµ

α+pd
)

= È
(∑

((aα+ cα)
p+pCp(aα, cα))µ

α+p(b+d)
)

= È
(∑

(aα+ cα)
pµα+p(b+d+

∑
Cp(aα, cα)µ

α)
)

=
∑

(aα+ cα)
p2

µpα+p(b+d+
∑

Cp(aα, cα)µ
α)p

≡
∑

(ap
2

α + cp
2

α )µpα+p(bp+dp)

= È
(∑

apαµ
α+pb

)
+È

(∑
cpαµ

α+pd
)
,

where the equivalence in the penultimate line is modulo p2V , using the previous

lemma and the fact that p(X+Y +Z)p ≡ p(Xp+Y p+Zp) modulo p2.

The verification of multiplicativity modulo p2V is straightforward, and omit-

ted. □
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Combining this with Example 2.3, we obtain:

COROLLARY 2.10. Let V be a discrete valuation ring with uniformizer p ∈ Z.

Any polynomial ring in arbitrarily many variables, power series ring in finitely

many variables, or polynomial ring over a power series ring in finitely many vari-

ables over V admits a p-derivation mod p2. Explicitly, one may take a p-derivation

mod p2 as constructed in Proposition 2.9 and extend by prescribing arbitrary val-

ues to the variables.

Indeed, by parts (4) and (5) of Example 2.3 and the previous proposition,

there is a p-derivation modulo p2 on V̂ [[x]][y], for a finite set of variables x

and an arbitrary set of variables y. Since we have canonical isomorphisms

V̂ [[x]][y]/piV̂ [[x]][y] ∼= V [[x]][y]/piV [[x]][y] for i = 1,2, such a map can be

identified with a p-derivation modulo p2 on V [[x]][y].

2.4. Perivations. In this subsection, we discuss the notion of perivation,

which is essentially the same as that of total p-derivations in the sense of Dupuy,

Katz, Rabinoff, and Zureick-Brown [6], and the notion of FW-derivation of Saito

[20].

Definition 2.11 (cf. [6, Definition 2.1.1]). LetR be a ring, and p a prime integer.

Let M be an R/pR-module. A map ³ : R→M is a perivation if for all x,y ∈ R,

we have

(1) ³(0) = ³(1) = 0,

(2) ³(x+y) = ³(x)+³(y)+Cp(x,y)³(p), and

(3) ³(xy) = xp³(y)+yp³(x).

We call ³(p) the distinguished element of ³. If additionally, (A,¶) is a mod p2

¶-ring, with A a subring of R, and

(4) ³(a) = ¶(a)³(p) for all a ∈A,

then we say ³ is a perivation over A.

Example 2.12. If (R,¶) is a mod p2 ¶-ring, then the composition R
δ−→ R↠

R/pR is a perivation with distinguished element 1. More generally, if M is an

R/pR-module, and t ∈M , then the map R
δ−→R

·t−→M is a perivation with distin-

guished element t; in this setting, we call a perivation of this form trivial. Thus,

condition (4) above says that the restriction of ³ to A is trivial.

Example 2.13. Given a ring R, consider the ring homomorphism ´ given as

the composition R↠R/pR
F−→R/pR, where F is the Frobenius map. If R/pR

is considered as an R-algebra via ´, then any derivation of R into an R/pR-

module is a perivation with distinguished element zero. Conversely, a perivation

to an (R/pR)-module with distinguished element zero is a derivation (with re-

spect to ´). We call such a map a derivation of the Frobenius for short. We write

DerFR|A(M) for the collection of A-linear derivations of the Frobenius from R into

an (R/pR)-module M .
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If R has characteristic p, then for any perivation, we have ³(p) = ³(0) = 0, so

a perivation is just a derivation of the Frobenius.

Remark 2.14. Any perivation on a ring R is a perivation over Z. Indeed, the

unique p-derivation on Z is given by the rule ¶(n) = (n−np)/p, and by a simple

induction, we have ³(n) = n³(1)+Cp(1, . . . ,1)³(p) = (n−np)/p ·³(p). Thus,

we lose no generality by restriction to the relative setting of perivations over a

¶-ring; we may take Z as the base ring.

We record a few basic observations on perivations.

Remark 2.15. (1) If M is an R/pR-module, then the collection of periva-

tions from R to M admits a natural R/pR-module structure by postmultiplication,

and likewise for perivations over a mod p2 ¶-ring A. We denote these modules by

PerR(M) and PerR|(A,δ)(M), respectively.

(2) If ³ : R→M is a perivation, and ϕ : M →N is an R-module homomor-

phism, then ϕ◦³ is a perivation, as is readily verified from the definition.

Discussion 2.16 (p-linear maps and the Peskine-Szpiro functor). Recall that

if R is a ring of prime characteristic p > 0, a map ¸ between two R-modules M

and N is p-linear if it is additive and ¸(rm) = rp¸(m) for all r ∈ R and m ∈M .

If F : R→ R is the Frobenius map on R, let 1(−) : R−mod → R−mod be the

functor of restriction of scalars through F , and FR(−) :R−mod →R−mod be the

functor of extension of scalars through F .

A map ¸ : M → N is p-linear if and only ¸ : M → 1N is R-linear. By Hom-

tensor adjunction, there is a natural isomorphism

HomR(M, 1N)∼= HomR(FR(M),N)

¸ 7→
(
(r¹m) 7→ r¸(m)

)
;

thus, we can identify p-linear maps from M to N with R-linear maps FR(M)→
N . By abuse of notation, we will use the same name for maps we identify in this

way.

LEMMA 2.17. Let (A,¶) be a mod p2 ¶-ring, R be an A-algebra, and I be an

ideal of R. Let ³ :R→M be a perivation over A.

(1) ³ descends to a well-defined perivation ³̄ :R/(I2 +pI)→M/IM .

(2) The restriction of ³̄ to I/(I2 + pI) → M/IM is a p-linear map over

R/pR.

(3) If ³(I)¦ IM , then ³ descends to a perivation ³′ :R/I →M/IM .

(4) If IM = 0, then there is a natural bijection between perivations from R/I

to M and perivations from R to M that map I to 0.
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Proof. For part (1), let r ∈R, and a0,a1, . . . ,at,a
′
1, . . . ,a

′
t ∈ I . Then

³
(
r+pa0 +

∑

i

aia
′
i

)
= ³(r)+³(pa0)+³

(∑

i

aia
′
i

)
+Cp(r,pa0,

∑

i

aia
′
i)³(p)

= ³(r)+³(pa0)+
∑

i

³(aia
′
i)+Cp(r,pa0,

∑

i

aia
′
i)³(p)

+Cp(a1a
′
1, . . . ,ata

′
t)³(p).

Since Cp(r,pa0,
∑

iaia
′
i) and Cp(a1a

′
1, . . . ,ata

′
t) lie in I +(p), we have, modulo

IM ,

³(r+pa0 +
∑

i

aia
′
i)≡ ³(r)+³(pa0)+

∑

i

³(aia
′
i)

≡ ³(r)+pp³(a0)+a
p
0³(p)+

∑

i

a′pi³(ai)+
∑

i

api³(a
′
i)

≡ ³(r).

For part (2), we note that

³(ra0) = rp³(a0)+a
p
0³(r)≡ rp³(a0) modulo IM.

Part (3) is clear. For part (4), we note first that given a perivation from R/I to

M , the map from R to M obtained by precomposing with the quotient map is a

perivation fromR toM that maps I to 0. Conversely, by part (3), a perivation from

R to an R/I-module that sends I to 0 factors through the quotient map. □

In particular, any perivation R→M factors through R/p2R.

3. Universal perivation modules. In this section, we study universal ob-

jects for perivations.

