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SUMMARY

Cells are essential to understanding health and disease, yet traditional models fall short of modeling and
simulating their function and behavior. Advances in Al and omics offer groundbreaking opportunities to
create an Al virtual cell (AIVC), a multi-scale, multi-modal large-neural-network-based model that can repre-
sent and simulate the behavior of molecules, cells, and tissues across diverse states. This Perspective pro-
vides a vision on their design and how collaborative efforts to build AIVCs will transform biological research
by allowing high-fidelity simulations, accelerating discoveries, and guiding experimental studies, offering
new opportunities for understanding cellular functions and fostering interdisciplinary collaborations in
open science.

INTRODUCTION and adaptive system in which complex behavior emerges from

a myriad of molecular interactions. Some aspects are remark-
The cell, the fundamental unit of life, is a wondrously intricate en-  ably robust to perturbations, such as the elimination of genes
tity with properties and behaviors that challenge the limits of  or their replacement with homologs from different species. Other
physical and computational modeling. Every cell is a dynamic  aspects are sensitive to even seemingly minor disruptions, such
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as a point mutation or an external factor that tips cells into
dysfunction and disease.

To understand a cell’s function, scientists have attempted to
construct virtual cell models to simulate, predict, and steer cell
behavior.'® Building on this vision, we use the term virtual cell
to define a computational model that simulates the biological
functions and interactions of a cell. Existing cell models are often
rule-based and combine assumptions about the underlying bio-
logical mechanisms with parameters fit from observational data.
They generally rely on explicitly defined mathematical or compu-
tational approaches, such as differential equations,’ stochas-
tic simulations,’®"" or agent-based models.'>'® They vary in
complexity and cover different defined aspects of cell biology,
such as transcription and translation,’* cytoskeletal driven cell
behavior, > '® biochemical networks,'” or metabolic flux.'®'®
The first whole-cell model was developed in 2012, representing
all 482 genes and molecular functions known for an organism:
the bacteria Mycobacterium genitalium.® Since this pioneering
work, genome-wide models have been developed to represent
other bacterial organisms, including Escherichia coli.®?°-

Despite their widespread use in modeling biological systems,
approaches to date fall short of capturing many aspects of the
operations of both bacterial and more complex systems, such
as human cells. Challenges include: (1) Multi-scale modeling:
cells operate on multiple scales across both time and space,
from atomic to molecular to cellular and histological, with func-
tional properties emerging through nonlinear transformation
from one scale to another. (2) Diverse processes with massive
numbers of interacting components: cellular function encom-
passes numerous interacting processes, such as gene regula-
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tion, metabolic pathways, and signal transduction. Each process
involves a multitude of biomolecular species, in diverse and dy-
namic configurations and states. (3) Nonlinear dynamics: most
cellular processes are highly nonlinear, such that small changes
in inputs can lead to complex changes in outputs. Thus, despite
progress in modeling specific cellular processes, these factors
collectively pose a substantial roadblock to the construction of
a virtual cell.

Two exciting revolutions in science and technology—in Al and
in omics—now enable the construction of cell models learned
directly from data. These parallel revolutions provide an unprec-
edented opportunity for an ambitious vision of an Al virtual cell
(AIVC), a multi-scale, multi-modal, large-neural-network-based
model that can represent and simulate the behavior of mole-
cules, cells and tissues across diverse states (Figure 1).

Experimentally, the exponential increase in the throughput of
measurement technologies has led to the collection of large
and growing reference datasets within and across different cell
and tissue systems,**™?° with data doubling every 6 months for
the past several years,® along with the ability to couple these
measurements with systematic perturbations.”’>°

Computationally, concurrent advances in Al have enhanced
our ability to learn patterns and processes directly from data
without needing explicit rules or human annotation.*°*' Such
modeling paradigms have been used successfully in the biomol-
ecular realm, for example, to predict three-dimensional (3D) mo-
lecular structures from sequences®°* and interactions between
different molecular components.®*°® Recent modeling method-
ologies in Al provide representation and inference tools that
satisfy the trifecta of being predictive, generative, and queryable,
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Figure 1. Capabilities of the AIVC

(A) The AIVC provides a universal representation (UR) of a cell state that can be obtained across species and conditions and generated from different data

modalities across scales (molecular, cellular, and multicellular).

(B) The AIVC possesses capabilities to represent and predict cell biology. This universality allows the representation to act as a reference that can generalize to
previously unobserved cell states, providing guidance for future data generation. Because the representation is shared across modalities, it also remains invariant
to the specific data type used to generate it, serving as a virtual representation for unified analysis across modalities. The AIVC also allows modeling the dynamics
of cells as they transition between different states, whether naturally due to processes such as differentiation or due to genetic variation or artificially through
engineered perturbations. Thus, the AIVC enables in silico experimentation that would otherwise be cost-prohibitive or impossible in a lab.

(C) The utility of the AIVC depends on its interactions with humans at different levels. At the individual scientist level, it must be accessible through open licenses
and the democratization of computing resources. Interpretability can be established through intermediary layers, such as language models that allow the virtual
cell to communicate its results effectively. At the scientific community level, evaluating the AIVC should focus on core capabilities that move beyond narrow
benchmarks. Community development will be crucial for ongoing improvements to the virtual cell that remain accessible. At the societal level, the AIVC must

ensure the privacy of its contents to protect sensitive data.

which are key utilities for advancing biological research and un-
derstanding. By building on these properties, we argue that we
now have the methods to develop a fully data-driven neural
network-based representation of an AIVC that can accelerate
research in biomedicine by enabling fast-paced in silico studies,
as well as powerful bridges between computational methods
and confirmatory wet-lab experimentation (Figure 1).

The creation of an AIVC will enable a new era of high-fidelity
simulation in biology, in which cancer biologists model how spe-
cific mutations transition cells from healthy to malignant; devel-
opmental biologists forecast how developmental lineages evolve

in response to perturbations in specific progenitor cells; and mi-
crobiologists predict the effects of viral infection on not just the
infected cell but also its host organism. AIVCs will empower ex-
perimentalists and theorists alike, by transforming the means by
which hypotheses are generated and prioritized and allowing bi-
ologists to span a dramatically expanded scope, better fitting the
enormous scales of biology. Although the cellular models may
not always directly identify mechanistic relationships, they can
be viewed as tools for effectively narrowing the search space
for mechanistic hypotheses, thereby accelerating the discovery
of underlying factors behind cellular function.
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Box 1. Grand challenges for building the AIVC

OUTLINING CAPABILITIES AND DESIGNING EVALUATION FRAMEWORKS

The burgeoning number of foundation models in biology perform a subset of the capabilities of virtual cells outlined in this perspective. Given the
diversity of these approaches, it is important to define what the core capabilities of AIVCs should be and how those capabilities can be evaluated. For
every capability, proper metrics must be designed, and comprehensive evaluation data be collected. Models’ capabilities should be assessed on
general performance as well as on their ability to answer specific biological questions. It is imperative to continuously improve benchmarking stra-
tegies along with AIVC models and ensure that they align with biologically meaningful objectives. As the field develops better alignment on these
questions, collaborative opportunities will arise, and the speed at which virtual cells can be generated will accelerate.

