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1. Introduction

We consider the Boltzmann equation posed for a non-negative function f (¢,x,v), t € R, x,v € R2, so that
fiI0,T)xR2xR2 - R
the collision kernel being constant. Thus
(0 +0-V,) f =0 (/L)) =0 (/. /) @
where we have the gain term

1
0" (g.h) = 5 /]R ., §de.do

with £, = f (v,), f'=f (V'), f1 =7 (v.) and
vtu,  |u-u,
2 2
g Ut lv—vi|
* 2 2
the collisional change of variables defined for unit vectors ¢ € S' ¢ R2. The loss term is written

O (g, h)=gpy

where

py(t,x) =/ f(t,x,v)dv
R}
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is the spatial density, a quantity of direct interest in the study of hydrodynamic limits of (1). More generally, the operators O* may
be replaced by Q;—' where b = b (u, o) is the collision kernel

b:R*xS' >R

everywhere non-negative, and locally integrable (referred to as the Grad cutoff), in particular being integrable in ¢ for almost every
v, and

o5 (g,h)=/]R2 ] bg'h dv,do @
Ql: (8, h) = _/]Rz o bgh*dl)*dG 3)

where the notation b in Qf implicitly denotes

= (lo=el o i)

the dependence on the first argument being only of a radial nature. Clearly the equation of interest (1) in this paper corresponds
to the choice b = (27)”!. The choice b = |v - v,| is known as hard spheres, and arises physically from a Newtonian (deterministic)
“gas” of hard sphere billiards via the so-called Boltzmann-Grad limit, first established rigorously by Lanford [24].

Although Boltzmann’s equation is typically viewed as a dissipative equation, following Arsenio [5] we choose to view it
as a dispersive equation instead. Homogeneous Strichartz estimates for kinetic equations have been known since Castella and
Perthame [8]; in the same reference, some inhomogeneous Strichartz estimates were also proven. The complete set of inhomogeneous
kinetic Strichartz estimates was obtained by Ovcharov, [27]. The failure of endpoint homogeneous kinetic Strichartz estimates was
established by Bennett et al. [6].

The novelty of Arsenio’s contribution was to demonstrate, for the first time, the possibility of applying the standard techniques
of inhomogeneous Strichartz estimates, well-known from dispersive theory, directly to Boltzmann’s equation, under some highly
restrictive assumptions for the collision kernel. An alternative approach, avoiding the inhomogeneous Strichartz estimates entirely,
has been developed by the present authors, [10-12]. The approach, originating in works by Klainerman and Machedon, e.g. [23,28],
and later extended by Pavlovi¢ and Chen, e.g. [14], is based on a method of multilinear Strichartz estimates, and has seen substantial
developments in various directions in recent years. Much of the more recent work motivated by the results of Klainerman and
Machedon has been towards alternative methods for rigorously deriving nonlinear Schrédinger equations from quantum mechanical
models of many particle systems (e.g. Bose-Einstein condensation); work in this direction was pioneered by Erdds, Schlein and Yau
by other techniques, [17-19].

In fact, following in the direction set forth by Klainerman and Machedon, a scaling-critical bilinear Strichartz estimate for
Boltzmann’s gain operator Q% has been proven in [12] using an endpoint homogeneous Strichartz estimate of Keel and Tao [22];
note that this bilinear Strichartz estimate was not subject to the negative results of Bennett et al. [6] because its proof actually relied
upon an endpoint homogeneous Strichartz estimate for a hyperbolic Schrodinger equation in dimension four. Any kinetic equation in
dimension two is formally equivalent to a hyperbolic Schrodinger equation in dimension four by the Wigner transform; on the other
hand, endpoint homogeneous Strichartz estimates are true for the hyperbolic Schrédinger equation in dimension four. Combining
this dispersive estimate with a convolutive bound for Q" on the Fourier side, and ultimately moving back to the kinetic domain, it
was possible to prove the bilinear O estimate, a quite unexpected outcome.

1.1. A new notion of solution

The main new technical tool (and a main novelty) of the present article is the introduction of a new class of solutions to (1), which
we refer to as (x)-solutions. This is a class of global renormalized solutions (in the sense of DiPerna and Lions, [15,16]) which satisfy
better bounds on some initial interval [0, T* (f)). In [26], Lions established a weak-strong uniqueness theorem in a class of dissipative
solutions which allowed (for e.g. Schwartz initial data) the construction of global renormalized solutions to (1) which are classical
on some initial interval (and unique on the initial interval, in the class of all dissipative solutions). The notion of (x)-solutions is in
no way (of which we are aware) related to the dissipative solutions of Lions. However, the idea of a critical time, past which the
strength of the solution is diminished, is quite similar.

