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ABSTRACT: We investigated the predictability (forecast skill) of short-term droughts using the Palmer drought severity
index (PDSI). We incorporated a sophisticated data training (of decadal range) to evaluate the improvement of
forecast skill of short-term droughts (3 months). We investigated whether the data training of the synthetic North
American Multi-Model Ensemble (NMME) climate has some influence on enhancing short-term drought predictability.
The central elements are the merged information among PDSI and NMME with two postprocessing techniques. 1) The bias
correction–spatial disaggregation (BC-SD) method improves spatial resolution by using a refined soil information introduced
in the available water capacity of the PDSI calculation to assess water deficit that better estimates drought variability. 2) The
ensemble model output statistic (EMOS) approach includes systematically trained decadal information of the multimodel en-
semble simulations. Skill of drought forecasting improves when using EMOS, but BC-SD does not increase the forecast skill
when compared with an analysis using BC (low spatial resolution). This study suggests that predictability forecast of drought
(PDSI) can be extended without any change in the core dynamics of the model but instead by using the sophisticated EMOS
postprocessing technique. We pointed out that using NMME without any postprocessing is of limited use in the suite of
model variations of the NMME, at least for the U.S. Northeast. From our analysis, 1 month is the most extended range we
should expect, which is below the range of the seasonal scale presented with EMOS (2 months). Thus, we propose a new de-
sign of drought forecasts that explicitly includes the multimodel ensemble signal.
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1. Introduction

The Northeast United States (NE) was affected by an ex-
treme drought in 2016 that was an extension of the very dry
multiyear drought, continental scale focused in California
(Tortajada et al. 2017; Kern et al. 2020; Yang et al. 2021). In
the NE, for most of the years prior to 2016, the abundance
of water}due to the proximity to midlatitude cyclone
tracks}has been the normal pattern. However, in the future,
this water abundance might not be the normal if the effect of
climate change on extremes unfolds sooner than expected
(Hayhoe et al. 2007; Fan et al. 2015). The 2016 NE drought
caused local impacts such as water restriction, crop losses, pas-
ture yield depletion, and stress on entire communities (Sweet
et al. 2017). Therefore, assessment of predictability of
droughts is an urgent social need. Nowadays, predictability of
climate variables, such as precipitation, is in the range of 10–30
days (Saha et al. 2014), which limits the amount of time to in-
form}with high certainty}about the future intensity of
drought. This short 1-month range certainty can be even fur-
ther reduced when interannual transitions from normal to ex-
tremely dry conditions occur (Notaro et al. 2006; Knighton

et al. 2019). How the temporal range of drought predictability
in the NE behaves is the major motivation of this study.

Droughts in the NE seem to be affected by the decadal
component of the climate (Barlow et al. 2001). Barlow et al.
(2001) have found that the 1962–66 NE drought was related
to the sea surface temperature (SST) variability of the North
Pacific mode (Deser and Blackmon 1995; Zhang et al. 1998).
Woollings et al. (2015) claimed that the North Atlantic Oscil-
lation (NAO; Hurrell et al. 2001) might influence the poten-
tial predictability of drought in the NE due to the link with
the North Atlantic upper jet and storm track. Woollings et al.
(2015) showed that the NAO has two dominant modes that
affect the NE: an interannual–decadal one (,30 years)
that positively affects temperature, and a multidecadal one
(.30 years) that affects precipitation. In other regions
such as Australia, a decadal modulation of drought has
been observed (Palmer et al. 2015). Using a network of
tree-ring chronologies, Palmer et al. (2015) identified an
out-of-phase drought pattern between eastern Australia
and southern New Zealand that is related to the interdeca-
dal Pacific oscillation (IPO; Power et al. 1998). These pre-
vious studies are evidence that the decadal component is
key ingredient in the variability of drought. Therefore, a
systematic approach to assess drought predictability under
the umbrella of these decadal events is key to informing
about the potential occurrence of short-term droughts. We
explored how this decadal component can be incorporated
in the drought forecast to add a potential missing link that
could help us to extend the range of drought predictability.

For this study, we used the Palmer drought severity index
(PDSI; Palmer 1965), which is the appropriate tool to investi-
gate whether incorporating the signal of decadal variability

Denotes content that is immediately available upon publica-
tion as open access.

Supplemental information related to this paper is available
at the Journals Online website: https://doi.org/10.1175/JHM-D-21-
0237.s1

Corresponding author: Carlos M. Carrillo, carrillo@cornell.edu.