ESTABLISHING SELF-CONSISTENCY ACROSS VARYING CONTEXTS WITH DIFFERENT ARCHITECTURES

Biology is tremendously complex: it operates across different scales, in different contexts, and is measured with different modalities. AIVC models
must be self-consistent across all of these axes. Models should propagate function across physical scales—interactions between molecules should
have consistent effects when measuring binding affinity, gene expression, cell-cell communication, or tissue organization. As physical and dynamic
scales increase in scope and size, additional context, for example, species, cell type, tissue, disease status, etc., should fine-tune predictions made
at smaller resolutions, while also accounting for stochasticity. Model predictions should also be agnostic to their input and output modalities. The
same entity, profiled with different technologies, should have the same internal representation in an AIVC. To properly model such complex behav-
iors, many machine learning approaches should be explored and their merits carefully judged.

BALANCING INTERPRETABILITY AND BIOLOGICAL UTILITY

A consistent trend in the application of deep learning methods to biology, accelerated by the rise of large foundation models, has been the implicit
trade-off between models’ performance gains and their increasingly uninterpretable “black box” natures. AIVC models will ultimately be judged on
their ability to expand our understanding of biology, either by providing novel insights to biological processes or by accelerating the scientific pro-
cess. To achieve this goal, AIVC models must make highly accurate and well-calibrated predictions that simulate biology, and the trade-off between
actionability and interpretability will have to be balanced. Actionable model outputs are those of high utility to design affordable and efficient vali-
dation experiments and are key for initial real-world use. Various approaches exist for explaining model predictions, including causal modeling,
sparse featurization, and counterfactual reasoning, and this is a highly active research area. Building intuitive interfaces that facilitate the study
and interpretation of AIVCs via other models, such as Al research agents, will further increase downstream utility.

CONSTRUCTING A FRAMEWORK FOR COLLABORATIVE CELL MODELING

The successful development of AIVCs will require collaboration across disciplines. We foresee a future where AIVC platforms function as open, in-
terconnected hubs for collaborative development and broad deployment of cell models to researchers and as education hubs delivering training to
researchers, as well as providing engagement activities for educators, patients, and the public. Thus, investments in infrastructure fostering open
and collaborative development of AIVCs should be of high priority.

ENSURING AIVCs BENEFIT ALL AND PROMOTE ETHICAL AND RESPONSIBLE USE

Generating large open datasets that reflect human diversity — datasets integral for training AIVC models —poses a substantial challenge. Developers
will have to use the utmost care to ensure these datasets are used ethically and transparently while building AIVCs and develop strategies to mitigate
risks of model contamination with falsified data. Early adopters of AIVCs will have a key role in promoting and demonstrating responsible use of these
models. Furthermore, the development of chat-based interfaces could be crucial in democratizing access to AIVCs. Close collaboration with ethics
and regulatory experts from the outset is paramount for establishing new regulatory norms that will facilitate the responsible use of AIVCs.

UNDERSTANDING THE VALUE OF DIFFERENT DATA TYPES TO PRIORITIZE LARGE-SCALE DATA GENERATION

A fundamental question for the collaborative development of AIVCs is which data and modalities should be collected to enable generalization across
biological contexts and scales. These data will need to encompass the breadth of biology in different species, domains, and modalities, representing
the heterogeneity of life, while maintaining depth sufficient to distinguish true signals from noise. A key aspect of data generation will be the simul-
taneous measurement of temporal and physical scales, while also allowing perturbations of the system.

This perspective article is based on extensive community AIVCs. We describe a vision catalyzed by emerging advances
discussions, including a workshop hosted by the Chan Zuck- in Al in cell biology and their application to constructing virtual
erberg Initiative, and aims to ignite the formation of a collab- representations of cells. We lay out priorities and opportu-
orative research agenda for a large-scale, long-term initiative  nities across data generation, Al models, benchmarking, inter-
with a roadmap for developing, implementing, and deploying pretation, and ensuring biological veracity and safety (Box 1).

7048 Cell 187, December 12, 2024



Cell ¢ CellPress

OPEN ACCESS

Box 2. Vignettes

CELL ENGINEERING TO ENABLE PHENOTYPIC DRUG DISCOVERY AND CELL-BASED THERAPEUTICS
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One challenge in developing successful therapies is the difficulty in incorporating the full underlying genetic, molecular and cellular basis of dis-
ease during drug discovery and development.'?° These context-specific underpinnings are not fully specified and often vary between human pa-
tients and model systems used in pre-clinical studies. By integrating biological data from various sources relevant to specific disease contexts, the
AIVC could generate an environment for testing different therapeutic interventions in silico and identify approaches for engineering cells to reverse
disease phenotypes, while accounting for the effects of varying both treatments and patient profiles. By representing the overall disease phenotype
specific to patient populations (rather than one specific biochemical target at a time), the AIVC can enable virtual phenotypic screens. Although in
silico experiments may not always be fully accurate, by prioritizing virtual hits with higher chances of success, the AIVC can lower experimentation
costs and accelerate the process.

The AIVC has potential to push the cell therapy frontier. With growing evidence affirming the efficacy and safety of cell-based therapies for rare
diseases and cancer,*>'®" the AIVC can improve systematization and precision to cell engineering. For example, virtual cell-based engineering
could enable targeted modifications to pancreatic beta cells to create individualized beta cell replacement therapies for type 1 diabetes. By simu-
lating the biological phenotype of individual patients, in silico experiments within the AIVC could identify interventions that help drive the differen-
tiation of beta cells from progenitors, cloak them from the immune system, and maintain their function, with the ultimate goal of either transplanting
these engineered cells into patients or engineering them in situ.

UNLOCKING THE POWER OF SPATIAL BIOLOGY TO FIGHT CANCER

Cold tumor Hot tumor

Tumor heterogeneity Spatial Al virtual
and microenvironment transcriptomics cell

Spatial structures in cancer, specifically within the tumor microenvironment (TME), are critical drivers of cancer progression and can drive
resistance to the immune system and limit drug efficacy.'®® Malignant cells within a tumor can engage in active immune evasion by either block-
ing immune infiltration,*®> evading immune recognition, or dampening immune cell function.’®* Thus, immune resistance must be understood in
the spatial context of the cellular neighborhood to identify the specific cell states and gene signatures involved. Although next-generation spatial
profiling methods enable researchers to experimentally investigate the heterogeneity of the TME,'®® an AIVC could extend these analyses to a
universal, pan-cancer framework, which can be personalized to individual patients. Using an AIVC model, cancer researchers should be able to
identify TME niches shared across multiple cancer types from many patients. Identifying pan-cancer markers can drive cancer treatment both by
highlighting new targets and also by identifying existing treatments that can be applied to new cancer types.'° In this setting, the AIVC would
help identify the interactions associated with TME cell states and would search for similar states from any disease where existing treat-
ments exist.