The main difference, with the present work, is that contrary to dissipative solutions, the notion of («)-solutions is finely tuned
to mirror the dispersive properties of (1) by way of Strichartz estimates. In order to fully employ Strichartz in scaling-critical spaces,
it is necessary to use the convolutive properties known to hold for O* (cf. [1,2,5]). However, the stability of solutions against
perturbations of the data as provided by Strichartz is not well-understood (even on small time intervals), due to that fact that O~
does not satisfy the full range of convolutive estimates known for Q. This inflexibility due to Q™ has, so far, been the limiting
factor in further development of the well-posedness theory for Boltzmann’s equation in scaling-critical functional spaces. However,
all (x)-solutions are renormalized solutions by definition, so we can hope to employ the known (weak and strong) compactness
properties of renormalized solutions of (1) from [15,25,26]. In fact, by playing the renormalized theory and entropy dissipation
against the dispersive properties of free transport and the convolutive properties of O*, and by a careful choice of limiting process
(which is itself new), we prove that the class of (x)-solutions is closed under certain types of limits. Moreover, we are able to transfer
certain information about the limit back to the underlying sequence.
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Remark 1.1. We do not address uniqueness in the (x)-solution class (our methods are non-constructive and neither require nor
imply uniqueness). However, even if (x)-solutions are unique in general (which implies a sense of continuity for the solution map
by [25,26] and the methods of this article), we do not expect the solution map to be (locally) uniformly continuous on L? (R2 x R2),
due to a recent announcement by Xuwen Chen and Justin Holmer demonstrating that (at least for a constant collision kernel in d = 3)
the bifurcation for (Hadamard) well-posedness falls far above the scaling-critical threshold (for the problem considered therein). [13]

Informally, our main theorem provides for the existence of a class of large global distributional solutions to (1). These are not
obtained for general initial data; instead, they are derived by considering perturbations of known solutions, specifically the moving
Maxwellians taking the form

aexp (—b |u|2 —clx— ut|2)

Crucially, the numbers a, b, ¢ > 0 are arbitrary (although the allowable size of perturbation depends on a, b, ¢ in a manner we cannot
quantify). Small global perturbations of arbitrarily large moving Maxwellians were obtained decades ago by Toscani in [29] using
the Kaniel-Shinbrot iteration with a very clever choice of beginning condition. (Also see [3,4] and references therein for refined
results along the same lines.) However, Toscani was only able to handle (weighted) L*® perturbations. The present article (which
does not use Kaniel-Shinbrot) allows for perturbations at scaling-critical regularity; this improvement appears to be completely new.
Moreover, the proof of the main theorem brings to bear the full force of both the dispersive theory and the theory of renormalized
solutions.

1.2. Scale invariance

Let us define for parameters 4, u > 0

1 U X U
) (¢ - £, X0
S, x, ) Auf<,1’/1’,4>

and

(A.n) L. (xv
So (X’U)_/lﬂf()(/l’y)
Then there holds

1751 2 = 1ol 2

and
”f(M)”Lm(u,,,LZ) =Wl

where [ =[0,T) CR for some 0 < T < 0, I; , = [0, AT /u), and L? is the space of square-integrable functions on Ri X Rz. Moreover,
if f is a Schwartz solution of (1) on I with initial data f,,, then f“# is a solution of (1) on I 1, with initial data fé’l’”).

1.3. Summary of results

The overall objective of this article is to detail a thorough treatment of the Boltzmann Eq. (1) (henceforth “Boltzmann’s equation”
unless otherwise indicated). While we will rely upon key results from prior works in this series [10-12], it should be possible to
understand this article with minimal reference to the prior works: indeed, the aim of the present work is to provide a coherent picture
of the local and even, to some extent, the global behavior of Boltzmann’s equation. This extends our previous scaling-critical article
[12], in which only initial data with small L?> norm was considered.! That result relied upon balancing the dispersive properties of
free transport against the convolutive properties of Q*, similar to the work of Arsenio in [5].

The bulk of the present work aims to lift the small data limitation in [12], at the cost of limiting the time of existence, and
thereby provide a general scaling-critical local theory for Boltzmann’s equation. Only local existence, without uniqueness, will be
proven in the scaling-critical space L?, although a rather general weak-strong uniqueness theorem will be supplied. We also aim to
prove (in a specific sense) the stability of solutions under perturbations: this tendency towards stability is naturally limited due to
the possible lack of uniqueness. In fact, the stability properties will be proven with respect to the class of (x)-solutions; (x)-solutions
are formally introduced in Section 13. It will turn out that («)-solutions are distributional solutions on some initial interval, which we
call I* in the definition of (x)-solutions; thus, this formalism provides a framework for proving existence results for distributional
solutions. The most striking application of this stability result will be to show, in the class of (x)-solutions, that L? perturbations of a
global scattering solution (satisfying a technical criterion which is proven to hold for, e.g., moving Maxwellians), are again global and
scattering, subject only to natural constraints on physically conserved or controlled quantities, namely the total (L') mass and (L")
second moments in space and velocity. Along the way, sharp scaling-critical criteria for both scattering and finite-time breakdown
of continuity will be proven, which hold even far from vacuum or Maxwellians.

