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19 Abstract

20  Many critical drivers of ecological systems exhibit regular scaling relationships, yet the
21  underlying mechanisms explaining these relationships are often unknown. Trophic

22 interaction strengths, which underpin ecosystem stability and dynamics, are no

23 exception, exhibiting statistical scaling relationships with predator and prey traits that

24 lack causal, evolutionary explanations. Here we propose two universal rules to explain
25  the scaling of trophic interaction strengths through the relationship between a predator’s
26  feeding rate and its prey’s density --- the so-called predator functional response. First,
27  functional responses must allow predators to meet their energetic demands when prey
28 are rare. Second, functional responses should approach their maxima near the highest
29  prey densities that predators experience. We show that independently parameterized
30 mathematical equations derived from these two rules predict functional response

31  parameters across over 2,100 functional response experiments. The rules further predict
32  consistent patterns of feeding rate saturation among predators, a slow-fast continuum
33 among functional response parameters, and the allometric scaling of those parameters.
34  The two rules thereby offer a potential ultimate explanation for the determinants of

35  trophic interaction strengths and their scaling, revealing the importance of ecologically

36 realized constraints to the complex, adaptive nature of functional response evolution.
37  Introduction

38  Understanding the ecological and evolutionary determinants of the strengths of predator-
39 prey interactions is key to understanding the stability, diversity, and dynamics of

40  ecosystems (De Ruiter et al. 1995; McCann et al. 1998; Paine 1992; Yodzis 1981). A

41  fundamental component of trophic interaction strengths is the predator’s functional

42  response that describes how predator feeding rates change with prey density (Holling
43  1959; Solomon 1949). Thousands of experiments have measured functional responses
44  for taxa ranging from microbes to large carnivores from nearly every biome on earth

45  (Uiterwaal et al. 2022) to uncover a number of variables influencing the underlying

46  parameters, including statistical relationships with predator and prey traits (Coblentz et
47  al. 2023; DelLong 2021; Pawar et al. 2012; Uiterwaal & DelLong 2020; Vucic-Pestic et al.
48  2010). Principal among these are predator and prey body sizes whose consistent

49  allometric relationships with functional response parameters serve as the basis for most
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50 dynamical food web models (Brose et al. 2006; Otto et al. 2007; Yodzis & Innes 1992).
51  However, despite the existence and utility of such statistical relationships between
52  functional response parameters and many traits, it remains unclear why these

53  relationships exist as they do.

54 Early theory suggested that the biomass consumption rates of predators should
55  scale to the 3 power because organisms’ metabolic rates scale to approximately the 34
56  power with their body masses (Yodzis & Innes 1992). More recent theory considering
57  proximate mechanisms for the strengths of trophic interactions, such as the

58 dimensionality of predator-prey interactions and the allometric scaling of predator and
59  prey movement velocities, has also seen success in predicting certain functional

60 response parameters (i.e. the space clearance/attack/search rate) and their scaling

61 relationships (Pawar et al. 2012; Portalier et al. 2022). But other parameters (i.e. the

62  asymptotic/maximum feeding rate or its reciprocal, the handling time) remain poorly

63  predicted, such that an understanding of the evolutionary drivers of functional responses
64  as a whole remains missing. An encompassing means to predict predator foraging rates
65 through a theory that reflects the ultimate causes determining them is therefore of

66  significant interest.

