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A B S T R A C T

We prove the existence of a class of large global scattering solutions of Boltzmann’s equation
with constant collision kernel in two dimensions. These solutions are found for 𝜔2 perturbations
of an underlying initial data which is Gaussian jointly in space and velocity. Additionally, the
perturbation is required to satisfy natural physical constraints for the total mass and second
moments, corresponding to conserved or controlled quantities. The space 𝜔2 is a scaling critical
space for the equation under consideration. If the initial data is Schwartz then the solution is
unique and again Schwartz on any bounded time interval.

1. Introduction

We consider the Boltzmann equation posed for a non-negative function 𝜀 (𝜗, 𝜛, 𝜚), 𝜗 ε R, 𝜛, 𝜚 ε R2, so that

𝜀 ϑ [0, 𝜍 ) ϖ R2
𝜛
ϖ R2

𝜚
 R

the collision kernel being constant. Thus
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜀 = 𝛻
+ (𝜀 , 𝜀 ) ς𝛻

ς (𝜀 , 𝜀 ) (1)

where we have the gain term

𝛻
+ (𝜕,ℵ) = 1

2ℶ ∱R2
𝜚
ϖS1

𝜕
φ
ℵ
φ
ωℷ𝜚ωℷℸ

with 𝜀ω = 𝜀
⌋

𝜚ω
⌈

, 𝜀 φ = 𝜀
⌋

𝜚
φ⌈, 𝜀 φ

ω = 𝜀
⌋

𝜚
φ
ω
⌈

and

𝜚
φ =

𝜚 + 𝜚ω
2 +

⌉

⌉

𝜚 ς 𝜚ω⌉
⌉

2 ℸ

𝜚
φ
ω =

𝜚 + 𝜚ω
2 ς

⌉

⌉

𝜚 ς 𝜚ω⌉
⌉

2 ℸ

the collisional change of variables defined for unit vectors ℸ ε S1 ⊳ R2. The loss term is written

𝛻
ς (𝜕,ℵ) = 𝜕⊲

ℵ

where

⊲
𝜀 (𝜗, 𝜛) = ∱R2

𝜚

𝜀 (𝜗, 𝜛, 𝜚) ℷ𝜚
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is the spatial density, a quantity of direct interest in the study of hydrodynamic limits of (1). More generally, the operators 𝛻± may
be replaced by 𝛻

±
0
where 0 = 0 (1, ℸ) is the collision kernel

0 ϑ R2 ϖ S1  R

everywhere non-negative, and locally integrable (referred to as the Grad cutoff ), in particular being integrable in ℸ for almost every
𝜚, and

𝛻
+
0
(𝜕,ℵ) = ∱R2

𝜚
ϖS1

ℸ

0𝜕
φ
ℵ
φ
ωℷ𝜚ωℷℸ (2)

𝛻
ς
0
(𝜕,ℵ) = ∱R2

𝜚
ϖS1

ℸ

0𝜕ℵωℷ𝜚ωℷℸ (3)

where the notation 0 in 𝛻
±
0
implicitly denotes

0 ∲ 20

{

⌉

⌉

𝜚 ς 𝜚ω⌉
⌉

, ℸ ⋛
𝜚 ς 𝜚ω
⌉

⌉

𝜚 ς 𝜚ω⌉
⌉

}

the dependence on the first argument being only of a radial nature. Clearly the equation of interest (1) in this paper corresponds
to the choice 0 = (2ℶ)ς1. The choice 0 = ⌉

⌉

𝜚 ς 𝜚ω⌉
⌉

is known as hard spheres, and arises physically from a Newtonian (deterministic)
‘‘gas’’ of hard sphere billiards via the so-called Boltzmann-Grad limit, first established rigorously by Lanford [24].

Although Boltzmann’s equation is typically viewed as a dissipative equation, following Arsenio [5] we choose to view it
as a dispersive equation instead. Homogeneous Strichartz estimates for kinetic equations have been known since Castella and
Perthame [8]; in the same reference, some inhomogeneous Strichartz estimates were also proven. The complete set of inhomogeneous
kinetic Strichartz estimates was obtained by Ovcharov, [27]. The failure of endpoint homogeneous kinetic Strichartz estimates was
established by Bennett et al. [6].

The novelty of Arsenio’s contribution was to demonstrate, for the first time, the possibility of applying the standard techniques
of inhomogeneous Strichartz estimates, well-known from dispersive theory, directly to Boltzmann’s equation, under some highly
restrictive assumptions for the collision kernel. An alternative approach, avoiding the inhomogeneous Strichartz estimates entirely,
has been developed by the present authors, [10–12]. The approach, originating in works by Klainerman and Machedon, e.g. [23,28],
and later extended by Pavlovi" and Chen, e.g. [14], is based on a method of multilinear Strichartz estimates, and has seen substantial
developments in various directions in recent years. Much of the more recent work motivated by the results of Klainerman and
Machedon has been towards alternative methods for rigorously deriving nonlinear Schrödinger equations from quantum mechanical
models of many particle systems (e.g. Bose–Einstein condensation); work in this direction was pioneered by Erdös, Schlein and Yau
by other techniques, [17–19].

In fact, following in the direction set forth by Klainerman and Machedon, a scaling-critical bilinear Strichartz estimate for
Boltzmann’s gain operator 𝛻+ has been proven in [12] using an endpoint homogeneous Strichartz estimate of Keel and Tao [22];
note that this bilinear Strichartz estimate was not subject to the negative results of Bennett et al. [6] because its proof actually relied
upon an endpoint homogeneous Strichartz estimate for a hyperbolic Schrödinger equation in dimension four. Any kinetic equation in
dimension two is formally equivalent to a hyperbolic Schrödinger equation in dimension four by the Wigner transform; on the other
hand, endpoint homogeneous Strichartz estimates are true for the hyperbolic Schrödinger equation in dimension four. Combining
this dispersive estimate with a convolutive bound for 𝛻+ on the Fourier side, and ultimately moving back to the kinetic domain, it
was possible to prove the bilinear 𝛻+ estimate, a quite unexpected outcome.

1.1. A new notion of solution

The main new technical tool (and a main novelty) of the present article is the introduction of a new class of solutions to (1), which
we refer to as (ω)-solutions. This is a class of global renormalized solutions (in the sense of DiPerna and Lions, [15,16]) which satisfy
better bounds on some initial interval [0, 𝜍 ω (𝜀 )). In [26], Lions established a weak-strong uniqueness theorem in a class of dissipative
solutions which allowed (for e.g. Schwartz initial data) the construction of global renormalized solutions to (1) which are classical
on some initial interval (and unique on the initial interval, in the class of all dissipative solutions). The notion of (ω)-solutions is in
no way (of which we are aware) related to the dissipative solutions of Lions. However, the idea of a critical time, past which the
strength of the solution is diminished, is quite similar.

The main difference, with the present work, is that contrary to dissipative solutions, the notion of (ω)-solutions is finely tuned
to mirror the dispersive properties of (1) by way of Strichartz estimates. In order to fully employ Strichartz in scaling-critical spaces,
it is necessary to use the convolutive properties known to hold for 𝛻

+ (cf. [1,2,5]). However, the stability of solutions against
perturbations of the data as provided by Strichartz is not well-understood (even on small time intervals), due to that fact that 𝛻ς

does not satisfy the full range of convolutive estimates known for 𝛻+. This inflexibility due to 𝛻
ς has, so far, been the limiting

factor in further development of the well-posedness theory for Boltzmann’s equation in scaling-critical functional spaces. However,
all (ω)-solutions are renormalized solutions by definition, so we can hope to employ the known (weak and strong) compactness
properties of renormalized solutions of (1) from [15,25,26]. In fact, by playing the renormalized theory and entropy dissipation
against the dispersive properties of free transport and the convolutive properties of 𝛻+, and by a careful choice of limiting process
(which is itself new), we prove that the class of (ω)-solutions is closed under certain types of limits. Moreover, we are able to transfer
certain information about the limit back to the underlying sequence.
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Remark 1.1. We do not address uniqueness in the (ω)-solution class (our methods are non-constructive and neither require nor
imply uniqueness). However, even if (ω)-solutions are unique in general (which implies a sense of continuity for the solution map
by [25,26] and the methods of this article), we do not expect the solution map to be (locally) uniformly continuous on 𝜔

2 ⌋R2
𝜛
ϖ R2

𝜚

⌈

,
due to a recent announcement by Xuwen Chen and Justin Holmer demonstrating that (at least for a constant collision kernel in ℷ = 3)
the bifurcation for (Hadamard) well-posedness falls far above the scaling-critical threshold (for the problem considered therein). [13]

Informally, our main theorem provides for the existence of a class of large global distributional solutions to (1). These are not
obtained for general initial data; instead, they are derived by considering perturbations of known solutions, specifically the moving
Maxwellians taking the form

3 exp
⌋

ς0 ⦃𝜚⦃2 ς 4 ⦃𝜛 ς 𝜚𝜗⦃
2⌈

Crucially, the numbers 3, 0, 4 > 0 are arbitrary (although the allowable size of perturbation depends on 3, 0, 4 in a manner we cannot
quantify). Small global perturbations of arbitrarily large moving Maxwellians were obtained decades ago by Toscani in [29] using
the Kaniel–Shinbrot iteration with a very clever choice of beginning condition. (Also see [3,4] and references therein for refined
results along the same lines.) However, Toscani was only able to handle (weighted) 𝜔∇ perturbations. The present article (which
does not use Kaniel–Shinbrot) allows for perturbations at scaling-critical regularity ; this improvement appears to be completely new.
Moreover, the proof of the main theorem brings to bear the full force of both the dispersive theory and the theory of renormalized
solutions.

1.2. Scale invariance

Let us define for parameters 5,6 > 0

𝜀
(5,6) (𝜗, 𝜛, 𝜚) = 1

56
𝜀

{

6

5
𝜗,
𝜛

5
,
𝜚

6

}

and

𝜀
(5,6)
0 (𝜛, 𝜚) = 1

56
𝜀0

{

𝜛

5
,
𝜚

6

}

Then there holds
⦄

⦄

⦄

𝜀
(5,6)
0

⦄

⦄

⦄𝜔2 = ⦄

⦄

𝜀0⦄
⦄𝜔2

and
⦄

⦄

⦄

𝜀
(5,6)⦄

⦄

⦄𝜔∇⌋

75,6 ,𝜔
2⌈ = ⟨𝜀⟨

𝜔∇(7 ,𝜔2)

where 7 = [0, 𝜍 ) ⊳ R for some 0 < 𝜍 ∳ ∇, 7
5,6

=
⟩

0, 5𝜍 ∂6), and 𝜔
2 is the space of square-integrable functions on R2

𝜛
ϖR2

𝜚
. Moreover,

if 𝜀 is a Schwartz solution of (1) on 7 with initial data 𝜀0, then 𝜀
(5,6) is a solution of (1) on 7

5,6
with initial data 𝜀

(5,6)
0 .

1.3. Summary of results

The overall objective of this article is to detail a thorough treatment of the Boltzmann Eq. (1) (henceforth ‘‘Boltzmann’s equation’’
unless otherwise indicated). While we will rely upon key results from prior works in this series [10–12], it should be possible to
understand this article with minimal reference to the prior works: indeed, the aim of the present work is to provide a coherent picture
of the local and even, to some extent, the global behavior of Boltzmann’s equation. This extends our previous scaling-critical article
[12], in which only initial data with small 𝜔2 norm was considered.1 That result relied upon balancing the dispersive properties of
free transport against the convolutive properties of 𝛻+, similar to the work of Arsenio in [5].

The bulk of the present work aims to lift the small data limitation in [12], at the cost of limiting the time of existence, and
thereby provide a general scaling-critical local theory for Boltzmann’s equation. Only local existence, without uniqueness, will be
proven in the scaling-critical space 𝜔

2, although a rather general weak-strong uniqueness theorem will be supplied. We also aim to
prove (in a specific sense) the stability of solutions under perturbations: this tendency towards stability is naturally limited due to
the possible lack of uniqueness. In fact, the stability properties will be proven with respect to the class of (ω)-solutions; (ω)-solutions
are formally introduced in Section 13. It will turn out that (ω)-solutions are distributional solutions on some initial interval, which we
call 7ω in the definition of (ω)-solutions; thus, this formalism provides a framework for proving existence results for distributional
solutions. The most striking application of this stability result will be to show, in the class of (ω)-solutions, that 𝜔2 perturbations of a
global scattering solution (satisfying a technical criterion which is proven to hold for, e.g., moving Maxwellians), are again global and
scattering, subject only to natural constraints on physically conserved or controlled quantities, namely the total (𝜔1) mass and (𝜔1)
second moments in space and velocity. Along the way, sharp scaling-critical criteria for both scattering and finite-time breakdown
of continuity will be proven, which hold even far from vacuum or Maxwellians.

1 Add that technical regularity and decay conditions, albeit non-quantitative, were imposed on the initial data as well, whereas (in the 𝜔
2 setting) such

regularity conditions have been disposed of entirely in the present work, at the cost of possible loss of uniqueness.
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Starting from Section 21, we aim to establish propagation of regularity, in the class of (ω)-solutions, to arbitrarily high smoothness
and decay thresholds, including the Schwartz class, up to the full interval of existence (in 𝜔

2, namely 7
ω) for (ω)-solutions. Indeed, it

will be proven that any (ω)-solution, corresponding to initial data with sufficient regularity and decay, is again regular and decaying
(for 𝜗 ε 7

ω); in particular, the solution is unique (on 7
ω). The sharp scaling-critical criteria2 mentioned above, therefore, apply again

in the setting of classical solutions, even (as before) far from vacuum or Maxwellians. This allows us to identify breakdown of continuity
with breakdown of regularity.

1.4. Comparison of models

We will next elucidate the context in which (1) fits with similar models analyzed in the literature. Let us remark from the outset
that, given the dimension ℷ ⨋ 2 ( Eq. (1) addresses the case where ℷ = 2), any Boltzmann equation (with or without the Grad
cutoff) with a collision kernel which is homogeneous with respect to scaling in the relative velocity possesses a full set of scaling
symmetries, respecting separately and simultaneously the spatial and velocity variables. (One never considers homogeneity of the
collision kernel 0 with respect to the angular variable ℸ ε Sℷς1, for obvious reasons.) Now in the special case that the collision
kernel is homogeneous of degree 2 ς ℷ, the functional space 𝜔

ℷ
⌋

Rℷ

𝜛
ϖ Rℷ

𝜚

⌈

for the initial data is preserved by the full set of scaling
symmetries. This seems to be essentially a technical convenience, relating to the fact that the space 𝜔

ℷ is preserved under the free
transport group 8

ς𝜗𝜚⋛ϱ𝜛 . In the present article, we will be exclusively concerned with (1), which satisfies the Grad cutoff condition,
and for which 𝜔

2 constitutes a scaling-critical space, being above all a Hilbert space: the best of all possible worlds. We note that
the constant collision kernel appearing in (1) is a member of the family of Maxwell molecule collision kernels.

There is a physically meaningful analogue of (1) known as true Maxwell molecules (tMm), but while the tMm collision kernel is
homogeneous of degree zero (in any dimension ℷ) and expresses the same scaling properties as the case of a constant collision kernel
(in the same dimension ℷ), tMm does not satisfy the Grad cutoff condition (due to the non-integrable angular dependence), and none
of the analysis of this article applies to tMm even in ℷ = 2. The hard sphere model, mentioned above, does satisfy the Grad cutoff and
is homogeneous of degree one (in any dimension), and is again physically meaningful as is tMm; unfortunately, just as with tMm,
the hard sphere model seems completely out of reach by the present methods. There are a few hints about how to approach hard
spheres dispersively, at least in certain functional spaces far from the scaling critical threshold [10], but the dispersive treatment
of hard spheres at scaling critical regularities remains a subject of ongoing investigation.

Collision kernels homogeneous of degree ς1 respect scaling in the space 𝜔
3 in ℷ = 3; this case (assuming Grad cutoff) seems

to be the only Boltzmann equation other than (1) that is remotely tractable (at the scaling-critical level) using current dispersive
technology. Unfortunately, even in the 𝜔

3 setting, a more technical analysis is required, due to the role played in this work by the
special properties of 𝜔2: in particular, we use Plancherel in the proof of the key bilinear gain operator 𝛻+ estimate

𝜔
2 ϖ 𝜔

2  𝜔
1 ⌋R,𝜔2⌈ (4)

to be discussed later, the corresponding bilinear estimate

𝜔
3 ϖ 𝜔

3  𝜔
1 ⌋R,𝜔3⌈

expected to be false for any collision kernel homogeneous of degree ς1 in ℷ = 3. Substitutes for this estimate are available in the
literature [2] even for the 𝜔3-critical case, but these estimates require far more effort to apply correctly [5] to Boltzmann’s equation
(for starters, one must employ inhomogeneous Strichartz estimates).

Remark 1.2. It is somewhat reasonable to view (4) as a substitute for a scaling-critical estimate in Bourgain spaces 9.,0, formally
taking (., 0) =

⟪

0,ς 1
2

⟫

(note that the endpoint case 0 = ς 1
2 is not admissible in the classical theory of Bourgain spaces: the standard

range for the nonlinearity is 0 ε
⟪

ς 1
2 ,

1
2

⟫

). Indeed, observe that for any separable Hilbert space ⨌, the space 𝜔
1 (R,⨌) formally

scales like ,<
ς 1

2 (R,⨌). This suggests that one may be able to salvage parts of the scaling-critical theory expounded in this article for
other collision kernels through the use of one (or some) of the multitude of techniques in dispersive PDE theory which have been
inspired by Bourgain spaces. A crucial difficulty would be to understand non-negativity, which plays a central role in this work, in
these types of functional spaces.

2. Organization of this paper

The main results are stated in Section 4, using the (somewhat extensive and occasionally subtle) notation from Section 3.
Fundamental abstract results and dispersive estimates are recalled and/or established in Sections Section 5, 6, 7, and 8; these will
primarily (but by no means exclusively) be used in developing solutions to the gain-only Boltzmann equation (i.e. the equation
obtained by discarding the loss term 𝛻

ς from Boltzmann’s equation), as well as many basic properties of such solutions. Sections
Section 9, 10, and 11 will develop deeper results concerning the gain-only Boltzmann equation along with a comparison principle
which will ultimately be used to transfer certain knowledge about the gain-only Boltzmann equation to the full Boltzmann equation.
Up to this point, there is no mention of renormalized solutions or entropy.

2 For either scattering or finite time breakdown of continuity
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In Sections Section 12, 13, and 14, we introduce a new notion of solutions to (1), which we call (ω)-solutions. The definition of
(ω)-solutions uses the notion of renormalized solutions as well as the entropy dissipation. Sections 15 and 16 establish the existence
of (ω)-solutions, as well as the closure of the class of (ω)-solutions under a suitable limiting process.

Results concerning scattering solutions of (1) are proven in Sections 17 and 18. These are combined with an important weak-
strong uniqueness result from Section 19 to establish Part One of the main theorem in Section 20. Higher regularity results are
proven in Section 21, leading finally to the proof of Part Two of the main theorem in Section 22.

3. Notation

For any ℏ ε [1,∇] we denote by ℏ
φ ε [1,∇] the unique extended real number satisfying

1
ℏ
+ 1

ℏφ
= 1

We will require the norms defined for measurable functions ℵ (𝜛, 𝜚)

⟨ℵ⟨
ℏ

𝜔ℏ = ∱R2ϖR2
⦃ℵ (𝜛, 𝜚)⦃ℏ ℷ𝜛ℷ𝜚

for 1 ∳ ℏ < ∇, and

⟨ℵ⟨
𝜔∇ = ess. sup.(𝜛,𝜚)εR2ϖR2 ⦃ℵ (𝜛, 𝜚)⦃

We will also require mixed Lebesgue norms 𝜔ℏ

𝜛𝜔
>

𝜚 or even with time 𝜔⋆

𝜗
𝜔
ℏ

𝜛𝜔
>

𝜚 as in [5]; in such cases, subscripts 𝜗, 𝜛, 𝜚 will be provided,
along with precise domains of integration. Other permutations such as 𝜔⋆

𝜗
𝜔
>

𝜚𝜔
ℏ

𝜛 or 𝜔
ℏ

𝜛𝜔
>

𝜚𝜔
⋆

𝜗
may also arise, but unusual orderings

such as these will only be introduced if absolutely required to carry out an argument.
For any separable Banach space G and any interval 7 , the notation 𝜔

ℏ (7 ,G) with ℏ ε [1,∇] denotes the usual Bochner space,
considering 𝜗 ε 7 to be a time variable; it may be that a function is only Bochner ℏ-integrable when restricted to 7 , in which case we
would still write 𝜀 ε 𝜔

ℏ (7 ,G). The independent variable corresponding to the interval 7 is always denoted by the symbol 𝜗: thus if
≨ ϑ 7 ϖ 7  G then ⟨≨ (., 𝜗)⟨

𝜔1(7 ,G) is equal to ⨍
7
⟨≨ (., 𝜗)⟨G ℷ𝜗.

Remark 3.1. Thus without further annotation (an annotation being a subscript or an explicit domain of integration or both),
the reader may safely assume that norms denoted by the symbol 𝜔ℏ are taken with respect to (𝜛, 𝜚) ε R2 ϖ R2; on the other
hand, norms denoted by the symbol 𝜔> (7 ,𝜔ℏ) for an interval 7 refer to 𝜗 ε 7 with > power and (𝜛, 𝜚) ε R2 ϖ R2 with ℏ power.
By contrast, we may write an expression such as ⊲

𝜀
ε 𝜔

2 ⌋
7 ,𝜔

4
𝜛

⌋

R2⌈⌈, which means that the spatial density ⊲
𝜀 (𝜗, 𝜛) is square-

integrable in time 𝜗 ε 7 into the separable Banach space 𝜔
4
𝜛

⌋

R2⌈: this statement could be equivalently written ⊲
𝜀
ε 𝜔

2
𝜗

⌋

7 ,𝜔
4
𝜛

⌋

R2⌈⌈

or ⊲
𝜀
ε 𝜔

2
𝜗
𝜔
4
𝜛

⌋

7 ϖ R2⌈, but it could not be written ⊲
𝜀
ε 𝜔

2
𝜗

⌋

7 ,𝜔
4⌈ (this last version, in our notation, implies that a constant function

of 𝜚 ε R2 is fourth-power-integrable over R2, which is plainly false).

We will also rely upon the norm

⟨ℵ⟨
𝜔
1
2,𝜗

= ∱R2ϖR2

⌋

1 + ⦃𝜛 ς 𝜚𝜗⦃
2 + ⦃𝜚⦃

2⌈
⦃ℵ (𝜛, 𝜚)⦃ ℷ𝜛ℷ𝜚 (5)

where 𝜗 is a subscripted parameter on the left side; note that the ambiguity of 𝜗 in 𝜔
1
2,𝜗 is only of importance when 𝜗 is very large,

since for fixed 𝜗 the 𝜔
1
2,𝜗 norm is equivalent to the 𝜔

1
2,0 norm, the constant diverging as ⨎

⌋

𝜗
2⌈ as ⦃𝜗⦃  ∇. We will denote

𝜔
1
2 ϑ= 𝜔

1
2,0

for convenience. The space 𝜔
2 ❲

𝜔
1
2,𝜗 is normed by

⦄

⦄

ℵ0⦄
⦄𝜔2 ❲𝜔

1
2,𝜗

= ⦄

⦄

ℵ0⦄
⦄𝜔2 + ⦄

⦄

ℵ0⦄
⦄𝜔

1
2,𝜗

(6)

for a measurable function ℵ0 (𝜛, 𝜚).

Remark 3.2. Given a sufficiently regular and decaying solution 𝜀 of (1), the time-dependent quantity

⟨𝜀 (𝜗)⟨
𝜔
1
2,𝜗

is equal to

⦄

⦄

𝜀0⦄
⦄𝜔

1
2,0

for all 𝜗 ⨋ 0, although this may be only an upper bound at low regularity.

It will be useful to introduce the unusual 9-norm defined on 𝜔
2 ❲

𝜔
1
2,

⟨ℵ⟨
9
ϑ= ⟨ℵ⟨

𝜔2 +
❳

𝐴

⌉

⌉

⌉

⌉

∱R2ϖR2
𝐴 (𝜛, 𝜚)ℵ (𝜛, 𝜚) ℷ𝜛ℷ𝜚

⌉

⌉

⌉

⌉

(7)
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where the sum ranges over

𝐴 ε
/

1, 𝜚1, 𝜚2, ⦃𝜚⦃2 , ⦃𝜛⦃2 , 𝜛 ⋛ 𝜚
\

where 𝜚 =
⌋

𝜚1, 𝜚2
⌈

ε R2. Note carefully that the absolute value bars on the second term of (7) have been deliberately placed on the
outside of the integral (note that ℵ need not be non-negative in (7)). Additionally, observe that the sum is over six test functions 𝐴
(three of which are everywhere non-negative, five of which are unbounded), each of which is integrated over the whole phase-space.
We define

9 ϑ=
⟪

𝜔
2,+ (

𝜔
1
2 , ℷ9

⟫

(8)

where 𝜔
2,+ is the set of non-negative functions in 𝜔

2, and

ℷ
9

⌋

ℵ, 2ℵ
⌈

ϑ= ⦄

⦄

ℵ ς 2ℵ⦄
⦄9

(9)

In particular, 9 is an incomplete metric space.
We denote the free transport group

⨏ (𝜗) = 8
ς𝜗𝜚⋛ϱ𝜛

which is related to the free transport equation in that for any initial data 𝜀0 ε 𝜔
2 there holds

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈ ⌋

⨏ (𝜗)𝜀0
⌈

= 0 (10)

in the sense of distributions. For any 𝜗 ε R, ⨏ (𝜗) preserves all 𝜔ℏ norms on R2 ϖ R2; also, it can be written via an explicit formula
⟩

⨏ (𝜗) 𝜀0
)

(𝜛, 𝜚) = 𝜀0 (𝜛 ς 𝜚𝜗, 𝜚)

The function

𝜗  ⨏ (𝜗) 𝜀0

may be referred to by the shorthand

⨏ 𝜀0

Additionally, following DiPerna and Lions [15], for any measurable function ℵ (𝜗, 𝜛, 𝜚) we will use the pointwise shorthand

ℵ
# (𝜗, 𝜛, 𝜚) = ℵ (𝜗, 𝜛 + 𝜚𝜗, 𝜚) (11)

defined at almost all (𝜗, 𝜛, 𝜚); this is more closely related to the inverse free transport operator ⨏ (ς𝜗).

Remark 3.3. Using the identities, for 3 ε R,

⦃𝜛 + 3𝜚⦃
2 = ⦃𝜛⦃

2 + 23𝜛 ⋛ 𝜚 + 3
2
⦃𝜚⦃

2

and

(𝜛 + 3𝜚) ⋛ 𝜚 = 𝜛 ⋛ 𝜚 + 3 ⦃𝜚⦃
2

it is possible to show that

⦄

⦄

⨏ (3)ℵ0⦄
⦄9

∳
⌋

1 + 3 ⦃3⦃ + 3
2⌈

⦄

⦄

ℵ0⦄
⦄9

for all ℵ0 ε 𝜔
2 ❲

𝜔
1
2. Note that ℵ0 does not need to be non-negative; in particular, we find from this that, for any non-negative

functions 𝜀0, 𝜕0 ε 𝜔
2,+ ❲

𝜔
1
2, letting ℵ0 = 𝜀0 ς 𝜕0,

ℷ
9

⌋

⨏ (3) 𝜀0, ⨏ (3) 𝜕0
⌈

∳
⌋

1 + 3 ⦃3⦃ + 3
2⌈

ℷ
9

⌋

𝜀0, 𝜕0
⌈

so the 9-norm is, in this sense, compatible with free transport.

We will use the well-known notation ⦅𝜚⦆
2 = 1 + ⦃𝜚⦃

2; moreover, in discussing propagation of regularity in Section 21, we shall
require the Sobolev norms indexed by non-negative numbers 𝐵, 𝐶,

⟨ℵ⟨
<𝐵,𝐶 = ⦄

⦄

⦄

⦅𝜚⦆
𝐶
⦅ϱ

𝜛
⦆

𝐵
ℵ
⦄

⦄

⦄𝜔2 (12)

defined for a measurable and locally integrable function ℵ (𝜛, 𝜚), where ⦅ϱ
𝜛
⦆ =

⌋

1 ς 𝐷
𝜛

⌈

1
2 and 𝐷

𝜛
is the usual Laplacian operator,

extended by duality from the Schwartz class to the space of tempered distributions, but acting in the 𝜛 variable only.
For any interval 7 (possibly open, closed, or half-open, and possibly unbounded), and any topological space G, the symbol 𝐸 (7 ,G)

denotes the set of continuous functions from 7 into G. If G is, additionally, a (convex subset of a) topological vector space, then
𝐸 (7 ,G) is a (convex subset of a) vector space, but does not inherit any topological structure unless otherwise noted. For example,
even if G is a Banach space, elements of 𝐸 ([0,∇) ,G) are not required to be in 𝜔

∇ ([0,∇) ,G), since we do not view 𝐸 ([0,∇) ,G) as
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a normed vector space (although it is clearly a vector space in view of the vector space structure of G). Note carefully that, under
the canonical identification,

𝐸 ([0, 1) ,R) ⨐ 𝐸 ([0, 1] ,R)

For example, the former contains each of

> 
1

1 ς >
and >  sin

{

1
1 ς >

}

whereas the latter does not contain either of these (regardless of any finite candidate value chosen at > = 1).
For any measurable subset of a Euclidean space, say 𝐹 ⊳ R𝐺 for some 𝐺 ε N, taking care not to identify sets which differ by a

set of measure zero, we define 𝜔
1
loc (𝐹) to be the set of measurable functions on 𝐹 which are in 𝜔

1 (𝐻) for each compact 𝐻 ⊳ 𝐹.
Thus, even though there is a canonical isomorphism

𝜔
1 ([0, 1] ,R) − 𝜔

1 ([0, 1) ,R)

there is no canonical isomorphism between

𝜔
1
loc ([0, 1) ,R) and 𝜔

1
loc ([0, 1] ,R)

For example, the former contains

> 
1

1 ς >

whereas the latter does not.
We denote the Schwartz class

⨑ ϑ= ⨑
⌋

R2
𝜛
ϖ R2

𝜚

⌈

= ⨑
⌋

R4⌈

Given a (possibly unbounded) interval 7 , and a measurable and locally integrable function 𝜀 (𝜗, 𝜛, 𝜚) on 7 ϖ R2 ϖ R2, we shall write

𝜀 ε 𝐸
1 (7 ,⨑)

precisely if

𝜀 ε 𝐸 (7 ,⨑) and 𝜑𝜀

𝜑𝜗
ε 𝐸 (7 ,⨑)

Note that if 𝜀 ε 𝐸
1 (7 ,⨑) then it automatically holds

𝛻
± (𝜀 , 𝜀 ) , 𝜚 ⋛ ϱ

𝜛
𝜀 ε 𝐸

1 (7 ,⨑)

Thus 𝜀 ε 𝐸
1 (7 ,⨑) supplies a simple sufficient criterion for identifying ‘‘classical solutions’’ of (1).

Constants indicated by the symbol 𝐸 (or e.g. 𝐸
𝐼1 ,…,𝐼𝐺

, depending on free real parameters 𝐼1,… , 𝐼
𝐺
> 0) are allowed to vary from

one line to the next, but are always supposed to be finite and non-zero. If it is desired to track constants precisely, then Z-indexed
subscripted notation 𝐸0,𝐸1,𝐸2,… will be used instead of 𝐸.

4. Main result

4.1. Preliminary remarks

The difficulty in solving Boltzmann’s equation in the presence of scaling-criticality (by which we mean that the collision kernel
is homogeneous in velocity and that the functional space of interest is critical jointly with respect to scalings in space and velocity)
stems from the fact that the loss term 𝛻

ς, despite having the same scaling behavior as the gain term 𝛻
+, does not satisfy the same

estimates. Indeed, simply by examining (1), we see that while the (unsymmetrized) gain operator 𝛻+ (𝜕,ℵ) treats its two arguments
on similar footing in many respects, the loss operator 𝛻ς (𝜕,ℵ) = 𝜕⊲

ℵ
is highly asymmetric between its two arguments. Unfortunately,

unlike 𝜔2, there is no dispersion in 𝜔
1; indeed, the only hint of dispersion at the 𝜔1 level occurs via velocity averaging in the presence

of uniform integrability, which plays an essential role in the theory of renormalized solutions [15]. So we see that there is little hope
of applying dispersive principles to the full Boltzmann Eq. (1) directly, without some deeper insights.

The key realization is that the gain term 𝛻
+ expresses certain convolutive and compactifying properties, well-known to kinetic

theorists, which do not hold for the loss term. (e.g. see [5,25] and references therein) So it is very natural to simply discard the
loss term altogether, in the hopes of constructing an upper envelope for any solution of Boltzmann’s equation (1). Unfortunately,
such a strategy again fails due to the fact that this ‘‘𝛻+ equation’’ is not globally well-posed for all initial data in, say, the Schwartz
class.3 [21] The best we can hope for is a local upper envelope (described momentarily), extended for a short time interval forward
from any point 𝜗0 ⨋ 0, depending on the solution 𝜀

⌋

𝜗0
⌈

of (1) itself! It is the precise understanding of this local upper envelope, or

3 The blow up results for the 𝛻
+ equation do not hold in the ‘‘near vacuum’’ regime; this is of little relevance here since we are concerned with local

solutions for initial data of arbitrary size.
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simply upper envelope (since there is not a global one in the general case regardless), that will provide the foundation for our main
theorem.

Let us briefly elaborate on the idea of an upper envelope, to avoid any possible confusion. Usually, an envelope of a collection 𝐸

of smooth curves in the plane is another curve which meets tangentially each element of 𝐸. Formally, viewing curves as graphs of
functions, the function 𝜀 (𝜗) would be the envelope of a collection of functions

/

𝜕
⌋

𝜗; 𝜗φ
⌈\

𝜗φ (indexed by 𝜗
φ) under the conditions

𝜕 (𝜗; 𝜗) = 𝜀 (𝜗) and 𝜀
φ (𝜗) = 𝜑𝜕

𝜑𝜗

⌋

𝜗; 𝜗φ
⌈⌉

⌉

⌉

⌉𝜗φ=𝜗

where the partial derivative is evaluated in 𝜗 for fixed 𝜗
φ, but evaluated along the diagonal 𝜗φ = 𝜗. (Here we simply assume that each

element of the collection only intersects 𝜀 at a single point; precise definitions do not matter for this discussion.) We reverse the
definition, viewing the collection as an upper envelope for the curve, and relaxing equality to inequality, namely

𝜕 (𝜗; 𝜗) = 𝜀 (𝜗) and +
⌋

𝜗 ⨋ 𝜗
φ⌈

𝜀 (𝜗) ∳ 𝜕
⌋

𝜗; 𝜗φ
⌈

(we do not define 𝜕 for 𝜗 < 𝜗
φ). In particular, in the smooth setting,

𝜀
φ (𝜗) ∳ 𝜑𝜕

𝜑𝜗

⌋

𝜗; 𝜗φ
⌈⌉

⌉

⌉

⌉𝜗φ=𝜗

In our case (regarding (𝜛, 𝜚) as fixed and restricting 𝜗 to a suitable existence interval in time), 𝜀 solves (1), 𝜕
⌋

⋛; 𝜗φ
⌈

satisfies (1)
omitting 𝛻

ς (for each 𝜗
φ fixed), and we refer to 𝜕 as an upper envelope for 𝜀 . This situation is reminiscent of the theory of viscosity

solutions, but we find no precisely analogous terminology in the literature, so we have chosen this terminology for the benefit of
visualization. Precise definitions will be introduced in our discussion of the comparison principle in Section 10.

4.2. Results

Definition 4.1. We will say that a non-negative function

𝜀 ε 𝜔
1
loc

⌋

7 ϖ R2 ϖ R2⌈

where 7 = [0, 𝜍 ) with 0 < 𝜍 ∳ ∇, is a distributional solution of (1) provided that each

𝛻
+ (𝜀 , 𝜀 ) and 𝛻

ς (𝜀 , 𝜀 ) ε 𝜔
1
loc

⌋

7 ϖ R2 ϖ R2⌈

i.e. 𝛻± (𝜀 , 𝜀 ) are each locally integrable, and that (1) holds in the sense of distributions. In particular, the trace along the 𝜗 = 0
time-slice is well-defined for any distributional solution of (1), and this trace will be denoted 𝜀0 and called the initial data. If 𝜍 = ∇
then 𝜀 is said to be global.

Definition 4.2. For any triple of strictly positive real numbers 3, 0, 4 we define the (restricted) family of moving Maxwellian
distributions

𝐽
3,0,4 (𝜗, 𝜛, 𝜚) = 3 exp

⌋

ς0 ⦃𝜚⦃2 ς 4 ⦃𝜛 ς 𝜚𝜗⦃
2⌈

with initial data

𝐽
3,0,4

0 (𝜛, 𝜚) = 3 exp
⌋

ς0 ⦃𝜚⦃2 ς 4 ⦃𝜛⦃
2⌈

In particular, 𝐽3,0,4 is at once a solution of Boltzmann’s equation (1), and at the same time a solution of the free transport Eq. (10),
that is,

𝐽
3,0,4 (𝜗) = ⨏ (𝜗)𝐽3,0,4

0

Theorem (Main Theorem, Part One). Let 3, 0, 4 be arbitrary strictly positive real numbers, and consider the moving Maxwellian initial
data 𝐽

3,0,4

0 . Then there exists a number

𝐾 = 𝐾 (3, 0, 4) > 0

such that if 𝜀0 ε 𝜔
1
loc

⌋

R2 ϖ R2⌈ is non-negative and satisfies
❳

𝐴

⌉

⌉

⌉

⌉

∱R2ϖR2
𝐴 (𝜛, 𝜚)

⌋

𝜀0 (𝜛, 𝜚) ς 𝐽0 (𝜛, 𝜚)
⌈

ℷ𝜛ℷ𝜚
⌉

⌉

⌉

⌉

< 𝐾 (13)

where the sum ranges over 𝐴 ε
/

1, 𝜚1, 𝜚2, ⦃𝜚⦃2 , ⦃𝜛⦃2 , 𝜛 ⋛ 𝜚
\

, and

⦄

⦄

⦄

𝜀0 ς 𝐽
3,0,4

0
⦄

⦄

⦄𝜔2 < 𝐾 (14)

then there exists a non-negative global distributional solution 𝜀 of (1), with initial data 𝜀0, such that

𝜀 ε 𝐸
⌋

[0,∇) ,𝜔2⌈
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Moreover, 𝜀 scatters, which means (here and throughout this article) that there exists a non-negative measurable function 𝜀+∇ ε 𝜔
2

such that

lim
𝜗+∇

⦄

⦄

𝜀 (𝜗) ς ⨏ (𝜗) 𝜀+∇⦄

⦄𝜔2 = 0 (15)

Remark 4.1. The proof of the main theorem provides no quantitative control on ⦄

⦄

𝜀 (𝜗) ς 𝐽
3,0,4 (𝜗)⦄

⦄𝜔2 for 𝜗 > 0.

Theorem (Main Theorem, Part Two). Under the assumptions of Part One, if in addition 𝜀0 ε ⨑, then the solution 𝜀 is unique (in the
sense to be explained in Section 19), and

𝜀 ε 𝐸
1 ([0,∇) ,⨑)

also holds.

We remark that condition (13) deliberately places the absolute value bars on the outside of the integral: indeed, we could replace
‘‘< 𝐾’’ by ‘‘= 0’’ in this line without altering the conceptual substance of the theorem, since this condition does little more than provide
a sense of scale (in the space-homogeneous case it is analogous to normalizing the total kinetic energy to one separately for each
𝜀0,𝐽0). Note carefully that neither part of the main theorem is restricted to what may be called the ‘‘near vacuum’’ regime.4 The
result is perturbative around a function which is Gaussian jointly in space and velocity, but that underlying Gaussian may be of
any size, the only restriction being that 𝐾 depends on the underlying Gaussian. Thus the theorem statement (but not the proof!) is
very similar to an old result by Toscani, who also considered global solutions near large moving Maxwellians [29]. However, unlike
Toscani, since the perturbation here is only restricted with respect to the size of the 𝜔

2 deviation combined with finiteness of the
physical quantity 𝜔

1
2, even a Schwartz initial data 𝜀0 may be very far removed (in 𝜔

∇, say) from 𝐽
3,0,4

0 .

Remark 4.2. Regardless of the regularity of 𝜀0, scattering is always defined relative to the 𝜔
2 norm, precisely as indicated in (15):

at no point is convergence at long time to be claimed in any other sense.

5. Uniform square integrability

For this section, let 𝐹 be a measurable subset of a Euclidean space R𝐺, 𝐺 ε N, equipped with the measure 5 induced by the
Lebesgue measure on R𝐺; in the applications, 𝐹 may be R2 ϖ R2, or 7 ϖ R2 ϖ R2 for an interval 7 ⊳ R.

5.1. Preliminary remarks

We will be adapting the notion of uniform integrability as it is applied in kinetic theory, where the interpretation is closely
related to, but slightly different from, that which arises in probability theory. In particular, in kinetic theory, consideration must be
made for underlying measure spaces which are not probability spaces, such as the Lebesgue measure on Euclidean space. Beyond
that, we will be further specializing by examining the uniform integrability of the squares of a sequence of functions, and establishing
a dominated convergence theorem in 𝜔

2 (𝐹, 5).
We emphasize that the material in this section is standard; in particular, our objective (in this section only) is a special case of

the Lebesgue-Vitali convergence theorem; e.g. see [7], Chapter 4, Corollary 4.5.5 (which is the infinite measure case of Theorem 4.5.4
in the same reference). Our motivation for repeating the analysis (specialized to the Euclidean case for simplicity) is twofold: first,
the results are easy to prove (in our limited setting) yet absolutely fundamental to all that is to follow; and, second, we wish to
establish a more convenient form of terminology for our own purposes, as the terminology of [7] is rather general and somewhat
onerous for kinetic theory applications.

In fact, we will be interested in the 𝜔
2 setting (what we will refer to by the term uniform square integrability), whereas [7]

considers the 𝜔
1 setting; this is a trivial distinction from the abstract perspective, but it is an essential distinguishing factor for

this paper, as it is only the 𝜔
1 case which is ubiquitous in kinetic theory (specifically in the theory of renormalized solutions, as

well as hydrodynamic limits). Uniform square integrability will be an essential tool as it allows to execute dominated convergence
arguments (in 𝜔

2) when the dominating functions compose a family, instead of a singleton; this will enable, starting in Section 11,
the usage of a powerful comparison principle.

5.2. Definitions

Definition 5.1. A sequence of (not necessarily non-negative) measurable functions
/

ℵ
𝐿

\

𝐿
⊳ 𝜔

1 (𝐹, 5) will be said to be uniformly
integrable if, for every 𝐾 > 0, there exists a number 𝑀 > 0 and a compact set 𝐻 ⊳ R𝐺 such that: for any measurable set 𝑁 ⊳ 𝐹 with
measure 5 [𝑁 ] < 𝑀, it holds

sup
𝐿 ∱

𝑁
[(𝐹±𝐻)

⌉

⌉

ℵ
𝐿
⌉

⌉

ℷ5 < 𝐾

4 The term ‘‘near vacuum’’, in the kinetic theory sense, means not only that 𝜛 ranges over all of R2 and 𝜀 exhibits decay (in an average sense) as ⦃𝜛⦃  ∇,
but that the initial data 𝜀0 lies in a small ball of the zero function for a suitable Banach space.
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Remark 5.1. Technically, this definition is closer to the notion of uniform absolute continuity of integral in [7]; however, the two
concepts are equivalent for atomless measures such as Lebesgue measure (Proposition 4.5.3 of [7]), and the latter terminology is
not standard in the kinetic theory literature. Note, also, that the use of the compact set 𝐻, in our definition of uniform integrability,
obviates the need for an additional condition when working in the whole Euclidean space.

Definition 5.2. A sequence of (not necessarily non-negative) measurable functions
/

ℵ
𝐿

\

𝐿
⊳ 𝜔

2 (𝐹, 5) will be said to be uniformly
square integrable if the sequence

]

⌉

⌉

ℵ
𝐿
⌉

⌉

2
⟦

𝐿

is uniformly integrable (here ⌉

⌉

ℵ
𝐿
⌉

⌉

2 (8) = ⌉

⌉

ℵ
𝐿 (8)⌉

⌉

2 for 8 ε 𝐹).

5.3. Results

Lemma 5.1. Let ℵ by a measurable function on 𝐹 such that ℵ ε 𝜔
2 (𝐹, 5). Then the constant sequence

{ℵ,ℵ,ℵ,…}

is uniformly square integrable.