Finally, the AIVC could greatly advance precision oncology.'®” Given that the AIVC will capture intrinsic variation, the genetic diversity of individual
patient’s cancers will be represented in any analyses. Although the AIVC would already accurately qualify the change in the expression of genes,
tumor sequencing data would allow it to model the change of function of those genes, for example, through loss of function, change in post-trans-
lational modifications, or rewiring of protein-protein interactions and signaling networks.'*®

(Continued on next page)
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Box 2. Continued

DIAGNOSTIC VIRTUAL CELL MODELS FOR INDIVIDUAL PATIENTS
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The AIVC could introduce a new approach to diagnostics that incorporates a personalized AIVC (or a digital twin'®?) to track a patient’s health and

suggest suitable interventions. The AIVC would create a detailed representation of each patient’s cells by incorporating specific patient data, such
as genetic sequences, single-cell profiles from blood, and tissue pathology images, along with additional clinical information from their health re-
cords. Periodic updates to each patient’s AIVC instance enable monitoring of evolving health conditions, prediction of upcoming adverse events,
and potential therapeutic outcomes.

Through additional updates from less costly assays, this virtual patient model could be progressively refined and made more robust."*° For
example, transcriptomic or genetic liquid biopsies can reveal significant and diverse characteristics of a patient from a single test and could greatly
aid in the diagnosis of a broad spectrum of conditions.'*" Through the virtual cell’s implicit and structured representation of universal cell types and
states, one can envision the creation of patient models of inaccessible cell types, such as beta cells in the pancreas or neurons in the brain, gener-
ated after sampling accessible cell types such as blood or skin.

A HYPOTHESIS-GENERATING FRAMEWORK FOR SCIENTIFIC RESEARCH
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& Al virtual
( cell
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Traditionally, the biological research community has relied on computational models for analyzing data from past experiments based on an ex-
isting hypothesis. The virtual cell could switch the paradigm by computationally exploring a vast array of possible hypotheses through in silico exper-
imentation. It could identify the most informative experiments for addressing specific biological questions, shifting the role of computational models
from merely validating hypotheses or processing observations without a particular goal to generating specific sets of hypotheses to pursue.

This shift could greatly enhance the scientific discovery process: instead of conducting a single experiment followed by an in-depth analysis, sci-
entists can engage in a dynamic iterative interaction with the virtual cell. With each new piece of data, they can refine their understanding of the
biological system and consult the virtual cell to identify what additional experimental data could be valuable. Ultimately, we may be able to perform
active learning with biologists in the loop and construct self-driving labs for efficient and unbiased generation of virtual cells.

By encouraging interdisciplinary collaborations in open sci-
ence—spanning academia, philanthropy, and the biopharma
and Al industries—we posit that a comprehensive under-
standing of cellular mechanisms is within reach. AIVCs have
the potential to revolutionize the scientific process, lead to
the understanding of novel biological principles, and augment
human intelligence to underpin future breakthroughs in pro-
grammable biology, drug discovery, and personalized medi-
cine (Box 2).
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AIVCs

Our view of an AIVC is a learned simulator of cells and cellular
systems under varying conditions and changing contexts, such
as differentiation states, perturbations, disease states, stochas-
tic fluctuations, and environmental conditions (Figure 1). In this
context, a virtual cell should integrate broad knowledge across
cell biology. VCs must work across biological scales, over
time, and across data modalities and should help reveal the
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programming language of cellular systems and provide an inter-
face to use it for engineering purposes.

In particular, an AIVC needs to have capabilities that allows re-
searchers to (1) create a universal representation (UR) of biolog-
ical states across species, modalities, datasets, and contexts,
including cell types, developmental stages, and external condi-
tions; (2) predict cellular function, behavior, and dynamics, as
well as uncover the underlying mechanisms; and (3) perform in
silico experiments to generate and test new scientific hypothe-
ses and guide data collection to efficiently expand the virtual
cell’s abilities.

Next, we elaborate on these key capabilities and discuss ap-
proaches for how to achieve them.

URs

An AIVC would map biological data to UR spaces (Figure 1A),
facilitating insights into shared states and serving as a compre-
hensive reference. These URs should integrate across three
physical scales—molecular, cellular, and multicellular—and
accommodate contributions from any relevant modality and
context (Figure 1A). This integration will allow researchers to
complement new data with existing information within the
AIVC, leveraging its extensive biological knowledge to bridge
gaps between different data. Such a comparison with prior
data would provide a comprehensive context for every
analysis.

Importantly, the multilevel representation should generalize
to new states that are not present within the data used to train
the AIVC. Such an emergent capability would unlock discov-
eries about biological states that have not been directly
observed or might not even occur in nature. For instance,
the AIVC’s exposure to similar instances during training,
such as inflammatory states in macrophages, might enable it
to predict previously unknown inflammatory states in micro-
glia. Additionally, the AIVC should be able to predict novel
states resulting from interventions (or, equivalently, interven-
tions needed to achieve a novel specified state) offering a
range of downstream applications in cell engineering and syn-
thetic biology.

Predicting cell behavior and understanding
mechanisms
A defining function of an AIVC will be its ability to model cellular
responses and dynamics. By training on a wide range of snap-
shots, time-resolved, non-interventional, and interventional da-
tasets collected across contexts and scales, the AIVC can
develop an understanding of the molecular, cellular, and tissue
dynamics that occur under natural or engineered signals. These
signals include external and internal stresses or other factors
such as chemical (e.g., small molecules) or genetic (engineered
or natural) perturbations and their combinations. An AIVC should
be able to predict responses to perturbations that have not been
previously tested in the lab, while also accounting for the specific
features of the cellular context within which the perturbation is
being tested.

The AIVC should also have the capability to simulate the tempo-
ral evolution of alterations in cell states in response to both intrinsic
and extrinsic factors, along with the resulting multicellular spatial
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arrangements. By modeling the transient nature of the overall
cell state and the continuous flux in cellular conditions, the AIVC
could uncover previously unstudied trajectories in diverse dynamic
processes, such as development, maintenance of homeostasis,
pathogenesis, and disease progression. Another critical challenge
is understanding the molecular mechanisms underpinning
observed phenotypes and trajectories. The AIVC could propose
potential causal factors behind phenotypes by simulating the ef-
fects of different interventions. Through its multi-scale design,
the AIVC should be able to extrapolate the basis of cellular function
across scales and link intracellular processes to phenotypes at the
cell and tissue level. Thus, the AIVC opens new avenues for inves-
tigating mechanisms linked to diverse phenotypes and behaviors.

Although uncovering a phenotype’s causal factors may not al-
ways be feasible through computation alone, the AIVC has the
potential to reduce the space of possible hypotheses. Through
simulating the effects of different interventions, the AIVC could
propose potential causal factors behind phenotypes with corre-
sponding degrees of uncertainty, allowing scientists to validate
claims experimentally.