Definition 3.1. Let (A,¶) be a mod p2 ¶-ring, and R be an A-algebra. We

say that a perivation ³ : R → M is a universal perivation over A and M is a

universal perivation module over A if for any perivation ´ : R→N over A there

is a unique R-module homomorphism ϕ : M → N such that ´ = ϕ ◦³. We will

write d̃R|(A,δ) :R→ Ω̃R|(A,δ) for a universal perivation.

In particular, for a universal perivation module Ω̃R|(A,δ), there are natural iso-

morphisms PerR|(A,δ)(M)∼= HomR(Ω̃R|(A,δ),M) for all R-modules M .

Universal perivations for A = Z were constructed in [6] (where universal

perivation modules are called total p-differentials), and were used there to study

existence of p-derivations on Z/p2Z-algebras. In particular they always exist;

a construction for these modules appears below. These modules appear in [20]

as modules of FW-differentials; many of the properties established below also

appear there. They also appear implicitly in the work of Zdanowicz [26, §4.2] on
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existence of lifts of Frobenius/p-derivations on Z/p2Z-algebras, and are related to

a construction of Gabber and Romero [7, §9.6.12].

In this section, we record some basic properties of universal perivations. Many

of these results overlap with [6, 20].

By uniqueness of representing objects (i.e., Yoneda’s Lemma), universal

perivation modules are unique up to natural isomorphism. Moreover, if ϕ : R→ S

is an A-algebra homomorphism, and M is an S/pS-module, we obtain a map

PerS|(A,δ)(M)→ PerR|(A,δ)(M)

³ 7→ ³◦ϕ

which induces the natural map

Ω̃R|(A,δ)
d̃φ−→ Ω̃S|(A,δ).

Remark 3.2. If R has characteristic p > 0, then

PerR|(A,δ)(M) = DerFR/pR|A/pA(M),

and hence Ω̃R|(A,δ) ∼= FR/pR(ΩR/pR|A/pA).

We record some analogues of the fundamental sequences for differentials.

PROPOSITION 3.3 (First fundamental sequences). (1) Let (A,¶) be a mod p2

¶-ring. Let R
φ−→ S be an A-algebra homomorphism. Then there is a natural exact

sequence

S¹R Ω̃R|(A,δ) → Ω̃S|(A,δ) → FS/pS(ΩS/pS|R/pR)→ 0.

(2) Let (A,¶)→ (B,ε) be a mod p2 ¶-ring homomorphism (i.e., a ring homo-

morphism È such that È ◦ ¶ = ε◦È), and B→ R be a ring homomorphism. Then

there is a natural exact sequence

R¹B FB/pB(ΩB/pB|A/pA)→ Ω̃R|(A,δ) → Ω̃R|(B,ε) → 0.

Proof. (1) First, we claim that there are natural exact sequences

0 → DerFS/pS|R/pR(M)→ PerS|(A,δ)(M)→ PerR|(A,δ)(M)

for S/pS-modules M . We have the first inclusion, since DerFS/pS|R/pR(M) is nat-

urally isomorphic to DerFS|R(M), and the latter naturally embeds as a subset in

PerS|(A,δ)(M). For exactness in the middle, we need to see that a perivation that

vanishes on R is an R-linear derivation of the Frobenius. For such a perivation, the

distinguished element is 0 (since p ∈R), so it is a derivation of Frobenius, and the

claim is then clear.
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Now, since

HomS(S¹R Ω̃R|(A,δ),M)∼= HomR(Ω̃R|(A,δ),HomS(S,M))∼= PerR|(A,δ)(M)

and HomS|(A,δ)(FS/pS(ΩS/pS|R/pR),M)∼= DerFS|R(M) for all S/pS-modules M ,

by Yoneda’s Lemma, there is a complex as in the statement, which must be exact.

(2) Along the same lines, it suffices to show that for every R/pR-module M

we have an exact sequence

0 → PerR|(B,ε)(M)→ PerR|(A,δ)(M)→ DerFB|A(M).

For the map PerR|(A,δ)(M) → DerFB|A(M), we send a perivation ³ to the map

´ = ³−³(p)ε. One verifies immediately that this is an A-linear derivation of the

Frobenius on B, and that ´ is zero if and only if ³ restricted to B is a trivial

perivation. □

Remark 3.4. As a particular case of the first fundamental sequence, when R=

A, we have

S/pS→ Ω̃S|A → FS/pS(ΩS/pS|A/pA)→ 0.

This exact sequence was considered in [6] and implicitly in [26] in connection with

existence of lifts of Frobenius/p-derivations modulo p2. In particular, this sequence

is split exact if and only if ¶ extends to a p-derivation mod p2 on R: such a map is

a splitting from Ω̃S|(A,δ) → S/pS.

PROPOSITION 3.5 (Second fundamental sequence). Let (A,¶) be a mod p2 ¶-

ring. Let R be an A-algebra, and I an ideal of R. Then there is a natural exact

sequence

FR/(I+pR)(I/I
2 +pI)→R/I¹R Ω̃R|(A,δ) → Ω̃(R/I)|(A,δ) → 0.

Proof. For the first map above, we consider the perivation given as the compo-

sition:

R
d̃R−→ Ω̃R|(A,δ) ↠R/I¹R Ω̃R|(A,δ);

by Lemma 2.17 (2), this induces a p-linear map from I/(I2 + pI) to R/I ¹R

Ω̃R|(A,δ), which by Discussion 2.16, yields the map above.

Observe that if M is an R/(I+pR)-module, then

PerR|(A,δ)(M)∼= HomR(Ω̃R|(A,δ),M)∼= HomR(R/I¹R Ω̃R|(A,δ),M).

Thus, along the same lines as the proof of Proposition 3.3, it suffices to show that

we have natural exact sequences

0 → PerR/I|(A,δ)(M)→ PerR|(A,δ)(M)→ HomR/I(FR/(I+pR)(I/(I
2 +pI)),M)
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for all R/(I + pR)-modules M . By Lemma 2.17 (4), any nonzero perivation of

R/I into M pulls back to a nonzero perivation of R into M , so exactness holds at

the first nonzero spot. A perivation of R into M maps to zero in

HomR/I(FR/(I+pR)(I/(I
2 +pI)),M)

exactly if its restriction to I is zero; by Lemma 2.17 (4), this happens if and only if

it is the image of a perivation from R/I to M . □

See also [20, Proposition 2.3] for a version of a second fundamental sequence.

We note that by [20, Proposition 2.6], if (R,m,k) is local, with k of characteristic

p > 0, and A= Z, the sequence

Fk(m/m
2)→ k¹R Ω̃R|(Z,δ) → Ω̃k|(Z,δ) → 0

is split-exact.

Our next goal is to give a construction of universal perivation modules.

CONSTRUCTION 3.6. Let (A,¶) be a mod p2 ¶-ring. Let T be an A-algebra

with

(1) ε, a p-derivation mod p2 on T extending ¶, and

(2) {tλ} ¢ T such that {dtλ | ¼ ∈ Λ} form a free basis for ΩT/pT |A/pA.

Let {∂λ | ¼ ∈ Λ} be the dual basis to {dtλ} in DerT/pT |A/pA(T/pT ).

We set Ω̃T |(A,δ) to be the free T/pT -module with basis {d̃p}∪{d̃tλ | ¼ ∈ Λ}.

Let d̃T |(A,δ) : T → Ω̃T |(A,δ) be the perivation given by

d̃T |(A,δ)(t) = ε(t)d̃p+
∑

λ∈Λ
(∂λ(t))

pd̃tλ.

Note that since this is a sum of a p-derivation mod p2 and derivations of the Frobe-

nius, it is indeed a perivation.

PROPOSITION 3.7. In the setting of Construction 3.6, the map d̃T |(A,δ) is a

universal perivation, and Ω̃T |(A,δ) is a universal perivation module.