Proof. First observe that, by monotone convergence and the square-integrability of ℵ,

lim
𝐿∇∱

𝐹

⌋

𝛚
8 ϑ ⦃ℵ(8)⦃>𝐿 + 𝛚

8 ϑ ⦃8⦃>𝐿

⌈

⦃ℵ (8)⦃2 ℷ5 (8) = 0

Let 𝐾 > 0. Then there exists an integer 𝑂 such that, for all 𝐿 ⨋ 𝑂 ,

∱
𝐹

⌋

𝛚
8 ϑ ⦃ℵ(8)⦃>𝐿 + 𝛚

8 ϑ ⦃8⦃>𝐿

⌈

⦃ℵ (8)⦃2 ℷ5 (8) < 𝐾

4
In particular, we can take 𝐿 = 𝑂 ; in that case, for the points 8 ε 𝐹 at which the integrand vanishes, we have ⦃8⦃ ∳ 𝑂 and ⦃ℵ (8)⦃ ∳ 𝑂 .
Let the set of all such points be denoted by 𝐹

𝑂
.

Now let 𝑁 be any measurable subset of 𝐹 such that

5 [𝑁 ] < 𝐾

2𝑂2

We decompose 𝑁 as 𝑁1
[

𝑁2 where 𝑁1 = 𝑁
❲

𝐹
𝑂
and 𝑁2 = 𝑁

❲

⌋

𝐹±𝐹
𝑂

⌈

. Clearly, since 𝑁2 ⊳ 𝐹±𝐹
𝑂
, we have

∱
𝐹

⟪

𝛚
8ε𝑁2 + 𝛚

8 ϑ ⦃8⦃>𝑂

⟫

⦃ℵ (8)⦃2 ℷ5 (8) < 𝐾

2
On the other hand, we also clearly have

∱
𝑁1

⦃ℵ (8)⦃2 ℷ5 (8) < 𝐾

2

Therefore,

∱
𝐹

⌋

𝛚
8ε𝑁 + 𝛚

8 ϑ ⦃8⦃>𝑂

⌈

⦃ℵ (8)⦃2 ℷ5 (8) < 𝐾

so we may conclude. ⋜

Lemma 5.2. If
/

ℵ
𝐿

\

𝐿
⊳ 𝜔

2 (𝐹, 5) is uniformly square integrable, and 𝜕
𝐿
is a sequence of measurable functions on 𝐹 such that

⌉

⌉

𝜕
𝐿 (8)⌉

⌉

∳ ⌉

⌉

ℵ
𝐿 (8)⌉

⌉

for 5-a.e. 8 ε 𝐹, then
/

𝜕
𝐿

\

𝐿
is uniformly square integrable.

Proof. This follows from the definition of uniform square integrability, using the same 𝑀,𝐻 for each sequence
/

𝜕
𝐿

\

𝐿
,
/

ℵ
𝐿

\

𝐿
. ⋜

Lemma 5.3. If the sequence
/

ℵ
𝐿

\

𝐿
⊳ 𝜔

2 (𝐹, 5) converges in 𝜔
2 (𝐹, 5), that is, there exists ℵ ε 𝜔

2 (𝐹, 5) such that

lim
𝐿∇

⦄

⦄

ℵ
𝐿
ς ℵ⦄

⦄𝜔2(𝐹,5) = 0

then the sequence
/

ℵ
𝐿

\

𝐿
is uniformly square integrable.

Proof. First note that, by Lemma 5.1, the sequence
/

ℵ
𝐿

\

𝐿
is uniformly square integrable if and only if the sequence

/

ℵ
𝐿
ς ℵ

\

𝐿
is

uniformly square integrable, because ℵ ε 𝜔
2 (𝐹, 5). Therefore, we may assume without loss that ℵ is identically zero.

Let 𝐾 > 0.
Then since ℵ

𝐿
 0 in 𝜔

2 (𝐹, 5), there exists a number 𝑂 such that, for every 𝐿 ⨋ 𝑂 ,

∱
𝐹

⌉

⌉

ℵ
𝐿
⌉

⌉

2
ℷ5 < 𝐾
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Therefore, we may restrict our attention to the finite set
/

ℵ
𝐿

\

1∳𝐿<𝑂 . For each 𝐿 = 1, 2,… ,𝑂 ς1, by Lemma 5.1 there exists a number
𝑀
𝐿
> 0 and a compact set 𝐻

𝐿
⊳ Rℏ such that, for any measurable set 𝑁 ⊳ 𝐹 with 5 [𝑁 ] < 𝑀

𝐿
,

∱
𝑁
[(𝐹±𝐻𝐿)

⌉

⌉

ℵ
𝐿
⌉

⌉

2
ℷ5 < 𝐾

Let 𝐻 = [

𝐿=1,2,…,𝑂ς1 𝐻𝐿
and 𝑀 = min

𝐿=1,2,…,𝑂ς1 𝑀𝐿 to conclude. ⋜

Lemma 5.4. (Special case of the general form of the Lebesgue-Vitali convergence theorem.) If the sequence
/

ℵ
𝐿

\

𝐿
⊳ 𝜔

2 (𝐹, 5) is uniformly
square integrable, and the pointwise limit ℵ (8) = lim

𝐿∇ ℵ
𝐿 (8) exists for 5-a.e. 8 ε 𝐹, then

lim
𝐿∇

⦄

⦄

ℵ
𝐿
ς ℵ⦄

⦄𝜔2(𝐹,5) = 0

Proof. Follows immediately from Egorov’s theorem. ⋜

6. An abstract theorem

We use the Banach fixed point theorem to establish a sense of local well-posedness for nonlinear evolutionary equations associated
with a certain type of multilinear estimate. This result does not apply directly to (1) but it does apply to the 𝛻+ equation (or gain-only
Boltzmann equation)

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ = 𝛻
+ (ℵ,ℵ) (16)

We will be relying heavily on the unique local solution ℵ of (16), the existence of which will be established using the theorem from
this section. We will be tracking all constants in this section precisely, so that we may focus on compact intervals in time without
loss of generality.

Definition 6.1. Let 𝑃 ⊳ R be a compact interval, and G a separable Banach space. Then we define a norm on 𝑄
1,1 (𝑃 ,G),

distinguished by the stylized notation

⨒1,1 (𝑃 ,G)

by

⟨𝜛⟨⨒1,1(𝑃 ,G) = ⟨𝜛⟨
𝜔∇(𝑃 ,G) +

⦄

⦄

⦄

⦄

ℷ𝜛

ℷ𝜗

⦄

⦄

⦄

⦄𝜔1(𝑃 ,G)

which is equivalent to the usual norm on 𝑄
1,1 (𝑃 ,G) due to the compactness of 𝑃 . (Note that 𝑄 1,1 (𝑃 ,G) ⊳ 𝐸 (𝑃 ,G).)

Corollary 6.1. If 𝜗0 ε 𝑃 is fixed arbitrarily, then the norm defined by

⦄

⦄

𝜛(𝜗0)⦄
⦄G +

⦄

⦄

⦄

⦄

ℷ𝜛

ℷ𝜗

⦄

⦄

⦄

⦄𝜔1(𝑃 ,G)

is equivalent to ⨒1,1 (𝑃 ,G), the constant being independent of each 𝑃 and 𝜗0 ε 𝑃 (indeed a constant of 2 suffices in either direction).

The Corollary implies that if 𝜛(𝜗) is controlled at a single point and ℷ𝜛

ℷ𝜗
is controlled along the interval, then 𝜛(𝜗) is controlled

along the interval.

Lemma 6.2. Let G be a separable Banach space over R, and let ℏ be a real number with

1 ∳ ℏ < ∇

and let 𝑃 𝑅 R be a compact interval. Furthermore, suppose

⨓(𝜗, 𝜛1,… , 𝜛
𝐺
) ϑ 𝑃 ϖGϖ𝐺  G

is linear in 𝜛1,… , 𝜛
𝐺
for each 𝜗 ε 𝑃 , and satisfies

⦄

⦄

⨓(𝜗, 𝜛1,… , 𝜛
𝐺
)⦄
⦄𝜔ℏ(𝑃 ,G) ∳ 𝐸0

𝐺
⟧

𝑆=1

⦄

⦄

𝜛
𝑆
⦄

⦄G (17)

In particular ⨓ may be viewed as a multilinear map G𝐺  𝜔
ℏ (𝑃 ,G).

Then there exists a unique mapping
2⨓ ϑ

⌋

𝑄
1,1 (𝑃 ,G)

⌈ϖ𝐺
 𝜔

ℏ (𝑃 ,G)

for which 2≨ is linear in each of its inputs and satisfies for 𝜛
𝑆
ε G, 𝐴

𝑆
ε 𝐸

∇ (𝑃 ,R) (𝑆 = 1,… , 𝐺) the formula

2⨓
⌋

𝜛1𝐴1,… , 𝜛
𝐺
𝐴
𝐺

⌈

(𝜗) = ⨓
⌋

𝜗, 𝜛1,… , 𝜛
𝐺

⌈

𝐺
⟧

𝑆=1
𝐴
𝑆 (𝜗) (18)
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Clearly 2⨓ is a canonical extension of ⨓.
The extension 2⨓ satisfies for any 𝜛1 (⋛) ,… , 𝜛

𝐺 (⋛) ε 𝑄
1,1 (𝑃 ,G):

⦄

⦄

⦄

2⨓
⌋

𝜛1,… , 𝜛
𝐺

⌈

⦄

⦄

⦄𝜔ℏ(𝑃 ,G)
∳ (𝐺 + 1)𝐸0

𝐺
⟧

𝑆=1

⦄

⦄

𝜛
𝑆
⦄

⦄⨒1,1(𝑃 ,G) (19)

noting carefully the stylized ⨒ in (19).

Proof. We assume without loss that 𝑃 = [0, 0] for some 0 < 0 < ∇. First we will establish the uniqueness, and in so doing we will
obtain a formula for 2⨓; then we will show that the formula defines a mapping which satisfies (19).

For given 𝐴 ε 𝐸
∇ (R,R) and . ε R let us define the translation operator

⌋

𝑇
.
𝐴
⌈

(𝜗) = 𝐴(𝜗 ς .)

Then if 𝜛1,… , 𝜛
𝐺
ε G and 𝐴1,… ,𝐴

𝐺
ε 𝐸

∇ (R,R) then by (18) it holds

2⨓
⌋

𝜛1𝑇.𝐴1,… , 𝜛
𝐺
𝑇
.
𝐴
𝐺

⌈

(𝜗) = ⨓
⌋

𝜗, 𝜛1,… , 𝜛
𝐺

⌈

𝐺
⟧

𝑆=1
𝐴
𝑆 (𝜗 ς .)

By (17) the right-hand side is differentiable in . for almost every 𝜗 ε 𝑃 fixed, and we have

𝜑

𝜑.

2⨓
⌋

𝜛1𝑇.𝐴1,… , 𝜛
𝐺
𝑇
.
𝐴
𝐺

⌈

(𝜗)

= ς⨓
⌋

𝜗, 𝜛1,… , 𝜛
𝐺

⌈

𝐺
❳

𝑆=1
𝐴
φ
𝑆
(𝜗 ς .)

⟧

𝑈⨐𝑆
𝐴
𝑈 (𝜗 ς .)

Therefore, applying (18) again on the right, we have

𝜑

𝜑.

2⨓
⌋

𝜛1𝑇.𝐴1,… , 𝜛
𝐺
𝑇
.
𝐴
𝐺

⌈

(𝜗)

= ς
𝐺
❳

𝑆=1

2⨓
⌋

𝜛1𝑇.𝐴1,… , 𝜛
𝑆
𝑇
.
𝐴
φ
𝑆
,… , 𝜛

𝐺
𝑇
.
𝐴
𝐺

⌈

(𝜗)

By the linearity in each entry, if each 𝜛
𝑆 (𝜗) is a finite linear combination of terms like 𝜛⋝𝐴⋝ (𝜗), then

𝜑

𝜑.

2⨓
⌋

𝑇
.
𝜛1 (⋛) ,… , 𝑇

.
𝜛
𝐺
(⋛)
⌈

(𝜗)

= ς
𝐺
❳

𝑆=1

2⨓
⌋

𝑇
.
𝜛1 (⋛) ,… , 𝑇

.
𝜛
φ
𝑆
(⋛) ,… , 𝑇

.
𝜛
𝐺 (⋛)

⌈

(𝜗)

and since we have only taken finite combinations, for almost every 𝜗 ε 𝑃 the formula (as before) does hold strongly for each . ε 𝑃 .
Hence for any such 𝜗 we can integrate in . over a domain that depends on 𝜗, namely 0 ∳ . ∳ 𝜗, to deduce

2⨓
⌋

𝜛1 (0) ,… , 𝜛
𝐺 (0)

⌈

ς 2⨓
⌋

𝜛1 (⋛) ,… , 𝜛
𝐺 (⋛)

⌈

= ς
𝐺
❳

𝑆=1 ∱

𝜗

0
2⨓
⌋

𝑇
.
𝜛1 (⋛) ,… , 𝑇

.
𝜛
φ
𝑆
(⋛) ,… , 𝑇

.
𝜛
𝐺
(⋛)
⌈

(𝜗) ℷ.

Again since the 𝜛
𝐺
are finite sums of constant elements of G times smooth scalar-valued functions, it is acceptable to replace ⨓ for

2⨓ under the integral on the right to obtain

2⨓
⌋

𝜛1 (0) ,… , 𝜛
𝐺 (0)

⌈

(𝜗) ς 2⨓
⌋

𝜛1 (⋛) ,… , 𝜛
𝐺 (⋛)

⌈

(𝜗)

= ς
𝐺
❳

𝑆=1 ∱

𝜗

0
⨓

⌋

𝜗, 𝜛1 (𝜗 ς .) ,… , 𝜛
φ
𝑆
(𝜗 ς .) ,… , 𝜛

𝐺 (𝜗 ς .)
⌈

ℷ.

Equivalently, this may be written

2⨓
⌋

𝜛1 (⋛) ,… , 𝜛
𝐺 (⋛)

⌈

(𝜗) = ⨓
⌋

𝜗, 𝜛1 (0) ,… , 𝜛
𝐺 (0)

⌈

+
𝐺
❳

𝑆=1 ∱

𝜗

0
⨓

⌋

𝜗, 𝜛1 (.) ,… , 𝜛
φ
𝑆
(.) ,… , 𝜛

𝐺 (.)
⌈

ℷ.

Thus 2⨓ is uniquely determined by ⨓ due to a density argument; this is justified by the continuity estimates we prove below.
Indeed, clearly we have

⦄

⦄

⦄

⨓
⌋

𝜗, 𝜛1 (0) ,… , 𝜛
𝐺 (0)

⌈

⦄

⦄

⦄𝜔ℏ(𝑃 ,G)

∳ 𝐸0

𝐺
⟧

𝑆=1

⦄

⦄

𝜛
𝑆 (0)⦄

⦄G ∳ 𝐸0

𝐺
⟧

𝑆=1

⦄

⦄

𝜛
𝑆
⦄

⦄⨒1,1(𝑃 ,G)
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by (17). Additionally, using (17) again,
⦄

⦄

⦄

⦄

⦄

∱

𝜗

0
⨓

⌋

𝜗, 𝜛1 (.) ,… , 𝜛
φ
𝑆
(.) ,… , 𝜛

𝐺 (.)
⌈

ℷ.

⦄

⦄

⦄

⦄

⦄𝜔ℏ(𝑃 ,G)

∳
⦄

⦄

⦄

⦄

⦄

∱

𝜗

0

⦄

⦄

⦄

⨓
⌋

𝜗, 𝜛1 (.) ,… , 𝜛
φ
𝑆
(.) ,… , 𝜛

𝐺 (.)
⌈

⦄

⦄

⦄G
ℷ.

⦄

⦄

⦄

⦄

⦄𝜔ℏ(𝑃 ,R)

∳
⦄

⦄

⦄

⦄

∱
𝑃

⦄

⦄

⦄

⨓
⌋

𝜗, 𝜛1 (.) ,… , 𝜛
φ
𝑆
(.) ,… , 𝜛

𝐺 (.)
⌈

⦄

⦄

⦄G
ℷ.

⦄

⦄

⦄

⦄𝜔ℏ(𝑃 ,R)

∳ ∱
𝑃

⦄

⦄

⦄

⨓
⌋

𝜗, 𝜛1 (.) ,… , 𝜛
φ
𝑆
(.) ,… , 𝜛

𝐺 (.)
⌈

⦄

⦄

⦄𝜔ℏ(𝑃 ,G)
ℷ.

∳ 𝐸0 ∱
𝑃

⦄

⦄

𝜛
φ
𝑆
(.)⦄

⦄G

⌊

⟧

𝑈⨐𝑆

⦄

⦄

⦄

𝜛
𝑈 (.)

⦄

⦄

⦄G

⌋

ℷ.

∳ 𝐸0 ⦄
⦄

𝜛
φ
𝑆
⦄

⦄𝜔1(𝑃 ,G)
⟧

𝑈⨐𝑆

⦄

⦄

⦄

𝜛
𝑈

⦄

⦄

⦄𝜔∇(𝑃 ,G)

∳ 𝐸0

𝐺
⟧

𝑆=1

⦄

⦄

𝜛
𝑆
⦄

⦄⨒1,1(𝑃 ,G) ⋜

By abuse of notation, we will write ⨓ in place of 2⨓ in what follows.

Theorem 6.3. Given a separable Banach space G and a compact interval 𝑃 𝑅 R where 𝑃 = [0, 0], some 0 < 0 < ∇, suppose
⨓

⌋

𝜗, 𝜛1, 𝜛2
⌈

ϑ 𝑃 ϖG ϖG  G is linear in 𝜛1, 𝜛2 for each 𝜗 ε 𝑃 , and satisfies
⦄

⦄

⦄

⨓
⌋

𝜗, 𝜛1, 𝜛2
⌈

⦄

⦄

⦄𝜔1(𝑃 ,G)
∳ 𝐸0 ⦄

⦄

𝜛1⦄
⦄G

⦄

⦄

𝜛2⦄
⦄G

Let 𝐾 > 0. There are numbers 𝑀01 , 𝑀
0
2 > 0, depending only on 𝐸0 and 𝐾, such that if

0 < 𝑀1 ∳ 𝑀
0
1 and 0 < 𝑀2 ∳ 𝑀

0
2

and the following three estimates
⦄

⦄

⦄

⨓
⌋

𝜗, 𝜛0, 𝜛0
⌈

⦄

⦄

⦄𝜔1(𝑃 ,G)
∳ 𝑀1

+
⌋

𝜛2 ε G
⌈

⦄

⦄

⦄

⨓
⌋

𝜗, 𝜛0, 𝜛2
⌈

⦄

⦄

⦄𝜔1(𝑃 ,G)
∳ 𝑀2 ⦄

⦄

𝜛2⦄
⦄G

+
⌋

𝜛2 ε G
⌈

⦄

⦄

⦄

⨓
⌋

𝜗, 𝜛2, 𝜛0
⌈

⦄

⦄

⦄𝜔1(𝑃 ,G)
∳ 𝑀2 ⦄

⦄

𝜛2⦄
⦄G

all hold for some 𝜛0 ε G, then the following holds as well:
There exists a unique function

𝜛 ε 𝑄
1,1 (𝑃 ,G)

such that for all 𝜗 ε 𝑃 there holds

𝜛 (𝜗) = 𝜛0 + ∱

𝜗

0
⨓ (., 𝜛 (.) , 𝜛 (.)) ℷ.

and also
⦄

⦄

𝜛 ς 𝜛0⦄
⦄𝜔∇(𝑃 ,G) +

⦄

⦄

⦄

⦄

ℷ

ℷ𝜗

/

𝜛 ς 𝜛0
\⦄

⦄

⦄

⦄𝜔1(𝑃 ,G)
∳ 𝐾

In particular, because ℷ

ℷ𝜗
𝜛 = ⨓ (𝜗, 𝜛 (𝜗) , 𝜛 (𝜗)) and 𝜛0 is a constant, we have

⟨⨓ (𝜗, 𝜛 (𝜗) , 𝜛 (𝜗))⟨
𝜔1(𝑃 ,G) ∳ 𝐾

Proof. Fix 𝜛0 ε G and define the map

F ϑ 𝑄
1,1 (𝑃 ,G)  𝑄

1,1 (𝑃 ,G)

via

[F (𝜛)] (𝜗) = 𝜛0 + ∱

𝜗

0
⨓ (., 𝜛 (.) , 𝜛 (.)) ℷ.

Then we have

[F (𝜛)] (𝜗) ς 𝜛0 = ∱

𝜗

0
⨓

⌋

.,
⌋

𝜛 (.) ς 𝜛0
⌈

+ 𝜛0,
⌋

𝜛 (.) ς 𝜛0
⌈

+ 𝜛0
⌈

ℷ.
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that is

[F (𝜛)] (𝜗) ς 𝜛0 = ∱

𝜗

0
⨓

⌋

., 𝜛0, 𝜛0
⌈

ℷ. + ∱

𝜗

0
⨓

⌋

., 𝜛 (.) ς 𝜛0, 𝜛0
⌈

ℷ.

+ ∱

𝜗

0
⨓

⌋

., 𝜛0, 𝜛 (.) ς 𝜛0
⌈

ℷ. + ∱

𝜗

0
⨓

⌋

., 𝜛 (.) ς 𝜛0, 𝜛 (.) ς 𝜛0
⌈

ℷ.

(20)

Note that the right-hand side is zero when 𝜗 = 0. Hence by Lemma 6.2 and the bounds assumed in the statement of the Theorem,
there holds

⦄

⦄

F (𝜛) ς 𝜛0⦄
⦄⨒1,1(𝑃 ,G)

∳ 2𝑀1 + 8𝑀2 ⦄
⦄

𝜛 ς 𝜛0⦄
⦄⨒1,1(𝑃 ,G) + 6𝐸0 ⦄

⦄

𝜛 ς 𝜛0⦄
⦄

2
⨒1,1(𝑃 ,G)

For instance, in the first term, we have an extra factor of 2 because ⨒1,1 counts an 𝜔
∇ (𝑃 ,G) and an 𝜔

1 (𝑃 ,G), and the 𝜔
∇ (𝑃 ,G) is

precisely bounded by the 𝜔
1 (𝑃 ,G) since the initial value is zero. Similar logic holds for the remaining terms.

The Lipschitz estimate from (20) reads as

⟨F (𝜛) ς F ( 2𝜛)⟨⨒1,1(𝑃 ,G)

∳
⌈

8𝑀2 + 6𝐸0

⟪

⦄

⦄

𝜛 ς 𝜛0⦄
⦄⨒1,1(𝑃 ,G) + ⦄

⦄

2𝜛 ς 𝜛0⦄
⦄⨒1,1(𝑃 ,G)

⟫⌉

⟨𝜛 ς 2𝜛⟨⨒1,1(𝑃 ,G)

To conclude, we apply the Banach fixed point theorem in the metric space

⨔
𝐾
=
]

𝜛 ε 𝑄
1,1 (𝑃 ,G) ⌉

⌉

⌉

⦄

⦄

𝜛 ς 𝜛0⦄
⦄⨒1,1(𝑃 ,G) ∳ 𝐾

⟦

the metric provided by the ⨒1,1 (𝑃 ,G) norm (of the difference between any two elements). We may without loss assume 𝐾 is
sufficiently small.

The constraints are

2𝑀1 + 8𝑀2𝐾 + 6𝐸0𝐾
2 ∳ 𝐾

and

8𝑀2 + 12𝐸0𝐾 < 1

The second constraint is satisfied once 𝐾 <
1

48𝐸0
and 𝑀2 <

1
16 . To satisfy the first constraint, it then suffices to further require that

𝑀1 <
1
8 𝐾. ⋜

7. Dispersive estimates

7.1. Castella-perthame

First let us recall the family of homogeneous kinetic Strichartz estimates from Castella and Perthame, along with the key
dispersive estimates upon which they rely. [5,8] (We will not require the corresponding inhomogeneous Strichartz estimates.)

Lemma 7.1. For any 1 ∳ ⋆ ∳ ℏ ∳ ∇, if

𝜀0 ε 𝜔
⋆

𝜛
𝜔
ℏ

𝜚

⌋

R2 ϖ R2⌈

then for any 𝜗 ε R ⟥ {0} it holds

⨏ (𝜗) 𝜀0 ε 𝜔
ℏ

𝜛
𝜔
⋆

𝜚

⌋

R2 ϖ R2⌈

and we have the estimate

⦄

⦄

⨏ (𝜗) 𝜀0⦄
⦄𝜔

ℏ

𝜛
𝜔
⋆
𝜚(R2ϖR2) ∳ 𝐸 ⦃𝜗⦃

ς2
⟪

1
⋆
ς 1

ℏ

⟫

⦄

⦄

𝜀0⦄
⦄𝜔

⋆
𝜛
𝜔
ℏ

𝜚(R2ϖR2)
where 𝐸 is an absolute constant independent of 𝜗 and ℏ.

Proposition 7.2. Whenever ⋆, ℏ ε [1,∇] are such that ⋆ > 2 and 1
⋆
= 1 ς 2

ℏ
, for any 𝜀0 ε 𝜔

2 there holds

⨏ 𝜀0 ε 𝜔
⋆

𝜗
𝜔
ℏ

𝜛
𝜔
ℏ
φ
𝜚

⌋

R ϖ R2 ϖ R2⌈

Moreover, we have the following estimate:
⦄

⦄

⨏ 𝜀0⦄
⦄𝜔

⋆

𝜗
𝜔
ℏ

𝜛
𝜔
ℏφ
𝜚 (RϖR2ϖR2) ∳ 𝐸

⋆
⦄

⦄

𝜀0⦄
⦄𝜔2

the constant 𝐸
⋆
depending only on ⋆.
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7.2. Intuition

We are nearly ready to discuss the meaning of (4), i.e.

𝜔
2 ϖ 𝜔

2  𝜔
1 ⌋R,𝜔2⌈ (21)

In fact, what we really mean is that this bilinear estimate holds for the gain operator 𝛻+ composed with free transport, that is,
⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(R,𝜔2) ∳ 𝐸 ⦄

⦄

𝜀0⦄
⦄𝜔2 ⦄

⦄

ℵ0⦄
⦄𝜔2 (22)

whenever 𝜀0,ℵ0 ε 𝜔
2. This is a scaling-critical bilinear Strichartz estimate, and the space 𝜔

1 ⌋R,𝜔2⌈ is essentially a stand-in for the
missing scaling-critical endpoint of the classical theory of Bourgain spaces, i.e. in the usual notation 9

.,0 with (., 0) =
⟪

0,ς 1
2

⟫

, for
which general theory does not exist without refinement of the functional setting.

Before we begin, let us explain heuristically why (22) should be true (since it is not entirely obvious at first glance). Let us
introduce the classical convolution acting in the velocity variable only,

⌋

𝜀 ω
𝜚
ℵ
⌈

(𝜗, 𝜛, 𝜚) = ∱R2
𝜀 (𝜗, 𝜛, 1)ℵ (𝜗, 𝜛, 𝜚 ς 1) ℷ1

then if 𝜀 ,ℵ ε 𝐸 (7 ,⨑) then we have for each (𝜗, 𝜛) ε 7 ϖ R2 the Young’s inequality

⦄

⦄

𝜀 ω
𝜚
ℵ⦄
⦄𝜔

2
𝜚(R2) ∳ 𝐸 ⟨𝜀⟨

𝜔

4
3
𝜚 (R2)

⟨ℵ⟨

𝜔

4
3
𝜚 (R2)

(23)

Now since 𝛻
+ apparently has a convolutive structure (but taken over manifolds respecting the energy and momentum constraints),

and in addition the collision kernel at hand is bounded and homogeneous of degree zero5, we might expect (23) to hold again for
𝛻

+:

⦄

⦄

𝛻
+ (𝜀 ,ℵ)⦄

⦄𝜔
2
𝜚(R2) ∳ 𝐸 ⟨𝜀⟨

𝜔

4
3
𝜚 (R2)

⟨ℵ⟨

𝜔

4
3
𝜚 (R2)

(24)

and it turns out (24) is true! It has been proven, and studied in detail (in far greater generality), by Alonso and Carneiro using
Fourier methods [1], and by Alonso, Carneiro and Gamba using a weighted convolution formulation of 𝛻+ [2], and was also proven
for 𝛻+

0
with a restricted class of collision kernels 0 by Arsenio [5] using the weak formulation of 𝛻+

0
on the kinetic side. (Note that

Alonso and Carneiro [1] used a radial symmetrization technique on the Fourier transform of 𝜀 in the proof, but their theorem makes
no assumption of radiality for 𝜀 .)

So let us combine (24) with the homogeneous Strichartz estimates of Proposition 7.2 to ‘‘prove’’ (22):
⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(R,𝜔2)
∳ 𝐸 ⦄

⦄

⨏ 𝜀0⦄
⦄

𝜔2
⌊

7 ,𝜔
4
𝜛
𝜔

4
3
𝜚 (R2ϖR2)

⌋
⦄

⦄

⨏ ℵ0⦄
⦄

𝜔2
⌊

7 ,𝜔
4
𝜛
𝜔

4
3
𝜚 (R2ϖR2)

⌋

∳ 𝐸 ⦄

⦄

𝜀0⦄
⦄𝜔2 ⦄

⦄

ℵ0⦄
⦄𝜔2

where we have applied (24) followed by Hölder’s inquality (in 𝜛 then 𝜗) in the first step, and the endpoint case ⋆ = 2 of Proposition 7.2
in the second step, namely:

⦄

⦄

⨏ ℵ0⦄
⦄

𝜔
2
𝜗
𝜔
4
𝜛
𝜔

4
3
𝜚 (RϖR2ϖR2)

∳ 𝐸 ⦄

⦄

ℵ0⦄
⦄𝜔2 (25)

Unfortunately, (25) is known to be false. [6] A more careful analysis is required.

Remark 7.1. For detailed treatments of an approach to proving (22) by way of the Wigner–Weyl transform, we refer the reader to
the previous articles of this series [10–12]. We use an alternative approach below which does not use the Wigner transform in its
usual formulation.

7.3. The basic estimate

First, a simple application of the endpoint Strichartz estimates of Keel and Tao. Before we can state the lemma, we need to
formally define the partial Fourier transform acting only in 𝜚:

⟩

⨕
𝜚
𝜀
)

(𝜗, 𝜛, 𝑉) = ∱R2
8
ς2ℶ𝑆𝜚⋛𝑉

𝜀 (𝜗, 𝜛, 𝜚) ℷ𝜚

Remark 7.2. The reader must take care to realize that the failure of endpoint Strichartz estimates for the Schrödinger equation in
two dimensions, which is well-known, has no bearing on our application of Keel-Tao. That failure represents the (2,∇, 1) edge case
in Keel-Tao and it is not the case we are using here.

5 Since homogeneity of any other degree would impact the numerology of convolution inequalities
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Lemma 7.3. For any 𝜀0 ε 𝜔
2, it holds

⨕
𝜚
⨏ 𝜀0 ε 𝜔

2
⟪

R,𝜔4
𝜛,𝑉

⌋

R2 ϖ R2⌈
⟫

and we have the estimate
⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔2
⟪

R,𝜔4
𝜛,𝑉(R2ϖR2)

⟫ ∳ 𝐸 ⦄

⦄

𝜀0⦄
⦄𝜔2

for some absolute constant 𝐸.

Proof. Let us formally define the parameterized family of operators for 𝜗 ε R

⨖ (𝜗) = ⨕
𝜚
⨏ (𝜗)⨕ς1

𝜚

Clearly ⨖ (𝜗) acts boundedly on 𝜔
2
𝜛,𝑉

⌋

R2 ϖ R2⌈ for each 𝜗 ε R, with operator norm equal to one.
The formal adjoint of ⨖ (𝜗) is ⨖ (ς𝜗): here we are using that the formal adjoint of ⨏ (𝜗) is ⨏ (ς𝜗), regardless of whether the base

field is R or C. (This is due to the fact that ⨏ commutes with complex conjugation.) Therefore, in order to apply the result of Keel
and Tao ([22], Theorem 1.2), with indices (in their notation)

(>, ⋆, ℸ) = (2, 4, 2)

we have only to prove for any Schwartz function 𝑊0 (𝜛, 𝑉) defined for (𝜛, 𝑉) ε R2 ϖ R2 the estimate

⦄

⦄

⨖ (𝜗) 𝑊0⦄
⦄𝜔

∇
𝜛,𝑉(R2ϖR2) ∳ 𝐸 ⦃𝜗⦃

ς2
⦄

⦄

𝑊0⦄
⦄𝜔

1
𝜛,𝑉(R2ϖR2) (26)

any 𝜗 ⨐ 0 to conclude.
In fact (26) follows from Lemma 7.1 (with (ℏ, ⋆) = (∇, 1) in the notation of the Lemma as quoted above) interleaving two careful

applications of the Hausdorff–Young inequality, as we now show:

⦄

⦄

⨖ (𝜗) 𝑊0⦄
⦄𝜔

∇
𝜛,𝑉(R2ϖR2) =

⦄

⦄

⦄

⨕
𝜚
⨏ (𝜗)⨕ς1

𝜚
𝑊0
⦄

⦄

⦄𝜔
∇
𝜛,𝑉(R2ϖR2)

∳ 𝐸
⦄

⦄

⦄

⨏ (𝜗)⨕ς1
𝜚

𝑊0
⦄

⦄

⦄𝜔
∇
𝜛
𝜔
1
𝜚(R2ϖR2)

∳ 𝐸 ⦃𝜗⦃
ς2 ⦄

⦄

⦄

⨕ς1
𝜚

𝑊0
⦄

⦄

⦄𝜔
1
𝜛
𝜔
∇
𝜚 (R2ϖR2)

∳ 𝐸 ⦃𝜗⦃
ς2

⦄

⦄

𝑊0⦄
⦄𝜔

1
𝜛,𝑉(R2ϖR2)

We conclude by observing that the square-integrability of ⨕
𝜚
𝜀0 is equivalent to the square-integrability of 𝜀0, by Plancherel. ⋜

We turn to the main estimate upon which this entire article rests (originally obtained in the previous article of this series by a
slightly different proof [12]).

Proposition 7.4. For any 𝜀0,ℵ0 ε 𝜔
2 there holds

⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(R,𝜔2) ∳ 𝐸 ⦄

⦄

𝜀0⦄
⦄𝜔2 ⦄

⦄

ℵ0⦄
⦄𝜔2

Proof. By a result of Alonso and Carneiro ([1], Theorem 1, with 𝐵 = 0, 𝐿 = 2, ℏ = > = 4 and ⋆ = 2), it holds
⦄

⦄

⦄

⨕
𝜚
𝛻

+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔
2
𝑉(R2) ∳ 𝐸 ⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔
4
𝑉(R2) ⦄⦄⨕𝜚

⨏ ℵ0⦄
⦄𝜔

4
𝑉(R2) (27)

(Note carefully that in [1], a radial symmetrization technique was used in the proof, but the theorem there makes no assumption of
radiality.) Therefore, by applying Hölder’s inequality in 𝜛 followed by 𝜗, it holds for any interval 7

⦄

⦄

⦄

⨕
𝜚
𝛻

+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1
⟪

7 ,𝜔
2
𝜛,𝑉(R2ϖR2)

⟫

∳ 𝐸 ⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫
⦄

⦄

⨕
𝜚
⨏ ℵ0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫

(28)

the constant being independent of 7 . Of course by Plancherel
⦄

⦄

⦄

⨕
𝜚
𝛻

+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1
⟪

7 ,𝜔
2
𝜛,𝑉(R2ϖR2)

⟫ = ⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2)

Combining (28) with Lemma 7.3 provides
⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2)
∳ 𝐸 ⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫
⦄

⦄

⨕
𝜚
⨏ ℵ0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫

∳ 𝐸 ⦄

⦄

𝜀0⦄
⦄𝜔2 ⦄

⦄

ℵ0⦄
⦄𝜔2

(29)

the conclusion being the special case 7 = R. ⋜
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Small time versions will also be required, again having been first obtained in the preceding article.

Proposition 7.5. Let 𝜀0 ε 𝜔
2. There is a real-valued function

𝑀
𝜀0 (𝜍 ) > 0

defined for 𝜍 > 0, which (as indicated) depends only on 𝜀0, such that for 𝜀0 fixed there holds

lim sup
𝜍0+

𝑀
𝜀0 (𝜍 ) = 0

and for any ℵ0 ε 𝜔
2 there holds

⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(𝑃 (𝜍 ),𝜔2) ∳ 𝑀
𝜀0 (𝜍 ) ⦄⦄ℵ0⦄⦄𝜔2 (30)

and
⦄

⦄

⦄

𝛻
+ ⌋

⨏ ℵ0, ⨏ 𝜀0
⌈

⦄

⦄

⦄𝜔1(𝑃 (𝜍 ),𝜔2) ∳ 𝑀
𝜀0 (𝜍 ) ⦄⦄ℵ0⦄⦄𝜔2 (31)

where 𝑃 (𝜍 ) = [ς𝜍 , 𝜍 ].

Proof. This is a simple refinement of Proposition 7.4. Indeed, considering just (30) (the proof of (31) being similar), taking again
the first half of (29) now with 7 = 𝑃 (𝜍 ) = [ς𝜍 , 𝜍 ], and to only ℵ0 applying Lemma 7.3 followed by Plancherel, we have

⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(𝑃 (𝜍 ),𝜔2)
∳ 𝐸 ⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔2
⟪

𝑃 (𝜍 ),𝜔4
𝜛,𝑉(R2ϖR2)

⟫
⦄

⦄

⨕
𝜚
⨏ ℵ0⦄

⦄𝜔2
⟪

𝑃 (𝜍 ),𝜔4
𝜛,𝑉(R2ϖR2)

⟫

∳ 𝐸 ⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔2
⟪

𝑃 (𝜍 ),𝜔4
𝜛,𝑉(R2ϖR2)

⟫
⦄

⦄

ℵ0⦄
⦄𝜔2

Then again, by Lemma 7.3 and Plancherel we have

⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔2
⟪

R,𝜔4
𝜛,𝑉(R2ϖR2)

⟫ ∳ 𝐸 ⦄

⦄

𝜀0⦄
⦄𝜔2

so our hypothesis

𝜀0 ε 𝜔
2

implies

lim sup
𝜍0+

⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔2
⟪

𝑃 (𝜍 ),𝜔4
𝜛,𝑉(R2ϖR2)

⟫ = 0

hence we may conclude. ⋜

7.4. Weights

We require weighted versions of the above estimates, particularly for the discussion of weak-strong uniqueness in Section 19.
Indeed by conservation of energy there holds for 𝐵 ⨋ 0

⦃𝜚⦃
𝐵 ∳

⌋

⦃𝜚⦃
2 + ⦃𝜚ω⦃

2⌈
1
2 𝐵

=
⟪

⌉

⌉

𝜚
φ
⌉

⌉

2 + ⌉

⌉

𝜚
φ
ω
⌉

⌉

2
⟫

1
2 𝐵

∳ 𝐸
𝐵

⌋

⌉

⌉

𝜚
φ
⌉

⌉

𝐵 + ⌉

⌉

𝜚
φ
ω
⌉

⌉

𝐵
⌈

therefore

⦃𝜚⦃
𝐵
𝛻

+ (𝜀 ,ℵ) ∳ 𝐸
𝐵
⋛
⌋

𝛻
+ ⌋

⦃𝜚⦃
𝐵
⦃𝜀 ⦃ , ⦃ℵ⦃

⌈

+𝛻
+ ⌋

⦃𝜀 ⦃ , ⦃𝜚⦃
𝐵
⦃ℵ⦃

⌈⌈

(32)

hold pointwise a.e. (𝜗, 𝜛, 𝜚). Hence, the following weighted estimates follow from the unweighted versions:

Proposition 7.6. Let 𝐵 ⨋ 0. Then if 𝜀0,ℵ0 are such that

⦅𝜚⦆
𝐵
𝜀0, ⦅𝜚⦆

𝐵
ℵ0 ε 𝜔

2

then
⦄

⦄

⦄

⦅𝜚⦆
𝐵
𝛻

+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(R,𝜔2) ∳ 𝐸
𝐵
⦄

⦄

⦅𝜚⦆
𝐵
𝜀0⦄
⦄𝜔2 ⦄

⦄

⦅𝜚⦆
𝐵
ℵ0⦄

⦄𝜔2

the constant 𝐸
𝐵
depending only on 𝐵.
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Proposition 7.7. Let 𝐵 ⨋ 0 and let 𝜀0 be such that

⦅𝜚⦆
𝐵
𝜀0 ε 𝜔

2

There is a real-valued function

𝑀
𝐵,𝜀0 (𝜍 ) > 0

defined for 𝜍 > 0, which depends only on 𝜀0 and 𝐵, such that for 𝜀0, 𝐵 fixed there holds

lim sup
𝜍0+

𝑀
𝐵,𝜀0 (𝜍 ) = 0

and for any ℵ0 with ⦅𝜚⦆
𝐵
ℵ0 ε 𝜔

2 there holds
⦄

⦄

⦄

⦅𝜚⦆
𝐵
𝛻

+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(𝑃 (𝜍 ),𝜔2) ∳ 𝑀
𝐵,𝜀0 (𝜍 ) ⦄⦄⦅𝜚⦆

𝐵
ℵ0⦄

⦄𝜔2

and
⦄

⦄

⦄

⦅𝜚⦆
𝐵
𝛻

+ ⌋

⨏ ℵ0, ⨏ 𝜀0
⌈

⦄

⦄

⦄𝜔1(𝑃 (𝜍 ),𝜔2) ∳ 𝑀
𝐵,𝜀0 (𝜍 ) ⦄⦄⦅𝜚⦆

𝐵
ℵ0⦄

⦄𝜔2

where 𝑃 (𝜍 ) = [ς𝜍 , 𝜍 ].

7.5. Truncated weights

The weighted estimates can be truncated at large velocities: indeed, if we denote for 𝑋 > 0 the weight

𝑌
𝑋 (𝜚) = min (⦅𝜚⦆ ,𝑋)

via pointwise minimum, and similarly for 𝐵 ⨋ 0 the shorthand

𝑌
𝐵

𝑋
= 𝑌

𝐵

𝑋
(𝜚) = 𝑌

𝑋 (𝜚)𝐵 = min
⌋

⦅𝜚⦆
𝐵
,𝑋

𝐵
⌈

then it is possible to show that

𝑌
𝐵

𝑋
(𝜚) ∳ 𝐸

𝐵

⌋

𝑌
𝐵

𝑋

⌋

𝜚
φ⌈ + 𝑌

𝐵

𝑋

⌋

𝜚
φ
ω
⌈⌈

(33)

To see this, consider first the case

max
⌋{

𝜚
φ}

,
{

𝜚
φ
ω
}⌈

< 𝑋

in which case we can compute

𝑌
𝐵

𝑋
(𝜚) ∳ ⦅𝜚⦆

𝐵 ∳ 𝐸
𝐵

⌋{

𝜚
φ}𝐵 +

{

𝜚
φ
ω
}𝐵⌈ = 𝐸

𝐵

⌋

𝑌
𝐵

𝑋

⌋

𝜚
φ⌈ + 𝑌

𝐵

𝑋

⌋

𝜚
φ
ω
⌈⌈

In the alternative case, we have

max
⌋{

𝜚
φ}

,
{

𝜚
φ
ω
}⌈

⨋ 𝑋

which implies we at least have one of 𝑌𝐵
𝑋

⌋

𝜚
φ⌈ = 𝑋

𝐵 or 𝑌𝐵
𝑋

⌋

𝜚
φ
ω
⌈

= 𝑋
𝐵 , so we can similarly compute

𝑌
𝐵

𝑋
(𝜚) ∳ 𝑋

𝐵 ∳ max
⌋

𝑌
𝐵

𝑋

⌋

𝜚
φ⌈
, 𝑌

𝐵

𝑋

⌋

𝜚
φ
ω
⌈⌈

∳ 𝐸
𝐵

⌋

𝑌
𝐵

𝑋

⌋

𝜚
φ⌈ + 𝑌

𝐵

𝑋

⌋

𝜚
φ
ω
⌈⌈

where we assume without loss of generality that 𝐸
𝐵
⨋ 1 in the last step.

Hence we have as before

Proposition 7.8. Let 𝐵 ⨋ 0. Then if 𝜀0,ℵ0 ε 𝜔
2 then for each 𝑋 > 0 it holds

⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(R,𝜔2) ∳ 𝐸
𝐵

⦄

⦄

⦄

𝑌
𝐵

𝑋
𝜀0
⦄

⦄

⦄𝜔2
⦄

⦄

⦄

𝑌
𝐵

𝑋
ℵ0

⦄

⦄

⦄𝜔2

the constant 𝐸
𝐵
depending only on 𝐵; in particular, 𝐸

𝐵
is independent of 𝑋.