67 Here we aim to provide such a theory derived from two simple rules for predator
68  foraging. We further combine several databases to examine the ability of our theory to
69  predict functional response parameters and assess several additional predictions that it

70  makes.
71  Two Rules for Functional Responses

72 We posit that predator functional responses meet two simple conditions. First, that a

73 predator’s feeding rate must meet its energetic demands at the low prey densities it is
74 likely to experience. This must be true for the long-term persistence of the predator

75  population. Although cases exist in which predator mortality or biomass loss exceeds

76  energy intake and reproduction, as occurs during the declining phases of a predator-

77  prey cycle, predator energy intake must balance energetic demand over the long term to
78  avoid extirpation (McCann 2011). Second, that the prey densities at which a predator’s
79  feeding rate saturates (i.e. approaches its maximum) should be near the highest prey

80 densities it is likely to experience. This is because, first, feeding rates must saturate at
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81  some prey density (Holling 1959; Jeschke et al. 2004). Second, if feeding rates

82  saturated at a lower prey density, predators would pay an opportunity cost for missing
83  out on higher feeding rates at the high prey densities they experience. Third, lower

84  handling times leading to higher, less saturated feeding rates at high prey densities: i)
85 have diminishing fitness returns since the highest prey densities are rarely experienced,
86 i) imply less energy extracted per prey consumed (Okuyama 2010), and iii) require

87 larger ingestive or digestive capacities that are energetically costly (Armstrong &

88  Schindler 2011; McWilliams & Karasov 2001; Secor et al. 1994). Although predators

89  may only rarely experience these high prey densities, selection on predators may still be
90 strong because taking advantage of these periods of high prey abundance can have

91 outsized effects on predator fitness. For example, Armstrong and Schindler (2011)

92  showed that many fishes have excess digestive capacities to achieve feeding rates up to

93 three times their average despite the high cost of maintaining that capacity.

94 Past studies on functional response evolution have largely focused on relatively
95  simple optimization of predator feeding rates (Abrams 1982; Amarasekare 2022;

96 Delong & Coblentz 2022). The two rules we posit take a different view in which

97 functional responses are the outcome of the long-term evolution of the traits determining
98 functional responses that balance a multitude of selective pressures. The outcome of

99 this evolutionary process is that predators are minimally capable of persisting when prey

100  are scarce while also being able to take advantage of occasionally abundant prey.

101 We derive two equations encapsulating these constraints. The first rule that

102  predators must satisfy their energetic demand at low prey densities can be formalized as
103 D = fi,wEMy, Egn. 1

104  where D is the energetic demand of the predator in kd/day. The rate at which prey are
105 consumed when rare is given by its feeding rate f,,,, which should be well approximated
106 by a linear functional response at low prey densities (i.e. f;o,w = N4, Where a is the
107  space clearance rate and N, the low prey density) (Coblentz et al. 2023; Novak et al.
108 2024). E is the energy density of the prey in units of kd/g, and M is the mass of the prey
109 in grams to convert the number of prey eaten to the mass of prey eaten. Although here

110  we do not explicitly account for lost or otherwise unassimilated prey energy due to
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111 undigestible parts, feces, urine, etc. (Yodzis & Innes 1992), these processes could easily

112  included in egn. 1 by adjusting the energy density or mass of prey.

113 The second rule that a predator’s feeding rate should saturate near the highest
114  prey densities it experiences can be formalized as

115 IS = fhighha Eqn 2

116  where [ is the degree of saturation (ranging between 0 and 1) and h is the handling time

117  (i.e. the inverse of the maximum feeding rate) (Coblentz et al. 2023). Assuming a Holling

aNnigh

118  Type Il functional response, as we do here, fy;;, = PR
high

, where Ny, is the high

119  density of prey likely to be experienced by the predator. I also may be interpreted as the
120 fraction of time that a predator individual is busy handling prey, or as the fraction of

121 individuals in a predator population that are handling prey at any given point in time

122 (Supplementary Information) (Coblentz et al. 2021; Novak et al. 2017). We focus on the
123 Holling Type-II version of the functional response over the Michaelis-Menten form (i.e.

124 f = fc“’Jril\? where f is the feeding rate, f;,,4. is the maximum feeding rate, and c is the

125  half-saturation constant or the prey density at which f = %fmax). We do so for two

126  reasons. First, the Holling Type Il functional response parameters have clear

127  mechanistic interpretations: a is the space that would be cleared by a predator in the
128  absence of a time cost to handling prey, and h is the time taken away from searching for
129  prey once a prey is captured. Second, the parameters of the Holling Type Il functional
130  response have practical interpretations related to feeding rates at high and low prey

131  densities: a is the slope of the functional response at the origin, and % is the maximum

132 feeding rate.