DOI: 10.1175/JHM-D-21-0237.1
Ó 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

C A RR I L L O E T A L . 1455SEPTEMBER 2022


%$'� &�&$�)$'��)�����
�������
������*�� �'& � &!��&���*��$( "$����������������	���������

https://doi.org/10.1175/JHM-D-21-0237.s1
https://doi.org/10.1175/JHM-D-21-0237.s1
mailto:carrillo@cornell.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


improves the predictability of short-term droughts. The PDSI
incorporates temperature, precipitation, soil moisture storage,
and net radiation that are relevant in the dynamics of the
dry climate regime in the NE. The PDSI has been used since
the 1960s to assess the severity of droughts (e.g., Palmer
1965; Alley 1984; Briffa et al. 1994; Wells et al. 2004, Dai
et al. 2004; van der Schrier et al. 2011), and it was found to
be an objective metric to assess the variability of short-term
droughts (Lohani et al. 1998; Sims et al. 2002). In this paper,
a short-term drought is defined in the intraseasonal or subseaso-
nal temporal scale (e.g., from weeks up to three months; Lorenz
et al. 2017). The PDSI metric was found to be comparable with
other metrics such as the standardized precipitation index (SPI;
McKee et al. 1993) and standardized precipitation and evapo-
transpiration index (SPEI; Vicente-Serrano et al. 2010).

This insight on the predictability of drought is not investi-
gated based on changes in the model core dynamics or param-
eterizations, but by using a special statistic postprocessing
treatment over all possible signals of potential predictability.
Several drought studies have incorporated multimodel ensem-
ble approaches with successful results (Yuan and Wood 2013;
Infanti and Kirtman 2014; Becker et al. 2014; Bolinger et al.
2017). However, using the traditional multimodel ensemble
mean does not provide additional relevant information, nor
does it explore decadal signals that could improve predictabil-
ity. In the early 2000s, several hypotheticals (Wilks 2006) and
“real” forecast (Wilks and Hamill 2007) time series were used
to test the value added of ensemble postprocessing and found
positive results. However, applications using PDSI com-
puted from a multimodel ensemble dataset trained over de-
cadal length are not yet a common tool (Bolinger et al.
2017; Carrillo et al. 2018; Hao et al. 2018). This study uses
the currently available (hindcast and forecast) North
American Multi-Model Ensemble (NMME; Kirtman et al.
2014) datasets to fulfill this gap.

We then tested the ability of the PDSI–NMME to forecast
short-term drought (predictability of the second order; Becker
et al. 2014). We investigated whether the decadal training of
the synthetic multimodel ensemble climate has some influence
on enhancing this predictability. We answer whether the en-
semble model output statistic (EMOS) outperforms the tradi-
tional average over a long period. If the above is true, we
could propose a new design of drought forecasting that explic-
itly includes the multimodel ensemble signal as a framework
to assess drought severity in the NE region. We hypothesize
that the EMOS methods applied at the NMME multimodel
ensemble will outperform the ordinary ensemble mean train-
ing of the entire time domain. We can then utilize this assess-
ment to adjust an operational drought forecast and add value
to the biased numerical prediction.

2. Datasets and methodology

a. The Northeast Regional Climate Center dataset

Temperature and precipitation datasets were obtained from
the Northeast Regional Climate Center (NRCC; DeGaetano
and Belcher 2007; DeGaetano and Wilks 2009) at monthly

temporal resolution from 1950 to 2016. Its original resolution
is 4 km, but it was linearly regridded to 18 and 32 km. We used
the NRCC dataset because of its real-time operational availabil-
ity for temperature and precipitation, and the low degree of un-
certainty found in the Northeast region (Bishop and Beier
2013). The NRCC temperature gridded product is based on the
rapid update cycle (RUC) model output that is used to interpo-
late to the higher-resolution Cooperative Observer Network sta-
tions (DeGaetano and Belcher 2007). Two interpolations are
performed: elevation adjustment using the RUC lapse rate, and
the horizontal interpolation using a multiquadratic approach.
NRCC precipitation uses a radar-based correction to adjust rain
gauge data to a refined spatial resolution (DeGaetano andWilks
2009). The method was applied to daily precipitation using an
inverse-with-distance interpolation. Our analysis compares the
coarse resolution to show consistency among resolution in the
dataset.