The small-time version of Proposition 7.8 is far more subtle. Indeed observe that we need to have a single 𝑀 (𝜍 ) that applies
independent of 𝑋, which does not immediately follow from the proof of Proposition 7.7 since that proof relies on an argument
involving the continuity of the integral, and would therefore have to be applied separately for each value of 𝑋, yielding a 𝑀 (𝜍 ) that
implicitly depends on 𝑋. Instead, to guarantee the independence of 𝑀 (𝜍 ) from 𝑋, we elect to assume once and for all that

⦅𝜚⦆
𝐵
𝜀0 ε 𝜔

2

in other words that we do not truncate 𝜀0. In that case, ℵ0 can be freely truncated and therefore it suffices to assume that ℵ0 ε 𝜔
2.
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Proposition 7.9. Let 𝐵 ⨋ 0 and let 𝜀0 be such that

⦅𝜚⦆
𝐵
𝜀0 ε 𝜔

2

There is a real-valued function

𝑀
𝐵,𝜀0 (𝜍 ) > 0

defined for 𝜍 > 0, depending only on 𝜀0 and 𝐵, such that for 𝜀0, 𝐵 fixed there holds

lim sup
𝜍0+

𝑀
𝐵,𝜀0 (𝜍 ) = 0

and for any ℵ0 ε 𝜔
2 there holds, simultaneously for all 𝑋 > 1,

⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(𝑃 (𝜍 ),𝜔2) ∳ 𝑀
𝐵,𝜀0 (𝜍 )

⦄

⦄

⦄

𝑌
𝐵

𝑋
ℵ0

⦄

⦄

⦄𝜔2 (34)

and
⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ ⌋

⨏ ℵ0, ⨏ 𝜀0
⌈

⦄

⦄

⦄𝜔1(𝑃 (𝜍 ),𝜔2) ∳ 𝑀
𝐵,𝜀0 (𝜍 )

⦄

⦄

⦄

𝑌
𝐵

𝑋
ℵ0

⦄

⦄

⦄𝜔2 (35)

where 𝑃 (𝜍 ) = [ς𝜍 , 𝜍 ].

Proof. Letting 𝜀 = ⨏ 𝜀0 and ℵ = ⨏ ℵ0, we have by (33) the pointwise bound

𝑌
𝐵

𝑋
𝛻

+ (𝜀 ,ℵ) ∳ 𝐸
𝐵
⋛
⌋

𝛻
+ ⌋

𝑌
𝐵

𝑋
⦃𝜀 ⦃ , ⦃ℵ⦃

⌈

+𝛻
+ ⌋

⦃𝜀 ⦃ , 𝑌
𝐵

𝑋
⦃ℵ⦃

⌈⌈

But in the first term on the right-hand side we can bound 𝑌
𝐵

𝑋
∳ ⦅𝜚⦆

𝐵 in the first entry, and 1 by 𝑌
𝐵

𝑋
in the second entry (since 𝑋 > 1),

so we obtain

𝑌
𝐵

𝑋
𝛻

+ (𝜀 ,ℵ) ∳ 𝐸
𝐵
⋛
⌋

𝛻
+ ⌋

⦅𝜚⦆
𝐵
⦃𝜀 ⦃ , 𝑌

𝐵

𝑋
⦃ℵ⦃

⌈

+𝛻
+ ⌋

⦃𝜀 ⦃ , 𝑌
𝐵

𝑋
⦃ℵ⦃

⌈⌈

Again, for the first entry of the second term we can bound 1 by ⦅𝜚⦆
𝐵 so, multiplying the constant by two, we obtain

𝑌
𝐵

𝑋
𝛻

+ (𝜀 ,ℵ) ∳ 𝐸
𝐵
𝛻

+ ⌋

⦅𝜚⦆
𝐵
⦃𝜀 ⦃ , 𝑌

𝐵

𝑋
⦃ℵ⦃

⌈

Therefore, for any compact interval 𝑃 ⊳ R there holds
⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(𝑃 ,𝜔2)
∳ 𝐸

𝐵

⦄

⦄

⦄

𝛻
+ ⌋

⨏
⌋

⦅𝜚⦆
𝐵
⌉

⌉

𝜀0⌉
⌉

⌈

, ⨏
⌋

𝑌
𝐵

𝑋

⌉

⌉

ℵ0⌉
⌉

⌈⌈

⦄

⦄

⦄𝜔1(𝑃 ,𝜔2)
where we have used the fact that ⨏ commutes with taking absolute values, and also commutes with multiplication by any scalar
function of ⦃𝜚⦃. Finally, applying Proposition 7.5 with

⦅𝜚⦆
𝐵
𝜀0 in place of 𝜀0

(noting that ⦅𝜚⦆𝐵 𝜀0 ε 𝜔
2 by hypothesis), and

𝑌
𝐵

𝑋
ℵ0 in place of ℵ0

implies (34). The proof of (35) is similar. ⋜

7.6. Time-dependent estimates

We can estimate 𝛻
+ even when the arguments depend on time, not simply given by the free flow.

Lemma 7.10. Let 0 ∳ 3 < 0 < ∇, 7 = [3, 0], and let 𝜀1, 𝜀2, 𝑊1, 𝑊2 be measurable functions such that

𝜀1, 𝜀2, 𝑊1, 𝑊2 ε 𝜔
1
loc

⌋

7 ϖ R2 ϖ R2⌈

+ (𝑆 ε {1, 2}) 𝜀
𝑆
ε 𝐸

⌋

7 ,𝜔
2⌈

+ (𝑆 ε {1, 2}) 𝑊
𝑆
ε 𝜔

1 ⌋
7 ,𝜔

2⌈

+ (𝑆 ε {1, 2})
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜀
𝑆
= 𝑊

𝑆

Then 𝛻
+ ⌋

𝜀1, 𝜀2
⌈

ε 𝜔
1 ⌋

7 ,𝜔
2⌈ and we have the bound

⦄

⦄

⦄

𝛻
+ ⌋

𝜀1, 𝜀2
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2)
∳ 𝐸

⟧

𝑆ε{1,2}

⦄

⦄

𝜀
𝑆 (3)⦄

⦄𝜔2 +
❳

𝑆ε{1,2}
>
𝑆
⦄

⦄

𝑊
𝑆
⦄

⦄𝜔1(7 ,𝜔2) + 𝐸

⟧

𝑆ε{1,2}

⦄

⦄

𝑊
𝑆
⦄

⦄𝜔1(7 ,𝜔2)
(36)
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where

>1 = sup
⦃

⦄

⦄

⦄

𝛻
+ ⌋

⨏ (𝜗 ς 3)ℵ0, ⨏ (𝜗 ς 3) 𝜀2 (3)
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) ϑ ⦄

⦄

ℵ0⦄
⦄𝜔2 ∳ 1

⦄

>2 = sup
⦃

⦄

⦄

⦄

𝛻
+ ⌋

⨏ (𝜗 ς 3) 𝜀1 (3) , ⨏ (𝜗 ς 3)ℵ0
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) ϑ ⦄

⦄

ℵ0⦄
⦄𝜔2 ∳ 1

⦄

In particular, by Proposition 7.4,

⦄

⦄

⦄

𝛻
+ ⌋

𝜀1, 𝜀2
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) ∳ 𝐸

⟧

𝑆ε{1,2}

⟪

⦄

⦄

𝜀
𝑆
⦄

⦄𝜔∇(7 ,𝜔2) + ⦄

⦄

𝑊
𝑆
⦄

⦄𝜔1(7 ,𝜔2)
⟫

(37)

Proof. Expanding each 𝜀1, 𝜀2 by Duhamel’s formula, we can decompose

𝛻
+ ⌋

𝜀1, 𝜀2
⌈

= ⨗1 + ⨗2 + ⨗3 + ⨗4

where

⨗1 = 𝛻
+ ⌋

⨏ (𝜗 ς 3) 𝜀1 (3) , ⨏ (𝜗 ς 3) 𝜀2 (3)
⌈

⨗2 = ∱

𝜗

3

𝛻
+ ⌋

⨏ (𝜗 ς 𝑇) 𝑊1 (𝑇) , ⨏ (𝜗 ς 3) 𝜀2 (3)
⌈

ℷ𝑇

⨗3 = ∱

𝜗

3

𝛻
+ ⌋

⨏ (𝜗 ς 3) 𝜀1 (3) , ⨏ (𝜗 ς 𝑇) 𝑊2 (𝑇)
⌈

ℷ𝑇

⨗4 = ∱

𝜗

3
∱

𝜗

3

𝛻
+ ⌋

⨏
⌋

𝜗 ς 𝑇1
⌈

𝑊1
⌋

𝑇1
⌈

, ⨏
⌋

𝜗 ς 𝑇2
⌈

𝑊2
⌋

𝑇2
⌈⌈

ℷ𝑇1ℷ𝑇2

Proposition 7.4 provides

⦄

⦄

⨗1⦄
⦄𝜔1(7 ,𝜔2) ∳ 𝐸

⟧

𝑆ε{1,2}

⦄

⦄

𝜀
𝑆 (3)⦄

⦄𝜔2

The definitions of >
𝑆
, combined with Minkowski’s inequality and the fact that free transport preserves the 𝜔

2 norm, give us

⦄

⦄

⨗2⦄
⦄𝜔1(7 ,𝜔2) ∳ >1 ⦄

⦄

𝑊1⦄
⦄𝜔1(7 ,𝜔2)

and

⦄

⦄

⨗3⦄
⦄𝜔1(7 ,𝜔2) ∳ >2 ⦄

⦄

𝑊2⦄
⦄𝜔1(7 ,𝜔2)

For example,

⦄

⦄

⨗2⦄
⦄𝜔1(7 ,𝜔2)

=
⦄

⦄

⦄

⦄

⦄

∱

𝜗

3

𝛻
+ ⌋

⨏ (𝜗 ς 𝑇) 𝑊1 (𝑇) , ⨏ (𝜗 ς 3) 𝜀2 (3)
⌈

ℷ𝑇

⦄

⦄

⦄

⦄

⦄𝜔1(7 ,𝜔2)

∳
⦄

⦄

⦄

⦄

⦄

∱

𝜗

3

⦄

⦄

⦄

𝛻
+ ⌋

⨏ (𝜗 ς 𝑇) 𝑊1 (𝑇) , ⨏ (𝜗 ς 3) 𝜀2 (3)
⌈

⦄

⦄

⦄𝜔2ℷ𝑇
⦄

⦄

⦄

⦄

⦄𝜔1(7 ,R)

∳
⦄

⦄

⦄

⦄

∱
7

⦄

⦄

⦄

𝛻
+ ⌋

⨏ (𝜗 ς 𝑇) 𝑊1 (𝑇) , ⨏ (𝜗 ς 3) 𝜀2 (3)
⌈

⦄

⦄

⦄𝜔2ℷ𝑇
⦄

⦄

⦄

⦄𝜔1(7 ,R)

∳ ∱
7

⦄

⦄

⦄

𝛻
+ ⌋

⨏ (𝜗 ς 𝑇) 𝑊1 (𝑇) , ⨏ (𝜗 ς 3) 𝜀2 (3)
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) ℷ𝑇

∳ ∱
7

>1 ⦄
⦄

⨏ (ς (𝑇 ς 3)) 𝑊1 (𝑇)⦄
⦄𝜔2 ℷ𝑇

= >1 ⦄
⦄

𝑊1⦄
⦄𝜔1(7 ,𝜔2)

and ⨗3 is similar.
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For ⨗4 we can use a similar estimate:
⦄

⦄

⨗4⦄
⦄𝜔1(7 ,𝜔2)

=
⦄

⦄

⦄

⦄

⦄

∱

𝜗

3
∱

𝜗

3

𝛻
+ ⌋

⨏
⌋

𝜗 ς 𝑇1
⌈

𝑊
⌋

𝑇1
⌈

, ⨏
⌋

𝜗 ς 𝑇2
⌈

𝑊2
⌋

𝑇2
⌈⌈

ℷ𝑇1ℷ𝑇2
⦄

⦄

⦄

⦄

⦄𝜔1(7 ,𝜔2)

∳
⦄

⦄

⦄

⦄

⦄

∱

𝜗

3
∱

𝜗

3

⦄

⦄

⦄

𝛻
+ ⌋

⨏
⌋

𝜗 ς 𝑇1
⌈

𝑊
⌋

𝑇1
⌈

, ⨏
⌋

𝜗 ς 𝑇2
⌈

𝑊2
⌋

𝑇2
⌈⌈

⦄

⦄

⦄𝜔2ℷ𝑇1ℷ𝑇2
⦄

⦄

⦄

⦄

⦄𝜔1(7 ,R)

∳
⦄

⦄

⦄

⦄

∱
7
∱
7

⦄

⦄

⦄

𝛻
+ ⌋

⨏
⌋

𝜗 ς 𝑇1
⌈

𝑊
⌋

𝑇1
⌈

, ⨏
⌋

𝜗 ς 𝑇2
⌈

𝑊2
⌋

𝑇2
⌈⌈

⦄

⦄

⦄𝜔2ℷ𝑇1ℷ𝑇2
⦄

⦄

⦄

⦄𝜔1(7 ,R)

∳ ∱
7
∱
7

⦄

⦄

⦄

𝛻
+ ⌋

⨏
⌋

𝜗 ς 𝑇1
⌈

𝑊
⌋

𝑇1
⌈

, ⨏
⌋

𝜗 ς 𝑇2
⌈

𝑊2
⌋

𝑇2
⌈⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) ℷ𝑇1ℷ𝑇2

∳ 𝐸 ∱
7
∱
7

⦄

⦄

⦄

⨏
⌋

ς
⌋

𝑇1 ς 3
⌈⌈

𝑊1
⌋

𝑇1
⌈

⦄

⦄

⦄𝜔2
⦄

⦄

⦄

⨏
⌋

ς
⌋

𝑇2 ς 3
⌈⌈

𝑊2
⌋

𝑇2
⌈

⦄

⦄

⦄𝜔2 ℷ𝑇1ℷ𝑇2

∳ 𝐸 ⦄

⦄

𝑊1⦄
⦄𝜔1(7 ,𝜔2) ⦄⦄𝑊2⦄⦄𝜔1(7 ,𝜔2) ⋜

7.7. Large time

We will need the following variant of Proposition 7.5 for our discussion of scattering, namely the proof of Lemma 17.1.

Proposition 7.11. Let 𝐾 > 0, 𝜀+∇ ε 𝜔
2, and

7 = [0,∇)

be provided.
Then there exist numbers 𝑀 > 0, 𝜍 > 0, each 𝑀, 𝜍 depending only on 𝐾, 𝜀+∇, such that whenever ℵ0 ε 𝜔

2 satisfies

∓
⌋

𝜗0 ⨋ 𝜍
⌈

⦄

⦄

⦄

ℵ0 ς ⨏
⌋

𝜗0
⌈

𝜀+∇
⦄

⦄

⦄𝜔2 < 𝑀

then each of the following bounds hold:
⦄

⦄

⦄

𝛻
+ ⌋

⨏ ℵ0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) < 𝐾 (38)

+
⌋

𝜕0 ε 𝜔
2⌈ ⦄

⦄

⦄

𝛻
+ ⌋

⨏ ℵ0, ⨏ 𝜕0
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) < 𝐾 ⦄
⦄

𝜕0⦄
⦄𝜔2 (39)

+
⌋

𝜕0 ε 𝜔
2⌈ ⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜕0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) < 𝐾 ⦄
⦄

𝜕0⦄
⦄𝜔2 (40)

Proof. Assume without loss of generality that

⦄

⦄

𝜀+∇⦄

⦄𝜔2 = 1
2

Then (38) follows from (39) simply by taking 𝜕0 = ℵ0, as long as 𝑀 is at most
1
2 . Therefore, we only need to prove (39), the proof

of (40) being similar.
From (28) and Plancherel we know

⦄

⦄

⦄

𝛻
+ ⌋

⨏ ℵ0, ⨏ 𝜕0
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2)
∳ 𝐸 ⦄

⦄

⨕
𝜚
⨏ ℵ0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫
⦄

⦄

⨕
𝜚
⨏ 𝜕0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫

(41)

thus applying Lemma 7.3 to 𝜕0 we obtain
⦄

⦄

⦄

𝛻
+ ⌋

⨏ ℵ0, ⨏ 𝜕0
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) ∳ 𝐸 ⦄

⦄

⨕
𝜚
⨏ ℵ0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫
⦄

⦄

𝜕0⦄
⦄𝜔2 (42)

So let us compute, using the triangle inequality followed by Lemma 7.3, denoting 𝜀0 = ⨏
⌋

𝜗0
⌈

𝜀+∇:

⦄

⦄

⨕
𝜚
⨏ ℵ0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫

∳ ⦄

⦄

⦄

⨕
𝜚
⨏
⌋

ℵ0 ς 𝜀0
⌈

⦄

⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫ + ⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫

∳ 𝐸 ⦄

⦄

ℵ0 ς 𝜀0⦄
⦄𝜔2 + ⦄

⦄

⨕
𝜚
⨏ 𝜀0⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫

< 𝐸𝑀 + ⦄

⦄

⦄

⨕
𝜚
⨏ ⨏

⌋

𝜗0
⌈

𝜀+∇
⦄

⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫

(note carefully the double ⨏ in the second term is not a typo!) Thus provided

𝐸𝑀 < 2ς1𝐾
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and picking a large enough 𝜍 that

⦄

⦄

⨕
𝜚
⨏ ⨏ (𝜍 ) 𝜀+∇⦄

⦄𝜔2
⟪

7 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫ < 2ς1𝐾

(which is possible by Lemma 7.3 and monotone convergence as 𝜍  ∇, in view of the group property of ⨏ ) implies the result. Note
carefully that once 𝜍 is chosen sufficiently large, any 𝜗0 ⨋ 𝜍 suffices to carry out the previous estimate: this justifies the order of
quantifiers in the Lemma statement. ⋜

Remark 7.3. It is interesting to note that the proof of Proposition 7.11 tells us slightly more: namely (and perhaps surprisingly),
𝑀 only depends on ⦄

⦄

𝜀+∇⦄

⦄𝜔2 (due to the normalization condition at the start of the proof). It is only 𝜍 that depends on the profile
of 𝜀+∇ (as it must, by the scaling-criticality of 𝜔2).

7.8. Local temporal decomposition

We can adapt the proof of Proposition 7.5 to handle intervals, as opposed to neighborhoods of a point, by decomposing any compact
interval [0, 𝜍 ] into 𝑂 nonuniformly-sized sub-intervals, saving ⨎ (𝐾) on each interval by letting 𝑂 be sufficiently large depending
on 𝐾. This will seem unmotivated here but will become crucial when we consider propagation of higher regularity, the second part
of our main Theorem, and the decomposition leads naturally to propagation estimates like

(1 ς ⨎ (𝐾))ς⨎(𝑂)

so that a finite bound on 𝑂 is available for every 𝐾 sufficiently small.

Proposition 7.12. Let 0 < 𝜍 < ∇, 7 = [0, 𝜍 ], and let

ℵ, 𝜕 ε 𝐸
⌋

7 ,𝜔
2⌈

be such that
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ,
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜕 ε 𝜔
1 ⌋

7 ,𝜔
2⌈

and define the constant

𝐸0 (𝜕) = ⟨𝜕⟨
𝜔∇(7 ,𝜔2) +

⦄

⦄

⦄

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜕
⦄

⦄

⦄𝜔1(7 ,𝜔2)
Let 𝐾 > 0. Then there exists a number 𝑂 ε N and a partition

0 = 𝜗0 < 𝜗1 < 𝜗2 < ⋞ < 𝜗
𝑂ς1 < 𝜗

𝑂
= 𝜍

the cardinality 𝑂 and endpoints
/

𝜗
𝑈

\

𝑈
all depending on 𝜕 and 𝐾 but not on ℵ, such that denoting 7

𝑈
=
⟩

𝜗
𝑈
, 𝜗
𝑈+1

)

, 𝑈 = 0, 1,… ,𝑂 ς 1, there
holds for each 𝑈 the estimate

⦄

⦄

𝛻
+ (ℵ, 𝜕)⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈ + ⦄

⦄

𝛻
+ (𝜕,ℵ)⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳ 𝐸𝐸0 (𝜕) ϖ
{

⦄

⦄

⦄

ℵ
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄𝜔2 + 𝐾
⦄

⦄

⦄

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ
⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

}

with 𝐸 an absolute constant (independent of ℵ, 𝜕, 𝜍 , 𝐾,𝑂 and all the 𝜗
𝑈
).

Proof. We may assume without loss of generality that each 𝜕,ℵ are non-negative almost everywhere, namely

0 ∳ 𝜕 (𝜗, 𝜛, 𝜚) a.e. (𝜗, 𝜛, 𝜚) ε 7 ϖ R2 ϖ R2 (43)

0 ∳ ℵ (𝜗, 𝜛, 𝜚) a.e. (𝜗, 𝜛, 𝜚) ε 7 ϖ R2 ϖ R2 (44)

for, if we have established that case, then for general 𝜕,ℵ we can simply apply the Lemma to ⦃𝜕⦃ , ⦃ℵ⦃, keeping in mind the pointwise
identities

⌉

⌉

⌉

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜕
⌉

⌉

⌉

= ⌉

⌉

⌉

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

⦃𝜕⦃
⌉

⌉

⌉

and
⌉

⌉

⌉

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ
⌉

⌉

⌉

= ⌉

⌉

⌉

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

⦃ℵ⦃
⌉

⌉

⌉

as well as the pointwise inequalities

𝛻
+ (ℵ, 𝜕) ∳ 𝛻

+ (⦃ℵ⦃ , ⦃𝜕⦃)

and

𝛻
+ (𝜕,ℵ) ∳ 𝛻

+ (⦃𝜕⦃ , ⦃ℵ⦃)
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Viewing 2𝜕 as fixed, consider the linear operator

L
2𝜕
2ℵ = L { 2𝜕} 2ℵ = 𝛻

+ ⌋

2ℵ, 2𝜕
⌈

+𝛻
+ ⌋

2𝜕, 2ℵ
⌈

We will show, associating 𝜕 with 𝐸0 (𝜕) as in the statement of the Proposition, that
⦄

⦄

⦄

L
𝜕
ℵ
⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳ 𝐸𝐸0 (𝜕) ϖ
{

⦄

⦄

⦄

ℵ
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄𝜔2 + 𝐾
⦄

⦄

⦄

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ
⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

}

for a suitable partition of 7 = [0, 𝜍 ], as in the statement of the Proposition. Then in view of (43)–(44) we have

0 ∳ 𝛻
+ (ℵ, 𝜕) ∳ L

𝜕
ℵ

and

0 ∳ 𝛻
+ (𝜕,ℵ) ∳ L

𝜕
ℵ

so the conclusion follows.
Recall from the proof of Proposition 7.5 that for any interval

𝑃 = [3, 0] ⊳ 7

and for any 2𝜕0, 2ℵ0 ε 𝜔
2 and any 3

φ
, 3

φφ ε R (neither being necessarily equal to 3, which is crucial) it holds
⦄

⦄

⦄

𝛻
+ ⌋

⨏
⌋

𝜗 ς 3
φ⌈

2𝜕0, ⨏
⌋

𝜗 ς 3
φφ⌈ 2ℵ0

⌈

⦄

⦄

⦄𝜔1(𝑃 ,𝜔2)
∳ 𝐸

⦄

⦄

⦄

⨕
𝜚

⟩

⨏
⌋

𝜗 ς 3
φ⌈

2𝜕0
)

⦄

⦄

⦄𝜔2
⟪

𝑃 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫
⦄

⦄

2ℵ0⦄
⦄𝜔2

and
⦄

⦄

⦄

𝛻
+ ⌋

⨏
⌋

𝜗 ς 3
φφ⌈ 2ℵ0, ⨏

⌋

𝜗 ς 3
φ⌈

2𝜕0
⌈

⦄

⦄

⦄𝜔1(𝑃 ,𝜔2)
∳ 𝐸

⦄

⦄

⦄

⨕
𝜚

⟩

⨏
⌋

𝜗 ς 3
φ⌈

2𝜕0
)

⦄

⦄

⦄𝜔2
⟪

𝑃 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫
⦄

⦄

2ℵ0⦄
⦄𝜔2

where ⨕
𝜚
is the Fourier transform in 𝜚. Together these imply

⦄

⦄

⦄

L
/

⨏
⌋

𝜗 ς 3
φ⌈

2𝜕0
\ ⌋

⨏
⌋

𝜗 ς 3
φφ⌈ 2ℵ0

⌈

⦄

⦄

⦄𝜔1(𝑃 ,𝜔2)
∳ 𝐸

⦄

⦄

⦄

⨕
𝜚

⟩

⨏
⌋

𝜗 ς 3
φ⌈

2𝜕0
)

⦄

⦄

⦄𝜔2
⟪

𝑃 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫
⦄

⦄

2ℵ0⦄
⦄𝜔2

(45)

and hence, by Lemma 7.3, also
⦄

⦄

⦄

L
/

⨏
⌋

𝜗 ς 3
φ⌈

2𝜕0
\ ⌋

⨏
⌋

𝜗 ς 3
φφ⌈ 2ℵ0

⌈

⦄

⦄

⦄𝜔1(𝑃 ,𝜔2) ∳ 𝐸 ⦄

⦄

2𝜕0⦄
⦄𝜔2 ⦄

⦄

2ℵ0⦄
⦄𝜔2 (46)

We shall define

𝑊 =
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜕

and

𝑍 =
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ

which in particular provides

𝑊 , 𝑍 ε 𝜔
1 ⌋

7 ,𝜔
2⌈ (47)

by hypothesis. Moreover we may write

𝐸0 (𝜕) = ⟨𝜕⟨
𝜔∇(7 ,𝜔2) + ⟨𝑊⟨

𝜔1(7 ,𝜔2) (48)

Let us decompose the interval 7 = [0, 𝜍 ], for a sufficiently large integer 𝐻 ε N to be chosen later, as

0 = 𝑇0 < 𝑇1 < 𝑇2 < ⋞ < 𝑇
𝐻ς1 < 𝑇

𝐻
= 𝜍

where

⟨𝑊⟨
𝜔1(𝑃𝐺 ,𝜔2) =

1
𝐻

⟨𝑊⟨
𝜔1(7 ,𝜔2)

with 𝑃
𝐺
=
⟩

𝑇
𝐺
, 𝑇

𝐺+1
)

. This is possible due to (47); observe, in particular, that the partition
/

𝑇
𝐺

\

𝐺
depends on 𝜕 (which is in accordance

with the statement of the Proposition). Now from (48) we have

⟨𝑊⟨
𝜔1(𝑃𝐺 ,𝜔2) ∳ 𝐻

ς1
𝐸0 (𝜕) (49)



Nonlinear Analysis 248 (2024) 113609

24

T. Chen et al.

For each 𝐺 pick an positive integer 𝜔 (𝐺), sufficiently large to be chosen later, and times 𝑇⋝
𝐺
such that

𝑇
𝐺
= 𝑇

0
𝐺
< 𝑇

1
𝐺
< 𝑇

2
𝐺
< ⋞ < 𝑇

𝜔(𝐺)ς1
𝐺

< 𝑇
𝜔(𝐺)
𝐺

= 𝑇
𝐺+1

and
⦄

⦄

⦄

⨕
𝜚

⟩

⨏
⌋

𝜗 ς 𝑇
𝐺

⌈

𝜕
⌋

𝑇
𝐺

⌈)

⦄

⦄

⦄

2

𝜔2
⟪

𝑃
⋝
𝐺
,𝜔

4
𝜛,𝑉(R2ϖR2)

⟫

= 1
𝜔 (𝐺)

⦄

⦄

⦄

⨕
𝜚

⟩

⨏
⌋

𝜗 ς 𝑇
𝐺

⌈

𝜕
⌋

𝑇
𝐺

⌈)

⦄

⦄

⦄

2

𝜔2
⟪

𝑃𝐺 ,𝜔
4
𝜛,𝑉(R2ϖR2)

⟫

where the intervals
/

𝑃
⋝
𝐺

\

⋝ , 𝑃
⋝
𝐺
=

⟩

𝑇
⋝
𝐺
, 𝑇

⋝+1
𝐺

)

, partition 𝑃
𝐺
. (Note carefully the squares in the defining relation for 𝑃⋝

𝐺
.) In particular,

letting

𝜔 = inf {𝜔 (𝐺) ϑ 𝐺 ε {0, 1, 2,… ,𝐻 ς 1}}

we have by Lemma 7.3

⦄

⦄

⦄

⨕
𝜚

⟩

⨏
⌋

𝜗 ς 𝑇
𝐺

⌈

𝜕
⌋

𝑇
𝐺

⌈)

⦄

⦄

⦄

2

𝜔2
⟪

𝑃
⋝
𝐺
,𝜔

4
𝜛,𝑉(R2ϖR2)

⟫ ∳ 𝐸

𝜔

⦄

⦄

⦄

𝜕
⌋

𝑇
𝐺

⌈

⦄

⦄

⦄

2

𝜔2

hence
⦄

⦄

⦄

⨕
𝜚

⟩

⨏
⌋

𝜗 ς 𝑇
𝐺

⌈

𝜕
⌋

𝑇
𝐺

⌈)

⦄

⦄

⦄𝜔2
⟪

𝑃
⋝
𝐺
,𝜔

4
𝜛,𝑉(R2ϖR2)

⟫ ∳ 𝐸𝜔
ς 1

2 𝐸0 (𝜕) (50)

Duhamel’s formula for 𝜗 ε 𝑃
𝐺
reads

𝜕(𝜗) = ⨏
⌋

𝜗 ς 𝑇
𝐺

⌈

𝜕
⌋

𝑇
𝐺

⌈

+ ∱

𝜗

𝑇𝐺

⨏ (𝜗 ς .) 𝑊 (.) ℷ.

Additionally, for 𝜗 ε 𝑃
⋝
𝐺
⊳ 𝑃

𝐺
, we have

ℵ (𝜗) = ⨏
⌋

𝜗 ς 𝑇
⋝
𝐺

⌈

ℵ
⌋

𝑇
⋝
𝐺

⌈

+ ∱

𝜗

𝑇
⋝
𝐺

⨏ (𝜗 ς .) 𝑍 (.) ℷ.

For 𝜗 ε 𝑃
⋝
𝐺
we may plug the two Duhamel formulas recorded above into L

𝜕
ℵ:

L
𝜕
ℵ = ⨗1 + ⨗2 + ⨗3 + ⨗4

where

⨗1 = L
/

⨏
⌋

𝜗 ς 𝑇
𝐺

⌈

𝜕
⌋

𝑇
𝐺

⌈\ ⌋

⨏
⌋

𝜗 ς 𝑇
⋝
𝐺

⌈

ℵ
⌋

𝑇
⋝
𝐺

⌈⌈

⨗2 = ∱

𝜗

𝑇𝐺

ℷ.L {⨏ (𝜗 ς .) 𝑊 (.)}
⌋

⨏
⌋

𝜗 ς 𝑇
⋝
𝐺

⌈

ℵ
⌋

𝑇
⋝
𝐺

⌈⌈

⨗3 = ∱

𝜗

𝑇
⋝
𝐺

ℷ.L
/

⨏
⌋

𝜗 ς 𝑇
𝐺

⌈

𝜕
⌋

𝑇
𝐺

⌈\

(⨏ (𝜗 ς .) 𝑍 (.))

⨗4 = ∱

𝜗

𝑇𝐺

ℷ.∱

𝜗

𝑇
⋝
𝐺

ℷ.
φL {⨏ (𝜗 ς .) 𝑊 (.)}

⌋

⨏
⌋

𝜗 ς .
φ⌈
𝑍
⌋

.
φ⌈⌈

In what follows we will freely reduce (without comment) expressions like ⟨⨏ (𝐵) (⋛)⟨
𝜔2 to simply ⟨⋛⟨

𝜔2 for any 𝐵 ε R, for the
sake of brevity. Also, since 𝜗 ε 𝑃

⋝
𝐺
, we will freely replace integrals like ⨍ 𝜗

𝑇𝐺
resp. ⨍ 𝜗

𝑇
⋝
𝐺

by ⨍
𝑃𝐺
resp. ⨍

𝑃
⋝
𝐺

, as warranted by Minkowski’s
inequality applied to the inner 𝜔2 alone.

In the case of ⨗1 we may simply use (46):

⦄

⦄

⨗1⦄
⦄𝜔1

⟪

𝑃
⋝
𝐺
,𝜔2

⟫ ∳ 𝐸𝐸0 (𝜕)
⦄

⦄

⦄

ℵ
⌋

𝑇
⋝
𝐺

⌈

⦄

⦄

⦄𝜔2

Similarly for ⨗2 we again have (46):

⦄

⦄

⨗2⦄
⦄𝜔1

⟪

𝑃
⋝
𝐺
,𝜔2

⟫ ∳ ∱
𝑃𝐺

ℷ.𝐸 ⟨𝑊 (.)⟨
𝜔2

⦄

⦄

⦄

ℵ
⌋

𝑇
⋝
𝐺

⌈

⦄

⦄

⦄𝜔2 ∳ 𝐸𝐸0 (𝜕)
⦄

⦄

⦄

ℵ
⌋

𝑇
⋝
𝐺

⌈

⦄

⦄

⦄𝜔2

For ⨗4, by (46) again, along with (49),

⦄

⦄

⨗4⦄
⦄𝜔1

⟪

𝑃
⋝
𝐺
,𝜔2

⟫ ∳ ∱
𝑃𝐺

ℷ.∱
𝑃
⋝
𝐺

ℷ.
φ
𝐸 ⟨𝑊 (.)⟨

𝜔2
⦄

⦄

⦄

𝑍
⌋

.
φ⌈⦄
⦄

⦄𝜔2

∳ 𝐸𝐻
ς1
𝐸0 (𝜕) ⟨𝑍⟨

𝜔1
⟪

𝑃
⋝
𝐺
,𝜔2

⟫
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Lastly, and most technically, for ⨗3, by (45) and (50), we have
⦄

⦄

⨗3⦄
⦄𝜔1

⟪

𝑃
⋝
𝐺
,𝜔2

⟫

∳ ∱
𝑃
⋝
𝐺

ℷ.𝐸
⦄

⦄

⦄

⨕
𝜚

⟩

⨏
⌋

𝜗 ς 𝑇
𝐺

⌈

𝜕
⌋

𝑇
𝐺

⌈)

⦄

⦄

⦄𝜔2
⟪

𝑃
⋝
𝐺
,𝜔

4
𝜛,𝑉(R2ϖR2)

⟫

⟨𝑍 (.)⟨
𝜔2

∳ 𝐸𝜔
ς 1

2 𝐸0 (𝜕) ⟨𝑍⟨
𝜔1

⟪

𝑃
⋝
𝐺
,𝜔2

⟫

Altogether we have
⦄

⦄

⦄

⨘
𝜕
ℵ
⦄

⦄

⦄𝜔1
⟪

𝑃
⋝
𝐺
,𝜔2

⟫

∳ 𝐸𝐸0 (𝜕) ϖ
{

⦄

⦄

⦄

ℵ
⌋

𝑇
⋝
𝐺

⌈

⦄

⦄

⦄𝜔2 +
⟪

𝐻
ς1 + 𝜔

ς 1
2
⟫

⟨𝑍⟨
𝜔1

⟪

𝑃
⋝
𝐺
,𝜔2

⟫

}

Recalling that 𝑍 =
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ, letting 𝐻
ς1 and 𝜔

ς 1
2 each be smaller than 2ς1𝐾, and identifying the partition

/

7
𝑈

\

𝑈
of cardinality

𝑂 = 𝐻𝜔 with the partition
/

𝑃
⋝
𝐺

\

𝐺,⋝ provides the result. ⋜

Corollary 7.13. Fix an integer ♭ ε N. Then Proposition 7.12 holds again under the added constraint that, for each 𝑈,
⌉

⌉

⌉

𝜗
𝑈+1 ς 𝜗

𝑈

⌉

⌉

⌉

<
1
♭

Proof. Partition 7 = [0, 𝜍 ] into ♭ intervals 7
𝐽
where

7
𝐽
=
⌈

𝐽

♭
𝜍 ,

𝐽 + 1
♭

𝜍

⌉

Then apply Proposition 7.12 to the intervals 7
𝐽
in succession, starting with 𝐽 = 0 and ending with 𝐽 = ♭ ς 1. ⋜

8. Estimates with non-negativity

Lemma 7.10 can be refined under non-negativity assumptions: we do not need to assume that
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜀
𝑆
ε 𝜔

1 ⌋
7 ,𝜔

2⌈

as long as the 𝜀
𝑆
are each non-negative and we have some control from above in Duhamel’s formula. This will be useful for the proof

of weak-strong uniqueness, Theorem 19.3.

Lemma 8.1. Let 0 ∳ 3 < 0 < ∇, 7 = [3, 0], and let 𝜀1, 𝜀2, 𝑊1, 𝑊2 be non-negative measurable functions such that

𝜀1, 𝜀2, 𝑊1, 𝑊2 ε 𝜔
1
loc

⌋

7 ϖ R2 ϖ R2⌈

+ (𝑆 ε {1, 2}) 0 ∳ 𝜀
𝑆
ε 𝐸

⌋

7 ,𝜔
2⌈

+ (𝑆 ε {1, 2}) 0 ∳ 𝑊
𝑆
ε 𝜔

1 ⌋
7 ,𝜔

2⌈

and that for almost every (𝜗, 𝜛, 𝜚) ε 7 ϖ R2 ϖ R2 we have the pointwise bounds for each 𝑆 ε {1, 2}

0 ∳ 𝜀
𝑆 (𝜗) ∳ ⨏ (𝜗 ς 3) 𝜀𝑆 (3) + ∱

𝜗

3

⨏ (𝜗 ς 𝑇) 𝑊𝑆 (𝑇) ℷ𝑇

Then 𝛻
+ ⌋

𝜀1, 𝜀2
⌈

ε 𝜔
1 ⌋

7 ,𝜔
2⌈ and we have the bound

⦄

⦄

⦄

𝛻
+ ⌋

𝜀1, 𝜀2
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2)
∳ 𝐸

⟧

𝑆ε{1,2}

⦄

⦄

𝜀
𝑆 (3)⦄

⦄𝜔2 +
❳

𝑆ε{1,2}
>
𝑆
⦄

⦄

𝑊
𝑆
⦄

⦄𝜔1(7 ,𝜔2) + 𝐸

⟧

𝑆ε{1,2}

⦄

⦄

𝑊
𝑆
⦄

⦄𝜔1(7 ,𝜔2)
(51)

where

>1 = sup
⦃

⦄

⦄

⦄

𝛻
+ ⌋

⨏ (𝜗 ς 3)ℵ0, ⨏ (𝜗 ς 3) 𝜀2 (3)
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) ϑ ⦄

⦄

ℵ0⦄
⦄𝜔2 ∳ 1

⦄

>2 = sup
⦃

⦄

⦄

⦄

𝛻
+ ⌋

⨏ (𝜗 ς 3) 𝜀1 (3) , ⨏ (𝜗 ς 3)ℵ0
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) ϑ ⦄

⦄

ℵ0⦄
⦄𝜔2 ∳ 1

⦄

In particular, by Proposition 7.4,
⦄

⦄

⦄

𝛻
+ ⌋

𝜀1, 𝜀2
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2) ∳ 𝐸

⟧

𝑆ε{1,2}

⟪

⦄

⦄

𝜀
𝑆
⦄

⦄𝜔∇(7 ,𝜔2) + ⦄

⦄

𝑊
𝑆
⦄

⦄𝜔1(7 ,𝜔2)
⟫

(52)
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Proof. For 𝑆 = 1, 2 let us define for 𝜗 ε 7

ℵ
𝑆 (𝜗) = ⨏ (𝜗 ς 3) 𝜀𝑆 (3) + ∱

𝜗

3

⨏ (𝜗 ς 𝑇) 𝑊𝑆 (𝑇) ℷ𝑇

Then for almost every (𝜗, 𝜛, 𝜚) ε 7 ϖ R2 ϖ R2 and each 𝑆 = 1, 2 we have the pointwise bound

0 ∳ 𝜀
𝑆
∳ ℵ

𝑆

so it suffices to show
⦄

⦄

⦄

𝛻
+ ⌋

ℵ1,ℵ2
⌈

⦄

⦄

⦄𝜔1(7 ,𝜔2)
∳ 𝐸

⟧

𝑆ε{1,2}

⦄

⦄

𝜀
𝑆 (3)⦄

⦄𝜔2 +
❳

𝑆ε{1,2}
>
𝑆
⦄

⦄

𝑊
𝑆
⦄

⦄𝜔1(7 ,𝜔2) + 𝐸

⟧

𝑆ε{1,2}

⦄

⦄

𝑊
𝑆
⦄

⦄𝜔1(7 ,𝜔2)

but this now follows from Lemma 7.10. ⋜

9. The 𝝎+ equation

A local solution of the Boltzmann equation with gain term only, or gain-only Boltzmann equation, provides (in suitable regularly
classes) a local upper envelope to solutions of (1) with the same initial data. (The same can be said for a small forward interval of
any 𝜗0, say

⟩

𝜗0, 𝜗0 + 𝐾
⌈

, taking the solution 𝜀
⌋

𝜗0
⌈

of (1) at time 𝜗0 as the initial data for the 𝛻
+ equation.) The main objective of this

section is to provide a detailed understanding of the gain-only Boltzmann equation, as a means for characterizing such a local upper
envelope.

9.1. The gain-only equation

The 𝛻+ equation, or gain-only Boltzmann equation, or simply the gain-only equation, refers to the following evolutionary equation:

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ = 𝛻
+ (ℵ,ℵ) (53)

and this Eq. (53) will be the sole concern of this section. Note carefully that the space 𝜔2, not 𝜔2 ❲
𝜔
1
2, will be the relevant functional

setting for the study of (53).

Theorem 9.1. Given any 0 ∳ ℵ0 ε 𝜔
2, the gain-only Eq. (53) admits a unique local solution

ℵ ε 𝐸
⌋

[0, 𝜍 ] ,𝜔2⌈

satisfying

𝛻
+ (ℵ,ℵ) ε 𝜔

1 ⌋[0, 𝜍 ] ,𝜔2⌈ (54)

and ℵ (𝜗 = 0) = ℵ0, the time 𝜍 depending on the profile of ℵ0. (In particular, the uniqueness assertion is conditional on the bound (54) for
𝛻

+ as applied to any candidate solution of (53): the constructed solution satisfies (54) regardless.) Additionally, for any ⋆, ℏ ε [1,∇] such
that ⋆ > 2 and 1

⋆
= 1 ς 2

ℏ
, it holds

ℵ ε 𝜔
⋆

𝜗
𝜔
ℏ

𝜛
𝜔
ℏ
φ
𝜚

⌋

[0, 𝜍 ] ϖ R2
𝜛
ϖ R2

𝜚

⌈

(55)

There is a number 𝑉0, 0 < 𝑉0 < ∇, such that if ⦄
⦄

ℵ0⦄
⦄𝜔2 < 𝑉0 then we may take 𝜍 = ∇.

Remark 9.1. The small data regime, characterized by the number 𝑉0 in Theorem 9.1, was previously studied in [12].

Proof. This follows from Proposition 7.4, Proposition 7.5, and Theorem 6.3, taking G = 𝜔
2 and

⨓(𝜗, 𝜀0,ℵ0) = ⨏ (ς𝜗)𝛻+ ⌋

⨏ (𝜗)𝜀0, ⨏ (𝜗)ℵ0
⌈

where we have implicitly employed the change of variables

2ℵ (𝜗) = ⨏ (ς𝜗)ℵ (𝜗)

to formally write for any solution ℵ of (53) that

𝜑
𝜗
2ℵ (𝜗) = ⨓

⌋

𝜗, 2ℵ (𝜗) , 2ℵ (𝜗)
⌈

To see that ℵ ε 𝐸
⌋

[0, 𝜍 ] ,𝜔2⌈, observe by Duhamel’s formula

⨏ (ς𝜗)ℵ (𝜗) ς ⨏ (ς.)ℵ (.) = ∱

𝜗

.

⨏ (ςℸ)𝛻+ (ℵ,ℵ) (ℸ) ℷℸ
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we can bound by Minknowski’s inequality

⟨⨏ (ς𝜗)ℵ (𝜗) ς ⨏ (ς.)ℵ (.)⟨
𝜔2 ∳ ∱

𝜗

.

⦄

⦄

𝛻
+ (ℵ,ℵ) (ℸ)⦄

⦄𝜔2 ℷℸ

where we have used the fact that ⨏ preserves the 𝜔
2 norm. Therefore the time-continuity of ⨏ (ς𝜗)ℵ (𝜗), and hence ℵ itself, follows

from (54).
The bound (55) follows from Proposition 7.2, as follows: first, note that by Duhamel’s formula the solution ℵ of (53) satisfies for

0 ∳ 𝜗 ∳ 𝜍

ℵ (𝜗) = ⨏ (𝜗)ℵ0 + ∱

𝜗

0
⨏ (𝜗 ς .)𝛻+ (ℵ,ℵ) (.) ℷ.