133 Given equations 1 and 2, we can solve for the space clearance rate and handling

134  time as

135 a=—2 Eqgn. 3
NiowEMpy

136 and

137 — M Eqn 4

DNpign(1-Is)’
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138  Auxiliary Predictions

139  Beyond providing equations for the space clearance rate and handling time parameters,
140  equations 1 and 2 also make auxiliary predictions. Here, we focus on three of these

141  related to i) the degree of feeding rate saturation across prey densities experienced by
142  predators, ii) the relationship between space clearance rates and handling times, and iii)
143  the allometric scaling of space clearance rates and handling times.

144 (i) Regarding the saturation of predator feeding rates with prey densities, we
145  assume that the functional response is unsaturated at low prey densities and
146  approaches saturation at the high prey densities experienced by predators (egns. 1 and

147  2). Given these two assumptions, we also can assess the prey density at which the

148  predator’s feeding rate is half saturated. This occurs when the prey density is equal to ﬁ
149  (known as the half saturation constant in the Michalis-Menten formulation). Using

150 equations 3 and 4, we can solve for the half saturation constant as

1 (-Is)Nnign

151 s s

Egn. 5

152 Thus, our theory predicts that, despite different predators experiencing different ranges
153  of prey densities, their degree of saturation across those density ranges is invariant.

154 (il) Regarding the relationship between space clearance rates and handling
155  times, it follows from eqn. 5 that a and h are related as

156 a=—235 Eqgn. 6

"~ (A-Is)Npignh

157  and therefore, taking the natural log of both sides, that

158 In(a) =In ((1_13)Nhigh) In(h). Eqn. 7
159  Our theory therefore predicts an inverse (or negative log-log-linear) relationship between
160  space clearance rates and handling times among predators feeding on prey with similar

161  high population sizes.

162 (iii) Last, several of the parameters on the right-hand sides of equations 3 and 4

163  have well-known scaling relationships with species’ body masses. Specifically, energetic
6
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164 demand defined as predator metabolic rate scales with predator body size (Kleiber’s

165 Law (Brown et al. 2004; Kleiber 1932)) and prey densities scale with prey body size

166  (Damuth’s Law (Damuth 1981)). As we can treat the remaining parameters as constants
167 unrelated to body size, this suggests that the theory outlined here should be capable of

168  predicting the allometric scaling of a and h.

169 Below, we take advantage of the FORAGE database of functional response

170  experiments to examine the predictions of our theory (Uiterwaal et al. 2022). We first
171  combine FORAGE with databases on mass-abundance and metabolic scaling

172 relationships to predict functional response parameters across most studies in FORAGE.
173  Then, for a subset of FORAGE studies performed in the field, we examine our theory’s
174  ability to make predictions using system-specific information. Last, we examine the

175  evidence for the three sets of auxiliary predictions made by our theory.
176  Methods
177 Databases, Data Handling, and Predictions

178  We can evaluate the ability of our theory to predict functional response parameters by
179  comparing measured functional response parameters to predictions derived using

180  estimates of the parameters on the right-hand sides of the equations. To do so, we bring
181  together two databases: the FORAGE compilation from Uiterwaal et al. (2022) and a

182  data compilation of eukaryotic species’ masses, metabolic rates, and population

183  densities from Hatton et al. (2019). FORAGE contains functional response parameter
184  estimates from 3,013 functional response experiments along with additional information,
185 including predator and prey body masses, for most studies. Thus, FORAGE provides the
186  measured space clearance rates and handling times and values for prey mass in wet
187  weight (My). To predict space clearance rates and handling times using equations 3 and
188 4, we still require estimates of energetic demand (D), prey energy density (E), high and

189  low prey densities (N, and Ny;,,) and the degree of feeding rate saturation at high

190 prey densities (Is).