b. The North American Multi-Model Experiment dataset

Temperature and precipitation forecast products were ob-
tained from the NMME project (Kirtman et al. 2014). Five
models were selected (see Table 1), and from each model 10
ensemble members were used. As some models have more
than 10 ensemble members, we enforced an equal number of
ensemble members in our calculation. The initial forecast on
NMME starts on the first day of each month. Therefore, for a
given month, we have 50 possible realizations. It was already
shown that multimodel forecasting outperforms the single-
model approach (Kirtman et al. 2014; Saha et al. 2014), and
the details of how this superiority happens were extensively
analyzed focused on error compensation and reliability of
the single model (Palmer et al. 2004; Hagedorn et al. 2005;
Weigel et al. 2008). The NMME focused on seasonal to in-
terannual time scales, but we are using the three first lead
time forecasting months. The original model grids are line-
arly interpolated to a 18 3 18 resolution. The period of the
analysis is from 1982 to 2012 (31 years). Temperature and
precipitation from the NMME have shown some forecast
skill when analyzed with anomaly correlation (Becker et al.
2014).

c. The Palmer drought severity index

We used the PDSI to define the dryness of the NE region.
PDSI has been used since the 1960s to evaluate meteorologi-
cal droughts across the United States and worldwide (Palmer
1965). The observational precipitation and temperature data
to compute the PDSI are from the NRCC (observed) and the
NMME (forecasted) datasets. The calibration period for this
PDSI is from 1950 to 1980. The PDSI is computed using the
Thornthwaite (TH) and Penman–Monteith (PM) variations
for the potential evapotranspiration (van der Schrier et al.
2011). To compute potential evapotranspiration needed for
the water budget balance in PDSI, we use net radiation fields
from the NCEP–NCAR Reanalysis-1 (Kalnay et al. 1996).
However, the forecast skill analysis is only performed on TH for
consistency in radiation parameters for the historical and fore-
cast data. The available water capacity (AWC), a term used in
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the PDSI soil sublayer model, is defined from NASA soil profile
available water capacity (ORNL DAAC 2017), which was re-
gridded to 32 km from the original 0.0838 3 0.0838 resolution
(http://webmap.ornl.gov/ogcdown/dataset.jsp?ds_id=569). Biased
low or high values of AWC might produce the wrong estimation
of dryness in the PDSI balance, with underestimated dryness for
low AWC due to the loss capacity of the antecedent weather and
overestimated water availability for large AWC especially in the
wet climate such as the Northeast. In the historical period, our
PDSI was compared with NOAA’s PDSI (Dai et al. 2004). An
analysis of the historical 1962–66 drought showed similar spatial
distribution (Fig. S1 in the online supplemental material). The sig-
nal of the drought exists in both datasets. And although NOAA’s
PDSI has lower resolution and different calibration period, both
show the 1960s drought centered in the NE region. A numerical
comparation for the NE region shows that both datasets share an
explained variance of 77.4%.

d. The bias correction and spatial disaggregation

A bias correction–spatial disaggregation (BC-SD) ap-
proach was applied to temperature and precipitation to cor-
rect the mean bias (BC), and to increase spatial resolution
(SD) up to 32 km, while conserving temperature and precip-
itation changes. We followed the proposed approach by
Maurer and Hidalgo (2008). The BC-SD is completed in
three steps. 1) Mean and variance biases are corrected using
a quantile mapping approach (Panofsky and Brier 1968) for
each grid at the NMME original resolution (18 3 18). Ob-
served temperature and precipitation were previously inter-
polated to match the coarse resolution (18 3 18); this is the
bias-corrected part. 2) A scalar factor is computed for each
monthly time step in the bias-corrected NMME dataset in
step 1 that quantifies the departure from the climatology of
the observed data for each month: FT and FP. For both vari-
ables, a different departure from the climatology was used.
Thus, FT = T 2 TOBS is the departure scalar factor for tem-
perature and FP = P/POBS for precipitation, where TOBS and
POBS are the monthly temperature and precipitation clima-
tology, respectively. 3) Finally, the scale factor is then inter-
polated to the target higher resolution (HIGH = 32 km):
FT(HIGH) and FP(HIGH); and the reverse process calcula-
tion of scaling is used but with the climatology of the target
higher resolution: T(HIGH) = FT(HIGH) 1 TOBS(HIGH)
and P(HIGH) = FP(HIGH) 3 POBS(HIGH).

