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Abstract

We study monotone submodular maximization under general
matroid constraints in the online setting. We prove that online
optimization of a large class of submodular functions, namely,
weighted threshold potential functions, reduces to online con-
vex optimization (OCO). This is precisely because functions
in this class admit a concave relaxation; as a result, OCO poli-
cies, coupled with an appropriate rounding scheme, can be
used to achieve sublinear regret in the combinatorial setting.
We show that our reduction extends to many different versions
of the online learning problem, including the dynamic regret,
bandit, and optimistic-learning settings.

Introduction
In online submodular optimization (OSM) (Streeter, Golovin,
and Krause 2009), submodular reward functions chosen by an
adversary are revealed over several rounds. In each round, a
decision maker first commits to a set satisfying, e.g., matroid
constraints. Subsequently, the reward function is revealed and
evaluated over this set. The objective is to minimize α-regret,
i.e., the difference of the cumulative reward accrued from the
one attained by a static set, selected by an α-approximation
algorithm operating in hindsight. OSM has received consid-
erable interest recently, both in the full information (Harvey,
Liaw, and Soma 2020; Matsuoka, Ito, and Ohsaka 2021;
Streeter, Golovin, and Krause 2009; Niazadeh et al. 2021)
and bandit setting (Niazadeh et al. 2021; Matsuoka, Ito, and
Ohsaka 2021; Wan et al. 2023), where only the reward values
(rather than the entire functions) are revealed.

Online convex optimization (OCO) studies a similar on-
line setting in which reward functions are concave, and deci-
sions are selected from a compact convex set. First proposed
by Zinkevich (2003), who showed that projected gradient
ascent attains sublinear regret, OCO generalizes previous on-
line problems like prediction with expert advice (Littlestone
and Warmuth 1994), and has become widely influential in
the learning community (Hazan 2016; Shalev-Shwartz 2012;
McMahan 2017). Its success is evident from the multitude of
OCO variants in literature: in dynamic regret OCO (Zinke-
vich 2003; Besbes, Gur, and Zeevi 2015; Jadbabaie et al.
2015; Mokhtari et al. 2016), the regret is evaluated w.r.t. an
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optimal comparator sequence instead of an optimal static de-
cision in hindsight. Optimistic OCO (Rakhlin and Sridharan
2013; Dekel et al. 2017; Mohri and Yang 2016) takes ad-
vantage of benign sequences, in which reward functions are
predictable: the decision maker attains tighter regret bounds
when predictions are correct, falling back to the existing
OCO regret guarantees when predictions are unavailable or
inaccurate. Bandit OCO algorithms (Hazan and Levy 2014;
Kleinberg 2004; Flaxman, Kalai, and McMahan 2005) study
the aforementioned bandit setting, where again only rewards
(i.e., function evaluations) are observed.

We make the following contributions:

• We provide a methodology for reducing OSM to OCO,
when submodular functions selected by the adversary
are bounded from above and below by concave relax-
ations and coupled with an opportune rounding. We
prove that algorithms and regret guarantees in the OCO
setting transfer to α-regret guarantees in the OSM set-
ting, via a transformation that we introduce. Ratio α is
determined by how well concave relaxations approxi-
mate the original submodular functions.

• We show that the above condition is satisfied by a
wide class of submodular functions, namely, weighted
threshold potential (WTP) functions. This class strictly
generalizes weighted coverage functions (Karimi et al.
2017; Stobbe and Krause 2010), and includes many
important applications, including influence maximiza-
tion (Kempe, Kleinberg, and Tardos 2003), facility lo-
cation (Krause and Golovin 2014; Frieze 1974), cache
networks (Ioannidis and Yeh 2016; Li et al. 2021), simi-
larity caching (Si Salem, Neglia, and Carra 2022), de-
mand forecasting (Ito and Fujimaki 2016), and team
formation (Li et al. 2018), to name a few.

• We show our reduction also extends to the dynamic
regret and optimistic settings, reducing such full-
information OSM settings to the respective OCO vari-
ants. To the best of our knowledge, our resulting al-
gorithms are the first to come with guarantees for the
dynamic regret and optimistic settings in the context
of OSM with general matroid constraints. Finally, we
also provide a different reduction for the bandit setting,
again for all three (static, dynamic regret, and optimistic)
variants; this reduction applies to general submodular
functions, but is restricted to partition matroids.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