∳ ⨏ (𝜗)ℵ0 + ∱

𝜍

0
⨏ (𝜗 ς .)𝛻+ (ℵ,ℵ) (.) ℷ.

where we have replaced 𝜗 by 𝜍 in the limits of integration; hence, by Minkowski’s inequality

⟨ℵ⟨
𝜔
⋆

𝜗
𝜔
ℏ

𝜛
𝜔
ℏφ
𝜚

⟪

[0,𝜍 ]ϖR2
𝜛
ϖR2

𝜚

⟫

∳ ⦄

⦄

⨏ ℵ0⦄
⦄𝜔

⋆

𝜗
𝜔
ℏ

𝜛
𝜔
ℏφ
𝜚

⟪

[0,𝜍 ]ϖR2
𝜛
ϖR2

𝜚

⟫

+ ∱

𝜍

0
⦄

⦄

⨏ (𝜗 ς .)𝛻+ (ℵ,ℵ) (.)⦄
⦄𝜔

⋆

𝜗
𝜔
ℏ

𝜛
𝜔
ℏφ
𝜚

⟪

[0,𝜍 ]ϖR2
𝜛
ϖR2

𝜚

⟫ ℷ.

∳ ⦄

⦄

ℵ0⦄
⦄𝜔2 + ∱

𝜍

0
⦄

⦄

𝛻
+ (ℵ,ℵ) (.)⦄

⦄𝜔2 ℷ.

and recall that 𝛻+ (ℵ,ℵ) ε 𝜔
1 ⌋[0, 𝜍 ] ,𝜔2⌈. ⋜

Remark 9.2. Since the initial data ℵ0 is non-negative almost everywhere, the solution of the gain-only equation is again non-
negative almost everywhere for positive times inside the domain of existence. To see this, expand the solution ℵ (𝜗) in ‘‘powers’’ of
ℵ0 by iterating Duhamel’s formula ad infinitum. Every term of the resulting series is non-negative by the non-negativity of ℵ0 and
𝛻

+, and the series is guaranteed to converge to ℵ by the proof of Theorem 6.3.

Definition 9.1. Given any 0 ∳ ℵ0 ε 𝜔
2, let ♮

⌋

ℵ0
⌈

be the set of numbers 𝜍 ε (0,∇) such that there exists a solution ℵ of the
gain-only Eq. (53) with

ℵ ε 𝐸
⌋

[0, 𝜍 ] ,𝜔2⌈

satisfying

𝛻
+ (ℵ,ℵ) ε 𝜔

1 ⌋[0, 𝜍 ] ,𝜔2⌈

and ℵ (𝜗 = 0) = ℵ0. (Note that ℵ is, as before, necessarily non-negative.)
We also note that ♮

⌋

ℵ0
⌈

is a connected subset of (0,∇) with nonempty interior, by Theorem 9.1.
We shall denote by

𝜍g.o.
⌋

ℵ0
⌈

= sup♮
⌋

ℵ0
⌈

ε (0,∇]

what we shall call the scaling-critical time of existence for the gain-only equation for the initial data ℵ0.

Remark 9.3. By the definition of 𝜍g.o.
⌋

ℵ0
⌈

and uniqueness, the solution ℵ (𝜗) guaranteed by Theorem 9.1 is continued for 0 ∳ 𝜗 ∳ 𝜍 ,
any 0 < 𝜍 < 𝜍g.o.

⌋

ℵ0
⌈

. It is obvious from the proof of Theorem 9.1 and the definition of 𝜍g.o.
⌋

ℵ0
⌈

that (55) holds for any
0 < 𝜍 < 𝜍g.o.

⌋

ℵ0
⌈

.

Henceforth we shall always take the initial data ℵ0 for the gain-only Eq. (53) to be non-negative at almost every point of its
domain. For 0 ∳ 𝜗 < 𝜍g.o.

⌋

ℵ0
⌈

we define

Zg.o.
⌋

ℵ0
⌈

(𝜗)

to be the unique solution of the gain-only Eq. (53), as specified in the definition of 𝜍g.o.
⌋

ℵ0
⌈

, corresponding to the initial data ℵ0.
In particular,

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈ /

Zg.o.
⌋

ℵ0
⌈

(𝜗)
\

= 𝛻
+ ⌋

Zg.o.
⌋

ℵ0
⌈

(𝜗) ,Zg.o.
⌋

ℵ0
⌈

(𝜗)
⌈

and Zg.o.
⌋

ℵ0
⌈

(0) = ℵ0. Therefore, Zg.o. satisfies a restricted version of the semigroup property, which holds precisely to the extent
that the flow is defined as above; we refer to this property as simply the semigroup property of Zg.o..
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9.2. Lower semi-continuity

For what follows we define 𝜔
2,+ to be the set of functions ℵ0 ε 𝜔

2 such that ℵ0 (𝜛, 𝜚) ⨋ 0 a.e. (𝜛, 𝜚). 𝜔2,+ is topologized by the
𝜔
2 norm of the pointwise difference between two elements, unless stated otherwise. When we refer to lower semi-continuity without

further qualification, we always (from here to the end of the article) mean this term in reference to the 𝜔
2 norm topology.

Our ultimate goal is to prove that 𝜍g.o. is lower semi-continuous, and that the solution map Zg.o. is itself continuous in a suitable
sense. The first step will be the construction of a family of lower semi-continuous lower bounds for 𝜍g.o., parameterized by 𝐾 > 0.
In other words, once we fix an 𝐾, we can obtain from this a lower semi-continuous function which bounds 𝜍g.o. from below, and
satisfies an additional 𝐾-dependent bound. This function, to be constructed momentarily, shall be denoted 𝑁

(𝐾).
It will be convenient to abbreviate

𝛻
+ (𝜀 , 𝜀 )

as

𝛻
+ (𝜀 )

and we will do so without further comment.

Lemma 9.2. Let 𝐾 > 0. Then there exists a function

𝑁
(𝐾) ϑ 𝜔

2,+  R
⟨

{+∇}

such that each of the following is true:

(1) For any ℵ0 ε 𝜔
2,+,

0 < 𝑁
(𝐾) ⌋

ℵ0
⌈

∳ 𝜍g.o.
⌋

ℵ0
⌈

(2) If ℵ0 ε 𝜔
2,+ and ℵ0,𝐺 ε 𝜔

2,+ for 𝐺 = 1, 2, 3,… then

lim
𝐺∇

⦄

⦄

ℵ0,𝐺 ς ℵ0⦄
⦄𝜔2 = 0 ⥳ 𝑁

(𝐾) ⌋
ℵ0

⌈

∳ lim inf
𝐺∇

𝑁
(𝐾) ⌋

ℵ0,𝐺
⌈

(3) For any ℵ0 ε 𝜔
2,+,

∱

𝑁
(𝐾)(ℵ0)

0

⦄

⦄

⦄

𝛻
+ ⌋

Zg.o.
⌋

ℵ0
⌈

(𝜗)
⌈

⦄

⦄

⦄𝜔2 ℷ𝜗 ∳ 𝐾 (56)

Proof. First observe that if 𝜍g.o.
⌋

ℵ0
⌈

< ∇ then

∱

𝜍g.o.(ℵ0)

0

⦄

⦄

⦄

𝛻
+ ⌋

Zg.o.
⌋

ℵ0
⌈

(𝜗)
⌈

⦄

⦄

⦄𝜔2 ℷ𝜗 = ∇ (57)

for, if this were not so, then by Duhamel’s formula and Minkowski’s integral inequality we would have

⟨⨏ (ς𝜗)ℵ (𝜗) ς ⨏ (ς.)ℵ (.)⟨
𝜔2 ∳ ∱

𝜗

.

⦄

⦄

𝛻
+ (ℵ (ℸ))⦄

⦄𝜔2 ℷℸ

where ℵ (𝜗) = Zg.o.
⌋

ℵ0
⌈

(𝜗). In particular, letting ⦃𝜗 ς .⦃  0, we find that the map 𝜗  ⨏ (ς𝜗)ℵ (𝜗) then extends uniquely to a function
in

𝐸
⌋⟩

0, 𝜍g.o.
⌋

ℵ0
⌈)

,𝜔
2⌈

hence ℵ does so extend as well, and we can apply the local well-posedness theorem, Theorem 9.1, with initial data ℵ
⌋

𝜍g.o.
⌋

ℵ0
⌈⌈

to
produce a solution of (53), with initial data ℵ0 but extended past 𝜍g.o.

⌋

ℵ0
⌈

, in contradiction with the definition of 𝜍g.o.
⌋

ℵ0
⌈

.
Hence we may define an extended-real-valued function 𝑇

(𝐾) ⌋
ℵ0

⌈

,

0 < 𝑇
(𝐾) ⌋

ℵ0
⌈

∳ ∇

on 𝜔
2,+ by the formula

𝑇
(𝐾) ⌋

ℵ0
⌈

= sup
⦃

𝜗 > 0 ϑ ∱

𝑇

0

⦄

⦄

⦄

𝛻
+ ⌋

Zg.o.
⌋

ℵ0
⌈

(𝜗)
⌈

⦄

⦄

⦄𝜔2 ℷ𝜗 < 𝐾

⦄

Then by (57) we see that

0 < 𝑇
(𝐾) ⌋

ℵ0
⌈

∳ 𝜍g.o.
⌋

ℵ0
⌈

and, moreover,

∱

𝑇
(𝐾)(ℵ0)

0

⦄

⦄

⦄

𝛻
+ ⌋

Zg.o.
⌋

ℵ0
⌈

(𝜗)
⌈

⦄

⦄

⦄𝜔2 ℷ𝜗 ∳ 𝐾
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and the equality prevails whenever 𝜍g.o.
⌋

ℵ0
⌈

< ∇.
It will be proven that for ℵ0,𝐺,ℵ0 ε 𝜔

2,+,

lim
𝐺

⦄

⦄

ℵ0,𝐺 ς ℵ0⦄
⦄𝜔2 = 0 ⥳ lim inf

𝐺

𝑇
(𝐾) ⌋

ℵ0,𝐺
⌈

> 0 (58)

Then if we write as ♯
⋆

⌋

ℵ0
⌈

⊳ 𝜔
2 the open ball in 𝜔

2 of radius ⋆ > 0 centered about ℵ0 ε 𝜔
2 then defining

𝑁
(𝐾) ⌋

ℵ0
⌈

= sup
⋆>0

⟪

inf
]

𝑇
(𝐾) ⌋2ℵ0

⌈

ϑ 2ℵ0 ε ♯
⋆

⌋

ℵ0
⌈

(

𝜔
2,+

⟦ ⟫

allows us to conclude.
We turn to the proof of (58). Assume that

lim
𝐺

⦄

⦄

ℵ0,𝐺 ς ℵ0⦄
⦄𝜔2 = 0

We need to place an asymptotic lower bound on 𝑇
(𝐾) ⌋

ℵ0,𝐺
⌈

, the bound itself possibly depending on ℵ0. By Theorem 6.3, it suffices
to show that for any 𝑉 > 0 there exists a 0 < 𝑀 < ∇ and an ⋆ > 0 (each depending on 𝑉 and ℵ0) such that if 2ℵ0 ε ♯

⋆

⌋

ℵ0
⌈

then

+
⌋

𝜀0 ε 𝜔
2⌈ ⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏ 2ℵ0
⌈

⦄

⦄

⦄𝜔1([ς𝑀,𝑀],𝜔2) ∳ 𝑉 ⦄
⦄

𝜀0⦄
⦄𝜔2 (59)

and symmetrically reversing the two entries of 𝛻+. The point is that 𝑀 must be uniform across a ball (of radius ⋆); in that case,
once 𝑉 is taken sufficiently small (depending on ℵ0), it holds that for all large enough 𝐺, it must be that 𝑇(𝐾)

⌋

ℵ0,𝐺
⌈

⨋ 2ς1𝑀, hence the
conclusion.

But by Proposition 7.5 applied to the limiting function ℵ0, we can assume

+
⌋

𝜀0 ε 𝜔
2⌈ ⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏ ℵ0
⌈

⦄

⦄

⦄𝜔1([ς𝑀,𝑀],𝜔2) ∳
1
2 𝑉

⦄

⦄

𝜀0⦄
⦄𝜔2

and we also have
⦄

⦄

⦄

𝛻
+ ⌋

⨏ 𝜀0, ⨏
⌋

ℵ0 ς 2ℵ0
⌈⌈

⦄

⦄

⦄𝜔1([ς𝑀,𝑀],𝜔2) ∳ 𝐸 ⦄

⦄

ℵ0 ς 2ℵ0⦄
⦄𝜔2 ⦄

⦄

𝜀0⦄
⦄𝜔2

so (59) holds when ⋆ ∳ (2𝐸)ς1 𝑉. ⋜

Corollary 9.3. If ℵ0 ε 𝜔
2,+ and 𝜍g.o.

⌋

ℵ0
⌈

< ∇ then the set

Zg.o.
⌋

ℵ0
⌈ ⌋⟩

0, 𝜍g.o.
⌋

ℵ0
⌈⌈⌈

is not pre-compact in 𝜔
2.

Proof. Suppose otherwise: that is, the image of the set
⟩

0, 𝜍g.o.
⌋

ℵ0
⌈⌈

by the map

𝜗  Zg.o.
⌋

ℵ0
⌈

(𝜗)

is pre-compact in 𝜔
2. Let us denote the closure (in 𝜔

2) of this image by ⨙; then ⨙ is a compact subset of 𝜔2. Therefore, the lower-
semicontinuous function 𝑁

(1) attains a minimum value on ⨙. However, 𝑁 (1)
> 0 everywhere, so it follows that 𝑁 (1) is bounded away

from zero on ⨙.
Therefore, there exists an 𝑉 > 0 such that

+0 ∳ 𝜗 < 𝜍g.o.
⌋

ℵ0
⌈

, 𝑁
(1) ⌋Zg.o.

⌋

ℵ0
⌈

(𝜗)
⌈

⨋ 𝑉

Hence we may cover
⟩

0, 𝜍g.o.
⌋

ℵ0
⌈)

by a finite set of open intervals of size ∳ 𝑉 and use the defining properties of 𝑁 (1) and the
semigroup property of Zg.o. to conclude that

𝛻
+ ⌋

Zg.o.
⌋

ℵ0
⌈

(𝜗)
⌈

ε 𝜔
1 ⌋⟩0, 𝜍g.o.

⌋

ℵ0
⌈⌈

,𝜔
2⌈

and observe that this contradicts (57). ⋜

Corollary 9.4. For any ℵ0 ε 𝜔
2,+, if 𝜍g.o.

⌋

ℵ0
⌈

< ∇ then

lim
𝜗𝜍g.o.(ℵ0)ς

⦄

⦄

⦄

Zg.o.
⌋

ℵ0
⌈

(𝜗)⦄⦄
⦄𝜔2 = ∇

Proof. Suppose the contrary; then there exists an increasing sequence of numbers 𝜗
𝐺
 𝜍g.o.

⌋

ℵ0
⌈ς and a number 0 < 𝐸 < ∇ such

that

sup
𝐺

⦄

⦄

⦄

Zg.o.
⌋

ℵ0
⌈ ⌋

𝜗
𝐺

⌈

⦄

⦄

⦄𝜔2 < 𝐸
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Since free transport preserve the 𝜔
2 norm, we have

sup
𝐺

⦄

⦄

⦄

⨏
⌋

ς𝜗
𝐺

⌈ /

Zg.o.
⌋

ℵ0
⌈ ⌋

𝜗
𝐺

⌈\

⦄

⦄

⦄𝜔2 ∳ 𝐸

By Duhamel’s formula,

⨏
⌋

ς𝜗
𝐺

⌈ /

Zg.o.
⌋

ℵ0
⌈ ⌋

𝜗
𝐺

⌈\

= ℵ0 + ∱

𝜗𝐺

0
⨏ (ς.)𝛻+ ⌋

Zg.o.
⌋

ℵ0
⌈

(.)
⌈

ℷ.

therefore since ℵ0 ε 𝜔
2,+ we have

sup
𝐺

⦄

⦄

⦄

⦄

⦄

∱

𝜗𝐺

0
⨏ (ς.)𝛻+ ⌋

Zg.o.
⌋

ℵ0
⌈

(.)
⌈

ℷ.

⦄

⦄

⦄

⦄

⦄𝜔2
∳ 𝐸

up to increasing 𝐸. Then again, by Duhamel’s formula and non-negativity (to increase the bounds of integration in the last line),
for 0 ∳ . < 𝜗 it holds

⦄

⦄

⦄

⨏ (ς𝜗)
/

Zg.o.
⌋

ℵ0
⌈

(𝜗)
\

ς ⨏ (ς.)
/

Zg.o.
⌋

ℵ0
⌈

(.)
\

⦄

⦄

⦄𝜔2

∳
⦄

⦄

⦄

⦄

⦄

∱

𝜗

.

⨏ (ςℸ)𝛻+ ⌋

Zg.o.
⌋

ℵ0
⌈

(ℸ)
⌈

ℷℸ

⦄

⦄

⦄

⦄

⦄𝜔2

∳
⦄

⦄

⦄

⦄

⦄

∱

𝜍g.o.(ℵ0)

.

⨏ (ςℸ)𝛻+ ⌋

Zg.o.
⌋

ℵ0
⌈

(ℸ)
⌈

ℷℸ

⦄

⦄

⦄

⦄

⦄𝜔2

so by dominated convergence (letting .  𝜍g.o.
⌋

ℵ0
⌈ς in the last line and expanding the definition of the 𝜔

2 norm to apply the
dominated convergence theorem, taking care not to apply Minkowski’s inequality), we find that the function

𝜗  ⨏ (ς𝜗)
/

Zg.o.
⌋

ℵ0
⌈

(𝜗)
\

admits a continuous extension from
⟩

0, 𝜍g.o.
⌋

ℵ0
⌈)

to 𝜔
2. In particular, Zg.o.

⌋

ℵ0
⌈

(𝜗) also admits a continuous extension from
⟩

0, 𝜍g.o.
⌋

ℵ0
⌈)

into 𝜔
2, in contradiction with Corollary 9.3. ⋜

Lemma 9.5. Let ℵ0 ε 𝜔
2,+; then, there exist numbers ℸ, ⋆ > 0, depending only on ℵ0, such that the following holds:

For any 𝐾 > 0, there exists a 𝑀 > 0 such that whenever
2ℵ
(1)
0 , 2ℵ

(2)
0 ε 𝜔

2,+

are chosen to satisfy

+ (𝑆 ε {1, 2}) ⦄

⦄

⦄

2ℵ
(𝑆)
0 ς ℵ0

⦄

⦄

⦄𝜔2 < ⋆

and
⦄

⦄

⦄

2ℵ
(1)
0 ς 2ℵ

(2)
0
⦄

⦄

⦄𝜔2 < 𝑀

then it follows
⦄

⦄

⦄

⦄

Zg.o.

⟪

2ℵ
(1)
0

⟫

(𝜗) ς Zg.o.

⟪

2ℵ
(2)
0

⟫

(𝜗)
⦄

⦄

⦄

⦄𝜔∇(𝑃 ,𝜔2)
< 𝐾

where 𝑃 = [0, ℸ].

Proof. Let 2ℵ(𝑆)0 , 𝑆 = 1, 2, be chosen as in the statement of the Lemma, for some ⋆ > 0 to be determined later. We can assume by our
choice of ⋆, ℸ, at the very least, that

inf
/

𝜍g.o.
⌋

2ℵ0
⌈

ϑ ⦄

⦄

2ℵ0 ς ℵ0⦄
⦄𝜔2 < ⋆

\

> ℸ (60)

in view of Lemma 9.2.
Letting 2ℵ

(𝑆) (𝜗) = Zg.o.

⟪

2ℵ
(𝑆)
0

⟫

(𝜗), define

⌣(𝜗) = 2ℵ
(1) (𝜗) ς 2ℵ

(2) (𝜗)

then it holds
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

⌣ = 𝛻
+ ⌋

2ℵ
(1)
,⌣

⌈

+𝛻
+ ⌋

⌣, 2ℵ
(2)⌈ (61)

and we denote ⌣0 = ⌣ (𝜗 = 0). Consider just the first term on the right; the second is handled similarly.
We may write

𝛻
+ ⌋

2ℵ
(1)
,⌣

⌈

= 𝛻
+
⟪

⨏ 2ℵ
(1)
0 ,⌣

⟫

+𝛻
+
⟪

2ℵ
(1) ς ⨏ 2ℵ

(1)
0 ,⌣

⟫

= ⨗1 + ⨗2

(62)
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Let us denote 𝑃
ℸ
= [0, ℸ].

We have previously seen (e.g. from the proof of Lemma 9.2, specifically (59)) that, by choosing ⋆, ℸ small depending on the small
parameter 𝑉, we may have simultaneously for all 2ℵ(1)0 within 𝜔

2-distance ⋆ of ℵ0 and all 10 ε 𝜔
2 that

⦄

⦄

⦄

⦄

𝛻
+
⟪

⨏ 2ℵ
(1)
0 , ⨏ 10

⟫

⦄

⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2)
∳ 𝑉 ⦄

⦄

10⦄
⦄𝜔2

This estimate suffices to handle term ⨗1: indeed, it implies by Duhamel’s formula applied to ⌣ that
⦄

⦄

⦄

⦄

𝛻
+
⟪

⨏ 2ℵ
(1)
0 ,⌣

⟫

⦄

⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2)
∳ 𝑉

{

⦄

⦄

⌣0⦄
⦄𝜔2 + ⦄

⦄

⦄

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

⌣
⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2)

}

the right-hand side being finite by (60), since ⌣ is simply the difference between two solutions which each have lifetimes strictly
larger than ℸ.

Also, by Duhamel’s formula

2ℵ
(1) (𝜗) ς ⨏ (𝜗) 2ℵ(1)0 = ∱

𝜗

0
⨏ (𝜗 ς .)𝛻+ ⌋

2ℵ
(1) (.)

⌈

ℷ.

and Proposition 7.4, it holds for any 10 ε 𝜔
2

⦄

⦄

⦄

⦄

𝛻
+
⟪

2ℵ
(1) ς ⨏ 2ℵ

(1)
0 , ⨏ 10

⟫

⦄

⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2)
∳ 𝐸

⦄

⦄

⦄

𝛻
+ ⌋

2ℵ
(1)⌈⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2)
⦄

⦄

10⦄
⦄𝜔2

Note carefully we have substituted Duhamel’s formula into the first entry of 𝛻+, so that 𝛻+ is acting on another 𝛻+ and a 10; it
is to the outer 𝛻+ that we apply Proposition 7.4. By Lemma 9.2 with 𝐾 (the 𝐾 of Lemma 9.2, not related to the 𝐾 appearing in the
statement of the present lemma), for any 𝑉 > 0 there exist ⋆, ℸ > 0 such that again, simultaneously for all 2ℵ(1)0 within 𝜔

2-distance ⋆

of ℵ0 and all 10 ε 𝜔
2, it holds

𝐸
⦄

⦄

⦄

𝛻
+ ⌋

2ℵ
(1)⌈⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2) ∳ 𝑉

So for any 10 ε 𝜔
2 we may now write

⦄

⦄

⦄

⦄

𝛻
+
⟪

2ℵ
(1) ς ⨏ 2ℵ

(1)
0 , ⨏ 10

⟫

⦄

⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2)
∳ 𝑉 ⦄

⦄

10⦄
⦄𝜔2

so that, once again,
⦄

⦄

⦄

⦄

𝛻
+
⟪

2ℵ
(1) ς ⨏ 2ℵ

(1)
0 , ⌣

⟫

⦄

⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2)

∳ 𝑉

{

⦄

⦄

⌣0⦄
⦄𝜔2 + ⦄

⦄

⦄

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

⌣
⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2)

}

which suffices for ⨗2.
To conclude, let us denote

3 (ℸ) = ⟨⌣⟨

𝜔∇(𝑃ℸ ,𝜔2) +
⦄

⦄

⦄

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

⌣
⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2)
which we recall is finite in any case, and observe that

3 (ℸ) ∳ ⦄

⦄

⌣0⦄
⦄𝜔2 + 2 ⦄⦄

⦄

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

⌣
⦄

⦄

⦄𝜔1(𝑃ℸ ,𝜔2) ∳ 23 (ℸ)

Hence by (61) and the above estimates on ⨗1 and ⨗2 we now have

3 (ℸ) ∳ ⦄

⦄

⦄

2ℵ
(1)
0 ς 2ℵ

(2)
0
⦄

⦄

⦄𝜔2 + 16𝑉3 (ℸ)

Letting 𝑉 = 1
32 , with the corresponding constraints on ⋆, ℸ as specified above, yields by the definition of 3 (ℸ) that

⟨⌣⟨

𝜔∇(𝑃ℸ ,𝜔2) ∳ 2 ⦄⦄
⦄

2ℵ
(1)
0 ς 2ℵ

(2)
0
⦄

⦄

⦄𝜔2

as claimed. ⋜

For the next lemma we denote by ♯
⋆

⌋

ℵ0
⌈

the ball of radius ⋆ in 𝜔
2 centered about ℵ0 ε 𝜔

2,+.

Lemma 9.6. Let 𝐻 ⊳ 𝜔
2,+ be compact. Then there exists a ℸ > 0, depending only on 𝐻, such that the following is true:

For every ℵ0 ε 𝐻, there exists an ⋆ > 0 such that

+
⟪

2ℵ0 ε ♯
⋆

⌋

ℵ0
⌈

(

𝜔
2,+

⟫

ℸ < 𝜍g.o.
⌋

2ℵ0
⌈

and such that, denoting 𝑃
ℸ
= [0, ℸ], the map

♯
⋆

⌋

ℵ0
⌈

(

𝜔
2,+  𝐸

⌋

𝑃
ℸ
,𝜔

2⌈
, 2ℵ0  Zg.o.

⌋

2ℵ0
⌈

(⋛)

is continuous.



Nonlinear Analysis 248 (2024) 113609

32

T. Chen et al.

Remark 9.4. It is convenient for the proof to let ⋆ possibly depend on ℵ0 ε 𝐻, although it is possible to show by the compactness
of 𝐻 that ⋆ need not depend on ℵ0, even if we have only proven the claim allowing ⋆ to depend on ℵ0. Indeed, choosing ⋆ for each
ℵ0 as in the Lemma, cover 𝐻 by open balls of radius ⋆𝑆

2 about ℵ(𝑆)0 as 𝑆 ranges over a finite set.

Proof. For any ℵ0 ε 𝜔
2,+ we will write

0 < ℸ ε ≨
⌋

ℵ0
⌈

⊳ R

if and only if both the following hold: first, that there exists ⋆ > 0, depending on ℸ and ℵ0, such that

+
⟪

2ℵ0 ε ♯
⋆

⌋

ℵ0
⌈

(

𝜔
2,+

⟫

ℸ ∳ 2ς1𝜍g.o.
⌋

2ℵ0
⌈

and second, that the map

♯
⋆

⌋

ℵ0
⌈

(

𝜔
2,+  𝐸

⌋

[0, ℸ] ,𝜔2⌈
, 2ℵ0  Zg.o.

⌋

2ℵ0
⌈

(⋛)

is continuous .
Also let us write

3
⌋

ℵ0
⌈

= sup≨
⌋

ℵ0
⌈

the least upper bound of the set ≨
⌋

ℵ0
⌈

. By Lemma 9.5, 3
⌋

ℵ0
⌈

> 0 for each ℵ0 ε 𝜔
2,+.

We have to show that for any compact 𝐻 ⊳ 𝜔
2,+,

inf
/

3
⌋

ℵ0
⌈

ϑ ℵ0 ε 𝐻
\

> 0

By way of contradiction, suppose that there are points ℵ0,𝐺 ε 𝐻, 𝐺 = 1, 2, 3,… , such that 3
⌋

ℵ0,𝐺
⌈

 0 as 𝐺  ∇. By the compactness
of 𝐻, we can pass to a subsequence converging in 𝜔

2, say ℵ0,𝐺φ  ℵ0 for some ℵ0 ε 𝐻. Applying Lemma 9.5 to ℵ0 we find that there
must exist a number 𝐺0 such that 3

⌋

ℵ0,𝐺φ
⌈

is bounded from below uniformly in 𝐺
φ ⨋ 𝐺0, hence the contradiction. ⋜

Remark 9.5. Observe that in the proof of Lemma 9.6, we have relied on the fact that Lemma 9.5 provides continuity of the solution
map not just at ℵ0, but across a small ball surrounding ℵ0, for a time bounded uniformly from below on said ball. In particular, we
obtain continuity on a relatively open set ⨎ ⊳ 𝜔

2,+ with 𝐻 ⊳ ⨎, the existence time being bounded from below uniformly on ⨎.

Theorem 9.7. 𝜍g.o. is lower semi-continuous: that is, if ℵ0 ε 𝜔
2,+ and ℵ0,𝐺 ε 𝜔

2,+ for 𝐺 = 1, 2, 3,… , then

lim
𝐺∇

⦄

⦄

ℵ0,𝐺 ς ℵ0⦄
⦄𝜔2 = 0 ⥳ 𝜍g.o.

⌋

ℵ0
⌈

∳ lim inf
𝐺∇

𝜍g.o.
⌋

ℵ0,𝐺
⌈

Moreover, the solution map Zg.o. for (53) is continuous, in the following sense:
Denoting for ℵ0 ε 𝜔

2 the open ball

♯
⋆

⌋

ℵ0
⌈

=
/

2ℵ0 ε 𝜔
2 ϑ ⦄

⦄

2ℵ0 ς ℵ0⦄
⦄𝜔2 < ⋆

\

it holds that for any ℵ0 ε 𝜔
2,+ and any compact interval 𝑃 = [0, 𝜍 ], where 0 < 𝜍 < 𝜍g.o.

⌋

ℵ0
⌈

is chosen arbitrarily, there exists an ⋆ > 0,
depending only on 𝜍 and ℵ0, such that the map

♯
⋆

⌋

ℵ0
⌈

(

𝜔
2,+  𝐸

⌋

𝑃 ,𝜔
2⌈

, 2ℵ0  Zg.o.
⌋

2ℵ0
⌈

(⋛)

is continuous.

Proof. First observe that for any 0 < 𝜍 < 𝜍g.o.
⌋

ℵ0
⌈

the set

𝐻 = Zg.o.
⌋

ℵ0
⌈

(𝑃 )

is compact, being the image of the compact interval 𝑃 = [0, 𝜍 ] by the continuous map Zg.o.
⌋

ℵ0
⌈

(⋛). Thus we may apply Lemma 9.6
to the set 𝐻.

For each 𝜗0 ε 𝑃 let ♯𝜗0 be the 𝜔
2 ball centered on Zg.o.

⌋

ℵ0
⌈ ⌋

𝜗0
⌈

guaranteed by Lemma 9.6: note carefully that we are taking the
solution at time 𝜗0 ε 𝑃 , that is Zg.o.

⌋

ℵ0
⌈ ⌋

𝜗0
⌈

, as our initial data in the application of Lemma 9.6. In particular, by the compactness of
𝐻, the solution map Zg.o. is continuous on ♯

𝜗0 for a time ℸ that is uniform in 𝜗0 ε 𝑃 . Assume without loss (up to a possibly smaller
choice of the constant ℸ) that 𝜍 = ♭ℸ, ♭ an integer.

The proof is by an induction backwards in time, starting at 𝜍 . The starting point is the unit 𝜔2 ball centered on Zg.o.
⌋

ℵ0
⌈

(𝜍 ).
Take the preimage of this ball by the (partially defined) gain-only flow, at time ℸ, and call ⌢1 the intersection of this preimage
with ♯

𝜍ςℸ . Then ⌢
1 is open for the subspace topology of 𝜔2,+

⊳ 𝜔
2. Repeat the process, taking the preimage of ⌢

𝐺
by the time ℸ

flow and intersecting with ♯
𝜍ς(𝐺+1)ℸ to produce ⌢

𝐺+1. Eventually we will have ⌢
♭
, a relatively open subset of 𝜔2,+ that contains

ℵ0; moreover, by construction, for any 2ℵ0 ε ⌢
♭

⊳ 𝜔
2,+ the flow is defined for 0 ∳ 𝜗 ∳ 𝜍 , and the flow is continuous on ⌢

♭
for

0 ∳ 𝜗 ∳ 𝜍 . ⋜
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10. The comparison principle

Any smooth solution 𝜀 of (1) with sufficient decay for large (𝜛, 𝜚) is bounded from above pointwise at positive times by the
solution of the 𝛻

+ Eq. (53) with the same initial data, for the full lifespan of the solution of (53). Thus, under such assumptions,
we may view the solution of (53) as an upper envelope for the solution of (1), at least on a small time interval. Setting aside ‘‘near
vacuum’’ results, solutions of the 𝛻

+ equation are not global in general even for smooth data with rapid decay [21]; nevertheless,
we can take 𝜀

⌋

𝜗0
⌈

as initial data in (53) to obtain, once again, an upper envelope valid for 𝜗 ε
⟩

𝜗0, 𝜗0 + ℸ
⌈

for some small ℸ > 0
depending on 𝜀

⌋

𝜗0
⌈

(note: not the 𝜔2 norm of 𝜀
⌋

𝜗0
⌈

, but the full profile). This comparison principle, the invocation of which is defined
to mean that we may obtain an upper envelope along sufficiently small half-open intervals starting from any 𝜗0 in the (larger but
still half-open) domain of interest, is a fundamental property of any Boltzmann equation satisfying the Grad cut-off condition (the
principle is obviously meaningless in the non-cutoff case). Now it is not at all clear whether the renormalized solutions of DiPerna
and Lions [15] satisfy a version of the comparison principle in general. However, in the 𝜔

2 setting, we can make sense of (53) by
Theorem 9.1. Since the comparison principle is the foundation of everything to follow, we devote this section to formalizing the
comparison principle to the extent that we require.

Definition 10.1. Let 𝜀 (𝜗, 𝜛, 𝜚) be a non-negative measurable function (not necessarily solving Boltzmann’s equation (1)), defined in
the domain

7 ϖ R2 ϖ R2

where 7 = [3, 0) and ς∇ < 3 < 0 ∳ ∇. Let us assume that for any compact set 𝐻 of the product form

𝐻 = ≨ ϖ ♯ ϖ 𝐸 ⊳ 7 ϖ R2 ϖ R2

(namely ≨ ⊳ 7 , and ♯,𝐸 ⊳ R2), there holds

𝜀 ⦃
𝐻
ε 𝐸

⌋

≨,𝜔
1 (♯ ϖ 𝐸)

⌈

In particular, the pointwise evaluation in time, 𝜀
⌋

𝜗0
⌈

, is well-defined for each 𝜗0 ε 7 .
For any 𝜗0 ε 7 such that 𝜀

⌋

𝜗0
⌈

ε 𝜔
2, we shall write

𝜀 ε B7

{𝜗0}
if for any 𝜗 ε R such that

𝜗 ε 7 and 𝜗0 ∳ 𝜗 < 𝜗0 + 𝜍g.o.
⌋

𝜀
⌋

𝜗0
⌈⌈

we have

𝜀 (𝜗) ∳ Zg.o.
⌋

𝜀
⌋

𝜗0
⌈⌈ ⌋

𝜗 ς 𝜗0
⌈

for almost every (𝜛, 𝜚).
For any subset 𝑁 𝑅 7 we will write

𝜀 ε B7

𝑁

if

+
⌋

𝜗0 ε 𝑁
⌈

𝜀 ε B7

{𝜗0}
That is,

B7

𝑁
=

(

𝜗0ε𝑁
B7

{𝜗0}

Similarly, if 𝑃 = [3, 0] is a compact interval, then letting 7 = [3, 0), for any 𝜗0 ε 𝑃 we write

𝜀 ε B𝑃

{𝜗0}
if either (i) 𝜗0 = 0 and 𝜀 (0) ε 𝜔

2, or (ii)

𝜀 ε B7

{𝜗0}
For any subset 𝑁 ⊳ 𝑃 we write

𝜀 ε B𝑃

𝑁

if

+
⌋

𝜗0 ε 𝑁
⌈

𝜀 ε B𝑃

{𝜗0}
thus

B𝑃

𝑁
=

(

𝜗0ε𝑁
B𝑃

{𝜗0}
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Lemma 10.1. If 0 < 𝜍1 < 𝜍0, 71 =
⟩

0, 𝜍1
⌈

and 72 =
⟩

𝜍1, 𝜍0
⌈

, and if

𝜀 ε B
71
71

and 𝜀 ε B
72
72

(63)

then

𝜀 ε B
73
73

(64)

where 73 =
⟩

0, 𝜍0
⌈

.

Proof. This is an immediate consequence of the semigroup property of Zg.o. combined with the fact that 𝛻+ is monotonic, i.e.

0 ∳ 𝜀0 ∳ ℵ0 ⥳ 0 ∳ 𝛻
+ ⌋

𝜀0
⌈

∳ 𝛻
+ ⌋

ℵ0
⌈

In fact, this monotonicity property of 𝛻+ implies that the gain-only flow Zg.o. is monotonic as well (for 𝜗 fixed):

0 ∳ 𝜀0 ∳ ℵ0 ⥳ 0 ∳ Zg.o.
⌋

𝜀0
⌈

(𝜗) ∳ Zg.o.
⌋

ℵ0
⌈

(𝜗)

whenever this makes sense (this can be established by writing Zg.o. in terms of the initial data using an infinite iterated Duhamel
expansion, which is guaranteed to converge on a small time interval by the Banach contraction used in the construction of Zg.o.).
Combining the monotonicity and semigroup properties of Zg.o. with the definition of B7

𝑁
establishes the Lemma with a few lines of

straightforward algebra, which we recount next:
Indeed, it suffices to consider the case

𝜗1 ε 71, 𝜗2 ε 72

such that

𝜗2 < 𝜗1 + 𝜍g.o.
⌋

𝜀
⌋

𝜗1
⌈⌈

In that case, it immediately follows each

𝜍1 < 𝜗1 + 𝜍g.o.
⌋

𝜀
⌋

𝜗1
⌈⌈

and

𝜗2 < 𝜍1 + 𝜍g.o.
⌋

𝜀
⌋

𝜍1
⌈⌈

by the semigroup property. Moreover, from the definition of B7

𝑁
we may deduce

𝜀
⌋

𝜗2
⌈

∳ Zg.o.
⌋

𝜀
⌋

𝜍1
⌈⌈ ⌋

𝜗2 ς 𝜍1
⌈

using 𝜀 ε B
72
72
, and also

𝜀
⌋

𝜍1
⌈

∳ Zg.o.
⌋

𝜀
⌋

𝜗1
⌈⌈ ⌋

𝜍1 ς 𝜗1
⌈

using 𝜀 ε B
71
71
and continuity in time. Therefore, applying the monotonicity of Zg.o. followed by the semigroup property, we have

𝜀
⌋

𝜗2
⌈

∳ Zg.o.
⌋

𝜀
⌋

𝜍1
⌈⌈ ⌋

𝜗2 ς 𝜍1
⌈

∳ Zg.o.
⟩

Zg.o.
⌋

𝜀
⌋

𝜗1
⌈⌈ ⌋

𝜍1 ς 𝜗1
⌈) ⌋

𝜗2 ς 𝜍1
⌈

= Zg.o.
⌋

𝜀
⌋

𝜗1
⌈⌈ ⌋

𝜗2 ς 𝜗1
⌈

as required. ⋜

Proposition 10.2. If 0 < 𝜍 < ∇ and

𝜀 ε 𝐸
⌋

𝑃 ,𝜔
2⌈(B𝑃

𝑃

where 𝑃 = [0, 𝜍 ], then

𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

1 ⌋
𝑃 ,𝜔

2⌈

Proof. By Lemma 9.2 and the compactness of 𝑃 , since 𝜀 ε 𝐸
⌋

𝑃 ,𝜔
2⌈ we have

inf
𝜗ε𝑃

𝜍g.o. (𝜀 (𝜗)) ⨋ inf
𝜗ε𝑃

𝑁
(1) (𝜀 (𝜗)) = 𝑉 > 0

where 𝑁
(1) is the function from the statement of Lemma 9.2 in the case 𝐾 = 1. Hence we can use 𝜀 ε B𝑃

𝑃
to estimate, by the

monotonicity of 𝛻+,

∱
𝑃𝑉

⦄

⦄

𝛻
+ (𝜀 (𝜗))⦄

⦄𝜔2 ℷ𝜗 ∳ ∱

𝑁
(1)(𝜀 (𝜗0))

0

⦄

⦄

⦄

𝛻
+ ⌋

Zg.o.
⌋

𝜀 (𝜗0)
⌈

(𝑇)
⌈

⦄

⦄

⦄𝜔2 ℷ𝑇

∳ 1
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where 𝑃
𝑉
= 𝑃

❲

⟩

𝜗0, 𝜗0 + 𝑉
)

, and we have set 𝐾 = 1 on each side of (56) to establish the last line. Since 𝑉 is independent of 𝜗0, we can
conclude by covering 𝑃 by a finite collection of closed intervals, each of size at most 𝑉. ⋜

Note carefully that Proposition 10.2 relies on continuity into 𝜔
2 but does not require 𝜀 to solve Boltzmann’s equation (1). For

functions 𝜀 which actually satisfy (1), at least to the point where Duhamel’s formula is valid, we have the following converse to
Proposition 10.2 (which we first establish on a small time interval, followed by longer time intervals):

Lemma 10.3. If 𝜀 ⨋ 0 solves Boltzmann’s equation (1) on 7 = [0, 𝜍 ) in such a way that Duhamel’s formula holds, and in addition

𝜀 ε 𝐸
⌋

7 ,𝜔
2⌈

and

𝛻
+ (𝜀 ) ε 𝜔

1 ⌋
𝑃 ,𝜔

2⌈

for each compact sub-interval 𝑃 ⊳ 7 , then for some ℸ > 0 there holds

𝜀 ε B
7ℸ

7ℸ

where 7
ℸ
= [0, ℸ).

Proof. Obviously by the hypotheses for any 𝐾 > 0 there is a ℸ > 0 such that

∱

ℸ

0
⦄

⦄

𝛻
+ (𝜀 (.))⦄

⦄𝜔2 ℷ. < 2ς1𝐾 (65)

but we leave the choice of a particular 𝐾 for later. We will use (65) in combination with the proof of Theorem 6.3 to close a Banach
fixed point iteration for the gain-only equation, the limit of which coincides with Zg.o. by uniqueness, and show that 𝜀 lies below
the function so constructed. Hence we shall show that 𝜀 ε B

7ℸ

{𝜗0}
, each 𝜗0 ε 7

ℸ
.

Fix 𝜗0 ε 7
ℸ
. The new iteration is defined for 𝜗 ε

⟩

𝜗0, ℸ
⌈

by the formulas

ℵ
(1) (𝜗) = ⨏

⌋

𝜗 ς 𝜗0
⌈

𝜀
⌋

𝜗0
⌈

+ ∱

𝜗

𝜗0
⨏ (𝜗 ς .)𝛻+ (𝜀 (.)) ℷ.

ℵ
(𝐺+1) (𝜗) = ⨏

⌋

𝜗 ς 𝜗0
⌈

𝜀
⌋

𝜗0
⌈

+ ∱

𝜗

𝜗0
⨏ (𝜗 ς .)𝛻+ ⌋

ℵ
(𝐺) (.)

⌈

ℷ.

In particular, it follows that
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈ ⌋

ℵ
(1) (𝜗) ς ⨏

⌋

𝜗 ς 𝜗0
⌈

𝜀
⌋

𝜗0
⌈⌈

= 𝛻
+ (𝜀 (𝜗))

with ℵ
(1) ⌋

𝜗0
⌈

= 𝜀
⌋

𝜗0
⌈

; hence, by (65), there holds

⦄

⦄

⦄

ℵ
(1) ς ⨏

⌋

𝜗 ς 𝜗0
⌈

𝜀
⌋

𝜗0
⌈

⦄

⦄

⦄𝜔∇( 27ℸ ,𝜔2)
+ ⦄

⦄

⦄

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈ ⌋

ℵ
(1) ς ⨏

⌋

𝜗 ς 𝜗0
⌈

𝜀
⌋

𝜗0
⌈⌈

⦄

⦄

⦄𝜔1( 27ℸ ,𝜔2)
∳ 2 ⋛

⌋

2ς1𝐾
⌈

= 𝐾

where 27
ℸ
=

⟩

𝜗0, ℸ
⌈

; but we may now notice that the norm on the left (the sum of both terms) is exactly the one used to define the
ball ⨔

𝐾
appearing in the proof of Theorem 6.3. Therefore, for small enough 𝐾 we have the convergence of ℵ(𝐺) in 𝜔

2 as 𝐺  ∇, and
by uniqueness the limit is equal to

Zg.o.
⌋

𝜀
⌋

𝜗0
⌈⌈ ⌋

𝜗 ς 𝜗0
⌈

each 𝜗 ε
⟩

𝜗0, ℸ
⌈

.
To conclude, let us show by induction that 𝜀 (𝜗) ∳ ℵ

(𝐺) (𝜗) for each 𝜗 ε
⟩

𝜗0, ℸ
⌈

and each 𝐺. By Duhamel’s formula and the
non-negativity of 𝜀 ,

𝜀 (𝜗) ∳ ⨏
⌋

𝜗 ς 𝜗0
⌈

𝜀
⌋

𝜗0
⌈

+ ∱

𝜗

𝜗0
⨏ (𝜗 ς .)𝛻+ (𝜀 (.)) ℷ.

and the expression on the right is just ℵ(1) by definition, so

𝜀 (𝜗) ∳ ℵ
(1) (𝜗)

for such 𝜗. Now suppose, for some 𝐺, that we have

𝜀 (𝜗) ∳ ℵ
(𝐺) (𝜗)
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for each such 𝜗, then by Duhamel’s formula and the monotonicity of 𝛻+ we also have

𝜀 (𝜗) ∳ ⨏
⌋

𝜗 ς 𝜗0
⌈

𝜀
⌋

𝜗0
⌈

+ ∱

𝜗

𝜗0
⨏ (𝜗 ς .)𝛻+ (𝜀 (.)) ℷ.