1 Add that technical regularity and decay conditions, albeit non-quantitative, were imposed on the initial data as well, whereas (in the L? setting) such
regularity conditions have been disposed of entirely in the present work, at the cost of possible loss of uniqueness.
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Starting from Section 21, we aim to establish propagation of regularity, in the class of («)-solutions, to arbitrarily high smoothness
and decay thresholds, including the Schwartz class, up to the full interval of existence (in L2, namely I*) for (x)-solutions. Indeed, it
will be proven that any (x)-solution, corresponding to initial data with sufficient regularity and decay, is again regular and decaying
(for t € I'*); in particular, the solution is unique (on I*). The sharp scaling-critical criteria? mentioned above, therefore, apply again
in the setting of classical solutions, even (as before) far from vacuum or Maxwellians. This allows us to identify breakdown of continuity
with breakdown of regularity.

1.4. Comparison of models

We will next elucidate the context in which (1) fits with similar models analyzed in the literature. Let us remark from the outset
that, given the dimension d > 2 ( Eq. (1) addresses the case where d = 2), any Boltzmann equation (with or without the Grad
cutoff) with a collision kernel which is homogeneous with respect to scaling in the relative velocity possesses a full set of scaling
symmetries, respecting separately and simultaneously the spatial and velocity variables. (One never considers homogeneity of the
collision kernel » with respect to the angular variable ¢ € S9~!, for obvious reasons.) Now in the special case that the collision
kernel is homogeneous of degree 2 — d, the functional space L (RY x R?) for the initial data is preserved by the full set of scaling
symmetries. This seems to be essentially a technical convenience, relating to the fact that the space L9 is preserved under the free
transport group e~"*Vx, In the present article, we will be exclusively concerned with (1), which satisfies the Grad cutoff condition,
and for which L? constitutes a scaling-critical space, being above all a Hilbert space: the best of all possible worlds. We note that
the constant collision kernel appearing in (1) is a member of the family of Maxwell molecule collision kernels.

There is a physically meaningful analogue of (1) known as true Maxwell molecules (tMm), but while the tMm collision kernel is
homogeneous of degree zero (in any dimension d) and expresses the same scaling properties as the case of a constant collision kernel
(in the same dimension d), tMm does not satisfy the Grad cutoff condition (due to the non-integrable angular dependence), and none
of the analysis of this article applies to tMm even in d = 2. The hard sphere model, mentioned above, does satisfy the Grad cutoff and
is homogeneous of degree one (in any dimension), and is again physically meaningful as is tMm; unfortunately, just as with tMm,
the hard sphere model seems completely out of reach by the present methods. There are a few hints about how to approach hard
spheres dispersively, at least in certain functional spaces far from the scaling critical threshold [10], but the dispersive treatment
of hard spheres at scaling critical regularities remains a subject of ongoing investigation.

Collision kernels homogeneous of degree —1 respect scaling in the space L* in d = 3; this case (assuming Grad cutoff) seems
to be the only Boltzmann equation other than (1) that is remotely tractable (at the scaling-critical level) using current dispersive
technology. Unfortunately, even in the L3 setting, a more technical analysis is required, due to the role played in this work by the
special properties of L?: in particular, we use Plancherel in the proof of the key bilinear gain operator Q* estimate

L*xL* > L' (R, L?) )
to be discussed later, the corresponding bilinear estimate
L*xL3— L' (R, L%)

expected to be false for any collision kernel homogeneous of degree —1 in d = 3. Substitutes for this estimate are available in the
literature [2] even for the L3-critical case, but these estimates require far more effort to apply correctly [5] to Boltzmann’s equation
(for starters, one must employ inhomogeneous Strichartz estimates).

Remark 1.2. It is somewhat reasonable to view (4) as a substitute for a scaling-critical estimate in Bourgain spaces X*?, formally
taking (s, b) = (0, —%) (note that the endpoint case b = —% is not admissible in the classical theory of Bourgain spaces: the standard

range for the nonlinearity is b € ( )). Indeed, observe that for any separable Hilbert space M, the space L! (R, H) formally

_11

2°2
scales like H - (R, H). This suggests that one may be able to salvage parts of the scaling-critical theory expounded in this article for
other collision kernels through the use of one (or some) of the multitude of techniques in dispersive PDE theory which have been
inspired by Bourgain spaces. A crucial difficulty would be to understand non-negativity, which plays a central role in this work, in
these types of functional spaces.