191 To obtain estimates of low and high prey densities likely to be experienced by
192  predators (Niow and Nhxgr), and predator energy demand (D), we combined the FORAGE

193  database with mass scaling data from Hatton et al. (2019). To estimate Ny, and Ny p,
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194  we used the data from Hatton et al. (2019) containing species’ masses and their

195 measured densities in aerial m®. These density estimates include density estimates from
196  the same species in different places or times, as well as estimates across different

197  species. We assume that the variation in the density data reflects both variation in prey
198 densities a predator might experience over space and time and among rare and

199  common species with similar masses. To estimate N,,,, and Ny;4y, for the prey in

200 FoRAGE, we first performed Bayesian log-log regressions of density on mass separately
201  for prokaryotes (n = 635), protists (n = 301), ectotherm invertebrates (n = 778),

202  ectotherm vertebrates (n = 404), mammals (n = 2,852), and birds (n = 603). Using the
203  classification of prey and their masses in FORAGE, we then estimated the posterior

204  predictive distribution for each study-specific prey in FORAGE and extracted the 10" and
205 90" percentiles as estimates of Ny, and Nhign respectively. To estimate D, we performed
206  Bayesian log-log regressions of basal metabolic rate in kd/d on predator mass in g

207  separately for protists (n = 365), ectotherm invertebrates (n = 4,559), ectotherm

208  vertebrates (n = 616), mammals (n = 1,059), and birds (n = 492). We then used the

209  median predicted metabolic rate of each predator in FORAGE based on its classification
210 and mass as our estimate of D. For the Bayesian regressions, we used flat priors on the
211 intercept and slope, and a Student t prior with degrees of freedom = 3, location = 0, and
212 scale = 2.5 on the standard deviation. We approximated the posterior distribution using
213 1000 samples each from 4 Markov chains after a 1000 sample warmup. We performed
214  the regressions using the R package ‘brms’ (Burkner 2017) using Stan (Stan

215  Development Team 2024) through the backend cmdstanr (Gabry et al. 2024).

216 With estimates of Ny,,, , Npign, and D, we then needed estimates of E and I;. We
217  assume that these values are approximately constant, setting £ = 5.6kd/g wet weight
218  following Brown et al. (2018) and I; = 0.9. Our results are not sensitive to reasonable
219  choices of values for I; or for the percentiles used for Ny, and N4, (see Supplemental

220  Information).

221 Although the full FORAGE database contains 3,013 experiments, we restricted our
222 predictions to:
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223 1) Studies including living prey that were not eggs. We did not include studies that
224 used eggs as prey as it is unclear whether mass scaling relationships apply to
225 eggs.

226 2) Studies with handling time estimates greater than 1x10° days. We did so

227 following previous studies suggesting that studies within FORAGE with lower

228 values than this cutoff are those for which Type Il functional responses have poor
229 fits (Coblentz et al. 2023; Kigrboe & Thomas 2020; Uiterwaal & DeLong 2020).
230 3) Studies with both predator and prey masses. We excluded studies without this
231 information because it is what allows a link between the FORAGE database and
232 empirical mass scaling relationships.

233 After excluding the studies that did not meet these criteria, we were left with 2,162

234 functional response measurements.

235 Combining the estimates of Njow, Nnign, D, E, and Is, we predicted the space

236  clearance rates and handling times for each predator-prey pair in the reduced version of
237 FoRAGE. We compared these predictions to observed values using reduced major axis
238  regression with the R package ‘imodel2’ (Legendre 2018).