e. The ensemble model output statistics

We used the nonhomogeneous Gaussian regression (NGR;
Gneiting et al. 2005) as the ensemble model output statistics

(EMOS; Hamill et al. 2004; Wilks and Hamill 2007) to post-
process the NMME output of drought in the Northeast. The
EMOS approach will potentially reduce the dispersion error
due to initialization uncertainty (Lorenz 1996) and model con-
figuration and parameterization. In the NGR approach, the
probabilistic forecast, Pr{V # q}, for a forecast quantile (q) is
specified with

Pr(V# q) ! F

q 2 a 1
∑k!5

k!1
bkxk

( )

(c 1 ds2ens)1/2



, (1)

where F[ ] indicates the evaluation of the cumulative distribu-
tion function; xk is the ensemble average of each NMME
model: CanCM3, CanCM4, CESM1, FLORB01, and GEOS-5;
and s2ens is the ensemble variance. The parameters a, bk, c, and d
define the adjusted mean,

m ! a 1 b1x1 1 b2x2 1 b3x3 1 b4x4 1 b5x5, (2)

and variance,

s2 ! c 1 ds2ens, (3)

where xk ! (1/10)∑i!10
i!1 xk,i and s2ens ! [1/(502 1)]∑i!50

i!1 (xi 2 x)2
with x ! (1/50)∑i!50

i!1 xi. In this approach, models are not consid-
ered exchangeable, which means the argument in Eq. (1) is
simplified to m ! a1 bx, which loses information of each
model’s bias. In this study, we fit the NGR parameters using
a minimization of the average of the continuous ranked
probability score (CRPS) similar to Carrillo et al. (2018)
and originally proposed by Gneiting et al. (2005). For a
Gaussian predictive distribution this is

CRPSG ! 1
n

∑n

t!1
st

yt 2 mt

st

( )
2F

yt 2 mt

st

( )
2 1

[ ]{

1 2f
yt 2 mt

st

( )
2

1000
p

√
}
, (4)

where F( ) and f( ) are the CDF and PDF, respectively,
of the standard Gaussian distribution, n is the number of
the training sample defined by t, mt is the mean defined by
Eq. (2), and st is the square root of the variance as in Eq. (3).
The minimization of the CRPSG function was performed with
the Nelder–Mead simplex method (Lagarias et al. 1998).

TABLE 1. The North America Multi-Model Experiment (NMME) models and organizations.

Organization Model

Geophysical Fluid Dynamics Laboratory (NOAA/GFDL) FLORB01
Global Modeling and Assimilation Office (NASA GMAO) GEOS-5
Environment and Climate Change Canada (ECCC) CanCM3
Environment and Climate Change Canada (ECCC) CanCM4
National Center for Atmospheric Research (NCAR) CESM1
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f. The skill score

The verification of the forecasting skill score is done for indi-
vidual months of the summer season (July–September). We
have evaluated 3-month forecasts with leads of 0, 1, and
2 months. The NMME initialization is from 1 July for all the
cases. Three metrics are used to evaluate the forecast skill: cor-
relation, continuous ranked probability score (CRPS; Epstein
1969), and the reduction of variance skill score (SScore; Wilks
2011). The SScore is used to quantify the improvement skill
based on the climatology, and the CRPS provides a robust
quantification of the probabilistic forecast when using the NGR
approach. In the reduction of variance skill score (SScore),

SScore ! MSE 2 MSEclim
MSEclim

3 100%, (5)

the metric to evaluate the forecast improvement is the mean
square error [MSE; MSE ! (1/n)∑n

k!1 (yk 2 ok)2] between ob-
servation (ok) and forecast (yk). The reference metric is the
MSE of the climatology, MSEclim ! (1/n)∑n

k!1 (ok 2 o)2, where
o is the observed climatology.

The CRPS skill score (SScrps) is defined as

SScrps !
CRPS 2 CRPSref

CRPSref
3 100%, (6)

which is based on the CRPS:

CRPS !
2‘

2‘
[F(y) 2 Fo(y)]2dy, (7)

where F(y) is the continuous CDF of the predictand y. The
term Fo is the cumulative probability step function defined by

Fo(y) !
0, y , observed value
1, y $ observed value :

{
(8)

CRPS for a given observation o is calculated using

CRPS(m,s2,o) 5 s
o 2 m

s

( )
2F

o 2 m

s

( )
2 1

[ ]{

1 2f
o 2 m

s

( )
2

1000
p

√
}
, (9)

where F( ) and f( ) are the CDF and PDF, respectively, of
the standard Gaussian distribution.