2. Organization of this paper

The main results are stated in Section 4, using the (somewhat extensive and occasionally subtle) notation from Section 3.
Fundamental abstract results and dispersive estimates are recalled and/or established in Sections Section 5, 6, 7, and 8; these will
primarily (but by no means exclusively) be used in developing solutions to the gain-only Boltzmann equation (i.e. the equation
obtained by discarding the loss term Q~ from Boltzmann’s equation), as well as many basic properties of such solutions. Sections
Section 9, 10, and 11 will develop deeper results concerning the gain-only Boltzmann equation along with a comparison principle
which will ultimately be used to transfer certain knowledge about the gain-only Boltzmann equation to the full Boltzmann equation.
Up to this point, there is no mention of renormalized solutions or entropy.

2 For either scattering or finite time breakdown of continuity
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In Sections Section 12, 13, and 14, we introduce a new notion of solutions to (1), which we call (x)-solutions. The definition of
(x)-solutions uses the notion of renormalized solutions as well as the entropy dissipation. Sections 15 and 16 establish the existence
of (x)-solutions, as well as the closure of the class of (x)-solutions under a suitable limiting process.

Results concerning scattering solutions of (1) are proven in Sections 17 and 18. These are combined with an important weak-
strong uniqueness result from Section 19 to establish Part One of the main theorem in Section 20. Higher regularity results are
proven in Section 21, leading finally to the proof of Part Two of the main theorem in Section 22.

3. Notation

For any p € [1, ] we denote by p’ € [1, ] the unique extended real number satisfying

p P
We will require the norms defined for measurable functions 4 (x, v)

I, = / 1 (x, )P dxdo
R2xR2
for 1 < p < o, and

||A]lf = ess. SUP.(y 1) eR2xR2 A (x,0)|

We will also require mixed Lebesgue norms L? L? or even with time Ly LP LY as in [5]; in such cases, subscripts 7, x, v will be provided,
along with precise domains of integration. Other permutations such as L/ LIL? or L? LY L may also arise, but unusual orderings
such as these will only be introduced if absolutely required to carry out an argument.

For any separable Banach space & and any interval I, the notation L? (I, ®) with p € [1, ] denotes the usual Bochner space,
considering 7 € I to be a time variable; it may be that a function is only Bochner p-integrable when restricted to I, in which case we
would still write f € L? (I, ®). The independent variable corresponding to the interval I is always denoted by the symbol : thus if
A IxT — & then [|A(s, D)l L1 Is equal to [, |A(s, D)l dt.

Remark 3.1. Thus without further annotation (an annotation being a subscript or an explicit domain of integration or both),
the reader may safely assume that norms denoted by the symbol L” are taken with respect to (x,v) € R?> x R?; on the other
hand, norms denoted by the symbol L9 (I, L?) for an interval I refer to t+ € I with ¢ power and (x,v) € R? x R? with p power.
By contrast, we may write an expression such as p, € L? (I, L% (R?)), which means that the spatial density p, (1, x) is square-
integrable in time ¢ € I into the separable Banach space L% (R?): this statement could be equivalently written p; € L? (I, L* (R?))
or p; € L2L% (I x R?), but it could not be written p, € L? (I, L*) (this last version, in our notation, implies that a constant function
of v € R? is fourth-power-integrable over R?, which is plainly false).

We will also rely upon the norm
Al =/ (1+ |x = vt + [0]?) | (x, v)| dxdv (5)
2.t R2xR2

where ¢ is a subscripted parameter on the left side; note that the ambiguity of ¢ in Lé , is only of importance when ¢ is very large,
since for fixed  the L) norm is equivalent to the L) norm, the constant diverging as O (1) as |1| - co. We will denote

Ll

7l
2T L2,0

. 2 L
for convenience. The space L*() L, is normed by

ll720]l 2 ne, = [0l 2 + “hO”LéJ )

for a measurable function A, (x, v).

Remark 3.2. Given a sufficiently regular and decaying solution f of (1), the time-dependent quantity
ILf Ol
2.

is equal to

ol
for all 7 > 0, although this may be only an upper bound at low regularity.