15038



Related Work
Offline Submodular Maximization and Relaxations of
Submodular Functions. Continuous relaxations of submod-
ular functions play a prominent role in submodular maximiza-
tion. The so-called continuous greedy algorithm (Calinescu
et al. 2011) maximizes the multilinear relaxation of a sub-
modular objective over the convex hull of a matroid, using a
variant of the Frank-Wolfe algorithm (Frank and Wolfe 1956).
The fractional solution is then rounded via pipage (Ageev and
Sviridenko 2004) or swap rounding (Chekuri, Vondrák, and
Zenklusen 2010), which we also use. The multilinear relax-
ation is not convex but is continuous DR-submodular (Bach
2019; Bian et al. 2017), and continuous greedy comes with
a 1− 1

e approximation guarantee. However, the multilinear
relaxation is generally not tractable and is usually estimated
via sampling. Ever since the seminal paper by Ageev and
Sviridenko (Ageev and Sviridenko 2004), several works have
exploited the existence of concave relaxations of weighted
coverage functions (e.g., (Karimi et al. 2017; Ioannidis and
Yeh 2016)), a strict subset of the threshold potential functions
we consider here. For coverage functions, a version of our
“sandwich” property (Asm. 2) follows directly by the Goe-
mans & Williamson inequality (Goemans and Williamson
1994), which we also use. Both in the standard (Ageev and
Sviridenko 2004) and stochastic offline (Karimi et al. 2017;
Ioannidis and Yeh 2016) submodular maximization setting,
in which the objective is randomized, exploiting concave
relaxations of coverage functions yields significant compu-
tational dividends, as it eschews any sampling required for
estimating the multilinear relaxation. We depart from both
by considering a much broader class than coverage functions
and studying the online/no-regret setting.
OSM via Regret Minimization. Several online algorithms
have been proposed for maximizing general submodular
functions (Niazadeh et al. 2021; Harvey, Liaw, and Soma
2020; Matsuoka, Ito, and Ohsaka 2021; Streeter, Golovin,
and Krause 2009) under different matroid constraints. There
has also been recent work (Chen, Hassani, and Karbasi 2018;
Zhang et al. 2019, 2022) on the online maximization of con-
tinuous DR-submodular functions (Bach 2019). Proposed
algorithms are applicable to our setting, because the multi-
linear relaxation is DR-submodular, and guarantees can be
extended to matroid constraint sets again through round-
ing (Chekuri, Vondrák, and Zenklusen 2010), akin to the ap-
proach we follow here. Also pertinent is the work by Kakade,
Kalai, and Ligett (2007): their proposed online algorithm
operates over reward functions that can be decomposed as
the weighted sum of finitely many (non-parametric) refer-
ence functions—termed Linearly Weighted Decomposable
(LWD); the adversary selects only the weights. Applied to
OSM, this is a more restrictive function class than the ones
we study.

We compare these algorithms to our work in Ta-
ble 1 in (Si Salem et al. 2023). In the full information setting,
the OSM algorithm by Harvey, Liaw, and Soma (2020) has
a slightly tighter α-regret than us, but also a much higher
computational complexity. We attain the same or better regret
than DR-S (Chen, Hassani, and Karbasi 2018; Zhang et al.
2019, 2022) and remaining algorithms that either operate on

restricted constraint sets (Niazadeh et al. 2021; Matsuoka,
Ito, and Ohsaka 2021; Streeter, Golovin, and Krause 2009)
or on the much more restrictive LWD class (Kakade, Kalai,
and Ligett 2007). Most importantly, our work generalizes to
the dynamic and optimistic settings. With the exception of
Matsuoka, Ito, and Ohsaka (2021), who study dynamic regret
restricted to uniform matroids, our work provides the first
guarantees for OSM in the dynamic and optimistic settings
under general matroid constraints.
OSM in the Bandit Setting. Our reduction to OCO in the
bandit setting extends the analysis by Wan et al. (2023),
who provide a reduction to just FTRL in the static setting,
under general submodular functions and partition matroid
constraints. We generalize this to any OCO algorithm and to
the dynamic and optimistic settings. Interestingly, Wan et al.
(2023) conjecture that no sublinear regret algorithm exists
for general submodular functions under general matroid con-
straints in the bandit setting. We compare to bounds attained
by Wan et al. (2023) and other bandit algorithms for OSM
(Niazadeh et al. 2021; Streeter, Golovin, and Krause 2009;
Zhang et al. 2019; Kakade, Kalai, and Ligett 2007) in Table 4
in (Si Salem et al. 2023). Our main contribution is again the
extension to the dynamic and optimistic settings.

Technical Preliminary
Submodularity and Matroids. Given a ground set V =
[n] ≜ {1, 2, . . . , n}, a set function f : 2V → R is submodu-
lar if f(S ∪ {i, j})− f(S ∪ {j}) ≤ f(S ∪ {i})− f(S) for
all S ⊆ V and i, j ∈ V \ S and monotone if f(A) ≤ f(B)
for all A ⊆ B ⊆ 2V . A matroid is a pair M = (V, I), where
I ⊆ 2V , for which the following holds: (1) if B ∈ I and
A ⊆ B, then A ∈ I, (2) if A,B ∈ I and |A| < |B|, then
there exists an x ∈ B \A s.t. A ∪ {x} ∈ I . The rank r ∈ N
of M is the cardinality of the largest set in I. With slight
abuse of notation, we represent set functions f : 2V → R
as functions over {0, 1}n: given a set function f and an
x ∈ {0, 1}n, we denote by f(x) as the value f(supp (x)),
where supp (x) ≜ {i ∈ V : xi ̸= 0} ⊆ V is the support of
x. Similarly, we treat matroids as subsets of {0, 1}n.
Online Learning. In the general protocol of online learning
(Cesa-Bianchi and Lugosi 2006), a decision-maker makes
sequential decisions and incurs rewards as follows: at timeslot
t ∈ [T ], where T ∈ N is the time horizon, the decision-
maker first commits to a decision xt ∈ X from some set
X . Then, a reward function ft : X → R≥0 is selected by
an adversary from a set of functions F and revealed to the
decision-maker, who accrues a reward ft(xt). The decision
xt is determined according to a (potentially random) mapping
PX ,t : X t−1 ×F t−1 → Y , i.e.,

xt = PX ,t

(
(xs)

t−1
s=1 , (fs)

t−1
s=1

)
. (1)