∳ ⨏
⌋

𝜗 ς 𝜗0
⌈

𝜀
⌋

𝜗0
⌈

+ ∱

𝜗

𝜗0
⨏ (𝜗 ς .)𝛻+ ⌋

ℵ
(𝐺) (.)

⌈

ℷ.

= ℵ
(𝐺+1)(𝜗)

Passing to the limit in 𝐺 we find that for any 𝜗0 ∳ 𝜗 < ℸ it holds

𝜀 (𝜗) ∳ Zg.o.
⌋

𝜀
⌋

𝜗0
⌈⌈ ⌋

𝜗 ς 𝜗0
⌈

almost every (𝜛, 𝜚). ⋜

Proposition 10.4. If 𝜀 ⨋ 0 solves Boltzmann’s equation (1) on 7 = [0, 𝜍 ) in such a way that Duhamel’s formula holds, and in addition

𝜀 ε 𝐸
⌋

7 ,𝜔
2⌈

and

𝛻
+(𝜀 ) ε 𝜔

1 ⌋
𝑃 ,𝜔

2⌈

for each compact sub-interval 𝑃 ⊳ 7 , then

𝜀 ε B7

7

Proof. Define

𝑊 = sup
]

ℸ ε (0, 𝜍 ) ϑ 𝜀 ε B
7ℸ

7ℸ

⟦

where 7
ℸ
= [0, ℸ). By Lemma 10.3 we have 𝑊 > 0. Suppose

𝑊 < 𝜍

by way of contradiction. We can show from definitions that

𝜀 ε B
7𝑊

7𝑊

Then again, by Lemma 10.3, we also have for some 𝑀 > 0 that

𝜀 ε B
7𝑊+𝑀⟥7𝑊
7𝑊+𝑀⟥7𝑊

Hence Lemma 10.1 implies that

𝜀 ε B
7𝑊+𝑀
7𝑊+𝑀

contradicting the definition of 𝑊 . ⋜

11. Pointwise convergence and the fundamental lemma

The following Lemma utilizes the uniform square integrability results from Section 5 to pass to pointwise limits in the comparison
principle, under suitable conditions. The Lemma also allows us to propagate 𝜔2 convergence from one point in time to a later point
in time, under the same conditions. We will use this Lemma both in the construction (by compactness) of (ω)-solutions, and similarly,
the passage to limits of (ω)-solutions, in Sections 15 and 16, respectively.

Lemma 11.1 (The Fundamental Lemma). Consider the interval 7 = [3, 0) where ς∇ < 3 < 0 ∳ ∇, and let 𝜀
𝐿
, 𝜀 be measurable, non-negative

functions (not necessarily solving Boltzmann’s equation) with common domain

7 ϖ R2 ϖ R2

such that, for any compact set 𝐻 of the product form

𝐻 = ≨ ϖ ♯ ϖ 𝐸 ⊳ 7 ϖ R2 ϖ R2

(namely ≨ ⊳ 7 , and ♯,𝐸 ⊳ R2), it holds

𝜀
𝐿
⌉

⌉𝐻
, 𝜀 ⦃

𝐻
ε 𝐸

⌋

≨,𝜔
1 (♯ ϖ 𝐸)

⌈

In particular, pointwise evaluation in time is well-defined. We also require

𝜀
𝐿 (3) , 𝜀 (3) ε 𝜔

2
𝜛,𝜚

⌋

R2 ϖ R2⌈
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Furthermore, let us assume 𝜀
𝐿
satisfy

+ (𝐿 ε N) 𝜀
𝐿
ε B7

{3} (66)

making no such assumption for 𝜀 .
Finally, assume that there holds

lim
𝐿∇

⦄

⦄

𝜀
𝐿 (3) ς 𝜀 (3)⦄

⦄𝜔2 = 0 (67)

as well as the pointwise convergence

𝜀
𝐿
 𝜀 a.e. (𝜗, 𝜛, 𝜚) ε 7 ϖ R2 ϖ R2 (68)

Then, given all the above, we may conclude that

𝜀 ε B
70
{3} (69)

where

70 = 7

(

⟩

3, 3 + 𝜍g.o. (𝜀 (3))
⌈

and we have

lim
𝐿∇

⦄

⦄

𝜀
𝐿
ς 𝜀⦄

⦄𝜔2(𝑃 ,𝜔2) = 0 (70)

for any compact sub-interval 𝑃 ⊳ 70.

Proof. Let 70 be as in the statement of the lemma, and let 𝑃 ⊳ 70 be a compact sub-interval. By Theorem 9.7, (67) implies that

lim
𝐿∇

⦄

⦄

⦄

Zg.o.
⌋

𝜀
𝐿 (3)

⌈

(⋛ ς 3) ς Zg.o. (𝜀 (3)) (⋛ ς 3)⦄⦄
⦄𝜔2(𝑃 ,𝜔2) = 0

where we have used the compactness of 𝑃 to drop from 𝜔
∇ to 𝜔

2 in the time variable. Therefore, by Lemma 5.3 with

𝐹 = 𝑃 ϖ R2 ϖ R2

we find that the sequence
/

Zg.o.
⌋

𝜀
𝐿 (3)

⌈

(⋛ ς 3)
\

𝐿

is uniformly square integrable in 𝑃 ϖ R2 ϖ R2. In particular, by Lemma 5.2 and (66), the sequence
/

𝜀
𝐿 (⋛)

\

𝐿

is uniformly square integrable in 𝑃 ϖ R2 ϖ R2. Therefore, by Lemma 5.4 and (68), we immediately deduce

lim
𝐿∇

⦄

⦄

𝜀
𝐿
ς 𝜀⦄

⦄𝜔2(𝑃 ,𝜔2) = 0 (71)

which is (70). In particular, we have

𝜀 ε 𝜔
2 ⌋

𝑃 ,𝜔
2⌈

So there only remains to prove (69).
Recall again that

lim
𝐿∇

⦄

⦄

⦄

Zg.o.
⌋

𝜀
𝐿 (3)

⌈

(⋛ ς 3) ς Zg.o. (𝜀 (3)) (⋛ ς 3)⦄⦄
⦄𝜔2(𝑃 ,𝜔2) = 0

Therefore, passing to a subsequence in 𝐿, say 𝐿
𝐽
, 𝐽 = 1, 2, 3,… , we find that in the limit 𝐽  ∇ we have the pointwise convergence

Zg.o.

⟪

𝜀
𝐿𝐽

(3)
⟫

(⋛ ς 3)  Zg.o. (𝜀 (3)) (⋛ ς 3) a.e. (𝜗, 𝜛, 𝜚) ε 𝑃 ϖ R2 ϖ R2

Combining this pointwise convergence of Zg.o. with the pointwise convergence from (68), and the fact that 𝑃 is an arbitrary compact
subinterval of 70, we find that

𝜀 ε B
70
{3}

which is (69). Indeed, since 𝜀
𝐿𝐽

ε B7

{3},

𝜀 (𝜗) ς Zg.o. (𝜀 (3)) (𝜗 ς 3)

∳
⟩

𝜀 (𝜗) ς Zg.o. (𝜀 (3)) (𝜗 ς 3)
)

ς
⌈

𝜀
𝐿𝐽

(𝜗) ς Zg.o.

⟪

𝜀
𝐿𝐽

(3)
⟫

(𝜗 ς 3)
⌉

=
⌈

𝜀 (𝜗) ς 𝜀
𝐿𝐽

(𝜗)
⌉

ς
⌈

Zg.o. (𝜀 (3)) (𝜗 ς 3) ς Zg.o.

⟪

𝜀
𝐿𝐽

(3)
⟫

(𝜗 ς 3)
⌉

and both terms on the last line tend to zero pointwise almost every (𝜗, 𝜛, 𝜚) as 𝐽  ∇. ⋜
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12. Entropy and entropy dissipation

For any non-negative measurable function ℵ0 (𝜛, 𝜚) such that

𝛚0<ℵ0<1ℵ0 logℵ0 ε 𝜔
1

the entropy <
⌋

ℵ0
⌈

ε (ς∇,+∇] is defined by

<
⌋

ℵ0
⌈

= ∱R2ϖR2
ℵ0 (𝜛, 𝜚) logℵ0 (𝜛, 𝜚) ℷ𝜛ℷ𝜚

where the real-valued function .  . log . (. ⨋ 0) is understood, by continuity, to take the value 0 at . = 0.
More generally, we will decompose

<
⌋

ℵ0
⌈

= <
+ ⌋

ℵ0
⌈

ς<
ς ⌋

ℵ0
⌈

where

<
+ ⌋

ℵ0
⌈

= ∱
ℵ0>1

ℵ0 (𝜛, 𝜚) logℵ0 (𝜛, 𝜚) ℷ𝜛ℷ𝜚

and

<
ς ⌋

ℵ0
⌈

= ∱0<ℵ0∳1
ℵ0 (𝜛, 𝜚) log

1
ℵ0 (𝜛, 𝜚)

ℷ𝜛ℷ𝜚

Recall from (5) the norm

⦄

⦄

ℵ0⦄
⦄𝜔

1
2,𝜗

= ∱R2ϖR2

⌋

1 + ⦃𝜛 ς 𝜚𝜗⦃
2 + ⦃𝜚⦃

2⌈
⌉

⌉

ℵ0 (𝜛, 𝜚)⌉
⌉

ℷ𝜛ℷ𝜚

where 𝜗 ε R, and 𝜔
1
2 is a shorthand for 𝜔

1
2,0. The next lemma shows that the entropy is well-defined in 𝜔

1
2, although possibly taking

the value +∇: to this end, it suffices to prove that the negative part <ς ⌋

ℵ0
⌈

is finite.
We shall require the (unsigned) entropy densities defined via the functions 𝐵± ϑ R  R,

𝐵
ς (.) = 𝛚0<.<1 ⋛ . log

1
.

𝐵
+ (.) = 𝛚

.>1 ⋛ . log .

so

<
± ⌋

ℵ0
⌈

= ∱ 𝐵
± ⌋

ℵ0
⌈

ℷ𝜛ℷ𝜚

Lemma 12.1. For any 0 ∳ 3 < 0,

0 ∳ 𝐵
+ (0) ς 𝐵

+ (3) ∳ 1
2 (0 + 3) (0 ς 3)

In particular, letting 3 = 0 and 0 = . > 0, we have

𝐵
+ (.) ∳ .

2

2

Proof. For any . > 1 we have
ℷ

ℷ.
𝐵
+ (.) = 1 + log . ∳ 1 + (. ς 1) = .

Hence we may compute by the fundamental theorem of calculus: for any 0 < 3 < 0 (see Fig. 1) ,

0 ∳ 𝐵
+ (0) ς 𝐵

+ (3) ∳ ∱

0

3

.ℷ. = 1
2 (0 + 3) (0 ς 3) ⋜

Lemma 12.2. The function 𝐵
ς is continuous on the whole real line; moreover:

(1) The restriction of 𝐵ς to (0, 1) is smooth and concave.
(2) 𝐵

ς attains a unique maximum value 𝐵ς
⌋

8
ς1⌈ = 8

ς1.
(3) 𝐵

ς is increasing on
⌋

0, 8ς1
⌈

.
(4) 𝐵

ς is decreasing on
⌋

8
ς1
, 1
⌈

.
(5) On compact subintervals of (0, 1], 𝐵ς is Lipschitz.
(6) Whenever . ε

⟩

8
ς1
, 1
)

, it holds 𝐵ς (.) ∳ ..
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Fig. 1. Graph of 𝐵ς.

Proof. The continuity is trivial, as is the smoothness on (0, 1). The concavity on (0, 1) follows from the formula

ℷ
2

ℷ.2
𝐵
ς (.) = ς1

.
< 0

which in turn implies that 𝐵ς takes a unique maximum (which must lie in the interval (0, 1)).
Since

ℷ

ℷ.
𝐵
ς (.) = ς1 ς log . (72)

we easily observe that 𝐵ς is (strictly) increasing on
⌋

0, 8ς1
⌈

and (strictly) decreasing on
⌋

8
ς1
, 1
⌈

. In particular, the unique maximum
is attained at . = 8

ς1, and we compute

𝐵
ς ⌋

8
ς1⌈ = 8

ς1

The Lipschitz continuity on (0, 1] follows again from (72) and the fact that log . is bounded on compact subsets of (0, 1].
Since 𝐵

ς is decreasing on
⌋

8
ς1
, 1
⌈

we can compute, for . ε
⌋

8
ς1
, 1
⌈

,

𝐵
ς (.) ∳ 𝐵

ς ⌋

8
ς1⌈ = 8

ς1 ∳ .

Hence 𝐵
ς (.) ∳ . for . ε

⟩

8
ς1
, 1
)

. ⋜

Lemma 12.3. For any non-negative measurable function ℵ0 ε 𝜔
1
2, we have

<
ς ⌋

ℵ0
⌈

< ∇

In fact, for any 𝜍 ε [0,∇),

<
ς ⌋

ℵ0
⌈

∳ 𝐸0 + ⦄

⦄

ℵ0⦄
⦄𝜔

1
2,𝜍

(73)

where the additive constant 𝐸0 is given by

𝐸0 = ∱R2ϖR2

⌋

1 + ⦃𝜛⦃
2 + ⦃𝜚⦃

2⌈ exp
⌋

ς1 ς ⦃𝜛⦃
2 ς ⦃𝜚⦃

2⌈
ℷ𝜛ℷ𝜚 (74)

which is simply ⌉

⌉

⌉

<
⌋

𝐽0
⌈

⌉

⌉

⌉

where 𝐽0 = exp
⌋

ς1 ς ⦃𝜛⦃
2 ς ⦃𝜚⦃

2⌈.

Proof. We will require the (non-normalized) Gaussian function 𝐽0 on R2 ϖ R2 defined by

𝐽0 (𝜛, 𝜚) = exp
⌋

ς1 ς ⦃𝜛⦃
2 ς ⦃𝜚⦃

2⌈

and we also define via free transport (10), denoted ⨏ ,

𝐽
𝜗
= ⨏ (𝜗)𝐽0
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which is what will allow us (by the choice 𝜗 = 𝜍 ) to introduce the parameter 𝜍 in (73) without accepting a 𝜍 -varying loss in
constants. Note that 𝐽0 (hence 𝐽

𝜍
) is everywhere bounded above by 8

ς1.
Choose an arbitrary time 𝜍 with 0 ∳ 𝜍 < ∇, which will be considered fixed for the rest of the proof of this lemma.
Let us decompose the set

/

0 < ℵ0 ∳ 1
\

into two parts, which we will denote ≨,♯, via the formulas

≨ =
/

(𝜛, 𝜚) ϑ 0 < ℵ0 (𝜛, 𝜚) ∳ 𝐽
𝜍 (𝜛, 𝜚)

\

♯ =
/

(𝜛, 𝜚) ϑ 𝐽
𝜍 (𝜛, 𝜚) < ℵ0 (𝜛, 𝜚) ∳ 1

\

Denote the respective integrals <ς
≨

⌋

ℵ0
⌈

and <
ς
♯

⌋

ℵ0
⌈

, providing a decomposition of <ς ⌋

ℵ0
⌈

as their sum.
Let us first handle <

ς
≨

⌋

ℵ0
⌈

. Recall that ⦄
⦄

𝐽
𝜍
⦄

⦄𝜔∇ ∳ 8
ς1. Additionally, by Lemma 12.2(3), for 0 < . ∳ 8

ς1 we have that 𝐵ς is
increasing so <

ς
≨

⌋

ℵ0
⌈

has the bound

<
ς
≨

⌋

ℵ0
⌈

∳ <
ς ⌋

𝐽
𝜍

⌈

But the transport semigroup ⨏ (⋛) preserves the Lebesgue measure on R2 ϖ R2 so we have

<
ς ⌋

𝐽
𝜍

⌈

= <
ς ⌋

𝐽0
⌈

and, since 0 < 𝐽0 (𝜛, 𝜚) ∳ 8
ς1

< 1, <ς ⌋

𝐽0
⌈

= ς<
⌋

𝐽0
⌈

is the constant 𝐸0 appearing in (73) and (74).
For <ς

♯
(ℵ), simply observe that for all . ε (0, 1] the function .  log 1

.
is a non-negative decreasing function, so we can simply

bound log 1
ℵ0
by log 1

𝐽𝜍

, that is,

<
ς
♯

⌋

ℵ0
⌈

∳ ∱R2ϖR2

⌋

1 + ⦃𝜛 ς 𝜚𝜍 ⦃
2 + ⦃𝜚⦃

2⌈
ℵ0 (𝜛, 𝜚) ℷ𝜛ℷ𝜚

and the right-hand side is just ⦄
⦄

ℵ0⦄
⦄𝜔

1
2,𝜍
. ⋜

The (local) instantaneous entropy dissipation ⨚, corresponding to (1), is defined for any non-negative measurable function ℵ (𝜗, 𝜛, 𝜚)
by the formula

[⨚ (ℵ)] (𝜗, 𝜛) = 1
4 ∱S1ϖR2ϖR2

⌋

ℵ
φ
ℵ
φ
ω ς ℵℵω

⌈

log
ℵ
φ
ℵ
φ
ω

ℵℵω
ℷℸℷ𝜚ℷ𝜚ω (75)

where ℵ = ℵ (𝜗, 𝜛, 𝜚), ℵω = ℵ
⌋

𝜗, 𝜛, 𝜚ω
⌈

, ℵφ = ℵ
⌋

𝜗, 𝜛, 𝜚
φ⌈, and ℵ

φ
ω = ℵ

⌋

𝜗, 𝜛, 𝜚
φ
ω
⌈

. Now since

(3 ς 0) log 3

0

is non-negative for each pair of positive numbers 3, 0 (since the sign of 3ς 0 is always equal to the sign of (log 3 ς log 0)), it follows
that ⨚ (ℵ) is always non-negative (although it may be infinite).

Any 0 ∳ 𝜀 ε 𝐸
1 ([0, 𝜍 ] ,⨑) solving (1) on [0, 𝜍 ] with initial data 𝜀0 = 𝜀 (𝜗 = 0) is known to satisfy the entropy identity

< (𝜀 (𝜗)) + ∱

𝜗

0 ∱R2
⨚ (𝜀 (𝑇)) ℷ𝜛ℷ𝑇 = <

⌋

𝜀0
⌈

(76)

each 0 ∳ 𝜗 ∳ 𝜍 . The (space-)time integral of the (local) instantaneous entropy dissipation is simply known as the entropy dissipation
(at time 𝜗, although the 𝜗 dependence may be suppressed).

Remark 12.1. The integrand in the dissipation functional is possibly ambiguous if the quantities ℵ,ℵω,ℵφ,ℵφω vanish at some point
of the integration domain. Such a situation cannot happen at 𝜗 > 0 for classical solutions of (1) as long as the initial data is not
identically zero (see [30], Chapter 2, Section 6, titled ‘‘Lower bounds’’, and references therein). Unfortunately, it is sometimes hard
to prove that 𝜀 (𝜗, 𝜛, 𝜚) > 0 a.e. (𝜛, 𝜚) for 𝜗 > 0 at low regularity. The convention used by DiPerna and Lions in [16] is to set the
integrand to infinity at any point

⌋

𝜗, 𝜛, 𝜚, 𝜚ω, ℸ
⌈

where any of ℵ,ℵω,ℵφ,ℵφω vanishes, and we follow the same convention so as to make
use of their results.

In regimes of lesser regularity, the equality (76) may be downgraded to an entropy inequality, or fail altogether. In the 𝜔2 regime,
the version of the entropy inequality we shall ultimately require is

< (𝜀 (𝜗)) + ∱

𝜗

0 ∱R2
⨚ (𝜀 (𝑇)) ℷ𝜛ℷ𝑇 ∳ <

⌋

𝜀0
⌈

almost every 𝜗. To this end, we consider the terms <+ and <
ς separately:

Lemma 12.4. For any non-negative measurable function ℵ0 ε 𝜔
2, the positive entropy integral <+ ⌋

ℵ0
⌈

is finite, being bounded by the
square of the 𝜔2 norm:

<
+ ⌋

ℵ0
⌈

∳ ⦄

⦄

ℵ0⦄
⦄

2
𝜔2 (77)

Moreover, for any ℵ0,1,ℵ0,2 ε 𝜔
2 we have

⌉

⌉

⌉

<
+ ⌋

ℵ0,1
⌈

ς<
+ ⌋

ℵ0,2
⌈

⌉

⌉

⌉

∳
{

max
𝑆ε{1,2}

⦄

⦄

ℵ0,𝑆⦄
⦄𝜔2

}

⋛ ⦄
⦄

ℵ0,1 ς ℵ0,2⦄
⦄𝜔2 (78)



Nonlinear Analysis 248 (2024) 113609

41

T. Chen et al.

Proof. Both bounds follow immediately from Lemma 12.1. In particular, for (78) we use Lemma 12.1 with the Cauchy–Schwarz
inequality,

⌉

⌉

⌉

<
+ ⌋

ℵ0,1
⌈

ς<
+ ⌋

ℵ0,2
⌈

⌉

⌉

⌉

∳ 1
2
⦄

⦄

ℵ0,1 + ℵ0,2⦄
⦄𝜔2 ⦄

⦄

ℵ0,1 ς ℵ0,2⦄
⦄𝜔2

and conclude by the triangle inequality. ⋜

Lemma 12.5. Let us be given non-negative measurable functions

ℵ0,ℵ0,𝐿 ε 𝜔
1
2

for 𝐿 = 1, 2, 3,… , such that

sup
𝐿εN

⦄

⦄

ℵ0,𝐿⦄
⦄𝜔

1
2
< ∇

and

ℵ0,𝐿 (𝜛, 𝜚)  ℵ0 (𝜛, 𝜚) a.e. (𝜛, 𝜚) ε R2 ϖ R2

as 𝐿  ∇. Then

lim
𝐿∇

<
ς ⌋

ℵ0,𝐿
⌈

= <
ς ⌋

ℵ0
⌈

Proof. Let us denote

𝐹
𝑋
=
/

(𝜛, 𝜚) ε R2 ϖ R2 ϑ 1 + ⦃𝜛⦃
2 + ⦃𝜚⦃

2 ⨋ 𝑋
2 \

and observe that for each 𝑋 > 1, by the continuity of 𝐵ς, we may apply the dominated convergence theorem on the complement of
𝐹
𝑋
due to the fact that

+ (. ε R) 0 ∳ 𝐵
ς (.) ∳ 8

ς1

and the complement 𝐹𝐸

𝑋
of 𝐹

𝑋
is a bounded set: that is,

+ (𝑋 > 0) lim
𝐿 ∱

𝐹
𝐸

𝑋

𝐵
ς ⌋

ℵ0,𝐿
⌈

ℷ𝜛ℷ𝜚 = ∱
𝐹
𝐸

𝑋

𝐵
ς ⌋

ℵ0
⌈

ℷ𝜛ℷ𝜚

Hence if only we can show

lim
𝑋∇

sup
𝐿εN∱𝐹𝑋

𝐵
ς ⌋

ℵ0,𝐿
⌈

ℷ𝜛ℷ𝜚 = 0

then we will be done. To this end, we will decompose <
ς in a manner similar to the proof of Lemma 12.3.

Let us define the non-Gaussian function

ℏ (𝜛, 𝜚) = exp
⟩

ς
⌋

1 + ⦃𝜛⦃
2 + ⦃𝜚⦃

2⌈
1
2

⟪

and note that ⟨ℏ⟨
𝜔∇ = 8

ς1. Let us consider separately the sets (depending on 𝐿) where

0 ∳ ℵ0,𝐿 (𝜛, 𝜚) ∳ ℏ (𝜛, 𝜚)

and

ℏ (𝜛, 𝜚) < ℵ0,𝐿 (𝜛, 𝜚) ∳ 1

In the first case we have, by Lemma 12.2(3) and the fact that ⟨ℏ⟨
𝜔∇ = 8

ς1,

lim
𝑋∇

sup
𝐿εN∱𝐹𝑋

𝛚
ℵ0,𝐿∳ℏ ⋛ 𝐵

ς ⌋

ℵ0,𝐿
⌈

ℷ𝜛ℷ𝜚

∳ lim
𝑋∇∱

𝐹𝑋

𝐵
ς (ℏ) ℷ𝜛ℷ𝜚 = 0

so it only remains to consider the second case. Then again, since log 1
.
is a decreasing non-negative function for 0 < . ∳ 1, for the

second case we only need to show

lim
𝑋∇

sup
𝐿εN∱𝐹𝑋

⌋

1 + ⦃𝜛⦃
2 + ⦃𝜚⦃

2⌈
1
2 ℵ0,𝐿ℷ𝜛ℷ𝜚 = 0 (79)

but this follows immediately from the uniform boundedness of the sequence
/

ℵ0,𝐿
\

𝐿
in 𝜔

1
2, since

⌋

1 + ⦃𝜛⦃
2 + ⦃𝜚⦃

2⌈
1
2 ∳ 1

𝑋

⌋

1 + ⦃𝜛⦃
2 + ⦃𝜚⦃

2⌈

for each (𝜛, 𝜚) ε 𝐹
𝑋
. ⋜
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13. (𝛆)-Solutions

13.1. Definitions

We recall the notion of renormalized solution as introduced by DiPerna and Lions.

Definition 13.1 ([15]). Let 7 = [3, 0), where ς∇ < 3 < 0 ∳ ∇, and suppose

0 ∳ 𝜀 ε 𝜔
1
loc

⌋

7 ϖ R2 ϖ R2⌈

Then we say 𝜀 is a renormalized solution of (1) provided that
1

1 + 𝜀
𝛻

± (𝜀 , 𝜀 ) ε 𝜔
1
loc

⌋

7 ϖ R2 ϖ R2⌈

and it holds
⟪

𝜑

𝜑𝜗
+ 𝜚 ⋛ ϱ

𝜛

⟫

log (1 + 𝜀 ) = 1
1 + 𝜀

⌋

𝛻
+ (𝜀 , 𝜀 ) ς𝛻

ς (𝜀 , 𝜀 )
⌈

in the sense of distributions on 7 ϖ R2 ϖ R2.

Throughout this article, although not formally required in the definition of renormalized solutions, we impose the requirement
that solutions of Boltzmann’s equation will at least be in 𝜔

1 uniformly in 𝜗, which in particular implies that ⊲
𝜀
is in 𝜔

1
𝜛
uniformly

in 𝜗, i.e.

𝜀 ε 𝜔
∇ ⌋

7 ,𝜔
1⌈ and ⊲

𝜀
ε 𝜔

∇ ⌋

7 ,𝜔
1
𝜛

⌋

R2⌈⌈

In particular, given a solution 𝜀 defined for 3 ∳ 𝜗 < 0, the function 𝑁 (𝜗, 𝜛, 𝜚) satisfying

𝑁
# (𝜗, 𝜛, 𝜚) = ∱

𝜗

3

⌋

⊲
𝜀

⌈# (ℸ, 𝜛, 𝜚) ℷℸ

is well-defined almost everywhere (recall that the notation 𝑁
# is defined by (11)) [15]. Thus we can view ⊲

𝜀
as an integrating factor

in Boltzmann’s equation to write a solution 𝜀 in the form

𝜀
# (𝜗, 𝜛, 𝜚) ς 𝜀

# (., 𝜛, 𝜚) exp
⌋

ς
⌋

𝑁
# (𝜗, 𝜛, 𝜚) ς 𝑁

# (., 𝜛, 𝜚)
⌈⌈

= ∱

𝜗

.

𝛻
+ (𝜀 , 𝜀 )# (𝑇, 𝜛, 𝜚) ⋛ exp

⌋

ς
⌋

𝑁
# (𝜗, 𝜛, 𝜚) ς 𝑁

# (𝑇, 𝜛, 𝜚)
⌈⌈

ℷ𝑇

(80)

for almost all 𝜛, 𝜚 ε R2 and 3 ∳ . < 𝜗 < 0. This form of Boltzmann’s equation is particularly convenient because it can be stated under
minimal integrability assumptions (for example, neither 𝛻+ nor 𝛻ς need be locally integrable, as long as they can be integrated
along almost every characteristic). It is possible to show [15] that renormalized solutions of Boltzmann’s equation (1) (having constant
collision kernel, so that the loss term is proportional to ⊲

𝜀
) verify (80) whenever ⊲

𝜀
ε 𝜔

∇ ⌋

7 ,𝜔
1
𝜛

⌋

R2⌈⌈.
We are now ready to define (ω)-solutions of (1), although we defer til Section 15 the proof of their existence. Recall again, from

(5),

⦄

⦄

ℵ0⦄
⦄𝜔

1
2
= ∱R2ϖR2

⌋

1 + ⦃𝜛⦃
2 + ⦃𝜚⦃

2⌈
⌉

⌉

ℵ0 (𝜛, 𝜚)⌉
⌉

ℷ𝜛ℷ𝜚

and that the entropy is well-defined and finite on 𝜔
2 ❲

𝜔
1
2, by Lemma 12.3 and Lemma 12.4.

Definition 13.2. Let us be given a non-negative measurable function

𝜀 ε 𝜔
1
loc

⌋

[0,∇) ϖ R2 ϖ R2⌈

Then we will say that 𝜀 is a (ω)-solution of (1) provided that 𝜀 is a renormalized solution of (1) on [0,∇), with

𝜀 (𝜗 = 0) = 𝜀0 ε 𝜔
2 (

𝜔
1
2 (81)

for which

𝜀 ε 𝐸
⌋

[0,∇) ,𝜔1⌈ (82)

and that there exists a number 𝜍 ω (𝜀 ),

0 < 𝜍
ω (𝜀 ) ∳ ∇

with corresponding interval

7
ω (𝜀 ) =

⟩

0, 𝜍 ω (𝜀 )
⌈

such that the following holds:



Nonlinear Analysis 248 (2024) 113609

43

T. Chen et al.

For each compact sub-interval 𝑃 ⊳ 7
ω (𝜀 ) it holds

𝜀 ε 𝐸
⌋

𝑃 ,𝜔
2⌈ (83)

and

𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

1 ⌋
𝑃 ,𝜔

2⌈ (84)

and, in the event 𝜍 ω (𝜀 ) < ∇, we also require

𝜀 ( 𝐸
⌋⟩

0, 𝜍 ω (𝜀 )
)

,𝜔
2⌈ (85)

Additionally, we require that for almost every 𝜗 with

0 ∳ 𝜗 < ∇

we have each of the following estimates:

∱R2ϖR2
𝜀 (𝜗) ℷ𝜛ℷ𝜚 = ∱R2ϖR2

𝜀0ℷ𝜛ℷ𝜚 (86)

∱R2ϖR2
𝜚𝜀 (𝜗) ℷ𝜛ℷ𝜚 = ∱R2ϖR2

𝜚𝜀0ℷ𝜛ℷ𝜚 (87)

∱R2ϖR2
⦃𝜚⦃

2
𝜀 (𝜗) ℷ𝜛ℷ𝜚 ∳ ∱R2ϖR2

⦃𝜚⦃
2
𝜀0ℷ𝜛ℷ𝜚 (88)

∱R2ϖR2
⦃𝜛 ς 𝜚𝜗⦃

2
𝜀 (𝜗) ℷ𝜛ℷ𝜚 ∳ ∱R2ϖR2

⦃𝜛⦃
2
𝜀0ℷ𝜛ℷ𝜚 (89)

and

< (𝜀 (𝜗)) + ∱

𝜗

0 ∱R2
⨚ (𝜀 (.)) ℷ𝜛ℷ. ∳ <

⌋

𝜀0
⌈

(90)

Remark 13.1. Note carefully that uniqueness is unknown, at present, in the class of (ω)-solutions for a given initial data 𝜀0, even
on an arbitrarily small time interval [0, 𝑀] ⊳ 7

ω (𝜀 ). This is why the notation 𝜍
ω (𝜀 ) , 7ω (𝜀 ) makes explicit reference to the solution

𝜀 , not only the initial data 𝜀0: for a given 𝜀0 there may well be multiple (ω)-solutions 𝜀 with initial data 𝜀0 but different values of
𝜍
ω (𝜀 ).

13.2. Discussion

A (ω)-solution, as provided by Definition 13.2, is intuitively understood as a global renormalized solution which happens to be
(simultaneously) a distributional solution on some (possibly finite) interval 7ω (𝜀 ). The solution can be viewed as an 𝜔

2 solution on
7
ω (𝜀 ), but the solution is not continuous into 𝜔

2 on any interval 𝑃 containing 7
ω (𝜀 ) as a proper subset; therefore, the solution is in

this sense maximal. Note carefully that maximality is for the solution, not the data, in view of possible non-uniqueness: two maximal
solutions need not coincide for any 𝜗 > 0, nor do their intervals 7ω need to coincide.

The idea of constructing a renormalized solution of (1), which is also a solution in some stronger sense on some initial interval,
has been studied previously by Lions: see [26], Theorem V.1. In that reference, Lions establishes a class of global renormalized
solutions which satisfy in addition certain differential inequalities, which Lions refers to as dissipation inequalities; the solutions so
obtained are called dissipative solutions. He proves the existence of such solutions (Theorems IV.1 and IV.2 of the same reference);
however, general renormalized solutions are not guaranteed to satisfy such dissipation inequalities. The differential inequalities are
defined via testing a dissipative solution 𝜀 against functions drawn from a class of higher integrability and decay. (Here testing is
not meant in a distributional sense, but a different sense reminiscent of viscosity solutions.) Taking a classical (or sufficiently strong)
solution 2𝜀 as the test function in the differential inequalities leads immediately to his Theorem V.1 on weak-strong uniqueness, namely
𝜀 = 2𝜀 insofar as 2𝜀 is defined and so controlled (i.e. on the initial interval).

Remark 13.2. At no point in this paper do we employ dissipative solutions, weak solutions in the sense of [26], or differential
inequalities so obtained, although we mention them in passing; note carefully that the strong compactness result of [26] does not
require dissipation inequalities in its general formulation, namely Theorem II.1 of that reference.

13.3. Integrability and time continuity

The objective of this sub-section is to show that the 𝛻
+ bound (84) combined with the initial data condition (81) automatically

implies the 𝜔
2 continuity (83), and that (ω)-solutions are distributional solutions of (1) on 7

ω (𝜀 ): in particular, each of 𝛻+ and 𝛻
ς

is in

𝜔
1
loc

⌋

7
ω (𝜀 ) ϖ R2 ϖ R2⌈

Of course this is immediate for 𝛻+ from our assumption (84); hence, we only have to prove local integrability for 𝛻ς, and the 𝜔
2

time continuity of 𝜀 .
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Lemma 13.1. For any compact interval 𝑃 ⊳ R, and any 𝜀 (𝜗, 𝜛, 𝜚) such that the right-hand side is finite, it holds

⦄

⦄

⦄

⊲
𝜀

⦄

⦄

⦄𝜔6
⟪

𝑃 ,𝜔
3∂2
𝜛 (R2)

⟫ ∳ 𝐸
⦄

⦄

⦄

⦅𝜚⦆
2
𝜀
⦄

⦄

⦄

1
2
𝜔∇(𝑃 ,𝜔1) ⟨𝜀⟨

1
2

𝜔3
⟪

𝑃 ,𝜔
3
𝜛
𝜔
3∂2
𝜚 (R2ϖR2)

⟫

the constant depending on neither 𝑃 nor 𝜀 .

Proof. By Hölder’s inequality,

⊲
𝜀 (𝜗, 𝜛) = ∱R2

𝜀 (𝜗, 𝜛, 𝜚) ℷ𝜚 ∳ 𝐸 ⟨⦅𝜚⦆ 𝜀 (𝜗, 𝜛, 𝜚)⟨
𝜔
6∂5
𝜚 (R2)

Also, by interpolation

⟨⦅𝜚⦆ 𝜀 (𝜗)⟨
𝜔
6∂5
𝜚 (R2) ∳ 𝐸

⦄

⦄

⦄

⦅𝜚⦆
2
𝜀 (𝜗)⦄⦄

⦄

1
2
𝜔
1
𝜚(R2) ⟨𝜀 (𝜗)⟨

1
2
𝜔
3∂2
𝜚 (R2)

hence

⊲
𝜀 (𝜗, 𝜛) ∳ 𝐸

⦄

⦄

⦄

⦅𝜚⦆
2
𝜀 (𝜗, 𝜛, 𝜚)⦄⦄

⦄

1
2
𝜔
1
𝜚(R2) ⟨𝜀 (𝜗, 𝜛, 𝜚)⟨

1
2
𝜔
3∂2
𝜚 (R2)

Apply the norm 𝜔

3
2
𝜛

⌋

R2⌈ to both sides and use Hölder.

⦄

⦄

⦄

⊲
𝜀 (𝜗)⦄⦄

⦄𝜔
3∂2
𝜛 (R2) ∳ 𝐸

⦄

⦄

⦄

⦅𝜚⦆
2
𝜀 (𝜗)⦄⦄

⦄

1
2
𝜔1 ⟨𝜀 (𝜗)⟨

1
2
𝜔
3
𝜛
𝜔
3∂2
𝜚 (R2ϖR2)

Take the 𝜔
6 (𝑃 ) norm for the 𝜗 variable on both sides and apply Hölder’s inequality once more to conclude. ⋜

Let us show that a renormalized solution on [0,∇) satisfying (81), (86), (88), and (89), as well as (84) with 𝑃 = [0, 𝜍 ],
automatically satisfies the local integrability

𝛻
ς (𝜀 , 𝜀 ) = ⊲

𝜀
𝜀 ε 𝜔

1
loc

⌋

𝑃 ϖ R2 ϖ R2⌈

We will need the Strichartz estimates

⦄

⦄

⨏ ℵ0⦄
⦄

𝜔
3
𝜗
𝜔
3
𝜛
𝜔

3
2
𝜚 (RϖR2ϖR2)

∳ 𝐸 ⦄

⦄

ℵ0⦄
⦄𝜔2 (91)

and

⦄

⦄

⨏ ℵ0⦄
⦄

𝜔

7
3
𝜗
𝜔

7
2
𝜛
𝜔

7
5
𝜚 (RϖR2ϖR2)

∳ 𝐸 ⦄

⦄

ℵ0⦄
⦄𝜔2 (92)

which hold for any ℵ0 ε 𝜔
2 by Proposition 7.2.

First, for 𝜗 ε 𝑃 by (80) we have the pointwise upper bound

𝜀 (𝜗, 𝜛, 𝜚) ∳
⟩

⨏ (𝜗) 𝜀0
)

(𝜛, 𝜚) + ∱

𝜗

0

⟩

⨏ (𝜗 ς .)𝛻+ (𝜀 , 𝜀 ) (.)
)

(𝜛, 𝜚) ℷ. (93)

Here we have used the non-negativity of ⊲
𝜀
to bound the exponential factors involving 𝑁

# (i.e. integrating factors) uniformly by 1.
In any case, substituting 𝜍 for 𝜗 in the upper limit of the Duhamel integral on the right side of (93), and using the non-negativity

of 𝛻+ (𝜀 , 𝜀 ), we have

𝜀 (𝜗, 𝜛, 𝜚) ∳
⟩

⨏ (𝜗) 𝜀0
)

(𝜛, 𝜚) + ∱

𝜍

0

⟩

⨏ (𝜗 ς .)𝛻+ (𝜀 , 𝜀 ) (.)
)

(𝜛, 𝜚) ℷ.

Applying Minkowski’s inequality and (91), we obtain

⟨𝜀⟨

𝜔3
⌊

𝑃 ,𝜔
3
𝜛
𝜔

3
2
𝜚 (R2ϖR2)

⌋

∳ 𝐸

⟫

❲

❲

❲

❳

⦄

⦄

𝜀0⦄
⦄𝜔2 + ∱

𝜍

0
⦄

⦄

⨏ (𝜗 ς .)𝛻+ (𝜀 , 𝜀 ) (.)⦄
⦄

𝜔3
⌊

𝑃 ,𝜔
3
𝜛
𝜔

3
2
𝜚 (R2ϖR2)

⌋ ℷ.

/

\

\

\

(

∳ 𝐸

{

⦄

⦄

𝜀0⦄
⦄𝜔2 + ∱

𝜍

0
⦄

⦄

𝛻
+ (𝜀 , 𝜀 ) (.)⦄

⦄𝜔2 ℷ.

}

(94)

and the right-hand side is finite by hypothesis. Combining this with Lemma 13.1 and the fact that 𝜀 (𝜗) ε 𝜔
1
2,𝜗 each 𝜗 allows us to

conclude that

⊲
𝜀
ε 𝜔

6
{

𝑃 ,𝜔

3
2
𝜛

⌋

R2⌈
}
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On the other hand, by Hölder’s inequality,
⦄

⦄

⦄

⊲
𝜀
𝜀
⦄

⦄

⦄

𝜔

42
25
𝜗

𝜔

21
20
𝜛

𝜔

7
5
𝜚 (𝑃ϖR2ϖR2)

∳ ⦄

⦄

⦄

⊲
𝜀

⦄

⦄

⦄

𝜔
6
𝜗
𝜔

3
2
𝜛 (𝑃ϖR2)

⟨𝜀⟨

𝜔

7
3
𝜗
𝜔

7
2
𝜛
𝜔

7
5
𝜚 (𝑃ϖR2ϖR2)

so arguing again by the Duhamel inequality, as in the proof of (94) above, using now (92) to place

𝜀 ε 𝜔

7
3
𝜗
𝜔

7
2
𝜛 𝜔

7
5
𝜚

⌋

𝑃 ϖ R2 ϖ R2⌈

we may conclude that

𝛻
ς (𝜀 , 𝜀 ) = ⊲

𝜀
𝜀 ε 𝜔

42
25
𝜗
𝜔

21
20
𝜛 𝜔

7
5
𝜚

⌋

𝑃 ϖ R2 ϖ R2⌈

so, in particular,

𝛻
ς (𝜀 , 𝜀 ) = ⊲

𝜀
𝜀 ε 𝜔

1
loc

⌋

𝑃 ϖ R2 ϖ R2⌈

Thus (1) holds in the sense of distributions on 𝑃 = [0, 𝜍 ].

Remark 13.3. We have actually shown more, namely that for a (ω)-solution 𝜀 ,

𝛻
ς (𝜀 , 𝜀 ) ε 𝜔

ℏ

𝜗,𝜛,𝜚,loc
⌋

7
ω (𝜀 ) ϖ R2

𝜛
ϖ R2

𝜚

⌈

for some ℏ > 1. It is also true that

𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

ℏ

𝜗,𝜛,𝜚,loc
⌋

7
ω (𝜀 ) ϖ R2

𝜛
ϖ R2

𝜚

⌈

(95)

for some ℏ > 1, although it does not follow immediately from (84) alone, due to the 𝜔
1 integrability in time. There are many ways

to see this (e.g. using Strichartz and convolution inequalities), but perhaps the simplest is to use conservation of mass to interpolate
against (84). Indeed,

⦄

⦄

𝛻
± (𝜀 , 𝜀 )⦄

⦄

𝜔
∇
𝜗
𝜔

1
2
𝜛
𝜔
1
𝜚

⟪

[0,∇)ϖR2
𝜛
ϖR2

𝜚

⟫

∳ 𝐸 ⟨𝜀⟨
2
𝜔
∇
𝜗
𝜔
1
𝜛,𝜚

⟪

[0,∇)ϖR2
𝜛
ϖR2

𝜚

⟫ (96)

follows (by Hölder’s inequality) immediately from the fact that, considered in the velocity variable only, due to the constant collision
kernel, 𝛻± is continuous as a map 𝜔

1
𝜚

⌋

R2⌈ ϖ 𝜔
1
𝜚

⌋

R2⌈  𝜔
1
𝜚

⌋

R2⌈. Interpolating (96) against (84) (which remains a valid operation
in fractional integrability in this case), an epsilon away from the (84) endpoint, provides a quantitative ℏ > 1 for which (95) holds.