In silico experimentation and guiding data generation
For real-world utility, a defining function of an AIVC will be its ability
to guide data generation and experiment design. An AIVC should
be queryable with computational twins of today’s laboratory ex-
periments, here called virtual instruments (VIs). Virtual experiments
could, for example, simulate experiments in a cell type that is chal-
lenging to cultivate in vitro or simulate expensive readouts from
low-cost measurements, such as single-cell transcriptomes from
label-free imaging.®° Virtual experiments could also be used to
screen a vast number of possible perturbagens at a scale that
would be impossible in the lab. Such capabilities are invaluable
when considering the exponentially larger search space of combi-
natorial perturbations involving more than one perturbagen.*®**

AIVCs will usher in a new pradigm of how computational sys-
tems are probed during the design of new biological experiments.
In this framework, an AIVC would not only design experiments to
validate specific scientific hypotheses but also to enhance its
own capabilities. Equipped with the ability to assign confidence
values to its predictions, an AIVC could enable interactive
querying to guide experimentalists to the most efficient path for
generating additional data for fine-tuned improvement in low-
confidence areas. Extended to an active and iterative lab-in-
the-loop process, we envision efficient and focused expansion
of the AIVC’s performance. Ultimately, the AIVC might even be
able to identify key gaps in its own understanding of biology
and propose the most efficient paths to bridge them.*>=*"

BUILDING THE AIVC

We envision an AIVC as a comprehensive Al framework
composed of several interconnected foundation models that
represent dynamic biological systems at increasingly complex
levels of organization—from molecules to cells, tissues, and
beyond. Our approach has two main components: (1) a universal
multi-modal multi-scale biological state representation and (2) a
set of VIs, which are neural networks that manipulate or decode
these representations. Although there may be other approaches
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Figure 2. Overview of the AIVC
(A and B) (A) Similar to biological cells, (B) the AIVC

models cell biology across different physical
scales, including molecular, cellular, and muilti-

cellular. Along the physical dimension, the first
scale models the state and interactions of indi-
vidual molecules, such as those of the central
dogma, as well as additional molecules, such as

metabolites. Molecules can be represented as
sequences or atomic structures. The next scale
represents cells as collections of these molecules.
For example, such cells contain a genetic
sequence, RNA transcripts, and some quantities
of proteins. Molecules within cells have specific

locations that may be related to their function. The
final scale models the interactions between cells
and how they communicate and form complex
tissues. Each scale relies on universal represen-
tations that are learned from multi-modal data and
are integrating URs from the previous scale.

(C and D) (C) To capture the behavior and dy-
namics of physical cells, its components, or col-
lections, (D) the AIVC comprises virtual in-
struments. On the cellular scale, for example,
manipulator VIs simulate how cell states change
as cells divide, migrate, develop from progenitor
states, or respond to perturbations through
learned transitions in the URs. Decoder Vls allow
for the decoding of the cell UR, e.g., to understand
phenotypic properties.

vidual cells interact with one another
and the non-cellular environment in a tis-
sue. Each of these scales is represented
by a distinct UR, building on abstractions
generated by the previous layer, thus link-
ing the different scales.

Physical cell Al virtual cell
A Cellular building blocks, B Building the Al virtual cell through
environments, ... universal representations (UR)
Replication Target DNA RNA Protein
Ga VYLY N
e (ACTAG..
% Transcription %
8 Ligand 8
8| N/ RNA  Molecular | &
@ | interaction | 3
9 Translation o
o [}
= =
Protein Metabolites
@ // h %
8 i o
7} o, = ¥
& “oud 5
g E @
= (- / =
3 4 : ..
A / U
© b s® Cell ..
Tissue
° 5
® o
173 7]
n Et
£ z
S ;;Beceptor/, =]
8 A Spatial 8
= =S organization | =
e \ / 3
s :
~ Cellular
interaction . . LEE .
Multicellular universal representation
C ... behavior, and dynamics D ... and virtual instruments
Manipulator virtual instruments
o) f e.g., chemical or
o — N X‘ 4 8 /-~ genetic pertubation
o® | ¢
=
D < g o S
s 4 =
Cell division Responses to extrinsic T Unperturbed
and intrinsic pertubations | © cell UR
2
=
X i
y ) y o e.g., changes
h - : in phenotype
\X_/\ p ) Cell UR { »
N . e ™
Cell differentiation Cell migration
Decoder virtual instruments

In the context of UR, VIs are neural net-
works that take URs as input and pro-
duce a desired output. We describe two
types of Vls: decoder Vis (or decoders)
that take a UR as an input and produce
human-understandable  output, for
example, a cell type label or a synthetic
microscope image, and manipulator Vis
(or manipulators), which take a UR as an
input and produce another UR as an
output, for example, that of an altered
cell state after perturbation. Because

to building an AIVC, we believe this approach would provide a
scaffold that can be scaled in a collaborative and open way.

We use the term UR to refer to an embedding produced by a
multi-modal AIVC foundation model. An embedding is a learned
numerical representation of data in a continuous vector space.
The AIVC transforms high-dimensional multi-scale multi-modal
biological data into embeddings that retain meaningful relation-
ships and patterns.

The AIVC can capture cell biology at three distinct physical
scales by representing (1) molecules and their structures found
within individual cells, (2) individual cells, as spatial collections
of those interacting molecules and structures, and (3) how indi-
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these instruments will operate over the
same representations, they can be
shared and reused across different use cases, experiments,
and datasets. Thus, we envision that any scientist will be able
to build a VI on top of a UR and share it with the community.
The building of Vls that closely resemble real instruments, such
as a microscope, has the potential to seed the development of
instrument-specific lab-in-the-loop systems.

Building UR across physical scales

The AIVC would be a multi-scale foundation model that learns
distinct representations of biological entities at each physical
scale (Figure 2C). These representations can be aggregated
together and transformed to produce representations at the
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next higher physical scale. This recurring architectural motif can
be applied from the level of individual molecules to the scale of
entire tissues and organs granting the model consistency across
biological scales (Figure 2A). Each representation applies univer-
sally to a specific class of biological entities. This abstraction al-
lows the virtual cell to seamlessly evolve and incorporate new
data—whether from new modalities or from out-of-distribution
sources— within this general framework.

In the following sections, we discuss design principles and
data that could be used to construct each physical scale of the
AIVC bottom-up. Although many existing machine learning ar-
chitectures could be applied directly to the task of learning func-
tional representations of cellular components (Box 3), we addi-
tionally suggest the incorporation of biological inductive biases
into the design of these representations, and further modeling in-
novations should drive the refinement and success of these
models.

Molecular scale

The first layer of the virtual cell represents individual molecular
species (Figures 2A and 2C). Although there are many different
classes of molecules present in a cell, a starting point for the
AIVC will be to model the three types of molecules of the central
dogma: DNA, RNA, and proteins. These can all be represented as
sequences of characters—nucleotides or amino acids.*®~® Such
sequence data are particularly well suited for Al methods origi-
nally developed for natural language processing, such as large
language models (LLMs) (Box 3). Given the high-throughput mea-
surement capabilities for genomic sequences, there are substan-
tial and growing amounts of training data available. This abun-
dance of data, combined with simple objective functions (such
as predicting masked letters in a sequence), provides the key in-
gredients for effectively training models to generate an initial mo-
lecular UR. Furthermore, a biological language model could be
trained on all three modalities simultaneously, thus maximizing
interoperability and training corpus size. Despite its inherent
compatibility with transformers, specific considerations around
masking and attention mechanisms must be addressed when
applying these models to biological sequence data as opposed
to natural language. Although language modeling approaches
have been extensively studied for these core molecules and
have proven successful for some of their chemical modifica-
tions®>* and various other molecules, such as glycans, lipids,
and metabolites,*>°° they may struggle with other molecular
constituents of the cell. Such modeling difficulties might be exac-
erbated for data that are difficult to fit into a sequence or very
small molecules. Given that the primary building blocks of these
entities are atoms, a neural network trained to model molecules at
the atomic level®*°” could be a more general choice for this layer.
However, models with atomic resolution introduce a substantial
computational burden and might be constrained by the limited
availability of training data. Although atomic-based modeling is
highly accurate for many static structures, it cannot yet represent
the full dynamic range of chemistry that occurs at this scale.
Therefore, a broader, evolutionarily informed representation
such as that of sequences may be preferred.