Let PX = (PX ,t)t∈[T ] be the online policy of the decision-
maker. We define regretT (PX ), the regret at horizon T , as:

sup
(ft)Tt=1∈FT

{
max
x∈X

T∑
t=1

ft(x)− EPX

[ T∑
t=1

ft(xt)
]}

. (2)

We seek policies that attain a sublinear (i.e., o(T )) regret;
intuitively, such policies perform on average as well as the
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static optimum in hindsight. Note that the regret is defined
w.r.t. the optimal fixed decision x, i.e., the time-invariant
decision x ∈ X that would be optimal in hindsight, after the
sequence (ft)Tt=1 is revealed. When selecting xt, the decision-
maker has no information about the upcoming reward ft.
Finally, this is the full-information setting: at each timeslot,
the decision maker observes the entire reward function ft( · ),
rather than just the reward ft(xt) ∈ R≥0.

Deviating from these assumptions is of both practical and
theoretical interest. In the dynamic regret setting (Zinkevich
2003), the regret is measured w.r.t. a time-variant optimum,
appropriately constrained so that changes from one timeslot
to the next do not vary significantly. In learning with opti-
mism (Rakhlin and Sridharan 2013), additional information
is assumed to be available w.r.t. ft, in the form of so-called
predictions. In the bandit setting (Auer et al. 1995), the online
policy PX of the decision maker only has access to rewards
ft(xt) ∈ R≥0, as opposed to the entire reward function.
Online Convex Optimization. The online convex optimiza-
tion (OCO) framework (Zinkevich 2003; Hazan 2016) fol-
lows the above online learning protocol (1), where (a) the
decision space X is a convex set in Rn, and (b) the set of
reward functions F is a subset of concave functions over X .
Formally, OCO operates under the following assumption:
Assumption 1. Set X ⊂ Rn is convex and compact. The
reward functions in F are all L-Lipschitz concave functions
w.r.t. a norm ∥ · ∥ over X , for some common L ∈ R>0.

There is a rich literature on OCO policies (Hazan 2016);
examples include Online Gradient Ascent (OGA) (Hazan
2016), Online Mirror Ascent (OMA) (Bubeck 2011), and
Follow-The-Regularized-Leader (FTRL) (McMahan 2017).
All three enjoy sublinear regret:
Theorem 1. Under Asm. 1 OGA, OMA, and FTRL attain
O(

√
T ) regret.

Details on all three algorithms and the regret they attain are
in Appendix A of Si Salem et al. (2023). Most importantly,
the OCO framework generalizes to the dynamic, learning-
with-optimism, as well as bandit settings (see extentions
section).
Weighted Threshold Potentials. A threshold potential (Sto-
bbe and Krause 2010) Ψb,w,S : {0, 1}n → R≥0, also known
as a budget-additive function (Andelman and Mansour 2004;
Dobzinski 2016; Buchfuhrer et al. 2010), is defined as:

Ψb,w,S(x) ≜ min
{
b,
∑

j∈S xjwj

}
, for x ∈ {0, 1}n, (3)

where b ∈ R≥0 ∪ {∞} is a threshold, S ⊆ V is a subset of
V = [n], and w = (wj)j∈S ∈ [0, b]|S| is a weight vector
bounded by b.1 The linear combination of threshold poten-
tial functions defines the rich class of weighted threshold
potentials (WTP) (Stobbe and Krause 2010), defined as:

f(x) ≜
∑

ℓ∈C cℓΨbℓ,wℓ,Sℓ
(x), for x ∈ {0, 1}n, (4)

where C is an arbitrary index set and cℓ ∈ R≥0, for ℓ ∈ C.
WTP functions are submodular and monotone (see Ap-
pendix B of Si Salem et al. (2023)). We define the degree of a

1Assumption wj ≤ b, j ∈ S, is w.l.o.g., as replacing wj with
min {wj , b} preserves values of f over {0, 1}n.

WTP function ∆f = maxℓ∈C |Sℓ| as the maximum number
of variables that a threshold potential Ψ in f depends on.