239  Field-study Specific Predictions

240  Forty of the 2,162 FORAGE experiments remaining in our reduced dataset were

241  performed in the field. Because these field studies include high and low abundances of
242  prey observed during the studies, they provide an opportunity to test functional response
243  parameter predictions using system-specific information rather than mass scaling

244 relationships. To avoid circularity, we excluded a subset of studies that estimated

245  predator Kill rates by using the proportion of predator diets consisting of a prey type

246  coupled with the average mass of that prey and the predator’s daily energetic demand to
247  estimate the number of prey consumed per day. For the remaining studies, we

248  performed a literature search to find information on predator energetic demand (D) and
249  prey energy density (E). For energy demand, we used estimates of daily energy

250  expenditure, if available. Otherwise, we used basal metabolic rate. For energy density,
251  we used species-specific estimates of kd/g if they were available. Otherwise, we used

252  studies of prey body composition that gave the percent of prey body mass composed of
9
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protein and fat. We used conversions of 16.74 kJ/g for protein and 33.47 kJ/g of fat to
calculate prey energy density (Chizzolini et al. 1999; Menzies et al. 2022). We were able
to find the requisite information for seven studies of six mammalian predator-prey pairs.
For these studies, we assumed the highest and lowest recorded prey densities as
estimates of N, and Nygn. Details and references for the estimates are given in the
Supplemental Information. As the estimate of mass, we used the mass in FORAGE
(Uiterwaal et al. 2022). FORAGE presents the mass reported in the original study where
possible, but if the mass was not available from the original study, the authors of
FORAGE took a stepwise process to estimate masses, for example using length-mass
relationships or data from sources other than the original study (for details see
(Uiterwaal et al. 2022)).

Auxiliary Predictions

(i) To examine whether our theory’s predicted relationship between the predator’s half-
saturation constant and prey densities held, we used the values of the space clearance
rates and handling times from FORAGE and the mass-abundance scaling prediction for
high prey abundances. To assess the accuracy of the predictions, we calculated the
correlation and performed a major axis regression on the observed vs. predicted half

saturation constants.

(ii) To examine oru theory’s prediction of the relationship between space clearance rates
and handling times given /s and the high density of the prey, we used the values of the
space clearance rates and handling times from FORAGE and the mass-abundance
scaling predictions of the high prey abundances. To assess the accuracy of the
prediction of the relationship between space clearance rates and handling times, we
calculated the correlation performed a major axis regression on the observed vs.

predicted space clearance rates.

(iii) To assess whether our theory could predict the allometric scaling of space clearance
rates and handling times, we derived equations for the scaling of space clearance rates
and handling times assuming that predator energy demand (D) has a power law scaling
with predator mass, low and high prey densities (Nw and Nhxigr) scale with prey mass,
and predator and prey masses scale with one another. We assumed the other variables
determining space clearance rates and handling times are constants unrelated to

10
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284  predator or prey mass. Derivations of these equations are given in the Supplemental
285 Information. We then used log-log least squares regressions to test our predictions,

286  obtaining estimates of the empirical relationships within FORAGE across the different
287  classifications used in the mass-abundance and mass-metabolism regressions between
288  prey masses and abundances, predator masses and energy demand, and predator and
289  prey masses (see Databases, Data Handling, and Predictions).

290  All analyses were performed in R using v. 4.3.1 (R Core Team 2023)
291 Results
292  Prediction ofa and h

293  The two rules performed well in predicting empirically estimated space clearance rate
294  and handling time values across their respective 19 and 8 orders of magnitude in

295  variation (Figure 1; log space clearance rate correlation coefficient = 0.82, R2 of 1:1 line
296 = 0.81; log handling time correlation coefficient = 0.57, R? of 1:1 line = 0.75). The major
297  axis regression slopes between observed and predicted space clearance rates (8 =

298  0.85, 95% Confidence Interval (Cl) = 0.82, 0.87) and handling times (8= 1.14, 95% Cl =
299  1.08, 1.22) suggest a tendency for the slight overestimation of space clearance rates
300 and underestimation of handling times at low values, and the underestimation of space
301 clearance rates and overestimation of handling times at high values (Figure 1).