Cellular scale

The next level of abstraction models individual cell states
(Figures 2A and 2C). As cellular function is underpinned by the
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molecular interactions and signaling networks formed in a cell,
a cellular UR can be built using representations of molecular
and other (e.g., imaging) features, describing the organization
and abundance of molecular components. The key step here
would be to integrate learned representations of molecules
with their quantities and appropriately abstracted locations and
timestamps to create a unified representation of the cell.>®™°

Data for the cellular UR consist of measurements mapped to a
single-cell level, such as measurements of the transcriptome
(single-cell RNA sequencing [scRNA-seq]), chromatin accessi-
bility (scATAC-seq), chromatin modification, transcription factor
binding, and proteome.®" Imaging technologies measure cell
morphology at subcellular resolution, often together with molec-
ular information.?%%2%® For example, fluorescence confocal mi-
croscopy can help resolve the subcellular location of the human
proteome.®* Live-cell imaging® enables the study of proteins in
living cells using time-lapse microscopy. Cryoelectron micro-
scopy determines biomolecular structures at near-atomic reso-
lution.®®®” Super-resolution microscopy offers deeper insights
into molecular processes through single-molecule imaging in
living systems.®®°® Complementing imaging approaches, mass
spectrometry, and proximity-dependent labeling can unveil pro-
tein-protein associations and provide deeper insights into cell
structure and signaling network rewiring.”%""

From a model architecture perspective, vision transformers’®
or models leveraging convolutional neural networks
(CNNs)"®"* are widely applicable to biological images to model
across multiple imaging channels capturing different biological
features,”>"® while being robust to distribution shift and batch
variability.”” Autoencoders and transformers have been suc-
cessfully applied for learning representations for sequence-
based data.®®"®7® Using Al algorithms to integrate different
data modalities collected with sequencing and imaging technol-
ogies creates a multi-view model of the cell that can be both dy-
namic and predictive.%"

As the AIVC model grows in complexity, it is crucial to also
model cellular organelles and membraneless compartments®
as units that play specific roles within the cell. Robustly capturing
the functions of these units is vital to ensure accurate predic-
tions, mechanistic interpretability, and model generalizability.

Given their prevalence, the cellular UR will initially rely on tran-
scriptomics measurements, whereas imaging modalities will be
key for continued modeling of cellular spatial organization and
dynamics.

Multicellular scale

At the third layer of abstraction, the AIVC models the organiza-
tion of cells into a multicellular UR (Figures 2A and 2C). This layer
allows for the exploration of how cell-cell interactions, largely
governed by spatial proximity, combine into tissues, organs,
and, ultimately, whole organisms. Multicellular interactions can
be analyzed after tissue dissociation (such as in scRNA-seq)®*
or in situ in a 2D section or 3D volume, where the tissue structure
is preserved. Building the AIVC will require integration across
available modalities that provide spatial insights, i.e., both spatial
molecular profiling, as well as non-molecular tissue imag-
ing data.

There are multiple methods to profile the spatial location of
RNA®* and proteins®® in cells, along with various imaging
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Box 3. Al techniques for building the AIVC

The AIVC will connect a number of diverse neural network architectures. Although these architectures may not have been purpose-built for biological
applications, they have each demonstrated success when matched with specific biological modalities and inductive biases. In many cases, these
architectures may be exchangeable, and one must weigh their individual trade-offs in accuracy, speed, and generalizability. Beyond this, the com-
munity is actively developing Al architectures tailored to the characteristics of (large) biological datasets.

TRANSFORMERS

Transformer blocks

Tokenized input ~ Self-attention

[w] - \/ l‘& @] O%

A transformer neural network®® comprises multiple transformer layers, each taking a series of tokens (discrete pieces of information such as
words, RNA molecules, or gene representations) as input—initial tokens for the first layer and outputs from the preceding layer for subsequent
ones. Within each layer, tokens use self-attention to integrate context from other tokens, enhancing their own representations, which are then pro-
cessed through a feed forward network. This architecture, which fundamentally requires only a collection of tokens,
adapts well across various applications and use cases.

The collection of tokens passed to a transformer does not have any ordering by default. Additionally, the self-attention mechanism, the core of the
success of the transformer, can be taken as a strong biological inductive bias. For instance, in representing cells through their RNA molecules de-
tected via scRNA-seq, each RNA molecule, represented as a token, interacts with others, modeling gene interactions through self-attention.*°
Customizing input tokens with numerical representations of genes further allows the integration of diverse biological data scales, from individual
genes to whole cells.”*°

Additionally, introducing positional encodings to tokens enables transformers to process sequences, such as natural language,° or biological
sequences, such as DNA,*®'%? by incorporating sequence-specific dependencies. This approach is crucial in applications such as masked lan-
guage modeling, where the model predicts missing tokens in sequences, enhancing its understanding of contextual relationships within data. In-
novations continue to refine transformers, increasing their capacity to handle longer sequences and improving efficiency, with advancements
such as state-space models enabling the generation of extensive DNA sequences.”"

CNN

Feature maps

Convolutions Subsampling
A CNN is a deep learning model primarily used for analyzing images.”>"“ It consists of multiple layers that automatically and adaptively learn
spatial hierarchies of features through backpropagation. This learning is facilitated by convolutional layers that apply filters to local patches of input
data, pooling layers that reduce dimensionality, and fully connected layers that interpret the features extracted to make decisions.

In the field of biology, CNNs have proven invaluable for tasks involving image data due to their ability to detect complex patterns and structures,
such as microscope images of cells and tissues. Here, CNNs play a critical role in multiplex imaging,*® where multiple targets within a single sample
are labeled and visualized simultaneously. This technique is particularly useful in studying the complex interactions of different molecules or cell
types within a heterogeneous tissue environment.'** Another notable application is in the analysis of H&E-stained tissue sections, commonly
used in clinical pathology.'*® Lastly, in live-cell imaging, CNNs are employed to track dynamic changes within cells or even single molecules
over time, providing insights into cell migration, responses to treatment, or the movement and interaction of individual molecules within cells,
revealing crucial biological processes at a molecular level.'*®

Beyond their traditional use in image processing, CNNs can also be applied to model sequence data, such as DNA sequences, where they identify
patterns and features that are predictive of biological functions.’*” Despite their extensive utility, CNNs are increasingly being supplemented or

(Continued on next page)
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Box 3. Continued

replaced by vision transformer models,” which leverage self-attention mechanisms to process entire images in parallel. These models can often
achieve higher accuracy on tasks where understanding the global context within the image is crucial.