Proof. For any T/pT -module M , and any collection {mp}∪{mλ | ¼ ∈ Λ} of

elements of M , there is a unique T/pT -module homomorphism φ : Ω̃T |(A,δ) →M

such that the composition φ ◦ d̃T is a perivation that sends p to mp and tλ to mλ.

Thus, it suffices to show that any perivation is uniquely determined by its values

on p and {tλ | ¼ ∈ Λ}.

To see this, let ³ be a perivation, and let ´ = ³−³(p)ε. Then ´ is a derivation

of the Frobenius, so we can write ´ = µ ◦ dT/pT |A/pA, where dT/pT |A/pA is the

universal derivation T/pT → ΩT/pT |A/pA, and µ is p-linear. As µ is determined

by its values on {dtλ | ¼ ∈ Λ}, ´ is determined by its values on {tλ | ¼ ∈ Λ}, as

required. □
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Remark 3.8. Construction 3.6 applies in the following settings:

(1) Let T = A[{xλ | ¼ ∈ Λ}] be a polynomial ring in an arbitrary set of vari-

ables over A. Then, for Ω̃T |(A,δ), we may take {tλ} to be the set of variables, and

{∂λ}= { ∂
∂xλ

} for Ω̃T |(A,δ).
(2) Let T = V [{xλ | ¼ ∈ Λ}] be a polynomial ring in an arbitrary set of vari-

ables over a discrete valuation ring V with uniformizer p. Then, for Ω̃T |(Z,δ), we

may take {tλ} to be S1∪S2, where S1 is the set of variables, and S2 = {µλ} is a set

of elements of V that maps bijectively to a p-base for V/pV . Then {∂λ}=D1∪D2,

where D1 is the set of derivations of the form ∂
∂xλ

, and D2 is the set of derivations

{ ∂
∂γλ

} obtained from the p-base.

(3) Let T = V [[x1, . . . ,xn]][y1, . . . ,ym] be a polynomial ring over power series

ring over a discrete valuation ring with uniformizer p. Then, as in the previous case,

for Ω̃T |(Z,δ), we may take {tλ} to be the union of the variables (both power series

and polynomial) and a lift of a p-base, and {∂λ} to be the union of the derivations

with respect to the variables and the derivations induced by the p-base.

CONSTRUCTION 3.9. Let (A,¶) be a ¶-ring, and R be an A-algebra. Let T be

an A-algebra with R= T/I for some ideal I , and

(1) ε, a p-derivation mod p2 on T extending ¶, and

(2) {tλ} ¢ T such that {dtλ | ¼ ∈ Λ} form a free basis for ΩT/pT |A/pA;

such a T always exists by Remark 3.8. Let {∂λ | ¼ ∈ Λ} be the dual basis to {dtλ}
in DerT/pT |A/pA(T/pT ).

We set Ω̃R|(A,δ) to be the quotient of the free R/pR-module PR with basis

{d̃p}∪{d̃tλ | ¼ ∈ Λ} by the submodule N of elements of the form

{¶(a)d̃p+
∑

λ∈Λ
(∂λ(a))

pd̃tλ | a ∈ I};

note that N is generated by the set of elements of this form as a varies though any

generating set of I .

Let d̃R|(A,δ) :R→ Ω̃R|(A,δ) be the perivation given by

d̃R|(A,δ)(r) = ε(r)d̃p+
∑

λ∈Λ
(∂λ(r))

pd̃tλ.

PROPOSITION 3.10. In the context of Construction 3.9, the map d̃R|(A,δ) is a

universal perivation, and Ω̃R|(A,δ) is a universal perivation module.

Proof. Write Ã : T → R for the quotient map. Let M be an R/pR-module,

and ³ : R→M be a perivation. Then ³ ◦Ã is a perivation from T to M , so there

is a unique T -linear φ : Ω̃T |(A,δ) →M such that φ ◦ d̃T |(A,δ) = ³ ◦ Ã. Since, by

construction Ω̃R|(A,δ) is a quotient of Ω̃T |(A,δ) and the map d̃R|(A,δ) is consistent

with d̃T |(A,δ) via this quotient, it suffices to show that φ factors through Ω̃R|(A,δ).
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Since M is an R/pR-module, φ factors through R¹T Ω̃T |(A,δ). Note that by

construction Ω̃R|(A,δ) is the quotient of R¹T Ω̃T |(A,δ) by the image of I under

d̃T |(A,δ). But then, 0 = ³Ã(I) = φd̃T |(A,δ)(I), so φ indeed factors through this

quotient. □

We note that in [6, 20], the corresponding universal module is constructed dif-

ferently, though our construction agrees with those in the case (A,¶) = (Z, ¶), since

they satisfy the same universal property.

We note also (cf. [20, Proposition 2.5]):

LEMMA 3.11. Let (A,¶) be a mod p2 ¶-ring.

(1) If R= lim−→λ
Rλ is a direct limit of A-algebras, then

Ω̃R|(A,δ) = lim−→
λ

Ω̃Rλ|(A,δ).

(2) If W ¦R is multiplicatively closed, then Ω̃W−1R|(A,δ) =W−1Ω̃R|(A,δ).

Proof. (1) One can construct a universal perivation from R to lim−→λ
Ω̃Rλ|(A,δ)

using the universal properties. Namely, since the direct limits lim−→λ
Rλ and

lim−→λ
Ω̃Rλ|(A,δ) can be computed at the level of sets, there is a canonical function

lim−→λ
Rλ → lim−→λ

Ω̃Rλ|(A,δ); since any pair of elements x,y ∈ R are in the image of

someRλ, and the canonical map fromRλ → lim−→λ
Ω̃Rλ|A satisfies the conditions of

Definition 2.11, the canonical map lim−→λ
Rλ → lim−→λ

Ω̃Rλ|(A,δ) does as well. Now,

given a perivation from R to M , we obtain a consistent system of perivations from

Rλ to M which induces a unique consistent system of Rλ-linear homomorphisms

from Ω̃Rλ|(A,δ) to M . This induces a unique factorization through lim−→λ
Ω̃Rλ|(A,δ).

(2) Since we can write W−1R = lim−→f∈W Rf , it suffices to check for princi-

pal localizations. Moreover, using the second fundamental sequence, it suffices to

check for the case of a polynomial ring. In this case, we can apply Construction 3.9

to the polynomial ring with one extra variable tmodulo a relation of the form ft−1

and verify directly. □

Remark 3.12. Since formation of Ω̃ commutes with localization, Construc-

tion 3.6 is valid for localizations of polynomial rings over power series rings over

unramified discrete valuation rings.

4. Jacobian criterion.

4.1. Theorem A. In this section, we prove Theorem A from the introduc-

tion. We also give a self-contained proof of the analogous criterion for the singular

locus among primes that do not contain p, which is originally a result of Seydi [22].

Definition 4.1. Let (V,pV,K) be an unramified discrete valuation ring of

mixed characteristic (0,p). Let T be a polynomial ring over a power series ring

over V with n total variables x1, . . . ,xn of both types combined, and let ¶ be a
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p-derivation mod p2 on T ; cf. Corollary 2.10. In particular, we allow T to be a

polynomial ring or a power series ring. Fix a sequence of elements {µλ} of V that

map bijectively to a p-base of K.

For a sequence of elements f = (f1, . . . ,fa) in R, the mixed Jacobian matrix

of f is the matrix J̃(f) over T/pT with

• rows indexed by {f1, . . . ,fa},

• columns indexed by {p}∪{x1, . . . ,xn}∪{µλ}, and

• the entry in the row indexed by fi and column indexed by g is ¶(fi) if g = p,

and (∂fi∂g )
p if g ̸= p.

The maps ∂/∂µλ are the derivations discussed in Remark 3.8.