It remains to show, again with 𝑃 = [0, 𝜍 ] and under the same assumptions, that

𝜀 ε 𝐸
⌋

𝑃 ,𝜔
2⌈

Indeed, we have by Duhamel’s formula, for 𝜗 ε 𝑃 ,

⨏ (ς𝜗) 𝜀 (𝜗) + ∱

𝜗

0
⨏ (ς.)𝛻ς (𝜀 , 𝜀 ) (.) ℷ. = 𝜀0 + ∱

𝜗

0
⨏ (ς.)𝛻+ (𝜀 , 𝜀 ) (.) ℷ.

and the terms are all non-negative (on both sides). Since 𝜀0 ε 𝜔
2 and 𝛻

+ (𝜀 , 𝜀 ) ε 𝜔
1 ⌋

𝑃 ,𝜔
2⌈, we therefore have

⨏ (ς𝜗)𝛻ς (𝜀 , 𝜀 ) (𝜗) ε 𝜔
2 ⌋R2

𝜛
ϖ R2

𝜚
,𝜔

1
𝜗
(𝑃 ,R)

⌈

Of course we also have

⨏ (ς𝜗)𝛻+ (𝜀 , 𝜀 ) (𝜗) ε 𝜔
2 ⌋R2

𝜛
ϖ R2

𝜚
,𝜔

1
𝜗
(𝑃 ,R)

⌈

which follows directly from our hypothesis 𝛻+ (𝜀 , 𝜀 ) ε 𝜔
1 ⌋

𝑃 ,𝜔
2⌈ and Minkowski’s inequality.

Now by Duhamel again, for 0 ∳ . ∳ 𝜗 ∳ 𝜍 we have

⨏ (ς𝜗) 𝜀 (𝜗) ς ⨏ (ς.) 𝜀 (.) = ∱

𝜗

.

⨏ (ς𝑇)
/

𝛻
+ (𝜀 , 𝜀 ) ς𝛻

ς (𝜀 , 𝜀 )
\

(𝑇) ℷ𝑇

so taking the 𝜔
2 norm of both sides (without applying Minkowski) it follows from dominated convergence in time6 that the map

𝜗  ⨏ (ς𝜗) 𝜀 (𝜗)

is in the class

𝐸
⌋

𝑃 ,𝜔
2⌈

But the continuity of ⨏ (ς𝜗) 𝜀 (𝜗) is equivalent to the continuity of 𝜀 (𝜗), so we find that 𝜀 ε 𝐸
⌋

𝑃 ,𝜔
2⌈.

We also have:

6 Expand the 𝜔
2 norm of the Duhamel integral to obtain a double integral involving two time variables, say 𝑇 and 𝑇

φ, and let 𝜗, . each be drawn from a
shrinking family of open neighborhoods of some fixed 𝜗0 ε 𝑃
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Proposition 13.2. If 𝜀 is a (ω)-solution of (1) then

𝜀 ε B7
ω(𝜀 )

7ω(𝜀 )

Proof. Follows immediately from Proposition 10.4 and the definition of (ω)-solution. ⋜

14. Criterion on finite-time breakdown of continuity

The criterion (85) in the definition of (ω)-solutions implies that (ω)-solutions are in some sense maximal (indeed, verifying this
maximality plays a central role in the proof of existence of (ω)-solutions, as we shall see in Section 15). One might conjecture, based
on Corollary 9.4, that

lim
𝜗𝜍 ω(𝜀 )ς

⟨𝜀 (𝜗)⟨
𝜔2 = ∇ (97)

whenever 𝜍 ω (𝜀 ) < ∇; however, it is not at all clear whether (97) holds for every (ω)-solution 𝜀 of (1) with 𝜍
ω (𝜀 ) < ∇. Indeed (97)

cannot follow simply from the local existence theory7, due to the scaling-criticality of 𝜔2 for (1).
Nevertheless, there are several scaling-critical criteria which one can prove for finite-time breakdown of continuity of (1): the

next Theorem establishes two such criteria, one stated in terms of the gain-only flow (namely 𝜍g.o.), the other in terms of a time
integral for the gain term 𝛻

+, reminiscent of functional settings studied by Klainerman and Machedon. [23,28]

Theorem 14.1. Let 𝜀 be a (ω)-solution of (1) corresponding to some initial data

0 ∳ 𝜀0 ε 𝜔
2 (

𝜔
1
2

Then each of the following is true:

(1) For any compact sub-interval 𝑃 ⊳ 7
ω (𝜀 ),

inf
𝜗ε𝑃

𝜍g.o. (𝜀 (𝜗)) > 0 (98)

(2) Either 𝜍 ω (𝜀 ) = ∇ or each of the following holds:

(1) For any 𝜗 ε 7
ω (𝜀 ) there holds

𝜍g.o. (𝜀 (𝜗)) ∳ 𝜍
ω (𝜀 ) ς 𝜗 (99)

hence

inf
𝜗ε7ω(𝜀 )

𝜍g.o. (𝜀 (𝜗)) = 0

(2) There holds

∱
7ω(𝜀 )

⦄

⦄

𝛻
+ (𝜀 , 𝜀 ) (𝜗)⦄

⦄𝜔2 ℷ𝜗 = ∇ (100)

Proof. The (unconditional) first claim (98) follows immediately from the lower semi-continuity of 𝜍g.o., since 𝜀 is continuous into
𝜔
2 on compact subintervals of 7ω (𝜀 ). Moreover, the time-continuity argument from Section 13.3 shows that, subject to the condition

𝜍
ω (𝜀 ) < ∇, the 𝛻

+ blow-up (100) must hold, since otherwise we would have continuity on the compact interval

𝜀 ε 𝐸
⌋⟩

0, 𝜍 ω (𝜀 )
)

,𝜔
2⌈

in contradiction with the definition of (ω)-solution. Thus we only need to show that if 𝜍 ω (𝜀 ) < ∇ then (100) implies (99).
Suppose (99) fails to hold; then there exists a time 𝜗0 ε 7

ω (𝜀 ) such that

𝜍g.o.
⌋

𝜀
⌋

𝜗0
⌈⌈

> 𝜍
ω (𝜀 ) ς 𝜗0

This implies by the definition of 𝜍g.o. that

⨛ = ∱

𝜍
ω(𝜀 )ς𝜗0

0

⦄

⦄

⦄

𝛻
+ ⌋

Zg.o.
⌋

𝜀
⌋

𝜗0
⌈⌈

(.)
⌈

⦄

⦄

⦄𝜔2 ℷ. < ∇

Hence, by the comparison principle Proposition 13.2, for

𝜗0 < 𝜗 < 𝜍
ω (𝜀 )

7 Or uniqueness, for that matter, should it hold
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it holds

∱

𝜗

𝜗0

⦄

⦄

𝛻
+ (𝜀 , 𝜀 ) (.)⦄

⦄𝜔2 ℷ𝜗 ∳ ⨛

Therefore, by monotone convergence,

∱

𝜍
ω(𝜀 )

𝜗0

⦄

⦄

𝛻
+ (𝜀 , 𝜀 ) (.)⦄

⦄𝜔2 ℷ𝜗 ∳ ⨛ < ∇

in contradiction with (100). ⋜

15. Existence of (𝛆)-solutions

15.1. The truncation scheme

In order to construct local solutions of Boltzmann’s equation at low regularity, we will be relying on a compactness argument
based on a modified equation which is known to be globally well-posed. This will be essentially the same scheme as appears in
the original work of DiPerna and Lions ([15] Section VIII and references therein), where both the evolution and the initial data
are modified. Crucially, for the purposes of this paper, the modified collision kernel must be bounded from above pointwise by
the uniform constant determined by the normalization of (1): this is required because later we will need to prove the comparison
principle for the modified equation whereas our definition of B7

7
is in reference to the standard version of the gain-only flow. Recall

again that the definition of B7

7
does not require 𝜀

𝐿
to solve Boltzmann’s equation.

Let us recall the spatial density

⊲
𝜀 (𝜗, 𝜛) = ∱R2

𝜀 (𝜗, 𝜛, 𝜚) ℷ𝜚

and formally set
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜀
𝐿
= 1

1 + 𝐿ς1⊲
𝜀𝐿

]

𝛻
+
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

ς𝛻
ς
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

⟦

(101)

where 0 ∳ 𝜀
𝐿 (𝜗 = 0) = 𝜀

𝐿,0 ε ⨑ approaches 𝜀0 in a sense to be specified later, and

0
𝐿
ε 𝐸

∇
0

⌋

R2 ϖ S1
⌈

⊳ 𝜔
1 ⌋R2 ϖ S1

⌈

(

𝜔
∇ ⌋

R2 ϖ S1
⌈

(102)

refers to a smooth compactly supported collision kernel (depending only radially on the relative velocity for each 𝐿) satisfying the
pointwise constraints

+ (𝐿 ε N) 0 ∳ 0
𝐿
∳ 1

2ℶ (103)

and

0
𝐿


1
2ℶ almost everywhere (104)

as 𝐿  ∇, having defined 𝛻
±
0𝐿
by substituting 0

𝐿
for 0 in (2) and (3).

For technical reasons, we shall also assume that, for each 𝐿 ε N, there exists a number 𝑀
𝐿
> 0 (tending to zero as 𝐿  ∇) such

that

min
⌋

⦃𝐼⦃ , ⦃𝐼⦃
ς1⌈

< 𝑀
𝐿

⥳ 0
𝐿 (𝐼, ℸ) = 0 (105)

and, for 𝐼 ⨐ 0,

min
{

⦃𝐼 ⋛ ℸ⦃
⦃𝐼⦃

, 1 ς ⦃𝐼 ⋛ ℸ⦃
⦃𝐼⦃

}

< 𝑀
𝐿

⥳ 0
𝐿 (𝐼, ℸ) = 0 (106)

These conditions intuitively forbid scattering events with small or large relative speed, or those residing inside a set of deflection
angles, that set being defined explicitly and having small measure.

We recall below (cf. [5,15]) a simple global well-posedness result for the truncated Eq. (101): in fact, for the proof, it will be
slightly modified further still by initially substituting ⊲

⦃
𝜀𝐿⦃

for ⊲
𝜀𝐿
, since we do not know a priori that 𝜀

𝐿
is non-negative for positive

values of 𝜗.
We turn to the basic global well-posedness result for (101).

Theorem 15.1. For 𝐿 ε N, let 0
𝐿
be given as above and let 𝜀

𝐿,0 ε ⨑ be a non-negative function; furthermore, assume that for each 𝐿 there
exists 4

𝐿
> 0 such that, for all (𝜛, 𝜚) ε R2 ϖ R2,

𝜀
𝐿,0 (𝜛, 𝜚) ⨋ 4

𝐿
exp

⟪

ς1
2 ⦃𝜛⦃

2 ς 1
2 ⦃𝜚⦃

2
⟫

(107)

Then there exists a unique non-negative mild solution

𝜀
𝐿
ε 𝐸

1 ([0,∇) ,⨑)
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of the truncated Boltzmann Eq. (101) such that 𝜀
𝐿 (𝜗 = 0) = 𝜀

𝐿,0; moreover, for all (𝜗, 𝜛, 𝜚) ε [0,∇) ϖ R2 ϖ R2,

𝜀
𝐿 (𝜗, 𝜛, 𝜚) > 0

Additionally, for each 𝜗 ⨋ 0, we have the global conservation of mass,

∱R2ϖR2
𝜀
𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜛ℷ𝜚 = ∱R2ϖR2

𝜀
𝐿,0 (𝜛, 𝜚) ℷ𝜛ℷ𝜚 (108)

the global conservation of momentum,

∱R2ϖR2
𝜚𝜀

𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜛ℷ𝜚 = ∱R2ϖR2
𝜚𝜀

𝐿,0 (𝜛, 𝜚) ℷ𝜛ℷ𝜚 (109)

the global conservation of kinetic energy,

∱R2ϖR2
⦃𝜚⦃

2
𝜀
𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜛ℷ𝜚 = ∱R2ϖR2

⦃𝜚⦃
2
𝜀
𝐿,0 (𝜛, 𝜚) ℷ𝜛ℷ𝜚 (110)

a similar conservation law for spatial moments,

∱R2ϖR2
⦃𝜛 ς 𝜚𝜗⦃

2
𝜀
𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜛ℷ𝜚 = ∱R2ϖR2

⦃𝜛⦃
2
𝜀
𝐿,0 (𝜛, 𝜚) ℷ𝜛ℷ𝜚 (111)

and

∱R2ϖR2
(𝜛 ς 𝜚𝜗) ⋛ 𝜚 𝜀

𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜛ℷ𝜚 = ∱R2ϖR2
𝜛 ⋛ 𝜚 𝜀

𝐿,0 (𝜛, 𝜚) ℷ𝜛ℷ𝜚 (112)

and the entropy identity

<
⌋

𝜀
𝐿 (𝜗)

⌈

+ ∱

𝜗

0 ∱R2

1
1 + 𝐿ς1⊲

𝜀𝐿

⨚
0𝐿

⌋

𝜀
𝐿 (𝑇)

⌈

ℷ𝜛ℷ𝑇 = <
⌋

𝜀
𝐿,0
⌈

(113)

where ⨚
0𝐿
refers to the entropy dissipation defined in reference to the collision kernel 0

𝐿
, namely

⨚
0𝐿
(ℵ) = 1

4 ∱S1ϖR2ϖR2
0
𝐿

⌋

ℵ
φ
ℵ
φ
ω ς ℵℵω

⌈

log
ℵ
φ
ℵ
φ
ω

ℵℵω
ℷℸℷ𝜚ℷ𝜚ω (114)

where 0
𝐿
denotes 0

𝐿

⌋

𝜚 ς 𝜚ω
⌈

(the integrand is everywhere finite since 𝜀
𝐿
is nowhere vanishing).

Proof. See Appendix. ⋜

15.2. The comparison principle

We aim to show that the Schwartz solutions 𝜀
𝐿
from Section 15.1 satisfy the comparison principle:

𝜀
𝐿
ε B7

7
(115)

where 7 = [0,∇). Now due to the fact that 𝜀
𝐿
is Schwartz we clearly have

𝛻
+ ⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

ε 𝜔
1 ⌋

𝑃 ,𝜔
2⌈

for any compact 𝑃 ⊳ 7 , and that the proof of Proposition 10.4 only depends on Lemma 10.3. The only problem is that 𝜀
𝐿
does

not satisfy (1), but rather (101). But the proof of Lemma 10.3 does not actually require 𝜀
𝐿
to satisfy (1): the proof carries through

(simply replacing 𝜀 by 𝜀
𝐿
everywhere) if only it holds the pointwise upper bound for 0 ∳ 𝜗0 < 𝜗 < ∇

𝜀
𝐿 (𝜗) ∳ ⨏

⌋

𝜗 ς 𝜗0
⌈

𝜀
𝐿

⌋

𝜗0
⌈

+ ∱

𝜗

𝜗0
⨏ (𝜗 ς .)𝛻+ ⌋

𝜀
𝐿 (.)

⌈

ℷ.

noting carefully 𝛻
+ is that of (1), not (101). But we can verify this inequality directly from Duhamel’s formula:

𝜀
𝐿 (𝜗) = ⨏ (𝜗 ς .) 𝜀𝐿 (.) + ∱

𝜗

.

⨏ (𝜗 ς 𝑇)
𝛻

+
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

ς𝛻
ς
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

1 + 𝐿ς1⊲
𝜀𝐿

(𝑇) ℷ𝑇

∳ ⨏ (𝜗 ς .) 𝜀𝐿 (.) + ∱

𝜗

.

⨏ (𝜗 ς 𝑇)
𝛻

+
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

1 + 𝐿ς1⊲
𝜀𝐿

(𝑇) ℷ𝑇

∳ ⨏ (𝜗 ς .) 𝜀𝐿 (.) + ∱

𝜗

.

⨏ (𝜗 ς 𝑇)𝛻+
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

(𝑇) ℷ𝑇

∳ ⨏ (𝜗 ς .) 𝜀𝐿 (.) + ∱

𝜗

.

⨏ (𝜗 ς 𝑇)𝛻+ ⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

(𝑇) ℷ𝑇

where we have used the uniform bound 0
𝐿
∳ (2ℶ)ς1 in the last step. Hence we may conclude (115).
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15.3. The convergence argument

We are ready to prove:

Theorem 15.2. For any

0 ∳ 𝜀0 ε 𝜔
2 (

𝜔
1
2

there exists a (ω)-solution of (1) corresponding to the initial data 𝜀0.

Proof. To begin, consider the unique solutions 𝜀
𝐿
from Theorem 15.1, corresponding to non-negative Schwartz initial data 𝜀

𝐿,0
which we assume to satisfy each of the following:

lim
𝐿∇

⦄

⦄

𝜀
𝐿,0 ς 𝜀0⦄

⦄𝜔2 ❲𝜔
1
2
= 0 (116)

lim
𝐿∇

𝜀
𝐿,0 (𝜛, 𝜚) = 𝜀0 (𝜛, 𝜚) a.e (𝜛, 𝜚) ε R2 ϖ R2 (117)

𝜀
𝐿,0 ⨋ 4

𝐿
exp

⟪

ς1
2 ⦃𝜛⦃

2 ς 1
2 ⦃𝜚⦃

2
⟫

(118)

with 4
𝐿
 0 and 𝐿  ∇, no other conditions being imposed on the sequence 𝜀

𝐿,0. Note that (116) implies

lim
𝐿∇∱R2ϖR2

⌋

⦃𝜛⦃
2 + ⦃𝜚⦃

2⌈
⌉

⌉

𝜀
𝐿,0 ς 𝜀0⌉

⌉

ℷ𝜛ℷ𝜚 = 0 (119)

Such a sequence can be constructed by first producing a sequence of smooth compactly supported approximants 2𝜀
𝐿,0 via convolution

and truncation, and then writing 𝜀0,𝐿 as the sum of 2𝜀
𝐿,0 and the function on the right-hand side of (117) with, say, 4𝐿 = 1

𝐿
. Passing

to a subsequence, also denoted 𝜀
𝐿,0, provides (117).

It follows immediately that

sup
𝐿εN

⦄

⦄

𝜀
𝐿,0⦄
⦄𝜔2 ❲𝜔

1
2
< ∇

and hence by Lemmas 12.3 and 12.4 we also have

sup
𝐿εN

<
± ⌋

𝜀
𝐿,0
⌈

< ∇

Then following the DiPerna-Lions argument [15,16] one shows the weak compactness for the solution sequence 𝜀
𝐿
, and that any

limit point is a renormalized solution of (1). Moreover, passing to a subsequence 𝐿
𝐽
(𝐽 ε N), and using the 𝜔

1 (norm topology)
compactness result of Lions [26], we may assume (aside from the usual weak convergence) the pointwise convergence

𝜀
𝐿𝐽

 𝜀 a.e. (𝜗, 𝜛, 𝜚) ε [0,∇) ϖ R2 ϖ R2

as 𝐽  ∇, where 𝜀 is a renormalized solution of (1). Our claim is that the limiting function 𝜀 is, in fact, a (ω)-solution of (1).
We note that the 𝜔

1 time continuity (82) follows from the DiPerna-Lions argument. Let us turn to the bounds on moments and
entropy.

Let us begin with the kinetic energy bound. Since 𝜀 is the weak limit of the sequence 𝜀
𝐿
, it follows for any non-negative function

𝐴 (𝜗, 𝜛, 𝜚), smooth and compactly supported in all variables, with ⟨𝐴⟨
𝜔∇ ∳ 1, and assuming 𝐴 is supported in a time interval (3, 0) of

size 𝑇,

∱(0,∇)ϖR2ϖR2
⦃𝜚⦃

2
𝐴 (𝜗, 𝜛, 𝜚) 𝜀 (𝜗, 𝜛, 𝜚) ℷ𝜗ℷ𝜛ℷ𝜚

= lim
𝐿∇∱(0,∇)ϖR2ϖR2

⦃𝜚⦃
2
𝐴 (𝜗, 𝜛, 𝜚) 𝜀𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜗ℷ𝜛ℷ𝜚

∳ 𝑇 lim inf
𝐿∇

sup
𝜗ε(3,0)∱R2ϖR2

⦃𝜚⦃
2
𝜀
𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜛ℷ𝜚

= 𝑇 lim inf
𝐿∇ ∱R2ϖR2

⦃𝜚⦃
2
𝜀
𝐿,0 (𝜛, 𝜚) ℷ𝜛ℷ𝜚

where we have used (110) in the last step. By (119) and the arbitrariness of 𝐴 we deduce (88). Similarly we deduce (89) from (111).
Turn now to the mass bound; we only sketch the proof. For any compact set 𝐻 ⊳ R2

𝜛
ϖ R2

𝜚
, we can decompose

∱R2ϖR2
𝜀
𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜛ℷ𝜚

= ∱
𝐻

𝜀
𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜛ℷ𝜚 + ∱(R2ϖR2)⟥𝐻

𝜀
𝐿 (𝜗, 𝜛, 𝜚) ℷ𝜛ℷ𝜚

The first term on the right converges (in a suitable sense) to ⨍
𝐻
𝜀 (𝜗) ℷ𝜛ℷ𝜚, and the second can be made small uniformly in 𝐿 by

suitable choice of 𝐻, due to (110) and (111). Hence we deduce (86) as a consequence of (108) and the bounds on second moments
in 𝜛 and 𝜚. Similarly, we can use (109) to deduce (87).



Nonlinear Analysis 248 (2024) 113609

50

T. Chen et al.

The entropy inequality is far more subtle and has been studied by DiPerna and Lions in [16]. In that reference it was proven that,
for a sequence of renormalized solutions (or solutions of the truncated model, etc.), and ignoring notational details for simplicity,

∱

𝜗

0 ∱R2
⨚ (𝜀 (𝜗)) ℷ𝜛ℷ𝑇 ∳ lim inf

𝐿∇ ∱

𝜗

0 ∱R2
⨚
⌋

𝜀
𝐿 (𝜗)

⌈

ℷ𝜛ℷ𝑇

The proof is non-trivial but it is based on convexity arguments combined with a careful definition for dissipation functional. We
also have, by convexity,

< (𝜀 (𝜗)) ∳ lim inf
𝐿∇

<
⌋

𝜀
𝐿 (𝜗)

⌈

Therefore, to deduce (90) from (113), the key is to prove the limits at the initial time,
lim
𝐿∇

<
± ⌋

𝜀
𝐿,0
⌈

= <
± ⌋

𝜀0
⌈

This follows from (116) and (117), using Lemma 12.4 for <+ and Lemma 12.5 for <ς.
It remains to identify a 𝜍

ω (𝜀 ) ε (0,∇] which verifies (83), (84) and (85).
The fundamental lemma, Lemma 11.1, implies that for some 𝑀 > 0,

𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

1 ⌋[0, 𝑀) ,𝜔2⌈

since (by the lemma) 𝜀 is controlled pointwise by the gain-only flow based at 𝜀0 for 𝜗 ε [0, 𝑀) (some 𝑀 depending only on 𝜀0), whereas
the gain-only flow has the requisite 𝛻

+ bound in 𝜔
1
𝜗
𝜔
2
𝜛,𝜚

for small enough time intervals.
So let us define

𝜍
ω (𝜀 ) = sup

/

𝜍 ε (0,∇) ϑ 𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

1 ⌋[0, 𝜍 ] ,𝜔2⌈ \ (120)

and

7
ω (𝜀 ) =

⟩

0, 𝜍 ω (𝜀 )
⌈

Clearly (84) follows trivially from the definition of 𝜍 ω (𝜀 ). Now even though we have not yet proven that 𝜀 is a (ω)-solution, we
can still apply the arguments from Section 13.3 to conclude from (84) that, on any compact sub-interval 𝑃 ⊳ 7

ω (𝜀 ), it holds

𝜀 ε 𝐸
⌋

𝑃 ,𝜔
2⌈

hence we have (83). So it only remains to prove (85).
Before we proceed to prove (85), let us prove a preliminary result. Let 𝜍 be a real number with 0 < 𝜍 < 𝜍

ω (𝜀 ); then
𝜀 ε 𝐸

⌋

[0, 𝜍 ] ,𝜔2⌈, so by the lower semi-continuity of 𝜍g.o., we know that there exists 𝑉
𝜍
with

0 < 𝑉
𝜍
< inf

𝜗ε[0,𝜍 ]
𝜍g.o. (𝜀 (𝜗))

Therefore, by partitioning [0, 𝜍 ] into suitable consecutive sub-intervals of size

between
𝑉
𝜍

4 and
𝑉
𝜍

2
and inductively applying Lemma 11.1 finitely many times (using our freedom to wait to choose the next interval of the partition
until after the previous invocation of the lemma), we can deduce that up to extraction of a further subsequence still denoted 𝜀

𝐿𝐽
,

there holds

lim
𝐽∇

⦄

⦄

⦄

𝜀
𝐿𝐽

(𝜗) ς 𝜀 (𝜗)⦄⦄
⦄𝜔2 = 0 (121)

for almost every 𝜗 ε [0, 𝜍 ]. In particular, by the arbitrariness of 𝜍 and diagonalization, the same can be said for almost every
𝜗 ε 7

ω (𝜀 ).
To complete the proof, let us suppose that (85) fails; that is,

𝜀 ε 𝐸
⌋⟩

0, 𝜍 ω (𝜀 )
)

,𝜔
2⌈

Then by the lower-semicontinuity of 𝜍g.o. (⋛) we may choose ⋆ such that

0 < ⋆ < inf
𝜗ε7ω(𝜀 )

𝜍g.o. (𝜀 (𝜗))

Let us pick an intermediate time 𝜗0 with

𝜍
ω (𝜀 ) ς ⋆

2 < 𝜗0 < 𝜍
ω (𝜀 )

for which (121) holds. Then applying Lemma 11.1 one last time, we can conclude from (69) that 𝜀 is bounded pointwise by the
gain-only flow based at 𝜀

⌋

𝜗0
⌈

, up to a slightly larger time than 𝜍
ω (𝜀 ), say 2𝜗 where

𝜍
ω (𝜀 ) < 2𝜗 < 𝜍

ω (𝜀 ) + ⋆

4
hence for some 𝜍

φ
> 𝜍

ω (𝜀 ) we have

𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

1 ⌋⟩0, 𝜍 φ)
,𝜔

2⌈

which contradicts (120). ⋜
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16. Limits of (𝛆)-solutions

For the next theorem, we consider a sequence 𝜀
𝐿
of (ω)-solutions to (1), corresponding simply to initial data 𝜀

𝐿,0 ε 𝜔
2 ❲

𝜔
1
2,

without assuming any higher regularity or decay for 𝜀
𝐿
or 𝜀

𝐿,0. We shall assume that we have prepared the sequence 𝜀
𝐿
by passing

to subsequences, prior to the application of the theorem, so as to simplify the statement of the theorem itself.

Theorem 16.1. For each 𝐿 ε N let 𝜀
𝐿
be a (ω)-solution of (1) with initial data

𝜀
𝐿,0 = 𝜀

𝐿 (𝜗 = 0) ε 𝜔
2 (

𝜔
1
2

Furthermore, let us assume that, for some renormalized solution 𝜀 of (1),

𝜀
𝐿
 𝜀

where the convergence is (at least) in the weak topology of 𝜔1 (𝐻) for each compact 𝐻 ⊳ [0,∇) ϖR2 ϖR2, (cf. [15]), and that there holds
the convergence of the initial data

lim
𝐿∇

⦄

⦄

𝜀
𝐿,0 ς 𝜀0⦄

⦄𝜔2 = 0

and

lim
𝐿∇

❳

𝐴ε
]

1,𝜚1 ,𝜚2 ,⦃𝜚⦃2 ,⦃𝜛⦃2 ,𝜛⋛𝜚
⟦

⌉

⌉

⌉

⌉

∱R2ϖR2
𝐴 ⋛

⌋

𝜀
𝐿,0 ς 𝜀0

⌈

ℷ𝜛ℷ𝜚
⌉

⌉

⌉

⌉

= 0 (122)

where 𝜀0 = 𝜀 (𝜗 = 0), and additionally that (cf. [26])

𝜀
𝐿
 𝜀 a.e. (𝜗, 𝜛, 𝜚) ε [0,∇) ϖ R2 ϖ R2

Then it follows that 𝜀 is a (ω)-solution of (1) with

0 < 𝜍
ω (𝜀 ) ∳ lim inf

𝐿∇
𝜍
ω ⌋

𝜀
𝐿

⌈

the lim inf being necessarily non-zero (but possibly infinite). (But even if each 𝜍
ω ⌋

𝜀
𝐿

⌈

is finite we do not exclude the possibility 𝜍 ω (𝜀 ) = ∇,
provided the lim inf is infinite, as indicated.)

Moreover, there exists a subsequence 𝐿
𝐽
such that both the following hold: first, for each compact sub-interval 𝑃 ⊳ 7

ω (𝜀 ),

lim
𝐽∇

⦄

⦄

⦄

𝜀
𝐿𝐽

ς 𝜀
⦄

⦄

⦄𝜔2(𝑃ϖR2ϖR2) = 0

and, second, for almost every 𝜗 ε 7
ω (𝜀 ), it holds

lim
𝐽∇

⦄

⦄

⦄

𝜀
𝐿𝐽

(𝜗) ς 𝜀 (𝜗)⦄⦄
⦄𝜔2 = 0

Proof. Clearly we may assume without loss of generality, by passing to a further sequence (still denoted 𝜀
𝐿
) which saturates the

lim inf in the theorem statement, that for some 2𝜍 with 0 < 2𝜍 ∳ ∇, the limit
2𝜍 = lim

𝐿∇
𝜍
ω ⌋

𝜀
𝐿

⌈

exists in the extended real line. By lower-semicontinuity of 𝜍g.o. (⋛) and the strong 𝜔
2 convergence at 𝜗 = 0, along with (99), we have

2𝜍 ⨋ 𝜍g.o.
⌋

𝜀0
⌈

> 0

which follows from the chain of (in)equalities

2𝜍 = lim
𝐿∇

𝜍
ω ⌋

𝜀
𝐿

⌈

⨋ lim inf
𝐿∇

𝜍g.o.
⌋

𝜀
𝐿,0
⌈

⨋ 𝜍g.o.
⌋

𝜀0
⌈

> 0

Let us furthermore define

𝜍0 = sup
/

𝜍 ε (0,∇) ϑ 𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

1 ⌋[0, 𝜍 ] ,𝜔2⌈ \

where the set is non-empty by passage to the limit in the comparison principle following Lemma 11.1: indeed, 𝜍0 ⨋ 𝜍g.o.
⌋

𝜀0
⌈

> 0.
In what follows we will assume that each 𝜍0, 2𝜍 is finite: the proof is simpler in the case that 2𝜍 = ∇ and 𝜍0 < ∇. (There are two
cases remaining: that each 𝜍0, 2𝜍 is infinite, and that 𝜍0 = ∇ and 2𝜍 is finite; but, there is nothing to show in the first case, and the
proof below shows that the second case is impossible.)

Let us denote the shorthand

70 =
⟩

0, 𝜍0
⌈

𝑃0 =
⟩

0, 𝜍0
)

27 =
⟩

0, 2𝜍
⌈

2𝑃 =
⟩

0, 2𝜍
)
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By Proposition 13.2,

+ (𝐿 ε N) 𝜀
𝐿
ε B

7
ω(𝜀𝐿)

7ω(𝜀𝐿)
hence by the definition of 2𝜍 , we find that for any compact subinterval 𝑃 ⊳ 27 there exists an integer 𝑂 ε N, depending on 𝑃 , such
that

+ (𝐿 ε N ϑ 𝐿 ⨋ 𝑂) 𝜀
𝐿
ε B𝑃

𝑃

Before we turn to the core of the proof, let us pass to an even further subsequence (still denoted 𝜀
𝐿
) such that both the following

hold: first, for any compact sub-interval 𝑃 ⊳ 70
❲

27 ,

lim
𝐿∇

⦄

⦄

𝜀
𝐿
ς 𝜀⦄

⦄𝜔2(𝑃ϖR2ϖR2) = 0 (123)

and, second, for almost every 𝜗 ε 70
❲

27 ,

lim
𝐿∇

⦄

⦄

𝜀
𝐿 (𝜗) ς 𝜀 (𝜗)⦄

⦄𝜔2 = 0 (124)

This is possible by inductively applying Lemma 11.1 as in the proof of Theorem 15.2. Note that we need 70 to guarantee the
square-integrability (with time continuity) of 𝜀 along 𝑃 , whereas we need 27 to guarantee the comparison principle on 𝑃 for 𝜀

𝐿

for all large enough 𝐿 depending on 𝑃 : these two, with the necessary convergence at 𝜗 = 0, are the keys to inductively applying
Lemma 11.1. We can moreover conclude that

𝜀 ε B
70

❲

27

{𝜗0}
for almost every 𝜗0 ε 70

❲

27 .
We must also prove the moment bounds and entropy inequality. The key to proving (86)–(89) is that we have assumed, for

𝐴 ε
/

1, 𝜚1, 𝜚2, ⦃𝜚⦃2 , ⦃𝜛⦃2 , 𝜛 ⋛ 𝜚
\

,

lim
𝐿∇∱R2ϖR2

𝐴𝜀
𝐿,0 ℷ𝜛ℷ𝜚 = ∱R2ϖR2

𝐴𝜀0ℷ𝜛ℷ𝜚 (125)

which, by non-negativity of 𝜀
𝐿,0, 𝜀0 and combined with the assumption that 𝜀𝐿,0  𝜀0 strongly in 𝜔

2, provides us

sup
𝐿εN

⦄

⦄

𝜀
𝐿,0⦄
⦄𝜔2 ❲𝜔

1
2
< ∇ (126)

but note carefully that we are neither assuming nor asserting that 𝜀
𝐿,0 converges to 𝜀0 strongly in 𝜔

2 ❲
𝜔
1
2, contrary to the proof

of Theorem 15.2. In any case, using (125) and the known estimates for the (ω)-solutions 𝜀
𝐿
, we can deduce (86)–(89) similarly to

the proof of Theorem 15.2. Similarly, using again the results of DiPerna and Lions from [16] as in the proof of Theorem 15.2, we
obtain (90) by noting that

lim
𝐿∇

<
± ⌋

𝜀
𝐿,0
⌈

= <
± ⌋

𝜀0
⌈

using, as before, Lemma 12.4 and Lemma 12.5, and our assumptions on 𝜀
𝐿,0 (namely strong 𝜔

2 convergence, the boundedness in
𝜔
1
2, and pointwise convergence, all at 𝜗 = 0).
We have only to show that 𝜍0 ∳ 2𝜍 (where 𝜍0 comes from the 𝛻

+ integral for 𝜀 whereas 2𝜍 comes from the sequence 𝜀
𝐿
), and

that

𝛻
+ (𝜀 , 𝜀 ) ( 𝜔

1 ⌋
70,𝜔

2⌈ (127)

which encodes the maximality property of (ω)-solutions. Indeed, given (127), assume that 𝜀 is continuous from [0, 𝜍 ω (𝜀 )] into 𝜔
2

and deduce a contradiction with the comparison principle cf. the proof of Proposition 10.2.
Let us begin by proving instead the statement

𝛻
+ (𝜀 , 𝜀 ) ( 𝜔

1 ⌋ 27 ,𝜔2⌈ (128)

Indeed, if this were not the case, then arguing as in Section 13.3, the reader can verify that we would have continuity on the closed
interval

𝜀 ε 𝐸
⌋

2𝑃 ,𝜔
2⌈

and moreover that 𝜍0 ⨋ 2𝜍 . From this we obtain that, by lower-semicontinuity of 𝜍g.o. (⋛), we may choose ⋆ such that

0 < ⋆ < inf
𝜗ε 2𝑃

𝜍g.o. (𝜀 (𝜗))

So pick a time 2𝜗 with

2𝜍 ς ⋆

2 < 2𝜗 < 2𝜍 (129)

such that (124) holds. Now by (99), for each large enough 𝐿 we have

𝜍g.o.
⌋

𝜀
𝐿

⌋

2𝜗
⌈⌈

∳ 𝜍
ω ⌋

𝜀
𝐿

⌈

ς 2𝜗
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We wish to let 𝐿  ∇ in this inequality; indeed, on the right we simply obtain

2𝜍 ς 2𝜗

whereas on the left, by lower semi-continuity of 𝜍g.o. (⋛) and the fact that 2𝜗 verifies (124), we find that

𝜍g.o.
⌋

𝜀
⌋

2𝜗
⌈⌈

∳ lim inf
𝐿∇

𝜍g.o.
⌋

𝜀
𝐿

⌋

2𝜗
⌈⌈

hence

𝜍g.o.
⌋

𝜀
⌋

2𝜗
⌈⌈

∳ 2𝜍 ς 2𝜗

The quantity on the left is no less than ⋆, hence

⋆ ∳ 2𝜍 ς 2𝜗

which contradicts (129).
We conclude that (128) holds; this immediately implies that 𝜍0 ∳ 2𝜍 . But (128) also implies the following: in the case that 𝜍0 = 2𝜍 ,

we immediately have (127), so there is nothing more to show in that case. Therefore, to conclude the proof, we are free to prove
(127) under the simplifying assumption that 𝜍0 < 2𝜍 .

Suppose the desired conclusion fails. Then we have

𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

1 ⌋
70,𝜔

2⌈

and in particular, continuity on the closed interval 𝑃0 = 70
[

/

𝜍0
\

, i.e.

𝜀 ε 𝐸
⌋

𝑃0,𝜔
2⌈

so choose, as before, an ⋆0 satisfying

0 < ⋆0 < inf
𝜗ε𝑃0

𝜍g.o. (𝜀 (𝜗))

As before, pick a time 𝜗0 with

𝜍0 ς
⋆0
2 < 𝜗0 < 𝜍0

such that (124) holds. Then by Lemma 11.1 and using that 𝜍0 < 2𝜍 , we can conclude that

𝜀 ε B7

{𝜗0}

where 7 =
⟩

𝜗0, 0
⌈

with 0 = min
⌋

2𝜍 , 𝜗0 + ⋆0
⌈

> 𝜍0. In particular, by our choice of ⋆0 as (less than) an inf over 𝑃0 and that 𝜗0 ε 𝑃0,

𝜗0 + 𝜍g.o.
⌋

𝜀
⌋

𝜗0
⌈⌈

⨋ 𝜗0 + ⋆0 ⨋ 0 > 𝜍0

Hence for any compact subinterval 𝑃 of [0, 0),

𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

1 ⌋
𝑃 ,𝜔

2⌈

which contradicts the definition of 𝜍0. ⋜

17. Scattering

17.1. The scattering lemma

The Lemma to follow expresses a type of stability against perturbations of scattering states.

Lemma 17.1. Suppose

𝜀+∇ ε 𝜔
2

Then there exist numbers 𝐾, 𝜍 > 0, each depending only on 𝜀+∇, such that the following holds:
For any 𝜗0 ⨋ 𝜍 ,

⦄

⦄

⦄

ℵ0 ς ⨏
⌋

𝜗0
⌈

𝜀+∇
⦄

⦄

⦄𝜔2 < 𝐾 ⥳
)

⦅

⦆

⦅

[

𝜍g.o.
⌋

ℵ0
⌈

= ∇
and
⨍ ∇
0

⦄

⦄

⦄

𝛻
+ ⌋

Zg.o.
⌋

ℵ0
⌈

(𝜗)
⌈

⦄

⦄

⦄𝜔2 ℷ𝜗 < ∇

Proof. An immediate consequence of Theorem 6.3 with Proposition 7.11, cf. the proof of Theorem 9.1. ⋜



Nonlinear Analysis 248 (2024) 113609

54

T. Chen et al.

17.2. The scattering criterion

We are ready to characterize scattering solutions of (1).

Theorem 17.2. Let 𝜀 be a (ω)-solution of (1); then the following are equivalent:

(1) 𝜍
ω (𝜀 ) = ∇ and 𝜀 scatters

(2)

∱
7ω(𝜀 )

⦄

⦄

𝛻
+ (𝜀 , 𝜀 ) (𝜗)⦄

⦄𝜔2 ℷ𝜗 < ∇

Proof. (1) ⥳ (2). Since 𝜀 scatters by hypothesis, there exists an

𝜀+∇ ε 𝜔
2

such that

lim
𝜗+∇

⦄

⦄

𝜀 (𝜗) ς ⨏ (𝜗) 𝜀+∇⦄

⦄𝜔2 = 0

Let 𝐾, 𝜍 be as in the statement of Lemma 17.1. Pick a number 2𝜍 such that

+
⌋

𝜗 ⨋ 2𝜍
⌈

⦄

⦄

𝜀 (𝜗) ς ⨏ (𝜗) 𝜀+∇⦄

⦄𝜔2 < 𝐾

and let

𝜗0 = min
⌋

𝜍 , 2𝜍
⌈

Then 𝜗0 ⨋ 𝜍 and
⦄

⦄

⦄

𝜀
⌋

𝜗0
⌈

ς ⨏
⌋

𝜗0
⌈

𝜀+∇
⦄

⦄

⦄𝜔2 < 𝐾

hence by the Lemma we have

𝜍g.o.
⌋

𝜀
⌋

𝜗0
⌈⌈

= ∇

and

∱

∇

0

⦄

⦄

⦄

𝛻
+ ⌋

Zg.o.
⌋

𝜀
⌋

𝜗0
⌈⌈

(𝜗)
⌈

⦄

⦄

⦄𝜔2 ℷ𝜗 < ∇

Thus by Proposition 13.2 we have

∱

∇

𝜗0

⦄

⦄

𝛻
+ (𝜀 (𝜗))⦄

⦄𝜔2 ℷ𝜗 ∳ ∱

∇

0

⦄

⦄

⦄

𝛻
+ ⌋

Zg.o.
⌋

𝜀
⌋

𝜗0
⌈⌈

(𝜗)
⌈

⦄

⦄

⦄𝜔2 ℷ𝜗 < ∇

and 𝛻
+ (𝜀 ) ε 𝜔

1 ⌋⟩0, 𝜗0
)

,𝜔
2⌈ since 𝜍

ω (𝜀 ) = ∇, so by adding the two time integrals, we may conclude.
(2) ⥳ (1). Since we have assumed

∱

𝜍
ω(𝜀 )

0
⦄

⦄

𝛻
+ (𝜀 (𝜗))⦄

⦄𝜔2 ℷ𝜗 < ∇

it follows from Theorem 14.1 that

𝜍
ω (𝜀 ) = ∇

that is

∱

∇

0
⦄

⦄

𝛻
+ (𝜀 (𝜗))⦄

⦄𝜔2 ℷ𝜗 < ∇ (130)

Also, we have Duhamel’s formula, for 0 < . < 𝜗,

⨏ (ς𝜗) 𝜀 (𝜗) ς ⨏ (ς.) 𝜀 (.) = ∱

𝜗

.

⨏ (ς𝑇)𝛻+ (𝜀 (𝑇)) ℷ𝑇

hence

⟨⨏ (ς𝜗) 𝜀 (𝜗) ς ⨏ (ς.) 𝜀 (.)⟨
𝜔2 ∳ ∱

∇

.

⦄

⦄

𝛻
+ (𝜀 (𝜗))⦄

⦄𝜔2 ℷ𝜗

the right-hand side tending to zero as .  ∇ by monotone convergence and (130). Thus there exists 𝜀+∇ ε 𝜔
2 such that

lim
𝜗+∇

⦄

⦄

⨏ (ς𝜗) 𝜀 (𝜗) ς 𝜀+∇⦄

⦄𝜔2 = 0

which is equivalent to

lim
𝜗+∇

⦄

⦄

𝜀 (𝜗) ς ⨏ (𝜗) 𝜀+∇⦄

⦄𝜔2 = 0

so we may conclude. ⋜
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18. Exclusive scattering

18.1. Definition

Definition 18.1. A non-negative measurable function 𝜀0 ε 𝜔
2 ❲

𝜔
1
2 will be said to be exclusively scattering if, for every (ω)-solution

𝜀 with initial data 𝜀 (𝜗 = 0) = 𝜀0, it holds that

𝜍
ω (𝜀 ) = ∇ and 𝜀 scatters

and in such case we write 𝜀0 ε ⨜ .

Remark 18.1. Observe that the definition of ⨜ makes no mention of uniqueness; in particular, it is a property of the initial data 𝜀0,
not of a (ω)-solution (since there might be many (ω)-solutions corresponding to any given 𝜀0 ε ⨜). When we say that 𝜀0 is exclusively
scattering, or equivalently 𝜀0 ε ⨜ , we are simply saying that it is not possible to identify a (ω)-solution of (1) with initial data 𝜀0
that does not scatter.

18.2. Perturbations

We begin with a simple lemma.

Lemma 18.1. Let
⌋

𝑎, ℷ
𝑎

⌈

be a metric space (not necessarily complete). Suppose that for a subset ⌢ ⊳ 𝑎, it holds that for every 1 ε ⌢

and for every sequence
/

𝐼
𝐿

\

𝐿
⊳ 𝑎 with

lim
𝐿∇

ℷ
𝑎

⌋

𝐼
𝐿
, 1
⌈

= 0

there exists a subsequence
]

𝐼
𝐿𝐽

⟦

𝐽

such that

(+𝐽) 𝐼
𝐿𝐽

ε ⌢

Then ⌢ is open in 𝑎.