DIFFUSION MODELS
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Diffusion models are a class of generative deep learning models that have recently gained attention for their ability to generate high-quality,
diverse samples across various domains.’*® They operate by gradually transforming a distribution of random noise into a structured output (images,
text, cellular states, etc.) through a process that mimics a physical diffusion process. Building up on diffusion model architectures, approaches such
as flow matching methods can also model the distributional evolution over time, '“® making them especially powerful in biological applications where
dynamic changes and temporal progression are critical. Flow matching methods thus capture and generate sequences of data that reflect contin-
uous transformations, such as the developmental stages of cells over time and space or the response of biological systems to treatments.®” The
ability of diffusion and flow matching models to learn and replicate complex distributions, combined with the temporal and spatial modeling capa-
bilities of flow matching methods, makes them particularly suited for tasks that involve high-dimensional, intricate data structures typical of biolog-
ical systems.

GNNs

Node
OE® ‘ —
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GNNSs are a set of architectures that can model graphical data.’*° Graphs, sets of nodes connected by edges, are useful representations for many
kinds of biological data. When modeling a biological system, a GNN could be a good choice if a graph structure represents some core inductive bias.
For example, a protein structure'®" can be thought of as a graph where residues are nodes, and their bonds are edges. Cells in a tissue form a graph:
each cell is a node, and the cells it is physically proximal to are connected by edges.'*%"*® In both cases, the graph represents how nodes are phys-
ically proximal to each other. For spatially organized cells, the graph represents how they may pass chemical signals between one another.

GNNs can be used to make predictions about individual nodes, edges, or the graph as a whole."** For simplicity, in the following section, we
describe a node-based GNN. At each layer, a node updates its representation using a neural network, which can take in that node’s current rep-
resentation, in addition to the representations of the node’s neighbors, which are connected by an edge. By stacking GNN layers, a node can receive
“messages” from neighboring nodes at increasing distances, “hops,” from it. Nodes and edges can both be initialized with different features, which
control their final representation and what messages they pass to their neighbors. For example, a GNN trained on spatial transcriptomic data could
take node features to be the virtual cell representation of each cell’s gene expression. The GNN would then update those representations to include
context about each cell’s neighbors, helping to identify spatial interactions and niches.'**

methods for select molecular species (e.g., immunohistochem-
istry) or with stains for tissue structure alone (e.g., hematoxylin
and eosin [H&E]). Spatial molecular biology is currently a very
active area of research and method development. Although pub-
licly available data are still limited, we foresee a rapid develop-
ment in this domain providing multi-omic 2D and 3D datasets.

A more generalized data generation effort together with open
frameworks for spatial data®® could greatly accelerate modeling
at the multicellular scale.

The relative organization of cells within a 2D tissue section and
3D tissue volume can be represented using a graph or point
cloud. The multicellular UR can be derived from such data using
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graph-learning techniques, such as graph neural networks
(GNNs) and equivariant neural networks (ENNs). For image-
based data, convolutional neural networks or vision transformers
can be applied (Box 3).

Predicting cell behavior and understanding

mechanisms

Vls are the “tools” that operate on UR embeddings and perform
various functions and tasks. By altering URs of molecules, cells,
and tissues, manipulators can abstract complex dynamic pro-
cesses (Figure 2B) more simply as transitions between (distribu-
tions of) their representations (Figure 2D). Similarly, decoders
can take an embedding of biological entities and predict one
or more concrete properties, for example, physical structure,
cell type/state, fitness, expression, or drug response.

The design of a wide array of manipulators provides us with an
unprecedented set of tools for modeling cell behavior and dy-
namics: generative Al approaches, such as diffusion models®’
or autoregressive transformers,® i.e., model architectures that
capture heterogeneity and parameterize continuous time dy-
namics, can predict a future state or evolution of a cell or molec-
ular state (Box 3).°”®° Using integrated data from time-lapse im-
aging,®® gene expression profiles,®® and other modalities,
manipulators can allow inferring the phenotypic progression
from stem cell to differentiated cell, while capturing the influence
of both genetic factors and environmental conditions—through
learned interpolations and extrapolations between multi-scale
URs of different cell states. Similarly, they allow predicting the ef-
fect of treatments on patients, given a virtual representation of a
patient’s molecular profile.

Furthermore, variations in cellular URs can be linked to corre-
sponding changes in molecular states or their spatial localiza-
tion, influenced by downstream factors, such as genetic variants
or functional changes in proteins, which are represented in a
lower scale of the AIVC. Leveraging the ability of manipulators
to model temporally resolved molecular and cellular events, de-
coders of the AIVC could potentially identify cellular compo-
nents, molecular pathways, and their interactions that contribute
to each prediction and process. As such, the multi-scale design
of the AIVC may unveil mechanistic hypotheses of such pro-
cesses.

Despite the remarkable advancements in protein modeling,
the field continues to struggle in modeling dynamic molecular
processes using foundation models. There will likely be areas
of cell modeling, including dynamics, which pose similar chal-
lenges. For instance, the modeling of intricate networks of tran-
sient and weak molecular interactions, which play a crucial role
in rapid fine-tuning of cellular signaling and formation of cell bio-
logical features such as condensates, may pose similar chal-
lenges. Consequently, we foresee a need for advanced data
collection and modeling methodologies capable of capturing
the dynamics of cellular processes, akin to those encountered
in protein modeling. At the same time, although some functional-
ities of the AIVC heavily depend on such solutions, others (e.g.,
certain predictive functionalities) may be successful even
without them. That is one of the appealing properties of multi-
modal Al models with emergent properties and why developing
the AIVC now is so compelling.
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In silico experimentation and guiding data generation
Manipulator VIs operating in the UR space could further enable
the exploration of a broad range of hypotheses through in silico
experiments that virtually perturb a cell model. This might be
achieved by predicting changes in the URs following a perturba-
tion prompt (Figure 2D).*%-42~44

The design of manipulators that predict transitions in the UR
upon anin silico input can build on conditional generative models:
deep learning architectures such as conditional deep generative
models®' allow generating the desired UR based on the property
or context of interest (Box 3). Here, high-throughput perturbation
screens—based on RNA-seq,®%%°° optical pooled screens
(OPS),°3%°" or other technologies—offer a rich resource
through which the AIVC can be trained to predict these effects.
By conditioning on specific perturbations—such as environ-
mental changes, genetic mutations, or chemical treatments—
the generative model might produce a new UR reflecting the pre-
dicted cellular response. This conditioning could be achieved
through learned or pre-computed embeddings of the affected
molecular targets. Chemical compounds, small molecules, and
metabolites could be embedded based on their chemical proper-
ties. Additionally, LLMs trained on comprehensive scientific liter-
ature and biological databases, such as Gene Ontology or drug
banks, could further provide a rich contextual background used
for conditioning the generative model, e.g., through considering
wide range of interactions and side effects.

VlIs can be designed so that predictions are accompanied by
estimates of model uncertainty.’” Under a Bayesian formulation
of its predictive function, the predictions made for cell perturba-
tion outcomes could include an uncertainty score, either implic-
itly via inference, deep kernels,”*>* or through explicit estimation
of the full posterior over model parameters.®>°® Some practical
approaches utilize model ensembles®” or conformal predic-
tions.”®°° By assigning specific confidence levels to its predic-
tions, the AIVC can call methods for computing the expected
value of additional data or approximations referred to in machine
learning as active learning to guide experimental data collec-
tion*® for expanding its UR. Alternatively, methods for computing
the expected value of information could be used to guide data
generation with the goal of optimizing a desired biological prop-
erty.% Lastly, through its ability to conduct in silico experiments
and suggest additional informative experiments, the AIVC could
become an integrative part of lab-in-the-loop schemes. This al-
lows not only for a seamless experimental validation of its predic-
tions but also a sequence of experiments, predictions, and gen-
erations of hypotheses that gradually improve our systematic
understanding of molecular circuits that drive biological
functions.