We note that the terminology “mixed Jacobian matrix” is used in the sources

[17, 21, 25] to denote Jacobian matrices in equal characteristic that include deriva-

tions of inseparability akin to those discussed in Remark 3.8. As the term in this

does not seem to be in common usage currently, we use it here for this new notion

in mixed characteristic.

Remark 4.2. If (V,pV,K) is a discrete valuation ring with K perfect, then

J̃(f) =



¶(f1) ( ∂f1

∂x1
)p · · · ( ∂f1

∂xn
)p

...
...

. . .
...

¶(fa) (∂fa∂x1
)p · · · ( ∂fa∂xn

)p


 .

Remark 4.3. The mixed Jacobian matrix depends on the choice of ¶ and the

choice of a p-base for K, although these are suppressed from the notation. How-

ever, the cokernel of the matrix J̃(f) considered as a matrix over T/(p,f)T , is

isomorphic to the module Ω̃T |(Z,δ) by Construction 3.9 and Remark 3.8, and thus is

independent of these choices. Cf. [17, Footnote 4] for this observation in the equal

characteristic case.

Definition 4.4. In the same setting as Definition 4.1, we write J(f) for the

classical Jacobian matrix, with

• rows indexed by {f1, . . . ,fa},

• columns indexed by {x1, . . . ,xn}, and

• the entry in the row indexed by fi and column indexed by g is ∂fi
∂g .

Discussion 4.5. We briefly discuss the notion of module of Kähler differentials

for quotients of polynomial rings over power series rings that we will need for

primes not containing p in Theorem 4.9. We refer the reader to the book of Kunz

[14] for more details on the notions discussed here; see also [10] for a concise

treatment of these notions.

Let (V,pV,K) be a complete discrete valuation ring, S a power series ring

over V , and T a polynomial ring over S, and p a prime ideal of T . Then, there is

a universally finite derivation ∂ : S→ Ω′
S|V : a derivation such that for any finitely
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generated S-module M and derivation ·, there is a unique S-module homomor-

phism ϕ such that · = ϕ ◦ ∂. There is a universal extension ∂̂ : Tp → ΩTp|∂ of ∂:

for every T -module M and S-module homomorphism É : Ω′
S|V →M and deriva-

tion Ã : T →M such that the restriction of Ã to R is É ◦ ∂, Ã factor through ∂̂

compatibly with the other maps.

By [14, Corollary 4.22], we can identify ΩTp|∂ with (ΩT |∂)p, and by [14, For-

mula 4.11(b) and Example 12.7], we can realize ΩT |∂ as a free module with basis

given by dxi for each variable xi, and ∂̂ : T → ΩT |∂ as ∂̂(f) =
∑

i
∂f
∂i dxi.

LEMMA 4.6. Let (V,pV,K) be a complete discrete valuation ring with uni-

formizer p ∈ Z, and T be a polynomial ring over a power series ring over V

in n variables x1, . . . ,xn total. Let I be an ideal of R, with generating set f =

(f1, . . . ,fa), and let p be a prime of R containing I , but not containing p. Then, the

»(p)-vector space dimension of the image of ITp in pTp/p
2Tp is equal to the rank

of the Jacobian matrix J(f) considered as a matrix in »(p).

Proof. In the notation of Discussion 4.5 by [14, Proposition 13.14], the map

pTp/p
2Tp → ΩTp|∂¹Tp »(p)

induced by ∂̂ is injective. Thus,

dimκ(p)

(
im(ITp → pTp/p

2Tp)
)
= dimκ(p)

(
im(ITp

∂̂−→ ΩTp|∂¹T »(p))
)
.

By Discussion 4.5, this image is the »(p)-subspace of ΩT |∂ ¹T »(p) generated by

the rows of the classical Jacobian matrix (with free basis for ΩT |∂ ¹T »(p) as in

Discussion 4.5). □

Applying the universal perivation modules, we obtain a similar result for

primes that contain p.

LEMMA 4.7. Let (V,pV,K) be a discrete valuation ring with uniformizer p ∈
Z, and T be a polynomial ring over a power series ring over V in n variables

x1, . . . ,xn total. Let I be an ideal of R, with generating set f = (f1, . . . ,fa), and

let p be a prime of R containing I and p. Let ¶ be a p-derivation modulo p2 on

T ; such a ¶ exists by Corollary 2.10. Then, the »(p)-vector space dimension of the

image of ITp in pTp/p
2Tp is equal to the rank of the mixed Jacobian matrix J̃(f)

considered as a matrix in »(p).

Proof. By [20, Proposition 2.6], the map Fκ(p)(pTp/p
2Tp)→ Ω̃Tp|(Z,δ)¹T »(p)

induced by the universal perivation on Tp is injective.

dimκ(p)

(
im(ITp → pTp/p

2Tp)
)

= dimκ(p)

(
im(ITp/(p

2Tp∩ ITp)→ pTp/p
2Tp)

)

= dimκ(p)

(
im(Fκ(p)(ITp/(p

2Tp∩ ITp))→ Fκ(p)(pTp/p
2Tp))

)

= dimκ(p)

(
im(Fκ(p)(ITp/(p

2Tp∩ ITp))→ Ω̃Tp|Z¹Tp »(p))
)
,
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where the map on the second line is induced from the previous map by applying

the Frobenius functor, and the last map is obtained from the previous map by post-

composing with the map Ä. It remains only to note that, by Construction 3.6, the

image of this map is the »(p)-subspace of Ω̃Tp|Z¹Tp »(p) generated by the rows of

the mixed Jacobian matrix (given a compatible choice of free basis for ΩT/pT |Z/pZ
in Construction 3.6 and p-base in Definition 4.1). □

We will also need the following fact.

PROPOSITION 4.8. Let V → W be a local map of discrete valuation rings

of mixed characteristic p, and let B denote a local V -algebra such that B has

maximal ideal pB + b and is complete with respect to b. Let C = W ¹̂b

VB be

the completion of W ¹V B with respect to the image of b. Then C[1/p] is ge-

ometrically regular over B[1/p]. In particular, if x1, . . . ,xd are indeterminates,

V [[x1, . . . ,xd]][1/p]→W [[x1, . . . ,xd]][1/p] is geometrically regular.

Proof. It suffices to prove geometrically regularity when B has the special

formA= V [[x1, . . . ,xd]]: one may then get the general case by a base change from

a suitable choice of A to B. Flatness is obvious in the case of A, even if we do not

localize at p. We are in equal characteristic 0, and so it suffices to show that the fiber

of B → C over a prime q not containing p is regular. Thus, we may replace B by

B/q, and we only need to consider the generic fiber. We change notation and useB

for the base domain. We may extend p to a system of parameters u1, . . . ,uh for mB

where the uj ∈ b. Then we may map a new choice of A, namely, V [[x1, . . . ,xh]], to

B as an V -algebra so that x1, . . . ,xh map to u1, . . . ,uh, using the completeness of

B with respect to b. ThenB is module-finite over this choice ofA, and the problem

of proving geometric regularity reduces to checking regularity of the generic fiber

for this choice of A, i.e., for V [[x1, . . . ,xh]] → W [[x1, . . . ,xh]]. This is obvious

since the target ring is now regular. □

Part (1) of the following Theorem is originally due Nagata [18] in the affine

case and to Seydi [22] in the generality below.

THEOREM 4.9. Let (V,pV,k) be a discrete valuation ring with uniformizer

p and T be a polynomial ring over a power series ring over V in n variables

x1, . . . ,xn total. Let I = (f1, . . . ,fa)T be an ideal of pure height h in T , and R =

T/I . Then, for a prime p of R,

(1) If p /∈ p, then Rp is regular if and only if the image of the ideal Ih(J(f))

of h×h minors of the classical Jacobian matrix J(f) is not contained in p;

(2) If p ∈ p, then Rp is regular if and only if the image of the ideal Ih(J̃T (f))

of h×h minors of the mixed Jacobian matrix J̃(f) is not contained in p.