We give several examples of WTP functions in Appendix B
of Si Salem et al. (2023). In short, classic problems such
as influence maximization (Kempe, Kleinberg, and Tar-
dos 2003) and facility location (Krause and Golovin 2014;
Frieze 1974), resource allocation problems like cache net-
works (Ioannidis and Yeh 2016; Li et al. 2021) and simi-
larity caching (Si Salem, Neglia, and Carra 2022), as well
as demand forecasting (Ito and Fujimaki 2016) and team
formation (Li et al. 2018) can all be expressed using WTP
functions. Overall, the WTP class is very broad: there exists a
hierarchy among submodular functions, including weighted
coverage functions (Karimi et al. 2017), weighted cardinal-
ity truncations (Dolhansky and Bilmes 2016), and sums of
concave functions composed with non-negative modular func-
tions (Stobbe and Krause 2010); all of them are strictly dom-
inated by the WTP class (see Stobbe and Krause (2010), as
well as Appendix B of Si Salem et al. (2023)).

Problem Formulation
We consider a combinatorial version of the online learning
protocol defined in Eq. (1). In particular, we focus on the case
where (a) the decision set is X ⊆ {0, 1}n, i.e., the vectorized
representation of subsets of V = [n], and (b) the set F of
reward functions comprises set functions over X . Though
some of our results (e.g., Thm. 2) pertain to this general
combinatorial setting, we are particularly interested in the
case where (a) X is a matroid, and (b) F is the WTP class,
i.e., the set of functions whose form is given by Eq. (4).

Both in the general combinatorial setting and for WTP
functions, evaluating the best fixed decision may be compu-
tationally intractable even in hindsight, i.e., when all reward
functions were revealed. As is customary (see, e.g., (Krause
and Golovin 2014)), instead of the regret in Eq. (2), we con-
sider α-regretT (PX ), the so-called α-regret, defined as:

sup
(ft)

T
t=1∈FT

{
max
x∈X

α
T∑

t=1

ft(x)− EPX

[ T∑
t=1

ft(xt)
]}

. (5)

Intuitively, we compare the performance of the policy PX
w.r.t. the best polytime(n) α-approximation of the static of-
fline optimum in hindsight. For example, the approximation
ratio would be α = 1 − 1/e in the case of submodular set
functions maximized over matroids.

Online Submodular Optimization via Online
Convex Optimization

The Case of General Set Functions
First, we show how OCO can be leveraged to tackle online
learning in the general combinatorial setting, i.e., when X ⊆
{0, 1}n and F comprises general functions defined over X .
Rounding Augmented OCO Policy. We begin by stating a
“sandwich” property that functions in F should satisfy, so that
the reduction to OCO holds. To do so, we first need to intro-
duce the notion of randomized rounding. Let Y ≜ conv (X )
be the convex hull of X . A randomized rounding is a ran-
dom map Ξ : Y → X , i.e., a map from a fractional y ∈ Y
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Algorithm 1: Rounding-Augmented OCO (RAOCO) policy
Require: OCO policy PY , randomized rounding Ξ : Y → X

1: for t = 1, 2, . . . , T do
2: yt ← PY,t

(
(ys)

t−1
s=1, (f̃s)

t−1
s=1

)
3: xt ← Ξ(yt)
4: Receive reward ft(xt)
5: Reward function ft is revealed
6: Construct f̃t from ft satisfying Asm. 2
7: end for

and, possibly, a source of randomness to an integral variable
x ∈ X . We assume that the set F satisfies the following:
Assumption 2. (Sandwich Property) There exists an α ∈
(0, 1], an L ∈ R>0, and a randomized rounding Ξ : Y → X
such that, for every f : X → R≥0 ∈ F there exists a L-
Lipschitz concave function f̃ : Y → R s.t.

f̃(x) ≥ f(x), for all x ∈ X , and (6)

EΞ [f(Ξ(y))] ≥ α · f̃(y), for all y ∈ Y. (7)

We refer to f̃ as the concave relaxation of f . Intuitively,
Asm. 2 postulates the existence of such a concave relaxation
f̃ that is not “far” from f : Eqs. (6) and (7) imply that f̃
bounds f both from above and below, up to the approximation
factor α. Moreover, the upper bound (Eq. (6)) needs to only
hold for integral values, while the lower bound (Eq. (7)) needs
to only hold in expectation, under an appropriately-defined
randomized rounding Ξ.

Armed with this assumption, we can convert any OCO
policy PY operating over Y = conv (X ) to a Randomized-
rounding Augmented OCO (RAOCO) policy, denoted by
PX , operating over X . This transformation (see Alg. 1) uses
both the randomized-rounding Ξ, as well as the concave
relaxations (f̃s)t−1

s=1 of the functions (fs)t−1
s=1 observed so far.

At t ∈ [T ], the RAOCO policy amounts to:

yt = PY,t

(
(ys)

t−1
s=1, (f̃s)

t−1
s=1

)
, (8a)

xt = Ξ(yt) ∈ X . (8b)
In short, the OCO policy PY is first used to generate a new
fractional state yt ∈ Y by applying PY,t to the history of
concave relaxations. Then, this fractional decision yt is ran-
domly mapped to an integral decision xt ∈ X according to
the rounding scheme Ξ. Then, the reward f(xt) is received
and ft is revealed, at which point a concave function f̃t is
constructed from ft and added to the history. Our first main
result is the following:
Theorem 2. Under Asm. 2, given an OCO policy PY ,
the RAOCO policy PX described by Alg. 1 satisfies
α-regretT (PX ) ≤ α · regretT (PY) .