DATA NEEDS AND REQUIREMENTS

A key consideration for the AIVC is which datasets and modal-
ities must be collected to enable its effective construction. Unlike
traditional experimental design, where data are generated to test
specific scientific hypotheses, data collection for training the
AIVC should be focused on ensuring the broad applicability
and generalizability expected of the AIVC. To meet these ambi-
tions, data would ideally span different domains and modalities,
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capture the heterogeneity and diversity of biological variability,
and enable models to distinguish between technical (measure-
ment) noise, stochastic biological variation, and physiological
differences.

Data generation will require simultaneous exploration of tem-
poral and physical scales, while allowing for system perturba-
tions. Here, classical imaging technologies,®>'°"°" including
live-cell, and newer structural imaging technologies, such as cry-
oelectron tomography and soft X-ray tomography,®®'9%19% as
well as novel spatial omics technologies,'°*'%° offer opportu-
nities to model biomolecules and functions across scales.
Furthermore, biological processes span a vast range of time-
scales, from the fastest reactions happening in picoseconds to
a cell division progressing over hours to a day, tumor develop-
ment occurring over years, and neurodegeneration over de-
cades. The recent construction of universal cell atlases'®"'%
may serve as a powerful resource for modeling cellular behavior
over longer timescales, such as tissue formation. New ap-
proaches will be needed to build comparable datasets that cap-
ture the behavior of cells on shorter timescales, e.g., through
methods such as live-cell imaging. Besides molecular measure-
ments, an important aspect of data collection will lie in the mea-
surement of biophysical and biochemical cellular properties to
provide boundaries of physical and chemical realism to the AIVC.

Another important driver for the development of AIVCs will be
multi-modal datasets. For example, datasets that bridge molec-
ular and spatial scales, such as single-cell transcriptomics data
combined with histology to understand how cells interact and
what molecular signatures underpin the formation of specialized
spatial niches.'®” Further technological development is needed
to collect multi-modal data that better capture the relationship
between molecular signatures, cell behavior, cellular regulation,
and organization.

Although a core interest of virtual cell modeling will focus on
human datasets for the purpose of understanding disease and
aiding the development of novel therapeutics, human datasets
are limited in our ability to perform controlled experimentation
and perturbations in vivo.

Here, the field of 3D tissue biology, including culture systems,
such as organoids, is emerging as a tool to study the complex-
ities of tissue architecture and function'®® in a 3D environment,
while allowing perturbations of the system. Another critical
avenue to surpass this limitation will be to perform diverse, or-
ganism-wide profiles of species spanning evolutionary history,
across perturbations and under various conditions.'?%"""
Ideally, large datasets could be collected across all three phys-
ical scales, allowing the AIVC to extend beyond disease research
into other areas such as industrial biotechnology, agricultural
biotechnology, infectious diseases, and climate change. Howev-
er, based on data collection trends for the cellular and multicel-
lular scales, modeling animal cells remains the most realistic.

Finally, a key aspect of biological data generation will be the
exploration of combinatorial spaces: biological spaces are
commonly high dimensional, and enumerating their variants is
intractable in general, e.g., when considering all possible vari-
ants of a genome. Even for combinations of a small number
of entities, exemplified in the case of enumerating pairs or
sets of perturbations,””*° experimental design becomes
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exceedingly challenging. Because combinatorial possibilities
quickly expand well beyond what is practical experimentally,
or even computationally, new methods for their exploration
must be developed.

How much data are needed to build the AIVC?

The scale of raw biological data is undeniable, but so is the sheer
nominal size of even one human cell system, making first princi-
ple estimates challenging. For instance, the Short Read Archive
of biological sequence data holds over 14 petabytes of informa-
tion, "' which is more than 1,000 times larger than the dataset
used to train ChatGPT.""® Large parts of these data may be
redundant or have diminishing returns if used for training, and
the scaling laws for models’ performances must be investigated
thoroughly.

In addition to data size, data diversity and quality are critical to
ensure model performance.’'* Data from humans and model or-
ganisms, such as mice and Escherichia coli, are unequally repre-
sented in sequence and literature databases, which when used
for training, encode strong species biases.''* Other biases, for
example, in terms of sex, specific diseases, or human ancestral
populations could also reduce the impact of AIVC models."'®

Although efforts on the data side are required, the Al models
driving the AIVC must be designed to withstand and adapt to
these challenges, i.e., exhibit robustness in their ability to inte-
grate datasets of various origins and quality. This is crucial given
both the rapid pace of advances in lab technologies (which pre-
clude standardization on a single platform) and the broad diver-
sity of modalities and cell systems that must be encompassed by
the AIVC. As virtual cell efforts mature, the dialog between the
scientists who develop models, those who generate experi-
mental data, and funding organizations must be further inten-
sified.

MODEL EVALUATION

A more important question for the development of AIVCs may
not be “how do we build them?” but rather “how do we build
trust in their competence and fidelity?” To this end, a compre-
hensive and adaptable benchmarking framework will be needed.
Although various frameworks already exist for tackling specific
biological questions (for example, protein structure prediction
models®® were developed in the context of the CASP evaluation
framework), the AIVC will need to demonstrate generalizability
across numerous biological contexts and downstream tasks. It
must account for dynamic distributions that evolve due to envi-
ronmental changes, infections, genetic variants, and other
such factors causing distribution shifts."'®

Even beyond generalizability, emergent capabilities, such as
those associated with LLMs, could enable AIVC models to
extrapolate to truly out-of-distribution data. In a biological
context it may be difficult to decide how this boundary is defined
during evaluation. New molecules, new cell states, and even new
species could be considered within the training distribution. A
new molecule could have homologs, including remote homo-
logs, within the dataset. A new cell type or state could execute
gene programs and regulatory networks found in existing cell
types. A new strain could be closely related to existing species
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in the training data or live in similar environmental niches. Extrap-
olation to new data could then be limited to consider only the
design of biological entities that do not naturally occur. This
type of evaluation is already considered within the molecular
design space because language-model-created proteins, such
as esmGFP>? or OpenCrispr1,>® highlight how different they
are from any of their naturally occurring counterparts. If extrapo-
lation is a goal when designing these models, it is possible that
additional inductive biases, fine tuning, or preference optimiza-
tion using biomechanical, physics-based, or mechanistic
modeling’"” would prove necessary.

The evaluation of AIVCs should prioritize both generalizability,
as well as discovering new biology. Generalizability measures
how well the model performs in unseen contexts, such as novel
cell types and genetic backgrounds. It can be evaluated through
a cross-modal reconstruction task, such as predicting gene
expression given the morphology of a previously unseen cell or
the next image in a sequence of microscopy images of cell state.
Assessing generalizability builds confidence in the AIVC’s ability
to capture core biological processes and understand how they
vary across different contexts. Establishing such cross-modal
benchmarks to link scales and modalities in cell biology is of
imminent priority to the research community because these
tasks are both biologically useful and well defined.