It will be useful to introduce the unusual X-norm defined on L? Lé,

lallx = llAll2 + Z |/ @ (x,v) h(x,v)dxdv %)
@ |JR2XR?
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where the sum ranges over
pe{l, v, vy 0, I, x- v}

where v = (v}, v,) € R%. Note carefully that the absolute value bars on the second term of (7) have been deliberately placed on the
outside of the integral (note that 4 need not be non-negative in (7)). Additionally, observe that the sum is over six test functions ¢
(three of which are everywhere non-negative, five of which are unbounded), each of which is integrated over the whole phase-space.
We define

X = (L“ﬂL' , dx> ®)
where L2 is the set of non-negative functions in L2, and
dy (h.R) 1= A=Ay ©

In particular, X is an incomplete metric space.
We denote the free transport group

T()=e "V
which is related to the free transport equation in that for any initial data f, € L? there holds
(0, +v-V,) (T f) =0 (10)
in the sense of distributions. For any ¢ € R, 7 (¢) preserves all L? norms on R? x R?; also, it can be written via an explicit formula
[T @ fo] (x,v) = fo (x — vt,v)
The function
1= 7@ fo
may be referred to by the shorthand
T fo
Additionally, following DiPerna and Lions [15], for any measurable function 4 (7, x, v) we will use the pointwise shorthand
K (t,x,0) = h(t,x + vt,0) (11)

defined at almost all (¢, x, v); this is more closely related to the inverse free transport operator 7 (—t).

Remark 3.3. Using the identities, for a € R,
|x +av|?® = |x|> + 2ax - v+ a* |v|?

and
(x+av)-u=x~u+a|v|2

it is possible to show that
17 @hollx < (1+31al +a®) || o

for all hy € L?>( L!. Note that h, does not need to be non-negative; in particular, we find from this that, for any non-negative
functions f,, gy € L** () L}, letting hy = fo — go,

dx (T (@) fo.T (@) g9) < (1+3al +a*) dx (fo.80)
so the X-norm is, in this sense, compatible with free transport.

We will use the well-known notation (v)? = 1 + |v|%; moreover, in discussing propagation of regularity in Section 21, we shall
require the Sobolev norms indexed by non-negative numbers a, g,

1Al gres = || (0) (V)" (12)

s

defined for a measurable and locally integrable function # (x,v), where (V,) = (1 - Ax)% and 4, is the usual Laplacian operator,
extended by duality from the Schwartz class to the space of tempered distributions, but acting in the x variable only.

For any interval I (possibly open, closed, or half-open, and possibly unbounded), and any topological space &, the symbol C (I, ®)
denotes the set of continuous functions from 7 into &. If & is, additionally, a (convex subset of a) topological vector space, then
C (1,®) is a (convex subset of a) vector space, but does not inherit any topological structure unless otherwise noted. For example,
even if & is a Banach space, elements of C ([0, ), ®) are not required to be in L* ([0, o), ), since we do not view C ([0, o0), &) as
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a normed vector space (although it is clearly a vector space in view of the vector space structure of &). Note carefully that, under
the canonical identification,

C((0,1),R)#C(0,11,F)
For example, the former contains each of

1 . 1
g — and q +— sin
l—-¢q 1-g¢g
whereas the latter does not contain either of these (regardless of any finite candidate value chosen at g = 1).
For any measurable subset of a Euclidean space, say E C R* for some k € N, taking care not to identify sets which differ by a
set of measure zero, we define LllOC (E) to be the set of measurable functions on E which are in L' (K) for each compact K C E.
Thus, even though there is a canonical isomorphism

L'([0,1],R) ~ L' ([0,1),R)
there is no canonical isomorphism between
L (0,1, Ry and L ([0,1],R)

For example, the former contains
1

> —
q T—¢
whereas the latter does not.
We denote the Schwartz class

. 2 2\ _ 4
S :=S(R:xR}) =S (RY)

Given a (possibly unbounded) interval I, and a measurable and locally integrable function f (¢, x,v) on I x R? x R?, we shall write
fectd,s)

precisely if

feC(,S) and % eC,S)

Note that if f € C! (I, S) then it automatically holds

O*(f,f), v-V.f €C' S

Thus f € C! (I, S) supplies a simple sufficient criterion for identifying “classical solutions” of (1).

Constants indicated by the symbol C (or e.g. C; . , depending on free real parameters z,, ..., z; > 0) are allowed to vary from
one line to the next, but are always supposed to be finite and non-zero. If it is desired to track constants precisely, then Z-indexed
subscripted notation C,, C;, C,, ... will be used instead of C.