We used the leave-one-out cross validation to fit the post-
processed NMME PDSI reconstructed data before being used
to compute the SScore (Wilks 2011). The test of significance
used t and F distributions for the local significance, and the
global significance used a nonparametric Monte Carlo distribu-
tion with 500 random permutations (Livezey and Chen 1983).

3. Results

a. Variability of drought in the U.S. Northeast

A decadal signal exists in drought variability of the United
States that particularly affects the NE region. Figure 1a shows

the spatial extension of the 1962–66 drought that affected the
NE (Barlow et al. 2001). A clear out-of-phase spatial pattern is
noted between the NE (negative PDSI) and southeastern states
(positive PDSI). The PDSI temporal variability over the
NE (Fig. 1b) seems to have an interannual (2 year) and de-
cadal signature, as highlighted by its spectrum plot (Fig. S2a
in the supplemental material). A positive trend is observed
(0.18 PDSI units/10 years), which can be inferred from the
bump in the spectrum at 25–35 years. The 10-yr running
mean average (Fig. S2b) clearly show that the 1962–66
drought is part of the low-frequency variability. One charac-
teristic of this analysis is that both the decadal and the 2-yr
signal are statistically significant. Next, we will use this
information to improve the predictability of short-term
drought in the NE.

Previous studies showed that the bias correction approach on
PDSI can provide improved results (Carrillo et al. 2018). As we
assess the predictability of an index for droughts that is con-
structed with precipitation and temperature, we show first the
forecasting skill of temperature and precipitation for a 3-month
lead time with the same initial month (e.g., 1 Jul). Using the cor-
relation between the forecasted case and observation, tempera-
ture performed as expected for the three months in the NE
region (Koster et al. 2011), with a typical reduced performance
as the forecasted lead months progress (Fig. 2, left panel). The
spatial pattern is consistent with the result presented in Becker
et al. (2014), but the BC seems to add value in the eastern part
of the domain with an emphasis in the second and the third
month. Using the SScore, the spatial pattern of the skill per-
formance for temperature is maintained but numbers are
lower due to the challenge of outperforming climatology
skill (Fig. S3). However, spatial patterns between the two
metrics are consistent. On the other hand, forecasting skill
for precipitation was a greater challenge (Fig. 3, left panel).
Although correlation showed a similar pattern, there is a
limited skill in the NE after the second month. Still, the rel-
atively high score in the third month is in the NE. The low
skill in precipitation is well known (Saha et al. 2014), but as
PDSI is built with both variables (precipitation and temper-
ature), it is necessary to quantify how PDSI helps to address
drought predictability. Previous studies have shown that
temperature and precipitation of the NMME models have
a statistically significant forecast skill in North America
(Becker et al. 2014; Infanti and Kirtman 2014). Using anom-
aly correlation to assess potential predictability, tempera-
ture at 2 m shows an average skill of 0.26 and precipitation
a value of 0.16 (Becker et al. 2014). However, we have
pointed out that using NMME without any postprocessing
is of limited use (Carrillo et al. 2018).

b. The bias correction–spatial disaggregation approach

The BC-SD approach corrects mean and variance, and it
provides higher spatial resolution while keeping the pattern
of improvement unchanged (Figs. 2 and 3, right panel).
Therefore, BC-SD does not increase the forecast skill along
with the domain, as results are consistent with the analysis
using BC (Figs. 2 and 3, left panel). The BC was done with
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the coarse 18 3 18 datasets, and this BC-SD enabled us to
handle a higher-resolution dataset (32 km). Nevertheless,
BC-SD revealed better details in the NE region with some
predictability enhanced during all the three lead months for
temperature and precipitation. It can be noted that for pre-
cipitation, the correlation values increased for the lead 1 in
the Massachusetts region. Although the values are local sig-
nificant (p , 0.05), as indicated with the oblique lines in the
maps, the map is not global significant (f . 85%; Livezey
and Chen 1983). Therefore, we could conclude that BC-SD
inherits the predictability range of the BC approach. This
value added is potentially due to the inclusion of higher spatial
resolution in the observed input data at this 32-km resolution.
This information supports that using a dynamically downscaled
approach [e.g., with the Weather Research and Forecasting
(WRF) Model] on the coarse-resolution NMME dataset can
have an improved forecast outcome (Castro et al. 2012). The

region with negative correlation is a potential target region
where the postprocessing EMOS could have a positive impact.