302  Alternative means for determining low and high prey densities and levels of predator
303  saturation shift the points in Figure 1, but do not influence the predictive power of the two
304 rules (Supplementary Information). Indeed, the tendency for over/under-estimation likely
305 reflects insightful across-system variation not reflected in estimates from mass-scaling

306 relationships (see below).

307 We also predicted the functional response parameters for the subset of the
308 studies that were field studies. For the seven studies of mammalian predators, we again
309 find that the predictions fall near the 1:1 line but without the same systematic tendency

310 for over/under-estimation (Figure 1C-D).

311  Auxiliary Predictions

11
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312 (i) The relationship between the empirical half-saturation constant values and
313  high prey densities, modified by the degree of saturation, supports our theory’s
314  prediction (correlation = 0.86, slope of major axis regression (95% CI) = 0.88 (0.86,0.9),

315  Fig. 2A; see the Supplemental Information for a sensitivity analysis).

316 (i) Space clearance rates and handling times were inversely related to each
317  other when accounting for the high prey densities (Figure 2B,C). Without accounting for
318 the high prey densities, there is little apparent relationship between space clearance
319 rates and handling times (Figure 2B). However, once the high prey densities are

320 accounted for, the negative relationship between space clearance rates and handling
321  times is evident (see the color coding in Figure 2B). Examining the prediction of the
322  relationship between handling times modified by high prey densities and the degree of
323  predator feeding rate saturation at high prey densities supports our theory’s prediction,
324  albeit with a tendency to underpredict the space clearance rates (correlation = 0.84,
325 intercept of major axis regression (95% CI) = -1.5 (-1.6,-1.4), slope of major axis

326  regression (95%Cl) = 1.07 (1.04,1.1)).

327 (iii) Space clearance rates and handling times scale with predator and prey body
328 masses as predicted. Specifically, the empirical scaling of the parameters we consider
329  as being related to body size (those besides I; and E) are Ny, < My®®*, Np; o, o< My©”,
330 and D < M387 where Mpis the mass of the predator and the other parameters are

331  defined above. Given these scaling relationships and the first rule, it follows that the

332 allometric relationship for the space clearance rate should be a o« M387My%%6. Given
333 that in the dataset My « M?27°, we therefore predict that a &« M382. This prediction

334  matches the observed scaling of a « M28 (95% Cl = 0.78, 0.83; Figure 3A). Similarly,

335  the allometric relationship for handling time should be h o« M%°°M; %87, Thus, we predict

336 ML o« My %87, This prediction also matches the observed scaling of ML o« Mp%85 (95% CI
N N

337 =-0.87,-0.82; Figure 3B; See Supplemental Information for derivations of scaling
338  relationships).

339 Discussion

340 We demonstrate that two simple rules can predict the parameters of predator functional
341  responses and their scaling relationships. In contrast to prior work, our theory provides
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342  an ultimate explanation for the strengths of trophic interactions rather than focusing on
343  proximate mechanisms. Our approach generates predictions of space clearance rates of
344  predators with similar accuracy as prior theory (Pawar et al. 2012; Portalier et al. 2022),
345  but also predicts handling times, which have been predicted poorly by previous work
346  (Portalier et al. 2022). In addition, oru theory offers two practical advantages. First, it
347  uses parameters that are generally easier to measure than those required by previous
348 theory (e.g. predator movement velocities and prey detection distances). Second, our
349 theory’s foundation in ultimate causes suggests potential applications beyond

350 environmental conditions and taxa in which trophic interaction strengths have been

351 measured, addressing a limitation of current statistical approaches to prediction (DiFiore
352 & Stier 2023).