4. Main result
4.1. Preliminary remarks

The difficulty in solving Boltzmann’s equation in the presence of scaling-criticality (by which we mean that the collision kernel
is homogeneous in velocity and that the functional space of interest is critical jointly with respect to scalings in space and velocity)
stems from the fact that the loss term Q~, despite having the same scaling behavior as the gain term O, does not satisfy the same
estimates. Indeed, simply by examining (1), we see that while the (unsymmetrized) gain operator O (g, ) treats its two arguments
on similar footing in many respects, the loss operator O~ (g, h) = gp,, is highly asymmetric between its two arguments. Unfortunately,
unlike L?, there is no dispersion in L'; indeed, the only hint of dispersion at the L' level occurs via velocity averaging in the presence
of uniform integrability, which plays an essential role in the theory of renormalized solutions [15]. So we see that there is little hope
of applying dispersive principles to the full Boltzmann Eq. (1) directly, without some deeper insights.

The key realization is that the gain term Q% expresses certain convolutive and compactifying properties, well-known to kinetic
theorists, which do not hold for the loss term. (e.g. see [5,25] and references therein) So it is very natural to simply discard the
loss term altogether, in the hopes of constructing an upper envelope for any solution of Boltzmann’s equation (1). Unfortunately,
such a strategy again fails due to the fact that this “O* equation” is not globally well-posed for all initial data in, say, the Schwartz
class.? [21] The best we can hope for is a local upper envelope (described momentarily), extended for a short time interval forward
from any point #, > 0, depending on the solution f (to) of (1) itself! It is the precise understanding of this local upper envelope, or

3 The blow up results for the Q* equation do not hold in the “near vacuum” regime; this is of little relevance here since we are concerned with local
solutions for initial data of arbitrary size.
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simply upper envelope (since there is not a global one in the general case regardless), that will provide the foundation for our main
theorem.

Let us briefly elaborate on the idea of an upper envelope, to avoid any possible confusion. Usually, an envelope of a collection C
of smooth curves in the plane is another curve which meets tangentially each element of C. Formally, viewing curves as graphs of
functions, the function f (f) would be the envelope of a collection of functions {g (t; v ) } o (indexed by ') under the conditions

sGn=r0 and 0= (i)
ot =t
where the partial derivative is evaluated in ¢ for fixed ¢/, but evaluated along the diagonal # = . (Here we simply assume that each

element of the collection only intersects f at a single point; precise definitions do not matter for this discussion.) We reverse the
definition, viewing the collection as an upper envelope for the curve, and relaxing equality to inequality, namely

g:n=7@ and V(121) f0)<g(s1)

(we do not define g for ¢ < ). In particular, in the smooth setting,
Jg

! !/

H< = (t;¢
ros g,
In our case (regarding (x,v) as fixed and restricting ¢ to a suitable existence interval in time), f solves (1), g (-;t’ ) satisfies (1)
omitting O~ (for each ¢ fixed), and we refer to g as an upper envelope for f. This situation is reminiscent of the theory of viscosity
solutions, but we find no precisely analogous terminology in the literature, so we have chosen this terminology for the benefit of

visualization. Precise definitions will be introduced in our discussion of the comparison principle in Section 10.

4.2. Results

Definition 4.1. We will say that a non-negative function

felLl (IxR*xR?)

loc

where I =[0,7T) with 0 < T < 0, is a distributional solution of (1) provided that each

0 (f.f) and Q7 (f.f) €L (IxR*xR?)

i.e. Q% (f, f) are each locally integrable, and that (1) holds in the sense of distributions. In particular, the trace along the t = 0
time-slice is well-defined for any distributional solution of (1), and this trace will be denoted f, and called the initial data. If T = o
then f is said to be global.

Definition 4.2. For any triple of strictly positive real numbers a,b,c we define the (restricted) family of moving Maxwellian
distributions

meb (t, x,v) = aexp (—b lv]?> = c|x — Ut|2)

with initial data

b,
mi”¢ (x,v) = aexp (=b [o]? = ¢ |x]?)

In particular, m®*¢ is at once a solution of Boltzmann’s equation (1), and at the same time a solution of the free transport Eq. (10),
that is,

m®™e (1) =T () ms>

Theorem (Main Theorem, Part One). Let a, b, ¢ be arbitrary strictly positive real numbers, and consider the moving Maxwellian initial

data mg’b’”. Then there exists a number

e=¢€(a,b,c)>0

such that if f; € LI (R?xR?) is non-negative and satisfies

loc
; ’/szugz @ (x,0) (fo (x, v) = mg (x,v)) dxdv| < & .
where the sum ranges over ¢ € {1, vy, Uy, W, 1xP, x- U}’ and
Hfo - mg‘b'c 2 <€ B

then there exists a non-negative global distributional solution f of (1), with initial data f, such that

fec(0,0),L?)
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Moreover, f scatters, which means (here and throughout this article) that there exists a non-negative measurable function f, € 12
such that

tl}glm lf®=T® frcoll2 =0 (15)
Remark 4.1. The proof of the main theorem provides no quantitative control on || f (t) — m**€ (1)||,» for 7 > 0.