Proof. In the first case, we note that by Proposition 4.8, we can reduce to the

case where V is complete. Indeed, the map from R to V̂ ¹̂b

VR, where b is the ideal
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generated by the power series variables, is geometrically regular after inverting p,

so the singular locus of the source expands to the singular locus of the target; the

classical Jacobian matrix is also the same for both rings.

Then, we compute

µ= dimκ(p)(pRp/p
2Rp)−dim(Rp).

We observe that dim(Rp) = ht(p)−h and

dimκ(p)(pRp/p
2Rp) = dimκ(p)(p/p

2)−dimκ(p)(im(I → p/p2)).

Using Lemma 4.6 and regularity of Rp, we have that dimκ(p)(pRp/p
2Rp) is equal

to dim(Rp) minus the rank of the classical Jacobian matrix J(f) considered as a

matrix over »(p). Thus,

µ= h− rank(J(f)κ(p)).

Thus, Rp is regular if and only if µ = 0, which happens if and only if the rank of

J(f) considered as a matrix over »(p) is equal to h, and this in turn happens if and

only if p does not contain the h×h minors of J(f).

In the latter case, we proceed similarly. In this case, we use Lemma 4.7 to

conclude that dimκ(p)(pRp/p
2Rp) is equal to dim(Rp) minus the rank of the mixed

Jacobian matrix J̃(f) considered as a matrix over »(p). Thus,

µ= h− rank(J̃(f)κ(p)),

andRp is regular if and only if the rank of J̃(f) considered as a matrix over »(p) is

equal to h, which in turn happens if and only if p does not contain the h×h minors

of J(f). □

Example 4.10. Let R =
Z[x]

x2 −n
∼= Z[

√
n] for n ∈ Z a squarefree nonunit. Set

f = x2 −n. For p prime, we take J̃(f) =
[
¶p(f) (2x)p

]
, where ¶p is the unique

p-derivation on Z extended to Z[x] via ¶p(x) = 0. Observe that

¶p(x
2 −n) = ¶p(−n)−Cp(x2,n) ∈ ¶p(−n)+(x).

For p odd,

VR(p,I1(J̃(f)))∼= VZ[x](p,¶p(f),(2x)
p,x2 −n) = VZ[x](p,¶p(f),x,x

2 −n)
= VZ[x](p,¶p(f),x,n)∼= VZ(p,n,¶p(−n)).

If p ∤ n, this is empty since (p,n) = Z. If p |n, since p2 ∤ n, we have p ∤ ¶p(−n), so

this locus is empty again.
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For p= 2,

VR(p,I1(J̃(f)))∼= VZ[x](2, ¶2(f),(2x)
p,x2 −n) = VZ[x](2, ¶2(f),x

2 −n)
= VZ[x](2, ¶2(−n)+nx2,x2 −n).

If n≡ 1 mod 4, then ¶2(−n) =−n2+n
2

is odd, so

VZ[x](2, ¶2(−n)+nx2,x2 −n) = VZ[x](2,x
2 −1)

is nonempty, corresponding to the singular maximal ideal (2,
√
n−1)¢R.

If n≡ 2 mod 4, then ¶2(−n) is odd, so

VZ[x](2, ¶2(−n)+nx2,x2 −n) = VZ[x](2,1,x
2)

is empty. If n≡ 3 mod 4, then ¶2(−n) is even, so

VZ[x](2, ¶2(−n)+nx2,x2 −n) = VZ[x](2,x
2,x2 −1)

is empty. Of course, this agrees with the basic number theory fact that for a square-

free nonunit n, Z[
√
n] is integrally closed in its fraction field (and equivalently

regular, as R is a one-dimensional domain) if and only if n ̸≡ 1 mod 4.

Remark 4.11. Theorem 4.9 can be used to give a quick proof that for any

finitely generated algebra over any complete local ring of mixed characteristic, the

singular locus is closed, given the result in equal characteristic. We can write such a

ring as a quotient of a polynomial ring over a power series ring over an unramified

discrete valuation ring (V,pV ), say T . Given a primary decomposition Q1 ∩ ·· · ∩
Qn of the presenting ideal I , the localization at any prime p that contains two Qi’s

or some Qi that is not a minimal prime is not a domain, and hence not regular: this

is a closed set, and the remainder of the singular locus is the singular locus of the

quotients by the minimal primes, so we can reduce to the case that the ring T/Q

is a domain. If p ∈ Q, we reduce to the equal characteristic case. Otherwise, the

singular locus of R = T/Q is described by Theorem 4.9. A priori, this describes

the singular locus as the union of a closed set and a locally closed set, but Nagata’s

openness criterion [15, Theorem 24.2] applies readily to the complement.

4.2. Elementary proof. We now provide a concrete self-contained proof

of Theorem A in the affine case. For simplicity, we assume that the residue field

of the base discrete valuation ring is algebraically closed, though the perfect case

follows easily.

THEOREM 4.12. Let (V,pV,K) be an unramified discrete valuation

ring of mixed characteristic. Assume that K is algebraically closed. Let
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T = V [x1, . . . ,xn], and ¶ be a p-derivation mod p2 on T extending the p-

derivation mod p2 on V . Let I = (f1, . . . ,fa) be an ideal of pure height h in T ,

and R= T/I . Let p be a prime ideal of R with p ∈ p.

Then, the mixed Jacobian matrix J̃(f) considered in »(p) has rank at most h,

and equality holds if and only if Rp is regular.

Proof. First, we consider the case where p is a maximal ideal m. Let n be

the preimage of m in T . It follows from the Nullstellensatz that the image of n in

T/pT is of the form (x1 −a1, . . . ,xn−an) for some a1, . . . ,an ∈K, so n is of the

form n= (p,x1 −v1, . . . ,xn−vn) for some v1, . . . ,vn ∈ V with vi = ai+pV , and

fj(v1, . . . ,vn) ∈ pV for j = 1, . . . ,a.

We aim to compute the dimension of m/m2 as a K-vector space. To this end,

there is a short exact sequence

0 → I

n2 ∩ I → n

n2
→ m

m2
→ 0,

so Rm is regular if and only if the K-vector space dimension of I/(n2∩I) is equal

to dim(Tn)−dim(Rm). Since Tn is catenary, and each minimal prime of I has the

same height, we have that dim(Tn)−dim(Rm) = ht(ITn) = h for n§ I .

Write x̃i = xi− vi for i = 1, . . . ,n, so that n = (p, x̃1, . . . , x̃n). Using Taylor’s

formula, for each fj , we get

fj =
∑

(α1,...,αn)

∂α1+···+αn fj
∂xα1

1 · · ·∂xαn
n

(v1, . . . ,vn)x̃
α1

1 · · · x̃αn
n

≡ fj(v1, . . . ,vn)+
n∑

i=1

∂fj
∂xi

(v1, . . . ,vn)x̃i mod n2.

By Remark 2.4 (6) we then have

¶(fj)≡ ¶
(
fj(v1, . . . ,vn)+

n∑

i=1

∂fj
∂xi

(v1, . . . ,vn)x̃i

)
mod n.

Since fj(v1, . . . ,vn) ∈ pV ¦ n, we have

Cp

(
fj(v1, . . . ,vn),

( n∑

i=1

∂fj
∂xi

(v1, . . . ,vn)x̃i

))
∈ n,

so

¶(fj)≡ ¶
(
fj(v1, . . . ,vn)

)
+ ¶

( n∑

i=1

∂fj
∂xi

(v1, . . . ,vn)x̃i

)
mod n.
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Likewise, since x̃i ∈ n, Cp({∂fj∂xi
(v1, . . . ,vn)x̃i}) ∈ n, and hence

¶(fj)≡ ¶(fj(v1, . . . ,vn))+

n∑

i=1

¶
(∂fj
∂xi

(v1, . . . ,vn)x̃i

)
mod n.