Ultimately, AIVC models should be judged on their ability to
unlock new ways of understanding biology. Such an evaluation
will ensure that model development is aligned with biological
relevance. The most useful initial accomplishments will likely
be to generate valuable testable hypotheses. For this purpose,
validation datasets that are related to phenotypes that are exper-
imentally verifiable may be suitable, such as growth rate of cells,
molecular profiles, disrupted protein-protein interactions, or
transcription factor binding.

As the capabilities of AIVCs improve, we must consider
whether statistical measures of performance are adequate, or
if interpretability and biological causality would be core re-
quirements.

INTERPRETABILITY AND INTERACTION

One of the hallmarks of scientific discovery in biology has been
the creation of mechanistic models of a phenomenon under
observation. When creating virtual cells, we may have to forgo
our ability to build fully mechanistic models in favor of learning in-
teractions that will generalize from data and predict beyond the
observations. However, it is still desirable to strive toward
increased interpretability.

Every AIVC prediction could be substantiated with the corre-
sponding multi-scale interactions that determine resulting
states, e.g., understanding how a cellular subsystem or protein
complex is disrupted in a diseased tissue can aid development
of therapeutic interventions."'®""® The modular structure of the
AIVC will enable researchers to pinpoint specific genes, pro-
teins, or molecular processes involved in each predicted
behavior. Patterns in the wiring of large models can also be
leveraged to uncover combinatorial biological interactions,
such as those between proteins, which can be projected to
interpretable spaces without restricting the generality of the
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original model. Although many capabilities of the AIVC rely on
predictive tasks, generating mechanistic hypotheses could pro-
vide experimental routes to understand and explore the AIVC’s
predictions further and will be vital for the adoption and use
of AIVCs.

Ultimately, it will be of key interest to build an interactive layer
for the AIVC that enables researchers of varying expertise to
grasp and utilize its predictions effectively. Al agents, built us-
ing LLMs, could serve as virtual research assistants, providing
an intuitive interface for non-experts.’®'?° Leveraging their
extensive knowledge of scientific literature, these language
models can offer deeper insights into the predictions made
by the AIVC.

AN OPEN COLLABORATIVE APPROACH

Creating an AIVC requires tremendous investment, diverse
backgrounds, and many iterations and can only be advanced
by a concerted open science effort. As a scientific community,
we must strive to ensure that both the development and usage
of virtual cells are accessible and responsive to the entire scien-
tific community. These efforts would greatly benefit from open
data resources and data standards, a collaborative platform
for cell modeling, and, especially, open benchmark datasets
and common validation strategies to ensure their biological fidel-
ity and real-world utility. Such a collaborative program could
greatly accelerate progress across individual efforts and unify
scientific research at a global scale, connecting myriad
smaller-scale efforts.

To achieve this, multiple key parameters need to be consid-
ered. First, we must ensure that AIVCs represent and benefit all
of humanity, with open data that captures human ancestral,
sex, and geographic diversity.'" Ensuring that such datasets
reflect human diversity, while safeguarding individuals’ privacy
is a principal challenge. Second, as the size of AIVC models in-
creases, the cost of training, fine tuning, or using them as is will
also grow. Investments in diverse data collection, infrastruc-
ture, and a platform for hosting virtual cell models will be critical
to ensure representation, accessibility, and benefit to the
broader scientific community. The platform should foster
open and collaborative development of AIVCs, enabling active
collaboration between biologists, clinicians, statisticians, and
computer scientists. This platform should facilitate swift itera-
tions between the lab and the modeling environment and offer
opportunities to quickly test and benchmark new models.
Third, synergistic collaboration among stakeholders is needed
across the biomedical ecosystem, including philanthropy,
academia, biopharma, and the Al industry. Pre-competitive
collaborations can greatly accelerate our collective progress
toward creating AIVCs. Besides the synchronization with data
generators and other modeling efforts, collaboration with regu-
latory authorities and bioethics experts are crucial for bench-
marking and establishing new norms that will expedite the
deployment of AIVCs, while complying with legal requirements
and setting standards for ethical issues for responsible use of
virtual cells.

This article is intended to serve as a primer for the formation of
a collaborative research agenda and roadmap for a large-scale,
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long-term initiative for developing and implementing Al-powered
VCs. If successful, such interactive AIVC models, capable of
simulating cellular biology, have the potential to fundamentally
change how cell biology research is done. We foresee a future
where AIVC platforms function as open, interconnected hubs
for collaborative development and broad deployment of cell
models to researchers but also as education hubs delivering
training to researchers, as well as providing engagement activ-
ities for educators, patients, and the public.

OUTLOOK AND REASONS FOR OPTIMISM

The genetics and genomics communities have created large
reference datasets, such as the human genome project,®
HapMap, '*? the Cancer Genome Atlas (TCGA),'** ENCODE,'**
the Genotype-Tissue Expression (GTEX) project, '*° the Human
Protein Atlas (HPA),°*'?® the Human Gell Atlas (HCA),** and a
growing number of deeply phenotyped, population-scale bio-
bank efforts.’®” Thanks to these projects, massive reference
data are now available to train machine learning models.
Although these efforts will continue to grow, they also catalyze
a new, parallel effort: creating a virtual simulation of cell biology,
a new process for scientific inquiry.

The result, the AIVC has the potential to revolutionize the sci-
entific process, leading to future breakthroughs in biomedical
research, personalized medicine, drug discovery, cell engineer-
ing, and programmable biology. Acting as a virtual laboratory,
the AIVC could facilitate a seamless interface between data
derived from in silico experimentation and results from physical
laboratories. As such, we expect the AIVC to contribute to a
more unified view of biological processes, fostering alignment
among scientists on how emergent properties in biology arise.

By bridging the worlds of computer systems, modern genera-
tive Al and Al agents, and biology, the AIVC could ultimately
enable scientists to understand cells as information processing
systems and build virtual depictions of life. As the AIVC expands
the understanding of cellular and molecular systems, it will also
increasingly allow us to program them and design novel syn-
thetic ones. Al models have already been used to design new
CRISPR enzymes,>® functional proteins,'*® and even entire pro-
karyotic genomes.®' The rapid progress in the precision of cell
and genome engineering tools will accelerate this shift and
different instantiations of the AIVC will compete in their ability
to engineer new, functional biology capabilities as much as in
their ability to represent and simulate biology.

Finally, we staunchly advocate the role for open science ap-
proaches, where the scientific community readily shares data,
models, and benchmarks, where findings and insights are
contextualized, and where a climate of perpetual improvement
is fostered. We welcome and encourage all stakeholders
across sectors and domains to engage in this endeavor. With
a massive scientific undertaking and shared goals, open
sharing of insights, and the power of safe, ethical, and reliable
Al, we believe that we are stepping into a new era of scientific
exploration and understanding. The confluence of Al and
biology, as encapsulated by AIVCs, signals a paradigm shift
in biology and shines as a beacon of optimism for unraveling
multiple mysteries of the cell.
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