The proof is in Appendix D of Si Salem et al. (2023). As a
result, any regret guarantee obtained by an OCO algorithm
over Y , immediately transfers to an α-regret for RAOCO,
where α is determined by Asm. 2. In particular, the decision
set Y is closed, bounded, and convex by construction. Com-
bined with the fact that concave relaxations f̃ are L-Lipschitz
(by Asm. 2), Thms. 1 and 2 yield the following corollary:

Corollary 1. Under Asm. 2, RAOCO policy PX in Alg. 1
equipped with OGA, OMA, or FTRL as OCO policy PY has
sublinear α-regret. That is, α-regretT (PX ) = O

(√
T
)
.

To use this result, Asm. 2 should hold, and both the
randomized rounding and the concave relaxations used in
RAOCO should be poly-time: all are true for WTP functions
optimized over matroid constraints, which we turn to next.

The Case of Weighted Threshold Potentials
We now consider the case where the decision set is a matroid,
and reward functions belong to the class of WTP functions,
defined by Eq. (4). We will show that, under appropriate
definitions of a randomized rounding and concave relaxations,
the class F satisfies Asm. 2 and, thus, online learning via
RAOCO comes with the regret guarantees of Corollary 1. For
Y = conv (X ), consider the map f 7→ f̃ of WTP functions
f : X → R to concave relaxations f̃ : Y → R of the form:

f̃(y) ≜ f(y) =
∑

ℓ∈C cℓ min
{
bℓ,

∑
j∈Sℓ

yjwℓ,j

}
, (9)

for y ∈ Y . In other words, the relaxation of f is itself : it has
the same functional form, allowing integral variables to be-
come fractional.2 This is clearly concave, as the minimum of
affine functions is concave, and the positively weighted sum
of concave functions is concave. Finally, all such functions
are Lipschitz, with a parameter that depends on cℓ, bℓ, wℓ,
ℓ ∈ C. Let F̃ be the image of F under the map (9). We make
the following assumption, which is readily satisfied if, e.g.,
all constituent parameters (cℓ, bℓ, wℓ, ℓ ∈ C) are uniformly
bounded, or the set F is finite, etc.:
Assumption 3. There exists an L > 0 such that all functions
in F̃ are L-Lipschitz.

Next, we turn our attention to the randomized rounding Ξ.
We can in fact characterize the property that Ξ must satisfy
for Asm. 2 to hold for relaxations given by Eq. (9):
Definition 1. A randomized rounding Ξ : Y → X is nega-
tively correlated if, for x = Ξ(y) ∈ X (a) the coordinates of
x are negatively correlated 3 and (b) EΞ [x] = y.

Our next result immediately implies that any negatively
correlated rounding can be used in RAOCO:
Lemma 1. Let Ξ : Y → X be a negatively correlated ran-
domized rounding, and consider the concave relaxations f̃
constructed from f ∈ F via Eq. (9). Then, if Asm. 3 holds for
some L > 0, the set F satisfies Asm. 2 with α =

(
1− 1

∆

)∆
where ∆ = supf∈F ∆f .

The proof is in Appendix E of Si Salem et al. (2023). As
∆ → ∞, the approximation ratio α approaches 1− 1/e from
above, recovering the usual approximation guarantee. How-
ever, for finite ∆, we in fact obtain an improved approxima-
tion ratio; an example (quadratic submodular functions) is de-
scribed in Appendix B of Si Salem et al. (2023). Finally, and

2In Appendix G.IV of Si Salem et al. (2023), we provide an
example where the functional form of concave relaxations differs.

3A set of random variables xi ∈ {0, 1} , i ∈ [n], are negatively
correlated if E

[∏
i∈S xi

]
≤

∏
i∈S E [xi] for all S ⊆ [n].
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most importantly, a negatively-correlated randomized round-
ing can always be constructed if X is a matroid. Chekuri,
Vondrák, and Zenklusen (2010) provide two polynomial-time
randomized rounding algorithms that satisfy this property:
Lemma 2. (Chekuri, Vondrák, and Zenklusen (2010, Theo-
rem 1.1.)) Given a matroid X ⊂ {0, 1}n, let y ∈ conv (X )
and Ξ be either swap rounding or randomized pipage round-
ing. Then, Ξ is negatively correlated.