Proof. If ⌢ is not open then there must be a point 1 ε ⌢ and a sequence
/

𝐼
𝐿

\

𝐿
⊳ 𝑎±⌢ such that 𝐼

𝐿
 1 in 𝑎. ⋜

Recall from (7) the 9 norm

⟨ℵ⟨
9
ϑ= ⟨ℵ⟨

𝜔2 +
❳

𝐴ε
]

1, 𝜚1 , 𝜚2 , ⦃𝜚⦃2 , ⦃𝜛⦃2 , 𝜛⋛𝜚
⟦

⌉

⌉

⌉

⌉

∱R2ϖR2
𝐴 (𝜛, 𝜚)ℵ (𝜛, 𝜚) ℷ𝜛ℷ𝜚

⌉

⌉

⌉

⌉

which leads to define (8) the incomplete metric space

9 =
⟪

𝜔
2,+ (

𝜔
1
2 , ℷ9

⟫

where 𝜔
2,+ is the set of non-negative functions in 𝜔

2 and

ℷ
9

⌋

ℵ, 2ℵ
⌈

= ⦄

⦄

ℵ ς 2ℵ⦄
⦄9

and we are ready to show:

Theorem 18.2. ⨜ is open in 9.

Proof. Let
/

𝜀0,𝐿
\

𝐿
⊳ 9 be a sequence such that

lim
𝐿∇

⦄

⦄

𝜀0,𝐿 ς 𝜀0⦄
⦄9

= 0

for some 𝜀0 ε ⨜ . By Lemma 18.1, it suffices to show that there exist infinitely many 𝐿 for which 𝜀0,𝐿 ε ⨜ .
So suppose the opposite: then, there exists 𝑂 such that 𝜀0,𝐿 ( ⨜ for each 𝐿 ⨋ 𝑂 . Now the sequence 𝜀0,𝐿 is clearly uniformly

bounded in 𝜔
2 ❲

𝜔
1
2; in particular, we also have uniform bounds on entropy and entropy dissipation for any (ω)-solutions associated

with the 𝜀0,𝐿. For each 𝐿 ⨋ 𝑂 let us pick a (ω)-solution 𝜀
𝐿
such that 𝜀

𝐿 (𝜗 = 0) = 𝜀0,𝐿 and 𝜀
𝐿
is not a global scattering solution (that

is, either 𝜍 ω ⌋
𝜀
𝐿

⌈

< ∇, or 𝜍 ω ⌋
𝜀
𝐿

⌈

= ∇ but 𝜀
𝐿
does not scatter). This is possible because, for 𝐿 ⨋ 𝑂 , we have 𝜀0,𝐿 ( ⨜ . Passing to a

subsequence, applying Theorem 16.1, and passing to a further subsequence, we can eventually find a subsequence 𝐿
𝐽
such that all

the following hold:

(1) The sequence
]

𝜀
𝐿𝐽

⟦

𝐽

converges, weakly and for a.e. (𝜗, 𝜛, 𝜚), and for a.e. (𝜛, 𝜚) at 𝜗 = 0, to a (ω)-solution 𝜀 with 𝜀 (𝜗 = 0) = 𝜀0.

(2)

𝜍
ω (𝜀 ) ∳ lim inf

𝐽∇
𝜍
ω
⟪

𝜀
𝐿𝐽

⟫

(131)
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(3) For a.e. 𝜗 with 0 < 𝜗 < 𝜍
ω (𝜀 ),

lim
𝐽∇

⦄

⦄

⦄

𝜀
𝐿𝐽

(𝜗) ς 𝜀 (𝜗)⦄⦄
⦄𝜔2 = 0 (132)

(4) For each 𝐽:

either 𝜍 ω
⟪

𝜀
𝐿𝐽

⟫

< ∇, or 𝜍 ω
⟪

𝜀
𝐿𝐽

⟫

= ∇ but 𝜀
𝐿𝐽
does not scatter. (133)

But now we see that, since 𝜀 is a (ω)-solution with initial data 𝜀0, and by hypothesis we have 𝜀0 ε ⨜ , it follows from the definition
of ⨜ that

𝜍
ω (𝜀 ) = ∇

and 𝜀 scatters. In particular, by (131),

lim inf
𝐽∇

𝜍
ω
⟪

𝜀
𝐿𝐽

⟫

= ∇

Moreover, by the scattering lemma, Lemma 17.1, there exist numbers 𝜍 , 𝐾, depending only on the solution 𝜀 just identified,8 such
that any (ω)-solution 2𝜀 which comes within an 𝐾-ball of 𝜀 in 𝜔

2 at any one time at least 𝜍 necessarily satisfies 𝜍 ω ⌋ 2𝜀
⌈

= ∇ and 2𝜀

scatters. But now we see that (132) implies that

∓
⌋

2𝜗 ε [𝜍 , 𝜍 + 1]
⌈

∓ (♭ ε N) + (𝐽 > ♭) ⦄

⦄

⦄

𝜀
𝐿𝐽

⌋

2𝜗
⌈

ς 𝜀
⌋

2𝜗
⌈

⦄

⦄

⦄𝜔2 < 𝐾

so for all 𝐽 > ♭ we have that 𝜍 ω
⟪

𝜀
𝐿𝐽

⟫

= ∇ and 𝜀
𝐿𝐽
scatters, which contradicts (133). ⋜

19. Weak-strong uniqueness

19.1. Propagation of weighted estimates

We know by now that (ω)-solutions exist for any non-negative 𝜀0 ε 𝜔
2 ❲

𝜔
1
2. However, if 𝜀0 is chosen from a more restrictive

functional space, then we can say more. We begin with the gain-only equation, then we upgrade the result to the full Boltzmann
equation.

Lemma 19.1. Let 0 < 𝐵 < ∇. Assume 𝜀0 is such that

⦅𝜚⦆
𝐵
𝜀0 ε 𝜔

2

and let

0 < 𝜍 < 𝜍g.o.
⌋

𝜀0
⌈

Then the solution ℵ (𝜗) of the gain-only Boltzmann equation with initial data 𝜀0 i.e.

ℵ (𝜗) = Zg.o.
⌋

𝜀0
⌈

(𝜗)

satisfies

⦅𝜚⦆
𝐵
ℵ ε 𝜔

∇ ⌋

[0, 𝜍 ],𝜔2⌈ and ⦅𝜚⦆
𝐵
𝛻

+ (ℵ,ℵ) ε 𝜔
1 ⌋[0, 𝜍 ],𝜔2⌈

Proof. Fixing 0 < 𝜍 < 𝜍g.o.
⌋

𝜀0
⌈

with 7 = [0, 𝜍 ] we may define

𝐸0 (𝜍 ) = ⟨ℵ⟨
𝜔∇(7 ,𝜔2) + ⦄

⦄

𝛻
+ (ℵ,ℵ)⦄

⦄𝜔1(7 ,𝜔2) < ∇

and observe that 𝛻+ (ℵ,ℵ) is exactly
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ. If, as in Section 7.5, we write

𝑌
𝐵

𝑋
= min

⌋

⦅𝜚⦆
𝐵
,𝑋

𝐵
⌈

then we have each
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

ℵ = 𝛻
+ (ℵ,ℵ)

and
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈ /

𝑌
𝐵

𝑋
ℵ
\

= 𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)

8 Which need not be unique!
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Let us apply Proposition 7.12, viewing 𝜕 as ℵ and ℵ as 𝑌𝐵
𝑋
ℵ, to deduce the existence of a finite partition 7 = [

𝑈
7
𝑈
, 7

𝑈
=
⟩

𝜗
𝑈
, 𝜗
𝑈+1

)

,
such that

⦄

⦄

⦄

𝛻
+ ⌋

𝑌
𝐵

𝑋
ℵ,ℵ

⌈

⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈ +
⦄

⦄

⦄

𝛻
+ ⌋

ℵ, 𝑌
𝐵

𝑋
ℵ
⌈

⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳ 𝐸1𝐸0 (𝜍 ) ϖ
{

⦄

⦄

⦄

𝑌
𝐵

𝑋
ℵ
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄𝜔2 + 𝐾
⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1⌋7𝑈 ,𝜔2⌈

}

where we label 𝐸1 to fix the constant once and for all. Now according to Proposition 7.12, the partition depends on ℵ but not on
𝑌
𝐵

𝑋
ℵ; this may seem paradoxical since the pointwise quotient of these two is the known function 𝑌

𝐵

𝑋
, but what it really means in this

context is that the partition does not depend on the parameters 𝐵,𝑋. Crucially, 𝑌𝐵
𝑋
is bounded above by 𝑋

𝐵 so we know that

𝑌
𝐵

𝑋
ℵ ε 𝜔

∇ ⌋

7 ,𝜔
2⌈ and 𝑌

𝐵

𝑋
𝛻

+ (ℵ,ℵ) ε 𝜔
1 ⌋

7 ,𝜔
2⌈

Also, as in the discussion of Section 7.5, we may write
⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳ 22+
𝐵

2

{

⦄

⦄

⦄

𝛻
+ ⌋

𝑌
𝐵

𝑋
ℵ,ℵ

⌈

⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈ +
⦄

⦄

⦄

𝛻
+ ⌋

ℵ, 𝑌
𝐵

𝑋
ℵ
⌈

⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

}

therefore
⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳ 22+
𝐵

2 𝐸1𝐸0 (𝜍 ) ϖ
{

⦄

⦄

⦄

𝑌
𝐵

𝑋
ℵ
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄𝜔2 + 𝐾
⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1⌋7𝑈 ,𝜔2⌈

}

Let us assume that

22+
𝐵

2 𝐸1𝐸0 (𝜍 ) 𝐾 = 1
2

so that
⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1⌋7𝑈 ,𝜔2⌈ ∳ 23+

𝐵

2 𝐸1𝐸0 (𝜍 )
⦄

⦄

⦄

𝑌
𝐵

𝑋
ℵ
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄𝜔2

On the other hand,

⦄

⦄

⦄

𝑌
𝐵

𝑋
ℵ
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄𝜔2 ∳ ⦄

⦄

⦄

𝑌
𝐵

𝑋
𝜀0
⦄

⦄

⦄𝜔2 +
𝑈ς1
❳

𝑆=0

⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1(7𝑆 ,𝜔2)

Therefore
⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳ 23+
𝐵

2 𝐸1𝐸0 (𝜍 )
⌊

⦄

⦄

⦄

𝑌
𝐵

𝑋
𝜀0
⦄

⦄

⦄𝜔2 +
𝑈ς1
❳

𝑆=0

⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1(7𝑆 ,𝜔2)

⌋

We conclude by a finite induction in 𝑈. Indeed, suppose that

⦅𝜚⦆
𝐵
𝛻

+ (ℵ,ℵ) ε
𝑈ς1
(

𝑆=0
𝜔
1 ⌋

7
𝑆
,𝜔

2⌈

then we have
⦄

⦄

⦄

𝑌
𝐵

𝑋
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳ 23+
𝐵

2 𝐸1𝐸0 (𝜍 )
⌊

⦄

⦄

⦅𝜚⦆
𝐵
𝜀0⦄
⦄𝜔2 +

𝑈ς1
❳

𝑆=0

⦄

⦄

⦅𝜚⦆
𝐵
𝛻

+ (ℵ,ℵ)⦄
⦄𝜔1(7𝑆 ,𝜔2)

⌋

therefore by monotone convergence in 𝑋 as 𝑋  ∇ it follows

⦅𝜚⦆
𝐵
𝛻

+ (ℵ,ℵ) ε
𝑈
(

𝑆=0
𝜔
1 ⌋

7
𝑆
,𝜔

2⌈

so we finally obtain

⦅𝜚⦆
𝐵
𝛻

+ (ℵ,ℵ) ε 𝜔
1 ⌋

7 ,𝜔
2⌈

which in turn implies

⦅𝜚⦆
𝐵
ℵ ε 𝜔

∇ ⌋

7 ,𝜔
2⌈

since ⦅𝜚⦆
𝐵
𝜀0 ε 𝜔

2. ⋜
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Proposition 19.2. Let 𝐵 > 0. Assume 𝜀 is a (ω)-solution of (1) with initial data 0 ∳ 𝜀0 ε 𝜔
2 ❲

𝜔
1
2 such that

⦅𝜚⦆
𝐵
𝜀0 ε 𝜔

2

Then for any compact sub-interval 𝑃 ⊳ 7
ω (𝜀 ),

⦅𝜚⦆
𝐵
𝜀 ε 𝜔

∇ ⌋

𝑃 ,𝜔
2⌈ and ⦅𝜚⦆

𝐵
𝛻

+ (𝜀 , 𝜀 ) ε 𝜔
1 ⌋

𝑃 ,𝜔
2⌈

Remark 19.1. Note carefully that Proposition 19.2 neither requires uniqueness, nor does the proof imply uniqueness. All it says is
that if the initial data satisfies a certain 𝜔

2-based weighted estimate, then any (ω)-solution 𝜀 corresponding to 𝜀0 enjoys the same
estimate on compact subintervals of 7ω (𝜀 ).

Proof. Let 𝜍 be any real number such that

0 < 𝜍 < 𝜍
ω (𝜀 )

Since 𝜀 ε 𝐸
⌋

[0, 𝜍 ] ,𝜔2⌈, by lower semi-continuity of 𝜍g.o. we may pick ⋆ with

0 < ⋆ < inf
𝜗ε[0,𝜍 ]

𝜍g.o. (𝜀 (𝜗))

We may assume without loss of generality that

𝜍 = 𝐺⋆

for some 𝐺 ε N. Let us define, for 𝑈 = 0, 1, 2,… , 𝐺 ς 1,

7
𝑈
= [𝑈⋆, (𝑈 + 1) ⋆]

Denote by 𝑏
𝑈
the statement

⦅𝜚⦆
𝐵
𝜀 ε 𝜔

∇ ⌋

7
𝑈
,𝜔

2⌈ and ⦅𝜚⦆
𝐵
𝛻

+ (𝜀 , 𝜀 ) ε 𝜔
1 ⌋

7
𝑈
,𝜔

2⌈

Combining Lemma 19.1 with Proposition 13.2 and the assumption

⦅𝜚⦆
𝐵
𝜀0 ε 𝜔

2

immediately lets us conclude 𝑏0. Similarly, if

𝑏0,𝑏1,𝑏2,… ,𝑏⋝ς1

all hold, then Lemma 19.1 combined with Proposition 13.2 imply 𝑏⋝ . ⋜

19.2. Weak-strong uniqueness

Uniqueness holds in the (ω)-solution class assuming the existence of a classical solution, up to the time 𝜍
ω (𝜀 ) where continuity

breaks down. More precisely, we have the following:

Theorem 19.3. Let 𝜀 be a (ω)-solution of (1), corresponding to some initial data 0 ∳ 𝜀0 ε 𝜔
2 ❲

𝜔
1
2. Furthermore, assume that

⦅𝜚⦆
2
𝜀0 ε 𝜔

2

and also assume that

+
⌋

0 < 𝜍 < 𝜍
ω (𝜀 )

⌈

⦅𝜚⦆
2
𝜀 ε 𝜔

2 ⌋[0, 𝜍 ] ,𝜔∇
𝜛
𝜔
2
𝜚

⌋

R2 ϖ R2⌈⌈

Then the following uniqueness holds in the class of (ω)-solutions:
For any (ω)-solution ℵ of (1), corresponding to the same 𝜀0, it holds

𝜍
ω (ℵ) = 𝜍

ω (𝜀 )

and for almost every (𝜗, 𝜛, 𝜚) ε 7
ω (𝜀 ) ϖ R2 ϖ R2,

ℵ (𝜗, 𝜛, 𝜚) = 𝜀 (𝜗, 𝜛, 𝜚)

There is no claim of uniqueness for 𝜗 > 𝜍
ω (𝜀 ).

Remark 19.2. Note carefully that Theorem 19.3 does not address uniqueness in the class of renormalized solutions. That is, even
on 7

ω (𝜀 ), we do not exclude (by this argument) the possibility that there exist renormalized solutions for the initial data 𝜀0 that
do not coincide with 𝜀 , regardless of the particular bounds we have assumed for 𝜀 alone. From the proof below, we can only say
that any such renormalized solution does not possess an 𝜔

1 ⌋
𝑃 ,𝜔

2⌈ bound for 𝛻+ (ℵ) on compact subintervals 𝑃 ⊳ 7
ω (𝜀 ). That is,

precisely as written, uniqueness is only shown to hold in the class of (ω)-solutions, and only on 7
ω (𝜀 ).
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Proof. The proof is a standard Gronwall-type argument on the difference equation (and relying, in particular, on the non-negativity
of 𝜀 ,ℵ). Let us define

⌣ = ℵ ς 𝜀

and let 𝜍 be such that

0 < 𝜍 < min
⌋

𝜍
ω (𝜀 ) , 𝜍 ω (ℵ)

⌈

and denote 7 = [0, 𝜍 ]. Due to the characterization of breakdown of continuity, namely Theorem 14.1, it suffices to show that
⌣ (𝜗, 𝜛, 𝜚) = 0 for almost every (𝜗, 𝜛, 𝜚) ε 7 ϖ R2 ϖ R2, whenever 𝜍 is so chosen.

Clearly ⌣ ε 𝐸
⌋

7 ,𝜔
2⌈ and ⌣ (𝜗 = 0, 𝜛, 𝜚) = 0 a.e. (𝜛, 𝜚). Also, by Proposition 19.2 we have

⦅𝜚⦆
2
𝜀 ε 𝜔

∇ ⌋

7 ,𝜔
2⌈ and ⦅𝜚⦆

2
𝛻

+ (𝜀 , 𝜀 ) ε 𝜔
1 ⌋

7 ,𝜔
2⌈ (134)

⦅𝜚⦆
2
ℵ ε 𝜔

∇ ⌋

7 ,𝜔
2⌈ and ⦅𝜚⦆

2
𝛻

+ (ℵ,ℵ) ε 𝜔
1 ⌋

7 ,𝜔
2⌈ (135)

so ⌣ = ℵ ς 𝜀 immediately provides

⦅𝜚⦆
2
⌣ ε 𝜔

∇ ⌋

7 ,𝜔
2⌈ (136)

We have by Duhamel’s formula

⦅𝜚⦆
2
𝜀 (𝜗) ∳ ⨏ (𝜗)

⟪

⦅𝜚⦆
2
𝜀0

⟫

+ ∱

𝜗

0
⨏ (𝜗 ς 𝑇)

]

⦅𝜚⦆
2
𝛻

+ (𝜀 , 𝜀 ) (𝑇)
⟦

ℷ𝑇

⦅𝜚⦆
2
ℵ (𝜗) ∳ ⨏ (𝜗)

⟪

⦅𝜚⦆
2
𝜀0

⟫

+ ∱

𝜗

0
⨏ (𝜗 ς 𝑇)

]

⦅𝜚⦆
2
𝛻

+ (ℵ,ℵ) (𝑇)
⟦

ℷ𝑇

therefore by Lemma 8.1 we may deduce

𝛻
+
⟪

⦅𝜚⦆
2
𝜀 , ⦅𝜚⦆

2
ℵ

⟫

, 𝛻
+
⟪

⦅𝜚⦆
2
ℵ, ⦅𝜚⦆

2
𝜀

⟫

ε 𝜔
1 ⌋

7 ,𝜔
2⌈

therefore

⦅𝜚⦆
2
𝛻

+ (𝜀 ,ℵ) , ⦅𝜚⦆
2
𝛻

+ (ℵ, 𝜀 ) ε 𝜔
1 ⌋

7 ,𝜔
2⌈

which in turn implies (by expanding ⌣ = ℵ ς 𝜀 )

⦅𝜚⦆
2
𝛻

+ (⌣,ℵ) , ⦅𝜚⦆
2
𝛻

+ (𝜀 ,⌣) ε 𝜔
1 ⌋

7 ,𝜔
2⌈ (137)

Moreover, ⌣ satisfies the following difference equation in the sense of distributions:
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

⌣ = 𝛻
+ (⌣,ℵ) +𝛻

+ (𝜀 ,⌣) ς⌣⊲
ℵ
ς 𝜀⊲

⌣

We can equivalently write
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛
+ ⊲

ℵ

⌈

⌣ = 𝛻
+ (⌣,ℵ) +𝛻

+ (𝜀 ,⌣) ς 𝜀⊲
⌣

(138)

and view ⊲
ℵ
as an integrating factor in Duhamel’s formula, precisely as is done in (80). In particular, since ℵ ⨋ 0 a.e. (𝜗, 𝜛, 𝜚), we

find that ⊲
ℵ
⨋ 0 a.e. (𝜗, 𝜛) so that, as long as we work purely in mixed Lebesgue spaces (which we will), the term ⊲

ℵ
is completely

harmless (the fact that the terms on the right of (138) need not be non-negative is irrelevant: we will be estimating each in absolute
value).

Remark 19.3. Technically we have not shown that ⌣⊲
ℵ
is locally integrable. However, it turns out ⌣⊲

ℵ
is, indeed, locally integrable:

this is because the estimates to follow indirectly imply that 𝜀⊲
⌣
is locally integrable, and we may write

⌣⊲
ℵ
= ℵ⊲

ℵ
ς 𝜀⊲

𝜀
ς 𝜀⊲

⌣

and the first two terms on the right are just the losses 𝛻ς (ℵ,ℵ) resp. 𝛻ς (𝜀 , 𝜀 ), which we have already shown to be locally integrable
on compact sub-intervals of 7ω (ℵ) resp. 7ω (𝜀 ).

Let us multiply the right-hand side of (138) by sgn (⌣) (as if to write an energy estimate for ⦃⌣⦃) and decompose into its three
terms: namely,

 = 1 +2 ς3

where

1 = sgn (⌣)𝛻+ (⌣,ℵ)

2 = sgn (⌣)𝛻+ (𝜀 ,⌣)
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and

3 = sgn (⌣) 𝜀⊲⌣

so that
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛
+ ⊲

ℵ

⌈

⦃⌣⦃ = 

Since ⌣ = ℵ ς 𝜀 ε 𝐸
⌋

7 ,𝜔
2⌈, we see that ⟨⌣ (𝜗)⟨

𝜔2 is a continuous function of 𝜗 ε 7 . Moreover, since 𝜀 and ℵ coincide when
𝜗 = 0, we see that ⌣ (𝜗 = 0) is zero almost everywhere. Let us assume that ⟨⌣ (𝜗)⟨

𝜔2 is not identically zero for all 𝜗 ε 7 and derive a
contradiction. In that case, we can define

𝜗0 = inf
/

𝜗 ε [0, 𝜍 ] ϑ ⟨⌣ (𝜗)⟨
𝜔2 > 0

\

and observe that 0 ∳ 𝜗0 < 𝜍 (the case 𝜗0 = 0 being permitted at this stage), and ⌣ = 0 for 0 ∳ 𝜗 ∳ 𝜗0 due to the time continuity of ⌣
into 𝜔

2. In particular, ⌣
⌋

𝜗 = 𝜗0, 𝜛, 𝜚
⌈

= 0 a.e. (𝜛, 𝜚). To obtain the contradiction, we shall show that ⌣ = 0 for 0 ∳ 𝜗 < 𝜗1 for some 𝜗1
strictly larger than 𝜗0.

The style of argument is to estimate an integral in terms of itself, the constant being less than one over any small enough time
interval: in particular, this type of argument relies on the finiteness of the integral, and such estimates generally imply ‘‘if it is finite,
then it is zero’’. Therefore, before we begin, it will be useful to establish that

⦅𝜚⦆
2  ε 𝜔

1 ⌋
7 ,𝜔

2⌈ (139)

To this end, let us show that

⦅𝜚⦆
2 

𝑆
ε 𝜔

1 ⌋
7 ,𝜔

2⌈

for 𝑆 ε {1, 2, 3}. For 1 and 2, this follows immediately from (137). For 3, we have by Hölder’s inequality
⦄

⦄

⦄

⦅𝜚⦆
2 3

⦄

⦄

⦄𝜔1(7 ,𝜔2) ∳
⦄

⦄

⦄

⦅𝜚⦆
2
𝜀
⦄

⦄

⦄𝜔2
⟪

7 ,𝜔
∇
𝜛
𝜔
2
𝜚(R2ϖR2)

⟫

⦄

⦄

⦄

⊲
⦃⌣⦃

⦄

⦄

⦄𝜔2
⟪

7 ,𝜔
2
𝜛(R2)

⟫

∳ 𝐸
⦄

⦄

⦄

⦅𝜚⦆
2
𝜀
⦄

⦄

⦄𝜔2
⟪

7 ,𝜔
∇
𝜛
𝜔
2
𝜚(R2ϖR2)

⟫

⦄

⦄

⦄

⦅𝜚⦆
2
⌣
⦄

⦄

⦄𝜔2(7 ,𝜔2)

where we have used that

⊲
⦃⌣⦃

= ⟨⌣⟨

𝜔
1
𝜚(R2) ∳ 𝐸

⦄

⦄

⦄

⦅𝜚⦆
2
⌣
⦄

⦄

⦄𝜔
2
𝜚(R2) (140)

We know that ⦅𝜚⦆2 ⌣ ε 𝜔
2 ⌋

7 ,𝜔
2⌈ by (136) and the compactness of 7 , and it is a hypothesis of the Theorem that

⦅𝜚⦆
2
𝜀 ε 𝜔

2 ⌋
7 ,𝜔

∇
𝜛
𝜔
2
𝜚

⌋

R2 ϖ R2⌈⌈ (141)

so we may conclude (139).
By Duhamel’s formula with ⌣

⌋

𝜗 = 𝜗0
⌈

= 0, for 𝜗 ε
⟩

𝜗0, 𝜍
)

we may write

⦃⌣⦃ (𝜗) ∳ ∱

𝜗

𝜗0
⨏ (𝜗 ς 𝑇) ⦃⦃ (𝑇) ℷ𝑇 (142)

hence, multiplying through by ⦅𝜚⦆
2 and commuting with the free transport, we have

⦅𝜚⦆
2
⦃⌣⦃ (𝜗) ∳ ∱

𝜗

𝜗0
⨏ (𝜗 ς 𝑇)

]

⦅𝜚⦆
2
⦃⦃ (𝑇)

⟦

ℷ𝑇 (143)

Therefore, letting 𝑃
𝑐
=
⟩

𝜗0, 𝑐
)

for 𝑐 ε
⟩

𝜗0, 𝜍
)

,

⦄

⦄

⦄

⦅𝜚⦆
2
⌣
⦄

⦄

⦄𝜔∇(𝑃𝑐 ,𝜔2) ∳
⦄

⦄

⦄

⦅𝜚⦆
2 ⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2) (144)

Let us define for 𝑐 ε
⟩

𝜗0, 𝜍
)

8 (𝑐) = ⦄

⦄

⦄

⦅𝜚⦆
2 ⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2)
so that

8 (𝑐) ∳
3
❳

𝑆=1

⦄

⦄

⦄

⦅𝜚⦆
2 

𝑆

⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2)

We will show that 8
⌋

𝜗1
⌈

= 0 for some 𝜗1 > 𝜗0 to conclude the Theorem.
Let us first estimate 3 since it is the easiest term. Indeed

⌉

⌉

3⌉
⌉

∳ 𝜀⊲
⦃⌣⦃
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so recalling (140) and (144) we have
⦄

⦄

⦄

⦅𝜚⦆
2 3

⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2) ∳
⦄

⦄

⦄

⦅𝜚⦆
2
𝜀
⦄

⦄

⦄𝜔2
⟪

𝑃𝑐 ,𝜔
∇
𝜛
𝜔
2
𝜚(R2ϖR2)

⟫

⦄

⦄

⦄

⊲
⦃⌣⦃

⦄

⦄

⦄𝜔2
⟪

𝑃𝑐 ,𝜔
2
𝜛(R2)

⟫

∳ 𝐸
⦄

⦄

⦄

⦅𝜚⦆
2
𝜀
⦄

⦄

⦄𝜔2
⟪

7 ,𝜔
∇
𝜛
𝜔
2
𝜚(R2ϖR2)

⟫

⦄

⦄

⦄

⦅𝜚⦆
2
⌣
⦄

⦄

⦄𝜔2(𝑃𝑐 ,𝜔2)

∳ 𝐸
⌋

𝑐 ς 𝜗0
⌈

1
2 ⦄
⦄

⦄

⦅𝜚⦆
2
𝜀
⦄

⦄

⦄𝜔2
⟪

7 ,𝜔
∇
𝜛
𝜔
2
𝜚(R2ϖR2)

⟫

⦄

⦄

⦄

⦅𝜚⦆
2
⌣
⦄

⦄

⦄𝜔∇(𝑃𝑐 ,𝜔2)

∳ 𝐸
⌋

𝑐 ς 𝜗0
⌈

1
2 ⦄
⦄

⦅𝜚⦆
𝐵
𝜀⦄
⦄𝜔2

⟪

7 ,𝜔
∇
𝜛
𝜔
2
𝜚(R2ϖR2)

⟫ 8 (𝑐)

so if
⌋

𝑐 ς 𝜗0
⌈

is sufficiently small then by (141) we have

⦄

⦄

⦄

⦅𝜚⦆
2 3

⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2) ∳
1
4 8 (𝑐)

We now turn to 1 (the estimate for 2 is similar, by substituting 𝜀 for ℵ). Let us denote

♯ =
/

𝑊0 ε 𝜔
1
loc

⌋

R2 ϖ R2⌈ ϑ ⦄

⦄

𝑊0⦄
⦄𝜔2 ∳ 1

\

and then let us additionally define for 𝑐 ε
⟩

𝜗0, 𝜍
)

with 𝑃
𝑐
=
⟩

𝜗0, 𝑐
)

> (𝑐) = sup
𝑊0ε♯

⦄

⦄

⦄

⦄

𝛻
+
⟪

⨏
⌋

𝜗 ς 𝜗0
⌈

𝑊0, ⨏
⌋

𝜗 ς 𝜗0
⌈

]

⦅𝜚⦆
2
ℵ
⌋

𝜗0
⌈

⟦⟫

⦄

⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2)

Then since ⦅𝜚⦆
2
ℵ
⌋

𝜗0
⌈

ε 𝜔
2, by Proposition 7.5 we have

lim
𝑐𝜗

+
0

> (𝑐) = 0 (145)

We will apply Lemma 8.1 to estimate

𝛻
+
⟪

⦅𝜚⦆
2
⦃⌣⦃ , ⦅𝜚⦆

2
ℵ

⟫

which can only be larger than (a constant times) ⦅𝜚⦆2 ⌉
⌉

1⌉
⌉

. Indeed, we know that

⦅𝜚⦆
2
⦃⌣⦃ (𝜗) ∳ ∱

𝜗

𝜗0
⨏ (𝜗 ς 𝑇)

]

⦅𝜚⦆
2
⦃⦃ (𝑇)

⟦

ℷ𝑇

and also

⦅𝜚⦆
2
ℵ (𝜗) ∳ ⨏

⌋

𝜗 ς 𝜗0
⌈

]

⦅𝜚⦆
2
ℵ
⌋

𝜗0
⌈

⟦

+ ∱

𝜗

𝜗0
⨏ (𝜗 ς 𝑇)

]

⦅𝜚⦆
2
𝛻

+ (ℵ,ℵ) (𝑇)
⟦

ℷ𝑇

in particular ⌣
⌋

𝜗 = 𝜗0
⌈

= 0. Hence by Lemma 8.1 we may write, again with 𝑃
𝑐
=
⟩

𝜗0, 𝑐
)

,

⦄

⦄

⦄

⦄

𝛻
+
⟪

⦅𝜚⦆
2
⦃⌣⦃ , ⦅𝜚⦆

2
ℵ

⟫

⦄

⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2)
∳ > (𝑐) ⦄⦄

⦄

⦅𝜚⦆
2 ⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2)
+ 𝐸

⦄

⦄

⦄

⦅𝜚⦆
2
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1(𝑃𝑐 ,𝜔2)

⦄

⦄

⦄

⦅𝜚⦆
2 ⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2)

∳
{

> (𝑐) + 𝐸
⦄

⦄

⦄

⦅𝜚⦆
2
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1(𝑃𝑐 ,𝜔2)

}

8 (𝑐)

Then by (135) and (145) we have

lim
𝑐𝜗

+
0

{

> (𝑐) + 𝐸
⦄

⦄

⦄

⦅𝜚⦆
2
𝛻

+ (ℵ,ℵ)⦄⦄
⦄𝜔1(𝑃𝑐 ,𝜔2)

}

= 0

therefore for
⌋

𝑐 ς 𝜗0
⌈

sufficiently small it holds

⦄

⦄

⦄

⦅𝜚⦆
2 1

⦄

⦄

⦄𝜔1(𝑃𝑐 ,𝜔2) ∳
1
4 8 (𝑐)

Altogether we find that for all
⌋

𝑐 ς 𝜗0
⌈

sufficiently small it holds

8 (𝑐) ∳ 3
4 8 (𝑐)

and since we know 8 (𝑐) < ∇ this implies 8
⌋

𝑐0
⌈

= 0 for some 𝑐0 > 𝜗0, reaching the desired contradiction. ⋜
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19.3. Exclusive scattering

Weak-strong uniqueness allows us to establish exclusive scattering simply by proving the existence of a single scattering
(ω)-solution with sufficient integrability and decay:

Corollary 19.4. Suppose 0 ∳ 𝜀0 ε 𝜔
2 ❲

𝜔
1
2 is such that

⦅𝜚⦆
2
𝜀0 ε 𝜔

2

and that there exists a (ω)-solution 𝜀 of (1), with initial data 𝜀0, such that

𝜍
ω (𝜀 ) = ∇ and 𝜀 scatters

and

+ (𝜍 < ∇) ⦅𝜚⦆
2
𝜀 ε 𝜔

2 ⌋[0, 𝜍 ] ,𝜔∇
𝜛
𝜔
2
𝜚

⌋

R2 ϖ R2⌈⌈

Then 𝜀0 ε ⨜ .

Proof. Since 𝜀 satisfies the conditions of the weak-strong uniqueness theorem, Theorem 19.3, globally in time, it follows that any
(ω)-solution with initial data 𝜀0 coincides with 𝜀 for all 𝜗 ⨋ 0. On the other hand, by hypotheses, 𝜀 is a global scattering (ω)-solution.
Therefore, every (ω)-solution with initial data 𝜀0 is a global scattering (ω)-solution (being simply 𝜀 ), so we conclude that 𝜀0 ε ⨜ , by
the definition of the class ⨜ . ⋜

20. Proof of the main theorem: Part I

Let 3, 0, 4 > 0 and consider the moving Maxwellian distribution

𝐽
3,0,4 (𝜗, 𝜛, 𝜚) = 3 exp

⌋

ς0 ⦃𝜚⦃2 ς 4 ⦃𝜛 ς 𝜚𝜗⦃
2⌈

with initial data

𝐽
3,0,4

0 (𝜛, 𝜚) = 3 exp
⌋

ς0 ⦃𝜚⦃2 ς 4 ⦃𝜛⦃
2⌈

Clearly, 𝐽
3,0,4 scatters (since it is an exact solution of the free transport equation); moreover, since 𝐽

3,0,4 ε 𝐸
1 ([0,∇) ,⨑),

Theorem 19.3 implies that any (ω)-solution corresponding to the initial data 𝐽
3,0,4

0 is global and coincides with 𝐽
3,0,4 . Therefore,

𝐽
3,0,4

0 is exclusively scattering, i.e. 𝐽3,0,4

0 ε ⨜ . Hence, by Theorem 18.2, there exists an 𝐾 = 𝐾 (3, 0, 4) > 0 such that if 𝜀0 ε 9 and

⦄

⦄

⦄

𝜀0 ς 𝐽
3,0,4

0
⦄

⦄

⦄9

< 2 ⋛ 𝐾 (146)

then 𝜀0 ε ⨜ ; by the definition of the 9-norm

⦄

⦄

ℵ0⦄
⦄9

= ⦄

⦄

ℵ0⦄
⦄𝜔2 +

❳

𝐴ε
]

1, 𝜚1 , 𝜚2 , ⦃𝜚⦃2 , ⦃𝜛⦃2 , 𝜛⋛𝜚
⟦

⌉

⌉

⌉

⌉

∱R2ϖR2
𝐴 (𝜛, 𝜚)ℵ (𝜛, 𝜚) ℷ𝜛ℷ𝜚

⌉

⌉

⌉

⌉

we see that (146) follows from our hypotheses (13)–(14). On the other hand, given 𝜀0 ε ⨜ , it follows from the definition of ⨜ that
any (ω)-solution of (1) corresponding to initial data 𝜀0 is global and scatters; but by Theorem 15.2, there does indeed exist such a
(ω)-solution.

21. Higher regularity

21.1. Preliminaries

We will be using difference quotients in order to establish propagation of regularity on the full (recall, half-open) interval 7ω (𝜀 ).
This is slightly subtle because we are using 𝜔

1 in the time variable: this turns out not to be an issue, as we shall show momentarily.
Let us define the translation by 3 ε R along the unit vector 𝛝 ε R2 for ℵ0 ε 𝜔

2:
⌋

𝑇
3

𝛝 ℵ0
⌈

(𝜛, 𝜚) = ℵ0 (𝜛 + 3𝛝, 𝜚)

Then we define the finite difference operator for 3 ⨐ 0

𝑑
3

𝛝 = 3
ς1 ⌋

𝑇
3

𝛝 ς 7
⌈

where 7 is the identity. Fixing once and for all an orthonormal basis
/

𝛝
𝑆

\

𝑆=1,2 of R
2 we denote

⌉

⌉

𝑑
3
ℵ0⌉

⌉

=
⌊

❳

𝑆

⌉

⌉

⌉

𝑑
3

𝛝𝑆 ℵ0
⌉

⌉

⌉

2
⌋

1
2
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and ⦄

⦄

𝑑
3
ℵ0⦄

⦄𝜔2 is then the 𝜔2 norm of ⌉
⌉

𝑑
3
ℵ0⌉

⌉

. The symbol ϱ
𝜛
denotes differentiation in the sense of distributions with respect to the

variable 𝜛 ε R2.
For this subsection (specifically the following two lemmas) we follow the presentation of the book by Evans ([20] subsection

5.8.2).

Lemma 21.1. For any ℵ0 ε 𝜔
2 such that ϱ

𝜛
ℵ0 ε 𝜔

2, and for any 3 ε R ⟥ {0},
⦄

⦄

𝑑
3
ℵ0⦄

⦄𝜔2 ∳ 2
1
2 ⦄
⦄

ϱ
𝜛
ℵ0⦄

⦄𝜔2

Proof. We have by the fundamental theorem of calculus
⟪

𝑑
3

𝛝𝑆 ℵ0
⟫

(𝜛, 𝜚) = ∱

1

0

⌋

𝛝
𝑆
⋛ ϱ

𝜛
ℵ0

⌈ ⌋

𝜛 + 30𝛝
𝑆
, 𝜚
⌈

ℷ0

therefore

⦄

⦄

⦄

𝑑
3

𝛝𝑆 ℵ0
⦄

⦄

⦄𝜔2 ∳ ∱

1

0

⦄

⦄

⦄

𝑇
30

𝛝𝑆
⌋

𝛝
𝑆
⋛ ϱ

𝜛
ℵ0

⌈

⦄

⦄

⦄𝜔2 ℷ0 ∳ ⦄

⦄

ϱ
𝜛
ℵ0⦄

⦄𝜔2 ⋜

Lemma 21.2. Let ℵ0 ε 𝜔
2 be such that

lim inf
0<⦃3⦃0

⦄

⦄

𝑑
3
ℵ0⦄

⦄𝜔2 < ∇

Then ϱ
𝜛
ℵ0 ε 𝜔

2 and it holds
⦄

⦄

ϱ
𝜛
ℵ0⦄

⦄𝜔2 ∳ 2
1
2 lim inf
0<⦃3⦃0

⦄

⦄

𝑑
3
ℵ0⦄

⦄𝜔2

Proof. Let us define

♭ = lim inf
0<⦃3⦃0

⦄

⦄

𝑑
3
ℵ0⦄

⦄𝜔2

and pick a sequence 3
𝐺
ε R ⟥ {0} with 3

𝐺
 0 such that

lim
𝐺∇

⦄

⦄

𝑑
3𝐺ℵ0⦄

⦄𝜔2 = ♭

Then for 𝑆 = 1, 2 it holds

lim sup
𝐺∇

⦄

⦄

⦄

𝑑
3𝐺

𝛝𝑆 ℵ0
⦄

⦄

⦄𝜔2 ∳ ♭

Hence we can pass to a weak limit along a subsequence
]

3
𝐺𝐿

⟦

𝐿

𝑑
3𝐺𝐿

𝛝𝑆 ℵ0  1
𝑆
ε 𝜔

2

and moreover
⦄

⦄

1
𝑆
⦄

⦄𝜔2 ∳ ♭

On the other hand, by duality and the dominated convergence theorem, for any smooth and compactly supported function 𝐴0 on
R2 ϖ R2,

∱R2ϖR2
𝐴01𝑆ℷ𝜛ℷ𝜚 = lim

𝐿∇∱R2ϖR2
𝐴0𝑑

3𝐺𝐿

𝛝𝑆 ℵ0ℷ𝜛ℷ𝜚

= ς lim
𝐿∇∱R2ϖR2

ℵ0𝑑
ς3𝐺𝐿
𝛝𝑆 𝐴0ℷ𝜛ℷ𝜚

= ς∱R2ϖR2
ℵ0𝛝𝑆 ⋛ ϱ𝜛

𝐴0ℷ𝜛ℷ𝜚

which implies

1
𝑆
= 𝛝

𝑆
⋛ ϱ

𝜛
ℵ0 ⋜

The key is to realize that 𝜔1 only occurs in the time variable, whereas the difference quotient only occurs in the space variable,
and apply Fatou’s lemma.

Lemma 21.3. Let 𝑊 ε 𝜔
1 ⌋

7 ,𝜔
2⌈ for some interval 7 ⊳ R, and further suppose that

lim inf
0<⦃3⦃0

⟨𝑑
3
𝑊⟨

𝜔1(7 ,𝜔2) < ∇

Then ϱ
𝜛
𝑊 ε 𝜔

1 ⌋
7 ,𝜔

2⌈ and it holds

⦄

⦄

ϱ
𝜛
𝑊⦄
⦄𝜔1(7 ,𝜔2) ∳ 2

1
2 lim inf
0<⦃3⦃0

⟨𝑑
3
𝑊⟨

𝜔1(7 ,𝜔2)
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Proof. Since 𝑊 ε 𝜔
1 ⌋

7 ,𝜔
2⌈, we have 𝑊 (𝜗) ε 𝜔

2 for a.e. 𝜗 ε 7 ; we want to apply Lemma 21.2 for almost every such 𝜗. Let us define

♭ = lim inf
0<⦃3⦃0

⟨𝑑
3
𝑊⟨

𝜔1(7 ,𝜔2)

and take a sequence 3
𝐺
ε R ⟥ {0} such that

lim
𝐺∇

⟨𝑑
3𝐺𝑊⟨

𝜔1(7 ,𝜔2) = ♭

Then by Fatou’s lemma, the quantity

lim inf
𝐺∇

⟨𝑑
3𝐺𝑊 (𝜗)⟨

𝜔2

is finite for a.e. 𝜗 ε 7 , and we note that

lim inf
0<⦃3⦃0

⟨𝑑
3
𝑊 (𝜗)⟨

𝜔2 ∳ lim inf
𝐺∇

⟨𝑑
3𝐺𝑊 (𝜗)⟨

𝜔2 (147)

Therefore, since we also have 𝑊 (𝜗) ε 𝜔
2 for a.e. 𝜗 ε 7 , by Lemma 21.2, we have that ϱ

𝜛
𝑊 (𝜗) ε 𝜔

2 for a.e.e 𝜗 ε 7

Now we estimate, using Lemma 21.2, followed by (147) and finally Fatou’s lemma:

⦄

⦄

ϱ
𝜛
𝑊⦄
⦄𝜔1(7 ,𝜔2) = ∱

7

⦄

⦄

ϱ
𝜛
𝑊 (𝜗)⦄

⦄𝜔2 ℷ𝜗

∳ 2
1
2
∱
7

lim inf
0<⦃3⦃0

⟨𝑑
3
𝑊 (𝜗)⟨

𝜔2 ℷ𝜗

∳ 2
1
2
∱
7

lim inf
𝐺∇

⟨𝑑
3𝐺𝑊 (𝜗)⟨

𝜔2 ℷ𝜗

∳ 2
1
2 lim inf

𝐺∇ ∱
7

⟨𝑑
3𝐺𝑊 (𝜗)⟨

𝜔2 ℷ𝜗

= 2
1
2 lim
𝐺∇

⟨𝑑
3𝐺𝑊⟨

𝜔1(7 ,𝜔2)

= 2
1
2 ♭

⋜

21.2. The gain-only equation

Let us recall the Sobolev norms (12) for non-negative real numbers 𝐵, 𝐶,
⦄

⦄

𝜀0⦄
⦄<𝐵,𝐶 = ⦄

⦄

⦄

⦅𝜚⦆
𝐶
⦅ϱ

𝜛
⦆

𝐵
𝜀0
⦄

⦄

⦄𝜔2

We have already propagated <
0,𝐶 for (1) for any 𝐶 ⨋ 0 by Proposition 19.2. The objective of this sub-section is to propagate <2,2 for

the gain-only equation. Then we will close out our treatment of regularity by propagating <
2,2 for the full Eq. (1) in the subsequent

sub-section, which will turn out to be sufficient to propagate Schwartz regularity and conclude Part II of the main theorem.
Before we begin, let us observe that for some constant 𝐸 > 0 we have the equivalence of norms

𝐸
ς1

⦄

⦄

𝜀0⦄
⦄<1,2 ∳ ⦄

⦄

𝜀0⦄
⦄<0,2 + ⦄

⦄

ϱ
𝜛
𝜀0⦄
⦄<0,2 ∳ 𝐸 ⦄

⦄

𝜀0⦄
⦄<1,2

Moreover, denoting by the symbol

⨚2
𝜛
𝜀0

the matrix of second-order distributional derivatives of 𝜀0 ε 𝜔
2 in the 𝜛 variable only, we have for some other constant 𝐸 > 0

𝐸
ς1

⦄

⦄

𝜀0⦄
⦄<2,2 ∳ ⦄

⦄

𝜀0⦄
⦄<0,2 + ⦄

⦄

⦄

⨚2
𝜛
𝜀0
⦄

⦄

⦄<0,2 ∳ 𝐸 ⦄

⦄

𝜀0⦄
⦄<2,2

The propagation proofs for the gain-only equation will be similar to the proof of Lemma 19.1 and will also rely on the conclusion
of that Proposition.