353 Our two rules emerge from a view of functional responses as being products of a
354  long-term eco-co-evolutionary process involving predators, their prey, and the

355  environment including the effects of other species and their interactions (DeLong 2020;
356  Gutiérrez Al-Khudhairy & Rossberg 2022; Wickman et al. 2024). A predator’s fitness
357 depends not only on its ability to procure food; it also depends on its ability to avoid its
358  own predators, find mates, etc. (Jeschke 2007). Therefore, we suggest that eco-

359  evolutionary processes combine such that trophic interaction strengths reflect the ability
360 of a predator to minimally meet energetic demands during busts of low prey densities
361  while also taking advantage of instances of booms at high prey densities. This contrasts
362  with previous work that has focused on the optimization of space clearance rates and
363  handling times to maximize energy intake. This view also may help explain why it

364  appears that consumers often do not appear to overexploit their prey (Gutiérrez Al-

365  Khudhairy & Rossberg 2022; Vuorinen et al. 2021). As many complex behaviors and
366  phenotypes are the product of multiple traits under multiple selective pressures, our

367  approach of focusing on functional outcomes rather than specific processes may offer a
368  way forward for understanding and predicting other complex phenotypes such as

369 thermal responses and competitive abilities and their resulting ecological scaling

370 relationships.

371 The theory developed here also makes predictions beyond the values of space
372  clearance rates and handling times that are supported by the data. The first is the
373  prediction that predators show consistent patterns in how their feeding rates saturate
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374  across prey densities: feeding rates are largely unsaturated at low prey densities, reach
375 half-saturation at an intermediate fraction of the highest prey densities, and only become
376  fully saturated at the highest prey densities encountered. This result is consistent with
377 that of Coblentz et al. (2023) who found that predators feeding rates were generally

378 unsaturated at the typical prey densities predators are likely to experience. Indeed, given
379  the highly skewed frequencies of species abundances spatially and temporally in nature
380 (Brown et al. 1995; Halley & Inchausti 2002), the predicted prey density at which half-
381  saturation occurs within our data is typically 2.4 times higher (standard deviation = 0.4)
382  than the predicted median prey density. This suggests that predators only rarely feed
383  near their maximum feeding rates, implying that predation pressure should dynamically

384  change with changes in prey densities.

385 The second auxiliary prediction from our theory is a negative relationship

386  between space clearance rates and handling times, a pattern previously found by

387 Kigrboe & Thomas (2020). These authors interpreted this relationship as a slow-fast
388  continuum in trophic interactions that appeared to contradict the gleaner-opportunist
389 tradeoff — a fundamental concept in ecology that helps explain species coexistence
390 under variable resources (Armstrong & McGehee 1980; Grover 1990). Under the

391  gleaner-opportunist tradeoff, ‘gleaners’ perform better at low resource levels while

392  ‘opportunists’ take advantage of high resource situations. If ingestion rates directly

393  determine growth rates, the gleaner-opportunist tradeoff would predict a positive

394 relationship between space clearance rates and handling times (Kiorboe & Thomas
395  2020), a pattern that is opposite to that which we and Kigrboe & Thomas (2020)

396  observed. Our results provide a potential resolution to this apparent contradiction by
397  considering predator energy demands. Our theory suggests that the negative

398 relationship between space clearance rates and handling times for predators consuming
399  similarly sized prey occurs due to differences in energy demand -- energy demand

400  appears in the numerator and denominator of the equations for space clearance rates
401  and handling times respectively. Thus, predators with higher energy demands exhibit
402  higher space clearance rates and lower handling times, whereas predators with lower
403  energy demands exhibit the opposite pattern. Although high-energy-demand predators
404  may consumer more prey at low prey availability, they also incur higher energetic costs

405  under these conditions compared to low-energy-demand predators. This energetic
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406  tradeoff provides a mechanism for the cooccurrence of a gleaner-opportunist tradeoff

407  with the presence of a slow-fast continuum in functional responses parameter.