A similar analysis with correlation and skill score was done
for PDSI (Fig. 4), which showed the spatial pattern of PDSI
predictability measured with correlation (left panel) and skill
score (right panel). In the NE region, a correlation of 0.4 or
higher was observed, but the skill score dropped after the sec-
ond month in some regions. Correlation patterns showed val-
ues on the order of 〈0.2, 0.3〉 for the majority of the domain,
with the highest values in the lead-0 map. The magnitude of
these numbers confirms that the BC-SD of PDSI is a useful
product for a 1-month forecast window and maybe two
months. However, as correlation showed only the skill of the
transition and not the amplitude, a better metric that evaluates
amplitude (SScore) is also shown (Fig. 4, right). Values of
SScore are relatively high for the first month, and for the other
lead months only in the southern states (Florida and Georgia).

FIG. 1. (a) The Palmer drought severity index (PDSI) map averaged for the period January 1962–December 1966
that highlights the drought in the Northeast (NE), and (b) the PDSI time series for the July–September (JAS)
season. The dataset to compute the PDSI is from the Northeast Regional Climate Center (NRCC), and the in-
terannual variation of the PDSI is for the NE region (378–488N, 838–678W). The calibration period for the PDSI
is 1950–80.
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FIG. 2. (left) Spatial patterns of correlation map (CORR) for surface temperature
(TAS) using a bias correction (BC) approach to correct temperature bias. Each panel
shows different lead times (0, 1, and 2 months) for the same initialization on 1 Jul. The
resolution of the data is 18 3 18. (right) As in the left panels, but this case used a bias cor-
rection–spatial disaggregation (BC-SD) approach for a target resolution of 32 km. Local
significance uses t distribution and is shown with oblique lines; global significance uses a
nonparametric Monte Carlo distribution with 500 random permutations and is shown in
percentage (Livezey and Chen 1983).
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FIG. 3. As in Fig. 2, but for precipitation (PREC).
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FIG. 4. (left) Spatial patterns of correlation map (CORR) for PDSI using a BC-SD
approach to correct PDSI bias. Each subplot in this panel shows different lead times
(0, 1, and 2 months) for the same initialization on 1 Jul. (right) As in the left panels, but
for the reduction of variance skill score (SScore) instead of correlation. The resolution
for both panels is 32 km 3 32 km. Local significance}using t distribution (left)
and F distribution (right)}is shown with oblique lines; global significance uses a
nonparametric Monte Carlo distribution with 500 random permutations and is
shown in percentage (Livezey and Chen 1983).
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Here, positive values define a percentage of improvement, so
any positive value indicates a positive performance. The forecast
failed to get the signal of drought according to the SScore with
an emphasis in the northern region of the domain for lead 1 and
2. Therefore, PDSI forecast postprocessed with BC-SD can be
of valuable use for the first month. The skill is better observed
in the southern states than in the northern states. This might be
different for other places such as the U.S. Southwest due to the
sensitivity difference in the approach used to compute the po-
tential evapotranspiration (van der Schrier et al. 2011). Also, the
signal decayed in time, and a portion of the skill could be due to
the soil storage residual memory in the PSDI (Palmer 1965).
We argue next that the role of the ensemble in these results is
significant, but it is revealed only with the use of EMOS. In
other words, multimodel ensemble could be used to add value
to the forecasts.

c. The forecast skill due to the EMOS postprocessing

The variability in the NE and the limited results shown
with the correlation and SScore metrics directed our attention
to evaluate whether an EMOS postprocessing approach can
help to incorporate new aspects into the drought predictabil-
ity. If the decadal effect on predictability is estimated using
EMOS, what we are developing here is the engineering to
bridge the gap between multiple scales in the climate system
(intraseasonal to decadal variability) and implementing it in
an operational framework.