By the product rule for p-derivations, we then have

¶(fj)≡ ¶(fj(v1, . . . ,vn))+
n∑

i=1

(∂fj
∂xi

(v1, . . . ,vn)
)p
¶(x̃i) mod n.

Note that, for ³ ∈ V , by Remark 2.4 (7), if we write

fj(v1, . . . ,vn)≡ p³ mod p2V,

we obtain that ¶(fj(v1, . . . ,vn))≡ ³p in K = V/pV . Thus,

³≡ ¶(fj)
1/p−

∑

i

∂fj
∂xi

(v1, . . . ,vn)¶(x̃i)
1/p

mod n.

Using this equivalence to substitute in for fj(v1, . . . ,vn) in the first expression for

fj modulo n2 above, we get that the K-linear expression for [fj ] ∈ n/n2 in terms

of the basis

[p], [x̃1 −p¶(x̃1)
1/p], . . . , [x̃n−p¶(x̃n)1/p]

is

[fj ] = ¶(fj)(v)
1/p

[p]+
∂fj
∂x1

(v)[x̃1 −p¶(x̃1)
1/p]+ · · ·+ ∂fj

∂xn
(v)[x̃n−p¶(x̃n)1/p],

where bars denote images modulo n. Thus, the dimension of I/(n2 ∩ I) as a K-

vector space is the rank of the matrix




¶(f1)(v)
1/p ∂f1

∂x1
(v) . . . ∂f1

∂xn
(v)

¶(f2)(v)
1/p ∂f2

∂x1
(v) . . . ∂f2

∂xn
(v)

...
...

. . .
...

¶(fa)(v)
1/p ∂fa

∂x1
(v) . . . ∂fa

∂xn
(v)




.
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Raising elements to pth powers in K does not affect which minors are zero, so the

rank of the matrix above is the same as that of




¶(f1)(v)
∂f1

∂x1
(v)

p
. . . ∂f1

∂xn
(v)

p

¶(f2)(v)
∂f2

∂x1
(v)

p
. . . ∂f2

∂xn
(v)

p

...
...

. . .
...

¶(fa)(v)
∂fa
∂x1

(v)
p

. . . ∂fa
∂xn

(v)
p




.

This is just the image of J̃(f) in T/n = R/m, and thus the K-dimension of I/

(n2 ∩ I) is equal to the rank of J̃(f) considered in »(m).

Since the K-vector space dimension of I/(n2 ∩ I) is less than or equal to the

height with equality if and only if Rm is regular, the theorem is established in the

case of a maximal ideal.

Now, the inequality on the rank of J̃(f) for general prime ideals follows by

a basic semicontinuity argument, since maximal ideals are dense in VR(p). Like-

wise, the characterization of equality in terms of nonsingularity follows, since R is

excellent, and so the singular locus is closed. □

4.3. Theorem B. We now give the proof of Theorem B.

THEOREM 4.13. Let V be a discrete valuation ring with uniformizer p, and

F -finite residue field. Let (R,m,k) a local ring with p ∈ m that is essentially of

finite type over a complete V -algebra.

The local ring R is regular if and only if Ω̃R|(Z,δ) is free of rank dim(R) +

logp[k : kp].

Proof. Let K = V/pV , and set a = logp[K : Kp] and b = logp[k : kp]. Write

R ∼= (T/I)p, where T is a polynomial ring over a power series ring over V , and p

is a prime ideal of T that contains I . We observe that J̃(f) is a presentation matrix

for Ω̃R|(Z,δ), with dim(T )+a generators.

First, we claim that dim(T )+a= height(Ip)+dim(R)+b. We use the formula

logp[»(q) : »(q)p]− logp[»(q
′) : »(q′)p] = height(q′/q) for q¦ q′ in an F -finite ring

of positive characteristic; cf. [13], [15, Lemma 42.7]. Applying this in T with the

maximal ideal generated by the variables and the zero ideal, and then with p and

the zero ideal, we have that

dim(T )+a= logp[frac(T ) : frac(T )p] = height(p)+ b.

Since dim(R) = height(p)−height(Ip), the claim holds.
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Now, by the characterization of locally free modules via Fitting ideals (cf. [14,

Proposition D.8]), Ω̃R|(Z,δ) is locally free of rank dim(R)+ b if and only if

Fdim(R)+b(Ω̃R|(Z,δ)) =R and F<dim(R)+b(Ω̃R|(Z,δ)) = 0.

Using the equality above and the presentation by the mixed Jacobian matrix,

Ω̃R|(Z,δ) is locally free of rank dim(R)+ b if and only if

Iheight(Ip)(J̃(f)) =R and I>height(Ip)(J̃(f)) = 0.

Now, if Iheight(Ip)(J̃(f)) = R, then by Lemma 4.6, dimk(im(Ip → p/p2)) =

height(Ip), so Ip can be generated by height(Ip) elements; in this case we can

replace f by such a generating set and the latter condition above is automatic.

Thus, Ω̃R|Z is locally free of rank dim(R)+ b if and only if Iheight(Ip)(J̃(f)) = R,

which happens if and only if Iheight(Ip)(J̃(f)k) = k, which by Lemma 4.6 again is

equivalent to dimk(image(Ip → p/p2)) = height(Ip). But this just means that the

image of I in Tp is minimally generated by a regular system of parameters, so this

is equivalent to nonsingularity of R. □

5. Lifting the Γ-construction to mixed characteristic. The hypothesis of

Theorem B in Section 1 (Theorem 4.13) requires that the discrete valuation ring

have an F -finite residue field. Let R be essentially of finite type over a complete

local K-algebra whose residue class field is K of characteristic p > 0. In [9] a con-

struction is given in terms of a p-base Λ for such a field K of characteristic p and

a sufficiently small but cofinite subset Γ of Λ to give a faithfully flat purely insep-

arable extension of R, denoted RΓ, such that certain properties of R are preserved

by the extension, e.g., being reduced, a domain, regular, or Gorenstein F -regular.

See (6.3)–(6.13) of [9]. Since R ↪→ RΓ is purely inseparable, the prime spectra of

the two rings may be identified, and if Γ is sufficiently small the singular locus is

preserved. Note that certain results of [9] stated for K-algebras of finite type over

a complete local K-algebra extend at once to the case of K-algebras essentially

of finite type. Also note that the term “Γ-construction” is not used in [9], but has

become standard in a number of papers where it has been utilized.

In this section we discuss lifting this construction to mixed characteristic,

which broadens the applicability of Theorem B. Instead of working over a field

K of positive prime characteristic, we work over a mixed characteristic unrami-

fied discrete valuation ring (V,pV,K). We fix a p-base Λ for K and a lifting Λ̃ of

that p-base to V . We consider a local ring B containing V complete with respect

to an ideal b such that pB+ b is the maximal ideal of B (for example, B might

be V [[x1, . . . ,xn]] whether or not V is complete) and an algebra R essentially of

finite type over B. We construct a faithfully flat extension RΓ̃ of R such that the
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defining ideal of the singular locus in R extends to the defining ideal of the sin-

gular locus in RΓ̃ when Γ̃ is a sufficiently small cofinite subset of Λ̃. Moreover,

RΓ̃/pRΓ̃ ∼= (R/pR)Γ.

We first review the Γ-construction in characteristic p, and then discuss the

mixed characteristic version.