We review swap rounding in Appendix F of Si Salem
et al. (2023). Interestingly, the existence of a negatively corre-
lated rounding is inherently linked to matroids: a negatively-
correlated rounding exists if and only if X is a matroid
(see Thm. I.1. in Chekuri, Vondrák, and Zenklusen (2010)).
Lemma 1 thus implies that the reduction of RAOCO to OCO
policies is also linked to matroids. Putting everything to-
gether, Lemmas 1–2 and Corollary 1 yield the following:
Theorem 3. Let X ⊆{0, 1}n be a matroid, and F be a subset
of the WTP class for which Asm. 3 holds. Then, the RAOCO
policy PX defined by Alg. 1 using swap rounding or random-
ized pipage rounding as Ξ and OGA, OMA, or FTRL as OCO
policy PY , and concave relaxations in Eq. (9) has sublinear
α-regret. In particular, α-regret (PX ) = O

(√
T
)
.

Note that, though all algorithms yield O(
√
T ) regret, the

dependence of constants on problem parameters (such as
n and the matroid rank r), as reported in Table 1 in C of
Si Salem et al. (2023) is optimized under OMA (see Ap-
pendix C of Si Salem et al. (2023)).

Computational Complexity
OCO Policy. OCO policies are polytime (see, e.g., (Hazan
2016)). Taking gradient-based OCO policies (e.g., OMA in
Alg. 2 in Si Salem et al. (2023)), their computational com-
plexity is dominated by a projection operation to the convex
set Y = conv (X ). The exact time complexity of this pro-
jection depends on Y , however, given a membership oracle
that decides y ∈ conv (X ), the projection can be computed
efficiently in polynomial time (Hazan 2016). Moreover, the
projection problem is a convex problem that can be computed
efficiently (e.g., iteratively to an arbitrary precision) and can
also be computed in strongly polynomial time (Gupta, Goe-
mans, and Jaillet 2016, Theorem 3).
Concave Relaxations and Randomized Rounding. Con-
cave relaxations are linear in the representation of the func-
tion f , but in practice come “for free”, once parameters in
Eq. (4) are provided. Swap rounding over a general matroid
is O

(
nr2

)
, where r is the rank of the matroid (Chekuri,

Vondrák, and Zenklusen 2010). This dominates the remaining
operations (including OCO), and thus determines the overall
complexity of our algorithm. This O

(
nr2

)
term assumes ac-

cess to the decomposition of a fractional point y ∈ Y to bases
of the matroid. Carathéodory’s theorem implies the existence
of such decomposition of at most n+1 points in X ; moreover,
there exists a decomposition algorithm (Cunningham 1984)
for general matroids with running time O

(
n6

)
. However, in

all practical cases we consider (including uniform and par-
tition matroids) the complexity is significantly lower. More
specifically, for partition matroids, swap rounding reduces to

an algorithm with linear time complexity, namely, O (mn)
for m partitions (Srinivasan 2001).

Extensions
Dynamic Setting. In the dynamic setting, the decision maker
compares its performance to the best sequence of decisions
(y⋆

t )t∈[T ] with a path length regularity condition (Zinke-
vich 2003; Cesa-Bianchi et al. 2012). I.e., let ΛX (T, PT ) ≜{
(xt)

T
t=1 ∈ X T :

∑T
t=1∥xt+1 − xt∥ ≤ PT

}
⊂ X T be the

set of sequences of decisions in a set X with path length
less than PT ∈ R≥0 over a time horizon T . We define
α-regretT,PT

(PX ), the dynamic α-regret, as:

sup
(ft)

T
t=1∈FT

{
max

(x⋆
t )

T
t=1

∈ΛX (T,PT )
α

T∑
t=1

ft(x
⋆
t )−

T∑
t=1

ft(xt)
}

When α-regretT,PT
(PX ) is sublinear in T , the policy attains

average rewards that asymptotically compete with the optimal
decisions of bounded path length, in hindsight.

Through our reduction to OCO, we can leverage
OGA (Zinkevich 2003) or meta-learning algorithms over
OGA (Zhao et al. 2020) to obtain dynamic regret guarantees
in OSM. As an additional technical contribution, we provide
the first sufficient and necessary conditions for OMA to ad-
mit a dynamic regret guarantee (see Appendix A of Si Salem
et al. (2023)). This allows to extend a specific instance of
OMA operating on the simplex, the so-called fixed-share
algorithm (Cesa-Bianchi et al. 2012; Herbster and Warmuth
1998), to matroid polytopes. This yields a tighter regret guar-
antee than OGA (Zinkevich 2003; Zhao et al. 2020) (see
Theorem 7 in Appendix A of Si Salem et al. (2023)). Putting
everything together, we get:
Theorem 4. Under Asm. 2, RAOCO policy PX described
by Alg. 1 equipped with an OMA policy in Appendix A of
Si Salem et al. (2023) as OCO policy PY has sublinear
dynamic α-regret, i.e., α-regretT,PT

(PX ) = O
(√

PTT
)
.