Theorem (Main Theorem, Part Two). Under the assumptions of Part One, if in addition f,, € S, then the solution f is unique (in the
sense to be explained in Section 19), and

fec(0,0),5)
also holds.

We remark that condition (13) deliberately places the absolute value bars on the outside of the integral: indeed, we could replace
“< €” by “= 0" in this line without altering the conceptual substance of the theorem, since this condition does little more than provide
a sense of scale (in the space-homogeneous case it is analogous to normalizing the total kinetic energy to one separately for each
fo-mg). Note carefully that neither part of the main theorem is restricted to what may be called the “near vacuum” regime." The
result is perturbative around a function which is Gaussian jointly in space and velocity, but that underlying Gaussian may be of
any size, the only restriction being that ¢ depends on the underlying Gaussian. Thus the theorem statement (but not the proof!) is
very similar to an old result by Toscani, who also considered global solutions near large moving Maxwellians [29]. However, unlike
Toscani, since the perturbation here is only restricted with respect to the size of the L? deviation combined with finiteness of the
physical quantity L}, even a Schwartz initial data f, may be very far removed (in L*, say) from mg'b"’.
Remark 4.2. Regardless of the regularity of f,, scattering is always defined relative to the L? norm, precisely as indicated in (15):
at no point is convergence at long time to be claimed in any other sense.

5. Uniform square integrability

For this section, let E be a measurable subset of a Euclidean space R¥, k € N, equipped with the measure 4 induced by the
Lebesgue measure on R¥; in the applications, E may be R? x R?, or I x R?> x R? for an interval I C R.

5.1. Preliminary remarks

We will be adapting the notion of uniform integrability as it is applied in kinetic theory, where the interpretation is closely
related to, but slightly different from, that which arises in probability theory. In particular, in kinetic theory, consideration must be
made for underlying measure spaces which are not probability spaces, such as the Lebesgue measure on Euclidean space. Beyond
that, we will be further specializing by examining the uniform integrability of the squares of a sequence of functions, and establishing
a dominated convergence theorem in L2 (E, ).

We emphasize that the material in this section is standard; in particular, our objective (in this section only) is a special case of
the Lebesgue-Vitali convergence theorem; e.g. see [7], Chapter 4, Corollary 4.5.5 (which is the infinite measure case of Theorem 4.5.4
in the same reference). Our motivation for repeating the analysis (specialized to the Euclidean case for simplicity) is twofold: first,
the results are easy to prove (in our limited setting) yet absolutely fundamental to all that is to follow; and, second, we wish to
establish a more convenient form of terminology for our own purposes, as the terminology of [7] is rather general and somewhat
onerous for kinetic theory applications.

In fact, we will be interested in the L? setting (what we will refer to by the term uniform square integrability), whereas [7]
considers the L! setting; this is a trivial distinction from the abstract perspective, but it is an essential distinguishing factor for
this paper, as it is only the L! case which is ubiquitous in kinetic theory (specifically in the theory of renormalized solutions, as
well as hydrodynamic limits). Uniform square integrability will be an essential tool as it allows to execute dominated convergence
arguments (in L?) when the dominating functions compose a family, instead of a singleton; this will enable, starting in Section 11,
the usage of a powerful comparison principle.

5.2. Definitions
Definition 5.1. A sequence of (not necessarily non-negative) measurable functions {hn},, c L' (E, 2) will be said to be uniformly

integrable if, for every ¢ > 0, there exists a number § > 0 and a compact set K C R¥ such that: for any measurable set F C E with
measure A[F] < 6, it holds

sup/ |h,|da<e
n JFUEK)

4 The term “near vacuum”, in the kinetic theory sense, means not only that x ranges over all of R? and f exhibits decay (in an average sense) as |x| — oo,
but that the initial data f, lies in a small ball of the zero function for a suitable Banach space.
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Remark 5.1. Technically, this definition is closer to the notion of uniform absolute continuity of integral in [7]; however, the two
concepts are equivalent for atomless measures such as Lebesgue measure (Proposition 4.5.3 of [7]), and the latter terminology is
not standard in the kinetic theory literature. Note, also, that the use of the compact set K, in our definition of uniform integrability,
obviates the need for an additional condition when working in the whole Euclidean space.

Definition 5.2. A sequence of (not necessarily non-negative) measurable functions {hn},, C L?(E, 2) will be said to be uniformly

square integrable if the sequence { |h,,|2} is uniformly integrable (here |h,,|2 (e) = |h, (e)|2 for e € E).