5.1. The Γ-construction in positive prime characteristic.

Discussion 5.1. Fix a field K of positive prime characteristic p, and fix a p-

base Λ for K. Let e denote an integer varying in N. If ¼1, . . . ,¼n are elements

of the p-base Λ, then Kpe [¼1, . . . ,¼n] has degree pne over Kpe , or, equivalently,

K[¼
1/pe

1 , . . . ,¼
1/pe

n ] has degree pen over K, where the elements ¼
1/pe

i are taken in

a suitably large algebraic field extension of K. It follows that if the zλ are indeter-

minates indexed by Λ, then for any subset Λ0 ¦Λ, K[¼1/pe : ¼ ∈Λ0]∼=K[zλ : ¼ ∈
Λ0]/(z

pe

λ −¼ : ¼ ∈ Λ0).

Let K and Λ be as in Discussion 5.1. In the sequel, Γ will always denote a

subset of Λ, usually cofinite in Λ, i.e., a subset such that Λ∖Γ is finite. Let KΓ
e

denote the field extension K[µ1/pe : µ ∈ Γ]. If (B,mB) is a complete local K-

algebra with residue class field K, let BΓ
e :=KΓ

e ¹̂KB, where for a field extension

K → L, L¹̂KB denotes the completion of L¹K B with respect to mB(L¹K

B). If we write B as a module-finite extension of A=K[[x1, . . . ,xd]], then AΓ
e
∼=

KΓ
e [[x1, . . . ,xd]], B

Γ
e
∼=B¹AA

Γ
e . If R is any ring essentially of finite type over B,

we define RΓ
e =R¹BB

Γ
e . R may also be viewed as essentially of finite type over

A, and it is also correct that RΓ
e =R¹AA

Γ
e . Finally, we define

RΓ :=
⋃

e

RΓ

e .

We also have

RΓ ∼=R¹BB
Γ ∼=R¹AA

Γ.

In characteristic p > 0, we say that R ↪→ S is purely inseparable if every element

in S has a peth power in R for some e, which may depend on the element. This

implies Spec(S)∼= Spec(R): the unique prime of S lying over P inR is the radical

of PS. Note that

AΓ =
⋃

e

KΓ

e [[x1, . . . ,xd]]

is regular, with maximal ideal generated by x1, . . . ,xd, and that it is purely insepa-

rable over A. It is shown in [9] that AΓ is F -finite, and it follows that BΓ and RΓ

are F -finite as well. Since AΓ is evidently faithfully flat over A, it follows that RΓ

is faithfully flat over R in general. We summarize these facts as well as some other

results proved in [9] in the next theorem.
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Notation 5.2. We let (B,mB,K) be a complete local ring K-algebra, and K

be a field of positive prime characteristic p, so thatK ¦B is a coefficient field. Let

Λ be a fixed p-base for K, let R be an algebra essentially of finite type over B, and

let Γ be a varying cofinite subset of Λ, so that RΓ :=BΓ¹BR is defined.

THEOREM 5.3. Let notation be as in 5.2. Then:

(1) RΓ =BΓ¹BR is an F -finite ring that is a faithfully flat purely inseparable

extension of R.

(2) If (A,mA,K) is a complete local K-algebra such that A→ B is a local

module-finite homomorphism, then AΓ¹AR∼=BΓ¹BR=RΓ.

(3) If Γ ¦ Γ0 are cofinite in Λ, then RΓ → RΓ0 is faithfully flat and purely

inseparable.

(4) If I is an ideal of R, then (R/I)Γ ∼=RΓ/IRΓ.

(5) Given finitely many prime or radical ideals in R, there exists Γ0 cofinite in

Λ such that for all Γ¦ Γ0 cofinite in Γ, the expansions of these ideals toRΓ remain

prime or reduced, respectively. In particular, if R is a domain or reduced, one can

choose Γ0 so that RΓ is a domain or reduced, respectively, for all Γ ¦ Γ0 cofinite

in Γ0.

For (c), note that for complete local rings of the form A=K[[x1, . . . ,xn]], the

faithful flatness of AΓ →AΓ0 is clear, and the general case follows by base change

to R.

We note that part (e) reduces to the case of one prime ideal, which may be

taken to be (0), since a radical ideal is a finite intersection of prime ideals, and

the various choices of Γ for individual primes may be intersected. For the proof

part (e), see (6.13) of [9] (the extension from finite to essentially finite algebras is

immediate).

Consider a property P of rings (e.g., Cohen-Macaulay, Gorenstein, or regular).

We are interested in the existence of Γ0 cofinite in Λ such that for all Γ¦Γ0 cofinite

in Γ, the locus of primes p where R has property P is the same in R as in RΓ. If

the locus is closed and defined by I ¦R, this is equivalent to the assertion that the

corresponding locus is defined by IRΓ in RΓ.

Discussion 5.4. Recall that if one has a flat local map (R,m)→ (S,n) then S

is Cohen-Macaulay if and only if both R and the closed fiber S/mS are Cohen-

Macaulay, in which case the type of S is the product of the types of R and S/mS.

Moreover, if S is regular, then R is regular; cf. [15].

We now recall some important properties of the Γ-construction in positive char-

acteristic. The result below overlaps substantially with [8, 9, 16], though we include

it for completeness.

THEOREM 5.5. Let notation be as in 5.2. Let P be a property of Noetherian

rings such that

(1) R has P if and only if all of its localizations have P .
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(2) IfR is essentially of finite type over an excellent local ring, the locus where

R has P is open.

(3) If R to S is a flat local homomorphism and S has P then R has P .

(4) If R to S is a flat, purely inseparable, local homomorphism such that R

has P and the closed fiber is a field, then S has P .

Then there exists a cofinite subset Γ0 of Λ such that for all cofinite subsets Γ¦ Γ0,

the locus where R has property P (and, consequently, the locus where R does

not have property P) is the same as the corresponding locus for RΓ under the

identification Spec(R)∼= Spec(RΓ).

Hence, if the locus where R does not have P is Zariski closed with defining

ideal I , for all Γ¦ Γ0 cofinite in Λ, the locus where RΓ does not have P is closed

and defined by IRΓ.

In particular, this is the case if P is the property of being any of the following:

(i) regular

(ii) Cohen-Macaulay

(iii) Cohen-Macaulay of type at most h

(iv) Gorenstein

(v) Gorenstein and F -regular.

Proof. As Γ cofinite in Λ decreases, the locus where RΓ has P is ascend-

ing by Theorem 5.3(c). Since open sets in Spec(R) have ACC, we can choose Γ0

for which this locus is maximal. We claim that this choice of Γ0 has the required

property. If not, there is some prime p in R corresponding to q in RΓ0 such that

Rp has property P by RΓ0

Q does not. But we may choose Γ1 cofinite in Γ0 such

that q1 = pRΓ1 is prime. This implies that the closed fiber of the flat local map

Rp → (RΓ1)q1
is a field, since q1 = pRΓ1 . Thus, the set of points of Spec(RΓ1)

where P holds has increased strictly to contain the point Q1 corresponding to P ,

contradicting the maximality of the P locus corresponding to Γ0.