Lemma 21.4. Assume 𝜀0 is such that
⦅𝜚⦆

2
⦅ϱ

𝜛
⦆ 𝜀0 ε 𝜔

2

and let
0 < 𝜍 < 𝜍g.o.

⌋

𝜀0
⌈

Then the solution ℵ (𝜗) of the gain-only Boltzmann equation with initial data 𝜀0 i.e.
ℵ (𝜗) = Zg.o.

⌋

𝜀0
⌈

(𝜗)

satisfies
⦅𝜚⦆

2
⦅ϱ

𝜛
⦆ℵ ε 𝜔

∇ ⌋

[0, 𝜍 ],𝜔2⌈

and
⦅𝜚⦆

2
⦅ϱ

𝜛
⦆𝛻

+ (ℵ,ℵ) ε 𝜔
1 ⌋[0, 𝜍 ],𝜔2⌈
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Proof. Fixing any 0 < 𝜍 < 𝜍g.o.
⌋

𝜀0
⌈

with 7 = [0, 𝜍 ] we may define

𝐸0 (𝜍 ) = ⟨ℵ⟨
𝜔∇(7 ,<0,2) + ⦄

⦄

𝛻
+ (ℵ,ℵ)⦄

⦄𝜔1(7 ,<0,2) (148)

which is finite by Lemma 19.1.
Let 𝛝 ε R2 be a unit vector. We have each

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

]

⦅𝜚⦆
2
ℵ

⟦

= ⦅𝜚⦆
2
𝛻

+ (ℵ,ℵ) (149)

and
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

]

⦅𝜚⦆
2
𝑑

3

𝛝ℵ
⟦

= ⦅𝜚⦆
2
𝛻

+ ⌋

𝑑
3

𝛝ℵ,ℵ
⌈

+ 𝑇
3

𝛝

]

⦅𝜚⦆
2
𝛻

+ ⌋

ℵ, 𝑇
ς3
𝛝 𝑑

3

𝛝ℵ
⌈

⟦ (150)

where 𝑑3

𝛝 is the finite difference operator which has been previously defined, and we have applied the product rule to commute 𝑑
3

𝛝
with 𝛻

+. Let us in particular denote

𝑊
3

𝛝 =
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

]

⦅𝜚⦆
2
𝑑

3

𝛝ℵ
⟦

The key is to apply Proposition 7.12, recalling that the conclusion of the Proposition is independent of one of the two arguments
of 𝛻+: this is why it does not bother us that 3 is a variable, nor that the right-hand side of (150) contains 𝑑3

𝛝ℵ and 𝑇
ς3
𝛝 𝑑

3

𝛝ℵ. The
symbol 𝜕 in the Proposition will stand for the present ⦅𝜚⦆2 ℵ (this is why we use <

0,2 in the definition (148) of 𝐸0 (𝜍 ) above), and
we decompose 7 = [

𝑈
7
𝑈
, 7

𝑈
=
⟩

𝜗
𝑈
, 𝜗
𝑈+1

)

, as in the Proposition, depending on some 𝐾 > 0 to be chosen later. The claim is that if

𝛻
+ (ℵ,ℵ) ε

𝑈ς1
(

𝑆=0
𝜔
1 ⌋

7
𝑆
,<

1,2⌈ (151)

then

𝛻
+ (ℵ,ℵ) ε

𝑈
(

𝑆=0
𝜔
1 ⌋

7
𝑆
,<

1,2⌈ (152)

which allows us to conclude after finitely many inductive iterations. We remark that

⟨ℵ (𝜗)⟨
<1,2 ∳ ⦄

⦄

ℵ0⦄
⦄<1,2 + ∱

𝜗

0
⦄

⦄

𝛻
+ (ℵ,ℵ) (.)⦄

⦄<1,2 ℷ.

so there is nothing more to show, once the claim is established.
Let us assume (151); we know, in particular, that

ℵ
⌋

𝜗
𝑈

⌈

ε <
1,2

and we need to show that

𝛻
+ (ℵ,ℵ) ε 𝜔

1 ⌋
7
𝑈
,<

1,2⌈

In fact, since 𝑊
3

𝛝 = ⦅𝜚⦆
2
𝑑

3

𝛝𝛻
+ (ℵ,ℵ), by Lemma 21.3 we only need to show that

𝑊
3

𝛝 ε 𝜔
1 ⌋

7
𝑈
,𝜔

2⌈

uniformly in 3 ε R⟥{0} for any unit vector 𝛝 ε R2. Note carefully that we already know this membership for each 3 because 𝑊3𝛝 is just
defined by a finite difference; therefore, it is permissible to estimate 𝑊

3

𝛝 in terms of itself, with a small enough constant, uniformly in
3.

We proceed by (150), noting that the left hand side is just 𝑊3𝛝 :

⦄

⦄

𝑊
3

𝛝
⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

=
⦄

⦄

⦄

⦄

⦅𝜚⦆
2
𝛻

+ ⌋

𝑑
3

𝛝ℵ,ℵ
⌈

+ 𝑇
3

𝛝

]

⦅𝜚⦆
2
𝛻

+ ⌋

ℵ, 𝑇
ς3
𝛝 𝑑

3

𝛝ℵ
⌈

⟦

⦄

⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳
⦄

⦄

⦄

⦄

𝛻
+
⟪

⦅𝜚⦆
2
⌉

⌉

𝑑
3

𝛝ℵ
⌉

⌉

, ⦅𝜚⦆
2
ℵ

⟫

⦄

⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

+
⦄

⦄

⦄

⦄

𝛻
+
⟪

⦅𝜚⦆
2
ℵ, ⦅𝜚⦆

2
𝑇
ς3
𝛝

⌉

⌉

𝑑
3

𝛝ℵ
⌉

⌉

⟫

⦄

⦄

⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳ 𝐸𝐸0 (𝜍 ) ϖ
⟪

⦄

⦄

⦄

ℵ
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄<1,2 + 𝐾 ⦄
⦄

𝑊
3

𝛝
⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈
⟫

We conclude by choosing 𝐾 no larger than 2ς1𝐸ς1
𝐸0 (𝜍 )ς1. ⋜

The following lemma is similar to Lemma 21.4, both in statement and in proof, and we only sketch the details.
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Lemma 21.5. Assume 𝜀0 is such that

⦅𝜚⦆
2
⦅ϱ

𝜛
⦆

2
𝜀0 ε 𝜔

2

and let

0 < 𝜍 < 𝜍g.o.
⌋

𝜀0
⌈

Then the solution ℵ (𝜗) of the gain-only Boltzmann equation with initial data 𝜀0 i.e.

ℵ (𝜗) = Zg.o.
⌋

𝜀0
⌈

(𝜗)

satisfies

⦅𝜚⦆
2
⦅ϱ

𝜛
⦆

2
ℵ ε 𝜔

∇ ⌋

[0, 𝜍 ],𝜔2⌈

and

⦅𝜚⦆
2
⦅ϱ

𝜛
⦆

2
𝛻

+ (ℵ,ℵ) ε 𝜔
1 ⌋[0, 𝜍 ],𝜔2⌈

Proof. Fixing any 0 < 𝜍 < 𝜍g.o.
⌋

𝜀0
⌈

with 7 = [0, 𝜍 ] we have

⟨ℵ⟨
𝜔∇(7 ,<1,2) + ⦄

⦄

𝛻
+ (ℵ,ℵ)⦄

⦄𝜔1(7 ,<1,2) < ∇ (153)

which follows from Lemma 21.4.
Let 𝛝, 𝛝φ ε R2 be two orthogonal unit vectors, and let us denote

1𝛝φ = 𝛝φ ⋛ ϱ
𝜛
ℵ

Then we may write
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

]

⦅𝜚⦆
2
𝑑

3

𝛝1𝛝φ
⟦

= ⦅𝜚⦆
2
𝛻

+ ⌋

𝑑
3

𝛝1𝛝φ , ℵ
⌈

+ 𝑇
3

𝛝

]

⦅𝜚⦆
2
𝛻

+ ⌋

ℵ, 𝑇
ς3
𝛝 𝑑

3

𝛝1𝛝φ
⌈

⟦

+ 𝑁

where by (153) it holds

𝑁 ε 𝜔
1 ⌋

7 ,𝜔
2⌈

The conclusion then follows similarly to the proof of Lemma 21.4. ⋜

21.3. The full Boltzmann equation

Proposition 21.6. Let 𝜀 be a (ω)-solution of (1) with initial data

0 ∳ 𝜀 (𝜗 = 0) = 𝜀0

Then provided

𝜀0 ε <
2,2

it follows that for each

0 < 𝜍 < 𝜍
ω (𝜀 )

it holds

𝜀 ε 𝜔
∇ ⌋

[0, 𝜍 ] ,<2,2⌈

and

𝛻
± (𝜀 , 𝜀 ) ε 𝜔

2 ⌋[0, 𝜍 ] ,<2,2⌈

Remark 21.1. Note carefully that both 𝛻
+ and 𝛻

ς are placed in <
2,2.

Proof. Let us recall, to start, the following bilinear estimate from the previous article [10]: for any ℵ0, 2ℵ0 ε <
𝐵,𝐶 , with 𝐵, 𝐶 each

real numbers strictly greater than 1
2

⟪

= ℷς1
2

⟫

, it holds

⦄

⦄

⦄

𝛻
± ⌋

⨏ ℵ0, ⨏ 2ℵ0
⌈

⦄

⦄

⦄𝜔2(R,<𝐵,𝐶 ) ∳ 𝐸 ⦄

⦄

ℵ0⦄
⦄<𝐵,𝐶

⦄

⦄

2ℵ0⦄
⦄<𝐵,𝐶 (154)
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Combining this estimate with the ℏ = 2 case of Lemma 6.2 immediately implies a free upgrade to 𝜔
2 in time given a bound 𝜔

1 in
time for any such 𝐵, 𝐶: for example,

❳

6ε{±}
⟨𝛻

6 (𝜀 , 𝜀 )⟨
𝜔2([0,𝜍 ],<2,2)

∳ 𝐸

⌊

⦄

⦄

𝜀0⦄
⦄<2,2 +

❳

6ε{±}
⟨𝛻

6 (𝜀 , 𝜀 )⟨
𝜔1([0,𝜍 ],<2,2)

⌋2

Therefore we will only concern ourselves with the 𝜔
1 estimate.

Fix 0 < 𝜍 < 𝜍
ω (𝜀 ), and observe that by Proposition 19.2 it holds

𝐸0 (𝜍 ) = ⟨𝜀⟨
𝜔∇([0,𝜍 ],<0,2) + ⦄

⦄

𝛻
+ (𝜀 , 𝜀 )⦄

⦄𝜔1([0,𝜍 ],<0,2) < ∇

Moreover, since 𝜀 ε 𝐸
⌋

[0, 𝜍 ] ,𝜔2⌈, we have

0 < inf
𝜗ε[0,𝜍 ]

𝜍g.o. (𝜀 (𝜗)) (155)

So let us pick a real number 𝑉 > 0 such that

0 < 𝑉 < inf
𝜗ε[0,𝜍 ]

𝜍g.o. (𝜀 (𝜗)) (156)

Fixing any 𝜗0 ε [0, 𝜍 ] let us define an interval 7 based at 𝜗0 via the formula

7 = 7
⌋

𝜗0
⌈

=
⟩

𝜗0, 𝜗0 + 𝑉
)

and note that 7 is guaranteed to be a sub-interval of 7ω (𝜀 ). We are going to show that if 𝜗0 ε [0, 𝜍 ] is chosen such that

𝜀
⌋

𝜗0
⌈

ε <
2,2

(which is true for 𝜗0 = 0 in any case), then

𝛻
± (𝜀 , 𝜀 ) ε 𝜔

1 ⌋
7 ,<

2,2⌈

which, since 𝜀
⌋

𝜗0
⌈

ε <
2,2, in turn implies

𝜀 ε 𝜔
∇ ⌋

7 ,<
2,2⌈

Since 𝑉 is independent of 𝜗0 ε [0, 𝜍 ], we can then conclude

𝛻
± (𝜀 , 𝜀 ) ε 𝜔

1 ⌋[0, 𝜍 ] ,<2,2⌈

and

𝜀 ε 𝜔
∇ ⌋

[0, 𝜍 ] ,<2,2⌈

which implies the Proposition since 𝜍 ε (0, 𝜍 ω (𝜀 )) is chosen arbitrarily.
Before we begin, we need to use the gain-only equation. Indeed, since 𝜀

⌋

𝜗0
⌈

ε <
2,2, by Lemma 21.5 we have

Zg.o.
⌋

𝜀
⌋

𝜗0
⌈⌈

ε 𝜔
∇ ⌋

7 ,<
2,2⌈

hence by Sobolev embedding

⦅𝜚⦆
2 Zg.o.

⌋

𝜀
⌋

𝜗0
⌈⌈

ε 𝜔
∇
𝜗
𝜔
2
𝜚
𝜔
∇
𝜛

⌋

7 ϖ R2 ϖ R2⌈
⊳ 𝜔

∇
𝜗,𝜛
𝜔
2
𝜚

⌋

7 ϖ R2 ϖ R2⌈

so by the comparison principle

⦅𝜚⦆
2
𝜀 ε 𝜔

∇
𝜗,𝜛
𝜔
2
𝜚

⌋

7 ϖ R2 ϖ R2⌈

thus by Hölder in 𝜚

⊲
𝜀
ε 𝜔

∇
𝜗,𝜛

⌋

7 ϖ R2⌈

So let us define the real number ♯ by

♯ = ⦄

⦄

⦄

⦅𝜚⦆
2
𝜀
⦄

⦄

⦄𝜔
∇
𝜗,𝜛

𝜔
2
𝜚(7ϖR2ϖR2) +

⦄

⦄

⦄

⊲
𝜀

⦄

⦄

⦄𝜔
∇
𝜗,𝜛
(7ϖR2)

which we may consider a constant for the remainder of the proof.
So let us take ♭ ε N sufficiently large and 𝐾 > 0 sufficiently small to be chosen later (each 𝐾,♭ possibly depending on each

𝜍 ,♯), and apply Corollary 7.13 to partition (for some 𝑂 ⨋ ♭)

7 =
⟩

𝜗0, 𝜗0 + 𝑉
)

=
𝑂ς1
⟨

𝑈=0
7
𝑈
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where 7
𝑈
=
⟩

𝜗
𝑈
, 𝜗
𝑈+1

)

and

𝜗0 < 𝜗1 < 𝜗2 < ⋞ < 𝜗
𝑂ς1 < 𝜗

𝑂
= 𝜗0 + 𝑉

and for each 𝑈 it holds

⌉

⌉

⌉

𝜗
𝑈+1 ς 𝜗

𝑈

⌉

⌉

⌉

<
1
♭

(157)

and additionally the estimates of Proposition 7.12 hold with 𝐾 on each 7
𝑈
.

Let us denote by 𝑏
𝑈,𝐵 , 𝐵 ε {1, 2}, the statement

+ (0 ∳ 𝑆 < 𝑈) 𝛻
± (𝜀 , 𝜀 ) ε 𝜔

1 ⌋
7
𝑆
,<

𝐵,2⌈

and note that

⟨𝜀 (𝜗)⟨
<𝐵,2

∳ ⦄

⦄

𝜀0⦄
⦄<𝐵,2 + ∱

𝜗

0

⌋

⦄

⦄

𝛻
+ (𝜀 , 𝜀 ) (.)⦄

⦄<𝐵,2 + ⟨𝛻
ς (𝜀 , 𝜀 ) (.)⟨

<𝐵,2
⌈

ℷ.

Observe that 𝑏 0,1 and 𝑏
0,2 each trivially hold, since there is no 𝑆 with

0 ∳ 𝑆 < 0

We are going to show that, under the hypotheses of the Proposition,

𝑏
𝑈,2 ⥳ 𝑏

𝑈+1,1

for each 𝑈, and

𝑏
𝑈,1 + 𝑏

𝑈ς1,2 ⥳ 𝑏
𝑈,2

for each 𝑈 ⨋ 1. The Proposition then follows after finitely many inductive steps.
𝑏
𝑈,2 ⥳ 𝑏

𝑈+1,1 Since 𝜀
⌋

𝜗0
⌈

ε <
2,2, we can deduce from 𝑏

𝑈,2 that

𝜀 ε 𝜔
∇ ⌋⟩

𝜗0, 𝜗𝑈
)

,<
2,2⌈

In particular,

𝜀
⌋

𝜗
𝑈

⌈

ε <
2,2

We need to show that

𝛻
± (𝜀 , 𝜀 ) ε 𝜔

1 ⌋
7
𝑈
,<

1,2⌈

In fact, since 𝜀 solves (1), it suffices to establish each

𝛻
+ (𝜀 , 𝜀 ) ε 𝜔

1 ⌋
7
𝑈
,<

1,2⌈

and
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜀 ε 𝜔
1 ⌋

7
𝑈
,<

1,2⌈

since the difference of these two is 𝛻ς (𝜀 , 𝜀 ). But in fact the second assertion implies the first (since 𝜀
⌋

𝜗
𝑈

⌈

ε <
2,2

⊳ <
1,2), so we

need only show
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜀 ε 𝜔
1 ⌋

7
𝑈
,<

1,2⌈

Let 𝛝 ε R2 be a unit vector and define for 3 ε R ⟥ {0}

𝑊
3

𝛝 =
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

]

⦅𝜚⦆
2
𝑑

3

𝛝𝜀
⟦

noting that the right-hand side is identical to

⦅𝜚⦆
2
𝑑

3

𝛝𝛻
+ (𝜀 , 𝜀 ) ς ⦅𝜚⦆

2
𝑑

3

𝛝𝛻
ς (𝜀 , 𝜀 )

We know that

𝑊
3

𝛝 ε 𝜔
1 ⌋

7
𝑈
,𝜔

2⌈

and we only prove the uniformity in 3 of this estimate.
Now let us observe

𝑊
3

𝛝 = ⦅𝜚⦆
2
𝛻

+ ⌋

𝑑
3

𝛝𝜀 , 𝜀
⌈

+ 𝑇
3

𝛝

]

⦅𝜚⦆
2
𝛻

+ ⌋

𝜀 , 𝑇
ς3
𝛝 𝑑

3

𝛝𝜀
⌈

⟦

+ ⦅𝜚⦆
2
𝑑

3

𝛝𝛻
ς (𝜀 , 𝜀 )
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so, as in the proof of Lemma 21.4, we have

⦄

⦄

𝑊
3

𝛝
⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈ ∳ 𝐸𝐸0 (𝜍 ) ϖ
⟪

⦄

⦄

⦄

𝜀
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄<1,2 + 𝐾 ⦄
⦄

𝑊
3

𝛝
⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈
⟫

+ ⦄

⦄

⦄

⦅𝜚⦆
2
𝑑

3

𝛝𝛻
ς (𝜀 , 𝜀 )⦄⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

so let us estimate the last term.
⦄

⦄

⦄

⦅𝜚⦆
2
𝑑

3

𝛝𝛻
ς (𝜀 , 𝜀 )⦄⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈

∳ 1
♭

⦄

⦄

⦄

⊲
𝜀
⋛ ⦅𝜚⦆2 𝑑3

𝛝𝜀
⦄

⦄

⦄𝜔∇⌋

7𝑈 ,𝜔
2⌈ +

1
♭

⦄

⦄

⦄

⦅𝜚⦆
2
𝜀 ⋛ ⊲

⦃
𝑑
3
𝛝𝜀⦃

⦄

⦄

⦄𝜔∇⌋

7𝑈 ,𝜔
2⌈

∳ 1
♭

⦄

⦄

⦄

⊲
𝜀

⦄

⦄

⦄𝜔
∇
𝜗,𝜛

⌋

7𝑈ϖR2⌈
⦄

⦄

⦄

⦅𝜚⦆
2
𝑑

3

𝛝𝜀
⦄

⦄

⦄𝜔∇⌋

7𝑈 ,𝜔
2⌈

+ 1
♭

⦄

⦄

⦄

⦅𝜚⦆
2
𝜀
⦄

⦄

⦄𝜔
∇
𝜗,𝜛

𝜔
2
𝜚

⌋

7𝑈ϖR2ϖR2⌈
⦄

⦄

⦄

⊲
⦃
𝑑
3
𝛝𝜀⦃

⦄

⦄

⦄𝜔
∇
𝜗
𝜔
2
𝜛

⌋

7𝑈ϖR2⌈

∳ 1
♭

⦄

⦄

⦄

⊲
𝜀

⦄

⦄

⦄𝜔
∇
𝜗,𝜛

⌋

7𝑈ϖR2⌈
⦄

⦄

⦄

⦅𝜚⦆
2
𝑑

3

𝛝𝜀
⦄

⦄

⦄𝜔∇⌋

7𝑈 ,𝜔
2⌈

+ 1
♭

⦄

⦄

⦄

⦅𝜚⦆
2
𝜀
⦄

⦄

⦄𝜔
∇
𝜗,𝜛

𝜔
2
𝜚

⌋

7𝑈ϖR2ϖR2⌈
⦄

⦄

⦄

⦅𝜚⦆
2
𝑑

3

𝛝𝜀
⦄

⦄

⦄𝜔∇⌋

7𝑈 ,𝜔
2⌈

∳ ♯♭
ς1 ⦄

⦄

⦄

⦅𝜚⦆
2
𝑑

3

𝛝𝜀
⦄

⦄

⦄𝜔∇⌋

7𝑈 ,𝜔
2⌈

∳ 𝐸♯♭
ς1 ϖ

⟪

⦄

⦄

⦄

𝜀
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄<1,2 + ⦄

⦄

𝑊
3

𝛝
⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈
⟫

Therefore we may write

⦄

⦄

𝑊
3

𝛝
⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈ ∳ 𝐸𝐸0 (𝜍 ) ϖ
⟪

⦄

⦄

⦄

𝜀
⌋

𝜗
𝑈

⌈

⦄

⦄

⦄<1,2 +
⌋

𝐾 + ♯♭
ς1⌈

⦄

⦄

𝑊
3

𝛝
⦄

⦄𝜔1⌋7𝑈 ,𝜔2⌈
⟫

so the desired implication follows by taking 𝐾 sufficiently small (depending on 𝜍 ) and ♭ sufficiently large (depending on ♯).
𝑏
𝑈,1 + 𝑏

𝑈ς1,2 ⥳ 𝑏
𝑈,2 Combining 𝑏

𝑈,1 with the (𝐵, 𝐶) = (1, 2) case of (154) along with the ℏ = 2 case of Lemma 6.2 immediately
implies

𝛻
± (𝜀 , 𝜀 ) ε 𝜔

2 ⌋⟩0, 𝜗
𝑈

)

,<
1,2⌈

This estimate implies, in turn, that 𝜀 coincides with the known local <1,2 solution [10] of (1) on
⟩

0, 𝜗
𝑈

)

. But, on the other hand,
since we have 𝑏

𝑈ς1,2, we know 𝜀
⌋

𝜗
𝑈ς1

⌈

ε <
2,2, so the known theory of propagation of regularity [11], Theorem 2.3(i) immediately

implies

𝛻
± (𝜀 , 𝜀 ) ε 𝜔

2 ⌋
7
𝑈ς1,<

2,2⌈

which was what we wanted. ⋜

Known propagation of regularity results allow us to promote <
2,2 to ⨑, as follows:

Theorem 21.7. Let 𝜀 be a distributional solution of (1) on a compact interval 𝑃 = [0, 𝜍 ], such that

⟨𝜀⟨
𝜔∇(𝑃 ,<2,2) < ∇ and ⦄

⦄

𝛻
± (𝜀 , 𝜀 )⦄

⦄𝜔1(𝑃 ,<2,2) < ∇

and 𝜀0 = 𝜀 (𝜗 = 0) ε ⨑. Then 𝜀 ε 𝐸
1 (𝑃 ,⨑). Moreover, the solution is unique on all of 𝑃 once its initial value 𝜀0 is determined.

Proof. By Theorem 2.3 (i) and (ii) of [11], we have 𝜀 ε 𝜔
∇ ⌋

𝑃 ,<
𝐺,𝐺

⌈

and 𝛻
± (𝜀 , 𝜀 ) ε 𝜔

1 ⌋
𝑃 ,<

𝐺,𝐺
⌈

for any natural number 𝐺;
i.e., we propagate all derivatives in 𝜛 and moments in 𝜚. These can be traded in for moments in 𝜛 and derivatives in 𝜚 by Theorem
2.2 (i) and (ii) (respectively) of [11]; indeed, since Theorem 2.2 of [11] is stated in terms of weights (whereas <𝐺,𝐺 is defined purely
by differentiation in [11] via the Wigner transform), we can also mix any number of moments in 𝜛 with any number of derivatives
in 𝜚, in any <

𝐺,𝐺, by the same theorem (direct analysis also suffices for the mixed case, in view of the proof of the theorem). Hence
𝜀 (𝜗) ε ⨑ for every 𝜗 ε 𝑃 . Time regularity is proven in Proposition 2.4 of [11], in <

𝐺,𝐺, for any natural number 𝐺; time derivatives of
mixed moments and derivatives likewise follow as discussed in Remark 2.5 of the same reference. The uniqueness assertion follows,
for instance, from Proposition 2.5 of [11]. ⋜

Theorem 21.8. Let 𝜀 by a (ω)-solution of (1) corresponding to some Schwartz initial data 0 ∳ 𝜀0 ε ⨑. Then

𝜀 ε 𝐸
1 ⌋

7
ω (𝜀 ) ,⨑

⌈

Moreover, for any (ω)-solution 2𝜀 of (1) corresponding to the same 𝜀0, it holds that 𝜍 ω ⌋ 2𝜀
⌈

= 𝜍
ω (𝜀 ), and 2𝜀 = 𝜀 on 7

ω (𝜀 ).

Proof. By Proposition 21.6, 𝜀 satisfies the conditions of Theorem 21.7 on any compact sub-interval 𝑃 ⊳ 7
ω (𝜀 ). (Likewise,

Proposition 21.6 and Theorem 21.7 also apply to any other candidate (ω)-solution 2𝜀 , so the uniqueness again follows from
Theorem 21.7). ⋜
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22. Proof of the main theorem: Part II

Let 𝜀 ε 𝐸
⌋

[0,∇) ,𝜔2⌈ be as in Part I of the main theorem, corresponding to some 0 ∳ 𝜀0 ε ⨑ satisfying (13) and (14). Then by
Theorem 21.8, we have

𝜀 ε 𝐸
1 ⌋

7
ω (𝜀 ) ,⨑

⌈

Then since

𝜍
ω (𝜀 ) = ∇

we have

𝜀 ε 𝐸
1 ([0,∇) ,⨑)

Hence, by Theorem 19.3, if 2𝜀 is any other (ω)-solution corresponding to the same initial data 𝜀0, we find that 𝜍 ω ⌋ 2𝜀
⌈

= 𝜍
ω (𝜀 ) = ∇

and 2𝜀 coincides with 𝜀 .
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Appendix. Well-posedness for the truncated equation

All the content of this appendix can be found in [15], Section VIII; we recall the proof of Theorem 15.1 below for the convenience
of the reader.

A.1. Global well-posedness in 𝜔
1

We will prove the global well-posedness in

𝐸
⌋

[0,∇) ,𝜔1⌈

for the equation
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛

⌈

𝜀
𝐿
=
⟪

1 + 𝐿
ς1
⊲
⦃
𝜀𝐿⦃

⟫ς1 ]
𝛻

+
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

ς𝛻
ς
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

⟦

(A.1)

and the proof will also imply the (local in time) Lipschitz estimate for the solution map, for any 𝜍 > 0,

⦄

⦄

𝜀
𝐿
ς 2𝜀

𝐿
⦄

⦄𝜔∇
⟪

[0,𝜍 ],𝜔1
𝜛,𝜚(R2ϖR2)

⟫ ∳ 8
5𝐿𝜍

⦄

⦄

𝜀
𝐿,0 ς 2𝜀

𝐿,0⦄
⦄𝜔

1
𝜛,𝜚(R2ϖR2) (A.2)

This subsection, in fact, only uses the fact that 0
𝐿
ε 𝜔

∇; the remaining subsections of this appendix will make use of the other
technical assumptions on 0

𝐿
.

The proof of global well-posedness is by a fixed point argument and controlled iteration in time. Since the collision kernel 0
𝐿
is

bounded pointwise by (2ℶ)ς1, by collision invariants it holds
⦄

⦄

⦄

𝛻
±
0𝐿
(𝜀 ,ℵ)⦄⦄

⦄𝜔
1
𝜚(R2) ∳ ⟨𝜀⟨

𝜔
1
𝜚(R2) ⟨ℵ⟨𝜔1

𝜚(R2)

hence, due to the fact that ⊲
⦃𝜀 ⦃

is identified with the norm 𝜔
1
𝜚

⌋

R2⌈, we have
⦄

⦄

⦄

⦄

⦄

⦄

𝛻
±
0𝐿
(𝜀 , 𝜀 )

1 + 𝐿ς1⊲
⦃
𝜀𝐿⦃

⦄

⦄

⦄

⦄

⦄

⦄𝜔
1
𝜛,𝜚(R2ϖR2)

∳ 𝐿 ⟨𝜀⟨
𝜔
1
𝜛,𝜚(R2ϖR2)

Next, consider that if 𝛻
0𝐿

= 𝛻
+
0𝐿

ς𝛻
ς
0𝐿
then the quantity

𝛻
0𝐿
(𝜀 , 𝜀 )

1 + 𝐿ς1⊲
⦃𝜀 ⦃

ς
𝛻

0𝐿
(ℵ,ℵ)

1 + 𝐿ς1⊲
⦃ℵ⦃

may be re-written as the sum of

⨗1 =
𝛻

0𝐿
(𝜀 , 𝜀 ) ς𝛻

0𝐿
(ℵ,ℵ)

⟪

1 + 𝐿ς1 ⟨𝜀⟨
𝜔
1
𝜚(R2)

⟫⟪

1 + 𝐿ς1 ⟨ℵ⟨
𝜔
1
𝜚(R2)

⟫
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and

⨗2 =
1
𝐿
⋛
𝛻

0𝐿
(𝜀 , 𝜀 ) ⟨ℵ⟨

𝜔
1
𝜚(R2) ς𝛻

0𝐿
(ℵ,ℵ) ⟨𝜀⟨

𝜔
1
𝜚(R2)

⟪

1 + 𝐿ς1 ⟨𝜀⟨
𝜔
1
𝜚(R2)

⟫⟪

1 + 𝐿ς1 ⟨ℵ⟨
𝜔
1
𝜚(R2)

⟫

But

𝛻
0𝐿
(𝜀 , 𝜀 ) ς𝛻

0𝐿
(ℵ,ℵ) = 𝛻

0𝐿
(𝜀 , 𝜀 ς ℵ) +𝛻

0𝐿
(𝜀 ς ℵ,ℵ)

each of which is estimated in 𝜔
1
𝜚

⌋

R2⌈ (pointwise in 𝜛) as before, and then controlled uniformly in 𝜛 by a factor in the denominator
of ⨗1; hence,

⦄

⦄

⨗1⦄
⦄𝜔

1
𝜛,𝜚(R2ϖR2) ∳ 2𝐿 ⟨𝜀 ς ℵ⟨

𝜔
1
𝜛,𝜚(R2ϖR2)

As for ⨗2, it is the sum of three terms,

⨗2,1 =
1
𝐿
⋛

𝛻
0𝐿
(𝜀 ς ℵ, 𝜀 ) ⟨ℵ⟨

𝜔
1
𝜚(R2)

⟪

1 + 𝐿ς1 ⟨𝜀⟨
𝜔
1
𝜚(R2)

⟫⟪

1 + 𝐿ς1 ⟨ℵ⟨
𝜔
1
𝜚(R2)

⟫

⨗2,2 =
1
𝐿
⋛

𝛻
0𝐿
(ℵ, 𝜀 )

⟪

⟨ℵ⟨
𝜔
1
𝜚(R2) ς ⟨𝜀⟨

𝜔
1
𝜚(R2)

⟫

⟪

1 + 𝐿ς1 ⟨𝜀⟨
𝜔
1
𝜚(R2)

⟫⟪

1 + 𝐿ς1 ⟨ℵ⟨
𝜔
1
𝜚(R2)

⟫

⨗2,3 =
1
𝐿
⋛

𝛻
0𝐿
(ℵ, 𝜀 ς ℵ) ⟨𝜀⟨

𝜔
1
𝜚(R2)

⟪

1 + 𝐿ς1 ⟨𝜀⟨
𝜔
1
𝜚(R2)

⟫⟪

1 + 𝐿ς1 ⟨ℵ⟨
𝜔
1
𝜚(R2)

⟫

each of which satisfies as before

⦄

⦄

⨗2,𝑆⦄
⦄𝜔

1
𝜛,𝜚(R2ϖR2) ∳ 𝐿 ⟨𝜀 ς ℵ⟨

𝜔
1
𝜛,𝜚(R2ϖR2)

Altogether we have
⦄

⦄

⦄

⦄

⦄

⦄

𝛻
±
0𝐿
(𝜀 , 𝜀 )

1 + 𝐿ς1⊲
⦃𝜀 ⦃

⦄

⦄

⦄

⦄

⦄

⦄𝜔
1
𝜛,𝜚(R2ϖR2)

∳ 𝐿 ⟨𝜀⟨
𝜔
1
𝜛,𝜚(R2ϖR2)

⦄

⦄

⦄

⦄

⦄

𝛻
0𝐿
(𝜀 , 𝜀 )

1 + 𝐿ς1⊲
⦃𝜀 ⦃

ς
𝛻

0𝐿
(ℵ,ℵ)

1 + 𝐿ς1⊲
⦃ℵ⦃

⦄

⦄

⦄

⦄

⦄𝜔
1
𝜛,𝜚(R2ϖR2)

∳ 5𝐿 ⟨𝜀 ς ℵ⟨
𝜔
1
𝜛,𝜚(R2ϖR2)

so using Duhamel’s formula and Banach’s fixed point theorem we conclude the existence of a unique local mild solution on a time
of order ⨎

⌋

𝐿
ς1⌈ irrespective of 𝜀0. Therefore the equation is globally well-posed for each 𝐿 fixed. The Lipschitz estimate (A.2), for

the solution map, is immediate.

A.2. 𝜔∇ Bounds

By a change of variables and using our technical support assumptions (105) and (106), one can show (estimating in the velocity
variable only):

⦄

⦄

⦄

𝛻
±
0𝐿
(𝜀 , 𝜀 )⦄⦄

⦄𝜔
∇
𝜚 (R2) ∳ 𝐸

𝐿
⟨𝜀⟨

𝜔
1
𝜚(R2) ⟨𝜀⟨𝜔∇

𝜚 (R2)

Since we are dividing 𝛻
0𝐿
by

1 + 𝐿
ς1

⦄

⦄

𝜀
𝐿
⦄

⦄𝜔
1
𝜚(R2)

at each (𝜗, 𝜛), it follows
⦄

⦄

⦄

⦄

⦄

⦄

𝛻
± ⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

1 + 𝐿ς1⊲
⦃
𝜀𝐿⦃

⦄

⦄

⦄

⦄

⦄

⦄𝜔
∇
𝜛,𝜚(R2ϖR2)

∳ 2𝐸
𝐿
⦄

⦄

𝜀
𝐿
⦄

⦄𝜔
∇
𝜛,𝜚(R2ϖR2)

Therefore, by Gronwall, for each 𝜍 > 0,

𝜀
𝐿
ε 𝜔

∇
𝜗,𝜛,𝜚

⌋

[0, 𝜍 ] ϖ R2 ϖ R2⌈

A.3. Gaussian lower bounds

For a number 𝐻
𝐿
to be chosen momentarily, let us define

𝜕
𝐿 (𝜗, 𝜛, 𝜚) = 4

𝐿
exp

⟪

ς𝐻
𝐿
𝜗 ς 1

2 ⦃𝜛 ς 𝜚𝜗⦃
2 ς 1

2 ⦃𝜚⦃
2
⟫
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where 4
𝐿
is as in (107). Then it follows

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛
+𝐻

𝐿

⌈

𝜕
𝐿
= 0

For the loss term only, we have the estimate at every (𝜗, 𝜛, 𝜚),

𝛻
ς ⌋

⌉

⌉

𝜀
𝐿
⌉

⌉

, ⌉
⌉

𝜀
𝐿
⌉

⌉

⌈

1 + 𝐿ς1⊲
⦃
𝜀𝐿⦃

∳ 𝐻
𝐿
⌉

⌉

𝜀
𝐿
⌉

⌉

which defines 𝐻
𝐿
. Therefore, if we assume that 𝜀

𝐿
is everywhere non-negative, then it follows

⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛
+𝐻

𝐿

⌈

𝜀
𝐿
⨋ 𝛻

+ ⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

⨋ 0

hence
⌋

𝜑
𝜗
+ 𝜚 ⋛ ϱ

𝜛
+𝐻

𝐿

⌈ ⌋

𝜀
𝐿
ς 𝜕

𝐿

⌈

⨋ 0

and clearly 𝜀
𝐿
ς 𝜕

𝐿
⨋ 0 for 𝜗 = 0. Hence, if the solution 𝜀

𝐿
is everywhere non-negative, then we deduce a quantitative lower bound

𝜀
𝐿
⨋ 𝜕

𝐿
, which therefore acts as an a priori estimate (for 𝐿 fixed), which implies both that 𝜀

𝐿
is everywhere non-negative and that

𝜀
𝐿
⨋ 𝜕

𝐿
> 0.

In particular, we can replace ⊲
⦃
𝜀𝐿⦃

by ⊲
𝜀𝐿
, and the integrand in the instantaneous entropy dissipation ⨚

⌋

𝜀
𝐿

⌈

is everywhere finite.

A.4. Collision invariants

For any smooth function 𝐴 = 𝐴 (𝜗, 𝜛, 𝜚) of at most polynomial growth, and any Schwartz function ℵ = ℵ (𝜗, 𝜛, 𝜚), executing a
pre-post change of variables on the gain term only, and using the symmetries of 0

𝐿
(see e.g. [9]), it holds

∱R2
𝐴𝛻

0𝐿
(ℵ,ℵ) ℷ𝜚 = ∱R2

0
𝐿
𝐴
⌋

ℵ
φ
ℵ
φ
ω ς ℵℵω

⌈

ℷℸℷ𝜚

= ∱R2
0
𝐿

⌋

𝐴
φ ς 𝐴

⌈

ℵℵωℷℸℷ𝜚

= 1
2 ∱R2

0
𝐿

⌋

𝐴
φ + 𝐴

φ
ω ς 𝐴 ς 𝐴ω

⌈

ℵℵωℷ𝜚

If, at each (𝜗, 𝜛), 𝐴 (𝜗, 𝜛, ⋛) ε span
/

1, 𝜚1, 𝜚2, ⦃𝜚⦃2
\

(the implicit constants possibly depending on (𝜗, 𝜛)), then the quantity

𝐴
φ + 𝐴

φ
ω ς 𝐴 ς 𝐴ω

is everywhere vanishing (due to conservation of mass, momentum, and kinetic energy across a collision). Such functions 𝐴 are
referred to as collision invariants (when expressed in 𝜚 only). Thus, assuming that the solution is Schwartz (to be discussed next),
we immediately obtain (108) by taking 𝐴 ∲ 1, and (109) by taking separately 𝐴 = 𝜚1 and 𝐴 = 𝜚2, and (110) by taking 𝐴 = ⦃𝜚⦃

2. For
example,

ℷ

ℷ𝜗 ∱R2ϖR2
𝜀
𝐿
ℷ𝜛ℷ𝜚 = ∱R2ϖR2

1 ⋛𝛻
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

ℷ𝜛ℷ𝜚 = 0

yields (108). Similarly we obtain (111) by taking 𝐴 = ⦃𝜛 ς 𝜚𝜗⦃
2, and observing that this function is both an exact solution of the free

transport equation, and a linear combination of collision invariants at each (𝜗, 𝜛). We similarly obtain (112) by taking 𝐴 = (𝜛 ς 𝜚𝜗) ⋛𝜚.
We obtain (113) similarly by letting 𝐴 = log𝜀 in the above calculation and applying collision symmetries once more (which replaces
1
2 by

1
4 and thereby provides an everywhere non-negative integrand). Note that since, by the previous subsection, 𝜀𝐿 is bounded

from below by a Gaussian jointly in (𝜛, 𝜚) for 0 ∳ 𝜗 ∳ 𝜍 , it follows that the negative part of log 𝜀 grows at most quadratically, so
there is no problem in justifying the multiplication of the equation by log 𝜀 .

A.5. Schwartz class

First we show that all moments in 𝜛, 𝜚 are finite, and then that all gradients are finite, all in 𝜔
1. We freely make use of the fact

that 𝜀
𝐿
ε 𝜔

1 ❲
𝜔
∇, and use differential inequalities without careful justification (which is routine).

The moment estimate is
ℷ

ℷ𝜗 ∱R2ϖR2
𝜀
𝐿

⌋

⦃𝜛⦃
𝐺 + ⦃𝜚⦃

𝐺
⌈

ℷ𝜛ℷ𝜚

𝑒 ∱R2ϖR2
𝜀
𝐿
⦃𝜛⦃

𝐺ς1
⦃𝜚⦃ ℷ𝜛ℷ𝜚 + ∱R2ϖR2

⌉

⌉

⌉

⌉

⌉

⌉

𝛻
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

1 + 𝐿ς1⊲
𝜀𝐿

⌉

⌉

⌉

⌉

⌉

⌉

⦃𝜚⦃
𝐺
ℷ𝜛ℷ𝜚

𝑒 ∱R2ϖR2
𝜀
𝐿

⌋

⦃𝜛⦃
𝐺 + ⦃𝜚⦃

𝐺
⌈

ℷ𝜛ℷ𝜚

where we have used integration by parts and that ⦃𝜛⦃𝐺 is a collision invariant in the first step (as it is constant in 𝜚), and the fact
that 𝜀

𝐿
ε 𝜔

∇ ⌋

[0, 𝜍 ] ,𝜔1 ❲
𝜔
∇⌈

for each 𝜍 > 0 along with the boundedness and support conditions on 0
𝐿
in the second step.



Nonlinear Analysis 248 (2024) 113609

73

T. Chen et al.

Finally we estimate the first derivatives in 𝜛; the derivatives in 𝜚, as well as all higher derivatives in 𝜛 and 𝜚, are similar.

ℷ

ℷ𝜗 ∱R2ϖR2
⌉

⌉

ϱ
𝜛
𝜀
𝐿
⌉

⌉

ℷ𝜛ℷ𝜚

𝑒 ∱R2ϖR2

⌉

⌉

⌉

𝛻
±
0𝐿

⌋

⌉

⌉

ϱ
𝜛
𝜀
𝐿
⌉

⌉

, 𝜀
𝐿

⌈

⌉

⌉

⌉

+ ⌉

⌉

⌉

𝛻
±
0𝐿

⌋

𝜀
𝐿
, ⌉
⌉

ϱ
𝜛
𝜀
𝐿
⌉

⌉

⌈

⌉

⌉

⌉

1 + 𝐿ς1⊲
𝜀𝐿

ℷ𝜛ℷ𝜚

+ ∱R2ϖR2

⌉

⌉

⌉

𝛻
±
0𝐿

⌋

𝜀
𝐿
, 𝜀

𝐿

⌈

⌉

⌉

⌉

⟪

1 + 𝐿ς1⊲
𝜀𝐿

⟫2
⦄

⦄

ϱ
𝜛
𝜀
𝐿
⦄

⦄𝜔
1
𝜚(R2) ℷ𝜛ℷ𝜚

𝑒 ∱R2ϖR2
⌉

⌉

ϱ
𝜛
𝜀
𝐿
⌉

⌉

ℷ𝜛ℷ𝜚

Here we have again used that 𝜀
𝐿
ε 𝜔

∇ ⌋

[0, 𝜍 ] ,𝜔1 ❲
𝜔
∇⌈

for each 𝜍 > 0 along with the boundedness and support assumptions on
0
𝐿
.
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