This follows from Thm. 2 and the dynamic regret guarantee
for OMA in Appendix A of Si Salem et al. (2023).
Optimistic Setting. In the optimistic setting, the decision
maker has access to additional information available in the
form of predictions: a function πt+1 : [0, 1]

n → R≥0, serv-
ing as a prediction of the reward function ft+1(x) is made
available before committing to a decision xt+1 at timeslot
t ∈ [T ]. The prediction πt encodes prior information avail-
able to the decision maker at timeslot t.4 Let gt and gπ

t be
supergradients of f̃t and πt at point yt, respectively. We can
define an optimistic OMA policy (see Alg. 3 in Appendix A
of Si Salem et al. (2023)) that leverages both the prediction
and the observed rewards. Applying again our reduction of
OSM to this setting we get:
Theorem 5. Under Asm. 2, RAOCO policy PX in
Alg. 1 equipped with OOMA in Appendix A of Si Salem
et al. (2023) as policy PY yields α-regretT,PT

(PX ) =

O
(√

PT

∑T
t=1∥gt − gπ

t ∥2∞
)
.

4Function πt can extend over fractional values, e.g., be the multi-
linear relaxation of a set function.
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RAOCO-OGA RAOCO-OMA FSF⋆ TabularGreedy Random
Datasets

& Constr.
F ⋆ t F̄X/F ⋆ F̄X/F ⋆ F̄X/F ⋆ F̄X/F ⋆ F̄X/F ⋆

Z
K
C un

if
.

0.234
33 0.902 0.965 0.839 0.833 0.642
66 0.924 0.967 0.896 0.894 0.624
99 0.945 0.982 0.933 0.931 0.622

pa
rt

.
0.83

33 0.994 0.997
✕

0.985 0.953
66 0.99 0.994 0.987 0.950
99 0.993 0.997 0.995 0.953

E
p
i
n
i
o
n
s

un
if

.

0.171
50 0.845 0.853 0.703 0.694 0.632
100 0.865 0.906 0.776 0.768 0.615
149 0.88 0.925 0.807 0.805 0.629

pa
rt

.

0.171
50 0.826 0.861

✕
0.720 0.620

100 0.854 0.908 0.786 0.619
149 0.88 0.927 0.818 0.625

M
o
v
i
e
L
e
n
s

un
if

or
m

0.407
98 0.749 0.792 0.681 0.69 0.748
196 0.786 0.781 0.713 0.676 0.7
293 0.846 0.866 0.756 0.769 0.711

pa
rt

.

0.419
98 0.889 0.948

✕
0.908 0.829

196 0.872 0.908 0.902 0.814
293 0.926 0.948 0.964 0.874

S
y
n
t
h
T
F

un
if

.

200
33 0.984 0.987 0.845 0.844 0.605
66 0.994 0.994 0.868 0.886 0.603
99 0.995 0.998 0.869 0.902 0.612

pa
rt

.

400
33 0.98 0.983

✕
0.834 0.611

66 0.990 0.991 0.852 0.607
99 0.993 0.994 0.857 0.601

Table 1: Average cumulative reward F̄X (t = T/3, 2T/3, T ), normalized by fractional optimal F ⋆, of integral policies across
different datasets and uniform (unif.) and partition (part.) matroid constraints. Optimal hyperparameters (η, γ, cp) and standard
deviations are reported in the Appendix H of Si Salem et al. (2023) along with the value ranges explored. RAOCO com-
bined with OGA or OMA outperforms competitors almost reaching a ratio of one, with the exception of MovieLens, where
TabularGreedy does better. As Random also performs well on MovieLens, this indicates that the (static) offline optimal
is quite poor for this reward sequence. By Property 2, fractional solutions strictly dominate the integral optimal, which implies
that in all cases RAOCO outperformed the 1− 1/e approximation, attaining an almost optimal value.

This theorem follows from Theorem 2 and the optimistic
regret guarantee established for OMA policies in Theorem 7
in Appendix A of Si Salem et al. (2023). The optimistic
regret guarantee in Theorem 5 shows that the regret of a
policy can be reduced to 0 when the predictions are perfect,
while providing O

(√
T
)

guarantee in Thm. 3 when the
predictions are arbitrarily bad (with bounded gradients). To
the best of our knowledge, ours is the first work to provide
guarantees for optimistic OSM.
Bandit Setting. Recall that in the bandit setting the decision
maker only has access to the reward ft(xt) after committing
to a decision xt ∈ X at t ∈ [T ]; i.e., the reward function is
not revealed. Our reduction to OCO does not readily apply to
the bandit setting; however, we show that the bandit algorithm
by Wan et al. (2023) can be used to construct such a reduction.
The main challenge is to estimate gradients of inputs in Y
only from bandit feedback; this can be done via a perturbation
method (see also Hazan and Levy (2014)). This approach,
described in Appendix G of Si Salem et al. (2023), yields the
following theorem:

Theorem 6. Under bounded submodular monotone re-
wards and partition matroid constraint sets, LIRAOCO

policy PX in Alg. 5 in Appendix G of Si Salem
et al. (2023) equipped with an OCO policy PYδ

yields
α-regretT,PT ,W (PX ) ≤ W · regretT/W,PT

(PYδ
) + T

W +

2αδr2nT, where δ,W , are tuneable parameters of the al-
gorithm and regretT/W,PT

(PYδ
) is the regret of an OCO

policy executed for T/W timeslots.