The fact that we may apply this result in cases (i)–(iv) follows from Discus-

sion 5.4. In the case of (v) we need check (4). Note that in the excellent Gorenstein

case, weakly F -regular and F -regular are equivalent, and in the local case it suf-

fices to check that the ideal I generated by one system of parameters f1, . . . ,fd
is tightly closed. Let the image of u be a socle generator in R/(f1, . . . ,fd). Since

the closed fiber is a field, the image of u is a socle generator in S/IS as well. Let

c be a test element in S. After replacing c by cp
e

we may assume that c ∈ R. If

u is in the tight closure of IS then cuq ∈ (IS)[q] = I [q]S for all q k 0, and so

cuq ∈ I [q]S∩R= I [q] for all qk 0, contradicting that R is weakly F -regular. □

5.2. The Γ̃-construction in mixed characteristic.

Notation 5.6. Let (V,pV,K) be a discrete valuation ring of mixed character-

istic p. Let Λ be a p-base for K, and Λ̃ be a fixed lifting to V . We denote the

by ¼̃ the element lifting ¼ ∈ Λ. For each subset Γ of Λ we have a correspond-

ing set Γ̃ in Λ̃. We shall eventually restrict Γ to be cofinite in Λ, but this is not
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needed in the definitions. We assume that we have, for every e g 1, a family of

indeterminates Z
λ̃,e

indexed bijectively by the elements of Λ̃. Of course, they are

also in bijective correspondence with the elements of Λ. We define V Γ̃
e to be the

ring V [Zγ̃,e : µ̃ ∈ Γ̃]/(Zp
e

γ̃,e− µ̃ : µ̃ ∈ Γ̃). Note that there is a V -algebra injection

of V Γ̃
e ↪→ V Γ̃

e+1 that sends the image of Zγ̃,e to the image of Zpγ̃,e+1
. We define

V Γ̃ :=
⋃
eV

Γ̃
e using these injections.

We first note:

PROPOSITION 5.7. All of the rings V Γ̃
e as well as V Γ̃ are discrete valua-

tion rings with maximal ideal generated by p. Moreover, V Γ̃
e /pV

Γ̃
e

∼= KΓ
e , and

V Γ̃/pV Γ̃ ∼=KΓ. For e′ > e, and Γ′ £ Γ, The inclusion maps among the rings

(†) V ↪→ V Γ̃

e ↪→ V Γ̃′
e′ ↪→ V Γ̃′

↪→ V Λ̃

are all free local maps.

Proof. Since the extension V → V Γ̃
e is integral, all maximal ideals of V Γ̃

e must

lie over pV .

Modulo pV Γ̃
e , we obtain K[Zγ̃ ]/(Z

pe

γ̃ −µ : µ ∈ Γ). Since the extensions of K

obtained by adjoining peth roots of a p-base are linearly disjoint, the quotient mod

pV Γ̃
e is the field KΓ

e . To show this is a discrete valuation ring with maximal ideal

generated by p, it suffices to show this for finite subsets of Γ̃, and take a direct limit.

But in the case where where we adjoin peth roots for a finite subset of Γ, we obtain

a module-finite extension, free over V , which is local with maximal ideal (p), and

p is not nilpotent. These hypotheses suffice to guarantee that the extension ring is

a discrete valuation ring. Likewise, by a direct limit argument, V Γ̃ is a discrete

valuation ring with maximal ideal pV Γ̃ and residue class field KΓ.

The freeness assertions for V Λ̃ over V follows because one has a free basis

consisting of all monomials ¼̃α1

i1
· · · ¼̃αs

is
where ¼i1 , . . . ,¼is are distinct, s varies, and

the ³i are positive rational numbers less than 1 whose denominators are powers

of p. One gets a basis for each V Γ̃ (respectively, V Γ̃
e ) by using the part of the

There is an
extra left
delimiter or a
missing right
one.

basis involving only monomials with ¼ij ∈ Γ (respectively, and the exponents in

the denominators are most p. Descriptions of the free bases in the remaining cases

are left to the reader. □

CONSTRUCTION 5.8. Let A := V [[x1, . . . ,xd]]. We let

AΓ̃

e := V Γ̃

e ¹̂x
VA

∼= V Γ̃

e [[x1, . . . ,xd]],

where ¹̂x
is completion with respect to the expansion of the ideal (x1, . . . ,xd). We

then let AΓ̃ :=
⋃
eA

Γ̃
e .
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Now suppose that R is essentially of finite type over A. We define

RΓ̃

e :=AΓ̃

e ¹AR and RΓ̃ :=AΓ̃¹AR∼=
⋃

e

RΓ̃

e ,

since ¹A commutes with direct limit.

We also describe a more invariant formulation that does not directly utilize

formal power series.

Let B denote a local V -algebra with residue class field K such that B is com-

plete with respect to an ideal b such that p+b is the maximal ideal of B.

Then there is a V -algebra surjection A = V [[x1, . . . ,xd]] ↠ B such that the

xj map to generators of B. Then we can construct BΓ̃
e using the fact that B is an

image ofA, or directly, as the completion of V Γ̃
e ¹V B with respect to the expansion

of B, which we denote V Γ̃
e ¹̂b

VB.

Likewise, we may construct BΓ̃ by thinking of B as an A-algebra, or directly

as
⋃
eB

Γ̃
e . Now, if R is essentially of finite type over B, it does not matter whether

we take RΓ̃
e (respectively RΓ̃) as BΓ̃

e ¹BR (respectively, BΓ̃¹V R) or as AΓ̃
e ¹AR

(respectively, AΓ̃¹V R). It also follows that if we have two choices of B, say B→
C with the map local and C module-finite over the image ofB, andR is essentially

of finite type over C and, hence, B, we may calculate RΓ̃
e or RΓ̃ using either B

or C.

THEOREM 5.9. Let notation be as in Construction 5.8. For all sufficiently small

cofinite Γ̃¦ Λ̃, the defining ideal of the singular locus in R expands to the defining

ideal of the singular locus in RΓ̃.

Proof. Choose Γ so that the set of primes q containing p where Rq and RΓ̃

q̃

are both regular is maximal. Note that we may identify VR(p)∼= Spec(R/pR) with

V
RΓ̃(p)∼= Spec(RΓ̃/(p))∼= (R/pR)Γ: here q̃ denotes the unique prime ofRΓ̃ lying

over q. One can do this since the open sets in Spec(R/pR) have ACC.

For primes ofR containing p the maximality of Γ implies that the regular locus

in R is identified with the regular locus of primes in RΓ̃ containing p: if this fails

for q, one may decrease Γ so that qRΓ̃ = q̃ (the issues may be considered modulo p,

where the statement follows from the corresponding result for the Γ-construction).

Hence, the regular loci for primes containing p agree for this Γ or any other smaller

cofinite choice of Γ. At primes not containing p, one may localize both rings at the

element p. The map is then geometrically regular, and one has regularity at a prime

of the target if and only if one has regularity at its contraction. □

We conclude by applying the mixed characteristic Γ-construction to give a

regularity criterion without any F -finiteness hypotheses on the residue field. The

following is Theorem C from the introduction.
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COROLLARY 5.10. Let V be an unramified discrete valuation ring of mixed

characteristic, and let (R,m,k) be essentially of finite type over a complete local

V -algebra with p ∈m. We retain the notation of Construction 5.8.

The ring R is regular if and only if for any sufficiently small cofinite subset

Γ̃ ¦ Λ̃, Ω̃
RΓ̃|(Z,δ) is free of rank dim(R) + logp[k(R

Γ̃) : k(RΓ̃)p], where k(RΓ̃)

denotes the residue field of RΓ̃.
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44 (1852), 93–146.

[13] E. Kunz, On Noetherian rings of characteristic p, Amer. J. Math. 98 (1976), no. 4, 999–1013.

[14] , Kähler Differentials, Adv. Lectures Math., Friedr. Vieweg & Sohn, Braunschweig, 1986.

[15] H. Matsumura, Commutative Algebra, 2nd ed., Math. Lecture Note Series, vol. 56, Benjamin/Cummings

Publishing, Reading, MA, 1980.

[16] T. Murayama, The gamma construction and asymptotic invariants of line bundles over arbitrary fields,

Nagoya Math. J. 242 (2021), 165–207.

[17] M. Nagata, A Jacobian criterion of simple points, Illinois J. Math. 1 (1957), 427–432.



32 M. HOCHSTER AND J. JEFFRIES

[18] , A general theory of algebraic geometry over Dedekind domains. III. Absolutely irreducible

models, simple spots, Amer. J. Math. 81 (1959), 401–435.
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