First, we performed the EMOS to the computed PDSI
with temperature and precipitation without bias correction,
only including the SD to enhance the resolution. Using all
model ensembles (10 ensemble members for each model
from a total of five models makes a total of 50 cases per ini-
tialized reforecast), the performance of EMOS on PDSI us-
ing correlation is shown in Fig. 5 (left). It indicates a very
significant value added of the EMOS approach when com-
pared against BC-SD, which is noted for all the three fore-
cast target months. For the three lead times, the correlation
value overall is between 0.4 and 0.5 in the majority of the
domain, which is significantly higher than the BC-SD ap-
proach (0.2–0.3). For the first lead month, correlation values
higher than 0.7 are observed in large patches. Also, an im-
provement is observed in the skill score of PDSI using
SScore (Fig. 5, right). However, this improvement happens
mostly in the NE region. The results presented here support
the conclusion that there is an improvement in the low fore-
cast skill from previous approaches (i.e., BC and BC-SD)
up to the second month (lead 1) in the NE, which is also the
case for analysis of the entire United States (Fig. S4).
According to EMOS, the western U.S. region has better
forecast results, but that is not the case for the Great Plains,
where the latent and sensible heat of the diurnal cycle and
synoptic scale have a higher interaction with the climate
system. The EMOS approach is a powerful tool, as it as-
sessed, objectively, which model better contributes to the
predictability signal. Then, extrapolating this result with the
EMOS metric, a similar approach can be used to assess

uncertainty of drought in climate projection datasets (e.g.,
CMIP3, CMIP5, or CMIP6).

Second, we modified the training period (15, 20, 25, and
30 years) of the EMOS–NGR function with the idea that
decadal training periods in the order of the decadal should
outperform other ranges}the previous analysis was done
with a training period of 30 years. Figure 6 shows the analy-
sis for PDSI for a region of 58 3 58 center at the point 428N,
778W using two metrics: correlation (top) and CRPS (bottom).
Using correlation, for the first lead month, the 25- and 30-yr
training outperformed the other 15- and 20-yr case, which is also
valid for the second and third lead month. The signal of outper-
forming with a long-term training is confirmed with the continu-
ous ranked probability score (CRPS) metric, where the training
period close to 25 years showed the best results for the three
lead months (lower values of CRPS represent relative better
skill). For the 0 and 1 lead months, using the same CRPS metric,
the signal of improvement is much clearer with both training pe-
riods: 25 and 30 years. Is this decadal signal responsible for the
improvement? If yes, the calculation of the SS for the entire do-
main (Fig. 5, right panel) should suggest an improvement that
matches the spatial pattern of the decadal PDSI (Fig. 1a),
and this matching pattern is indeed noted in Fig. 5, at least
for thefirst and second lead time. This outcome can be
seen as an indirect validation that the decadal variability
is being assimilated in the training period. However, the
training record is short (30 years) to fully confirm this
observation.

How is EMOS able to provide this improvement, and how
can we use it in a drought monitoring tool? The EMOS–NGR
adjusts the probability forecast of PDSI by including the vari-
ability of the multiple ranges in the NE. The results presented
here (Figs. 4–6) show the EMOS effect on the decadal range
that improves the forecasts. Our analysis strongly suggests
that this is the effect of the decadal variability. It was shown
by Woollings et al. (2015) that temperature and precipitation
in the NE are affected by a decadal variation of the climate.
Our results show that the EMOS technique is able to incor-
porate the decadal signal into the forecast postprocessing.
These results provide good insight that the signal of predict-
ability exists up to a 2-month lead time. In addition, using
the findings of previous works that have shown the value
added of using a dynamically downscaled approach, we
could add value to the forecast with this approach, but ob-
jective proof of this can be shown at the cost of a higher
computational effort.

4. Conclusions

This study evaluated the predictability (forecast skill) of
drought in the Northeast United States. The central elements
are the merged information among PDSI, NMME, and
EMOS. The PDSI was used as a metric to define drought vari-
ability at monthly sampling. We used the reforecasted data
from the NMME, which is the most comprehensive set of
multimodel ensemble simulations currently available, to com-
pute PDSI using the Thornthwaite relationship for the estima-
tion of evapotranspiration. We hypothesize that by adding
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FIG. 5. (left) Spatial pattern of correlation (CORR) and (right) the reduction of
variance skill score (SScore) of the PDSI. Each panel shows different lead times
(0, 1, and 2 months) for the same initialization on 1 Jul. In both cases the EMOS was
applied to the following NMME models: CanCM3, CanCM4, CESM1, FLOR01, and
GEOS-5. The number of ensemble members per model is 10. Local and global signifi-
cance were calculated as in Fig. 4.
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long-term training of the variability of drought in the NE, it
can have a positive influence on the predictability of
drought in the region. Two postprocessing techniques were
used. 1) The BC-SD method improves spatial resolution
that allows using refined soil information introduced in the
available water capacity (AWC) of the PDSI calculation to
better assess water deficit that better estimates drought vari-
ability. 2) The EMOS approach, known as nonhomogeneous
Gaussian regression (Gneiting et al. 2005), systematically in-
cludes the decadal information from the multimodel ensemble
simulations.