Thm. 6 applies to general submodular functions, but is
restricted to partition matroids. The theorem also extends to
dynamic and optimistic settings: we provide the full descrip-
tion in Appendix G of Si Salem et al. (2023). Our analysis
generalizes Wan et al. (2023) in that (a) we show that a re-
duction can be performed to any OCO algorithm, rather than
just FTRL, as well as (b) in extending it to the dynamic and
optimistic settings (see also Table 4 in Si Salem et al. (2023)).

Experiments
Datasets and Problem Instances. We consider five differ-
ent OSM problems: two influence maximization problems,
over the ZKC (Zachary 1977) and Epinions (Richardson,
Agrawal, and Domingos 2003) graphs, respectively, a facil-
ity location problem over the MovieLens dataset (Harper
and Konstan 2015), a team formation, and a weighted cov-
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(a) Stationary
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(b) Non-Stationary

Figure 1: Average cumulative reward F̄X of the different
policies under SynthWC dataset under different setups: sta-
tionary in (a) and non-stationary in (b). Non-stationarity in
(b) is applied by changing the objective at t = 25 (see Ap-
pendix H of Si Salem et al. (2023)). The area depicts the
standard deviation over 5 runs.
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(a) Optimistic Learning
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Meta-Policy
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(b) Meta-Policies

Figure 2: Average cumulative reward F̄X of the different poli-
cies under SynthWC dataset under a non-stationary setup:
the objective is changed at every timeslot. The algorithms
Optimistic OGA and OGA are executed with different
learning rates under different prediction accuracy (noise with
std. dev. nσ ∈ {10, 100}) in (a); the larger learning rate is
depicted by a solid line. The meta-policy in (b) can learn the
best configuration of OGA without tuning the learning rate.
The area depicts the standard deviation over 5 runs.

erage problem over synthetic datasets. Reward functions are
generated over a finite horizon and optimized online over
both uniform and partition matroid constraints. Details are
provided in Appendix H of Si Salem et al. (2023).
Algorithms. We implement the policy in Alg. 1 (RAOCO),
coupled with OGA (RAOCO-OGA) and OMA (RAOCO-OMA)
as OCO policies. As competitors, we also implement the fixed
share forecaster (FSF⋆) policy by Matsuoka, Ito, and Ohsaka
(2021), which only applies to uniform matroids, and the
TabularGreedy policy by Streeter, Golovin, and Krause
(2009), as well as a Random algorithm, which selects a deci-
sion u.a.r. from the bases of X . Details and hyperparameters
explored are reported in Appendix H of Si Salem et al. (2023).
Our code is publicly available.5
Metrics. For each setting, we compute F ⋆ =

maxy∈Y
1
T

∑T
t=1 f̃(y), the value of the optimal frac-

tional solution in hindsight, assuming rewards are replaced

5https://github.com/neu-spiral/OSMviaOCO

by their concave relaxations. Note that this involves solving
a convex optimization problem, and overestimates the (in-
tractable) offline optimal, i.e., F ⋆ ≥ maxx∈X

1
T

∑T
t=1 f(x).

For each online policy, we compute both the integral and
fractional average cumulative reward at different timeslots
t, given by F̄X = 1

t

∑t
s=1 f(xs), F̄Y = 1

t

∑t
s=1 f̃(ys),

respectively. We repeat each experiment for 5 different
random seeds, and use this to report standard deviations.
OSM Policy Comparison. A comparison between the two
versions of RAOCO (OGA and OMA) with the three competi-
tors is shown in Table 1. We observe that both OGA and
OMA significantly outperform competitors, with the excep-
tion of MovieLens, where TabularGreedy does better.
OMA is almost always better than OGA. Most importantly, we
significantly outperform both TabularGreedy and FSF⋆

w.r.t. running time, being 2.15–250 times faster (see Ap-
pendix H of Si Salem et al. (2023)).
Dynamic Regret and Optimistic Learning. Fig. 1 shows
the performance of the different policies in a dynamic sce-
nario. All the policies have similar performance in the station-
ary setting, however in the non-stationary setting only OGA,
OMA, and FSF⋆ show robustness. We further experiment
with an optimistic setting in Fig. 2 (a) under a non-stationary
setting where we provide additional information about fu-
ture rewards to the optimistic policies, which can leverage
this information and yield better results (see Appendix H of
Si Salem et al. (2023)).
Meta-Policies. Fig. 2 (b) shows the performance of the meta-
policy that learns over different policies configured with dif-
ferent learning rates. We observe that the meta-policy quickly
learns the best learning rate.

Conclusion
We provide a reduction of online maximization of a large
class of submodular functions to online convex optimiza-
tion and show that our reduction extends to many different
versions of the online learning problem. There are many pos-
sible extensions. As our framework does not directly apply
to general submodular functions, it would be interesting to
derive a general method to construct the concave relaxations
which are the building block of our reduction in Theorem 2.
It is also meaningful to investigate the applicability of our
reduction to monotone submodular functions with bounded
curvature (Feldman 2021), and non-monotone submodular
functions (Krause and Golovin 2014).
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