408 The third auxiliary prediction from our theory is the allometric scaling of space
409 clearance rates and handling times. The allometric scaling of functional response

410 parameters plays a central role in dynamical food web models (Brose et al. 2006; Otto et
411  al. 2007; Yodzis & Innes 1992). Whereas existing models typically derive scaling

412  relationships from metabolic theory based on biomass consumption (Brose et al. 2006;
413  Otto et al. 2007; Yodzis & Innes 1992), our allometries are derived for space clearance
414  rates and handling times on individuals. Thus, our work creates the potential to build

415  allometric food web models based on individuals, a unit more closely aligned with

416  evolutionary theory and ecological data. We therefore expect that new food web models
417  based on the allometries derived here may be able to provide new insights into food web

418  dynamics and stability.

419 The rules we derive also make specific, testable predictions regarding how the
420  environment and global climate change are likely to influence trophic interaction

421  strengths, as many of the parameters describing our rules are sensitive to the

422  environment. For ectotherms, ectotherm predator energetic demand is expected to

423 increase with increasing temperature (Brown et al. 2004), whereas prey population size,
424  body size and potentially energy density are likely to decrease (Amarasekare & Savage
425  2012; Atkinson 1994; Bernhardt et al. 2018; Brett et al. 1969; Outhwaite et al. 2022).

426  These concurrent changes will alter the functional response parameters required to

427  satisfy our rules, suggesting the potential for maladaptive trophic interactions under

428  climate change. Changes in parameters also are likely to occur over other environmental
429  gradients, such as productivity gradients (Novak 2013), which may allow for the

430  prediction of changes in top-down interaction strengths and their consequences for

431  ecosystems. Furthermore, although our analyses have generally focused on interspecific
432  differences in trophic interactions, this theory also may be applicable to intraspecific

433  variation in predators and prey to explain intraspecific variation in functional response
434  parameters (Bolnick et al. 2011; Coblentz et al. 2021).

435 The success of our theory in predicting functional response parameters across

436  field and laboratory studies opens several promising directions for future theoretical and

15


https://doi.org/10.1101/2024.07.26.605380
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.26.605380; this version posted January 17, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

437  empirical insights into trophic interaction strengths. First, our theory provides predictions
438  about which trophic interactions within communities are likely to be strong, helping to
439  identify potential keystone interactions that may disproportionately impact communities.
440  Second, although our theory has focused on pairwise trophic interactions, it provides the
441  foundation for a theory on generalist predators to embrace the additional complexity

442  present in food webs in which predators consume multiple prey species. Last, although
443  we have focused specifically on traditional predators, it may be possible to extend the
444 theory to other consumer types such as herbivores, detritivores, and parasites. By

445  deepening our understanding of the ultimate causes governing trophic interaction

446  strengths, this work promises to provide important insights into the functioning and

447  dynamics of ecosystems and their responses to ongoing global change.
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578  Figure 1. Two simple rules derived from predator feeding rates at low and high prey densities
579  predict space clearance rates and handling times using either generic estimates from empirical
580 mass scaling relationships (A,B) or system-specific estimates from field studies (C,D). Dashed
581 lines are 1:1 lines and solid lines are major axis regressions. See the Supplemental Information
582 for versions of panels A and B with color-coded predator and prey body size information.
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588 Figure 2. The two rules predict empirical estimates of the half-saturation constant (7/ah) (A), as
589  well as the relationship between space clearance rates and handling times (B,C) using only

590  knowledge of the saturation experienced at high experienced prey densities and those high prey
591  densities. The dashed lines in A and C are the 1:1 lines and the solid lines are major axis

592 regressions. The lines in B are the predicted relationships between space clearance rates and
593 handling times for different values of Ny, See the Supplemental Information for versions of
594  panels A with color-coded predator and prey body size information.
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600  Figure 3. Functional response rules and empirical scaling relationships between parameters and
601 prey and predator masses predict that the log space clearance rate increases with log predator
602 mass with a slope of 0.82 (observed empirical estimate: 0.8, A) and that the log of the prey mass-
603 specific handling time (handling time/prey mass) decreases with log consumer mass with a slope
604  of -0.87 (observed empirical estimate: -0.86; B). See the Supplemental Information for versions of
605  the panels with color-coded predator and prey body size information.
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