By using the BC-SD approach, we created a baseline of
high-resolution (32 km) PDSI for the two databases: ob-
served (NRCC) and reforecasted (NMME). A comparison
of the forecast skill in two resolutions using BC (18 3 18)

and BC-SD (32 km 3 32 km) shows that the statistically
downscaled approach is consistent and replicable. The lead
time of PDSI predictability with BC-SD is on the order of
one month, which is consistent when compared with other
studies using precipitation and temperature (Koster et al.
2011; Becker et al. 2014; Infanti and Kirtman 2014). How-
ever, the values shown for PDSI are provided for the first
time in this study. The BC-SD does not include information
on the multimodel ensemble simulations, as it only uses the
mean average contained in the ensemble realizations.

The most relevant outcome of this study is the improved
forecasting skill of PDSI when using EMOS. Following previ-
ous work (e.g., Carrillo et al. 2018), this study shows that the
postprocessing with EMOS using the sophisticated training at
the proper length of time provides a better estimation of mean
and dispersion errors (Wilks 2018) that could be removed in
the operational forecast.

As hypothesized, the cases with a longer training period
(e.g., decadal) show a significant improvement in comparison
with a shorter period. Previous studies using EMOS showed
that longer training periods and longer ensemble datasets
could produce high skill scores, and this seems to be a logical
idea. In a related study, we showed this by evaluating the skill
forecast of an index for the spring onset in North America
(Carrillo et al. 2018). However, this study suggests that there
is an exception when a signal of quasiperiodic variation (e.g.,
decadal) exists, and it is important to explain the variability of
the climate regime in the region. This could potentially
happen if two aspects of the climate system at play. First, the
region selected should have a clear quasiperiodic signal (e.g.,
decadal for the results presented). Second, employing a multi-
model ensemble that allow us to perform an EMOS that helps
to use this low-frequency signal to train postprocessing on a
probabilistic forecast. In this study, the EMOS approach per-
forms a kind of weighting function of the multiple models or a
rank selection of the model.

The implication of this study is that the predictability fore-
cast of drought (PDSI) can be extended without any change
in the core dynamics of the model but instead by using a so-
phisticated postprocessing technique. However, a few caveats
in this study are disclosed. 1) The dataset, although unique, is
accessed at a monthly sample. Then, the intraseasonal signal
(30–60 day) where most of the predictability lies might be
highly reduced, and therefore, an easy improvement is to do
the analysis on a daily sample. This temporally increased reso-
lution could be clearly noted in the location of the low skill
score, which follows the synoptic–intraseasonal scale interac-
tion. 2) The repetition of models (two from a total of five)
and a limited ensemble member population (10 ensemble
members per model). Also, this study clarifies that the two
models are improved versions of the same model at different
generations. Could this model repetition create a bias in the
final result? Yes, it could, if the data product is treated as a
simple multimodel ensemble average, but not here because
the EMOS–NGR is used to compute the distribution of both
the bias and dispersion error. In the EMOS–NGR approach,
adding a new model generation helps to detect persistent er-
rors that were carried from an earlier version of the same

FIG. 6. (top) Correlation (CORR) and (bottom) the continuous
ranked probability score (CRPS) metrics for the PDSI forecast.
The x axis is the lead time in months from 1 to 3. Each line shows
different training periods (15, 20, 25, and 30 years) for the same ini-
tialization (1 Jul). In both cases the EMOS was applied to the fol-
lowing NMME models: CanCM3, CanCM4, CESM1, FLOR01,
and GEOS-5 for an area of 58 3 58 center at the grid point in the
Northeast region (428N, 778W).
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model (e.g., CanCM3 and CanCM4). How predictable is
short-term drought in the northeastern United States? From
previous analysis on temperature and precipitation, 1 month
is the most extended range we can expect (Kirtman et al.
2014; Saha et al. 2014), which is below the range of the
seasonal scale presented. Here, with EMOS, this range is
2 months. These results can guide us to modify and tune other
synoptic–intraseasonal modeling tools.
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