5.3. Results

Lemma 5.1. Let h by a measurable function on E such that h € L* (E, J). Then the constant sequence
(hohh,..)

is uniformly square integrable.

Proof. First observe that, by monotone convergence and the square-integrability of 4,

n—oo

lim / (L jayon + Lo - jojsn) [ (@12 dA(e) =0
E

Let € > 0. Then there exists an integer N such that, for all n > N,

&
/E (le : |h(e)|>n + le : \e\>n) |h(e)|2di(3) < Z

In particular, we can take n = N; in that case, for the points e € E at which the integrand vanishes, we have |e| < N and |k (e)| < N.
Let the set of all such points be denoted by Ej.
Now let F be any measurable subset of E such that

£
AlF] < —
[F] N2

We decompose F as F | F, where F| = F (| Ey and F, = F (| (E\Ey). Clearly, since F, C E\Ey, we have
€
/E <18€F2 +1,. WN) Ih@ die) < 5
On the other hand, we also clearly have
lh(e)*dite) < £
F 2

Therefore,

/E (IGGF + le : \e|>N) |h(e)|2d/l(e) <e€

so we may conclude. []

Lemma 5.2. If {hn},, C L?(E, A) is uniformly square integrable, and g, is a sequence of measurable functions on E such that
|8, (@] < |h, (o)

for A-a.e. e € E, then { gn}n is uniformly square integrable.
Proof. This follows from the definition of uniform square integrability, using the same 6, K for each sequence {g,,}n s {h”}n. O

Lemma 5.3. If the sequence {hn},, C L*(E, ) converges in L*(E, A), that is, there exists h € L? (E, 4) such that
Jlim 17 = All 2.2y = O

then the sequence {h,,}n is uniformly square integrable.

Proof. First note that, by Lemma 5.1, the sequence {h, } is uniformly square integrable if and only if the sequence {h, — h}, is
uniformly square integrable, because h € L? (E, 1). Therefore, we may assume without loss that 4 is identically zero.

Let e > 0.

Then since h, — 0 in L? (E, 1), there exists a number N such that, for every n > N,

/ |h,|*da<e
E

10
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Therefore, we may restrict our attention to the finite set {hn}l <nen- FOT eachn=1,2,...,N—1, by Lemma 5.1 there exists a number
8, >0 and a compact set K,, C R? such that, for any measurable set F c E with 1[F] < §,,,

/ |,|*da<e
FU(E\K,)

Let K = J,-15. y_1 K, and 6 = min,_;, n_;§, to conclude. []J

Lemma 5.4. (Special case of the general form of the Lebesgue-Vitali convergence theorem.) If the sequence {h,,}n C L?(E, &) is uniformly
square integrable, and the pointwise limit h (e) = lim, h,, (e) exists for A-a.e. e € E, then

n—o0

,}LTO 1A, = h”LZ(EA,/l) =0
Proof. Follows immediately from Egorov’s theorem. []
6. An abstract theorem

We use the Banach fixed point theorem to establish a sense of local well-posedness for nonlinear evolutionary equations associated
with a certain type of multilinear estimate. This result does not apply directly to (1) but it does apply to the O* equation (or gain-only
Boltzmann equation)

(0, +v-V,)h=0"%(h,h) (16)

We will be relying heavily on the unique local solution 4 of (16), the existence of which will be established using the theorem from
this section. We will be tracking all constants in this section precisely, so that we may focus on compact intervals in time without
loss of generality.

Definition 6.1. Let J C R be a compact interval, and & a separable Banach space. Then we define a norm on W'! (J,®),
distinguished by the stylized notation
whl(J,®)

by

dx
1xlwiir.e) = 1Xl Lo, +H_
whi(J,8) J.®) dt LIJ.®)

which is equivalent to the usual norm on W ! (J, ®) due to the compactness of J. (Note that Wl (J,®) c C(J, ®).)

Corollary 6.1. If 1, € J is fixed arbitrarily, then the norm defined by

dx

xllo +]|

L'(J.®)
is equivalent to WV (J, ®), the constant being independent of each J and t, € J (indeed a constant of 2 suffices in either direction).

dx

The Corollary implies that if x(¢) is controlled at a single point and -

along the interval.

is controlled along the interval, then x(¢) is controlled

Lemma 6.2. Let & be a separable Banach space over R, and let p be a real number with
1<p<o

and let J C R be a compact interval. Furthermore, suppose
A, X150, xg) 1 I X & 5 6

is linear in x,, ..., x, for each t € J, and satisfies
k

A@ Xy x| o) < C0H||x,-||® a7

i=

In particular A may be viewed as a multilinear map &* — L? (J, ®).
Then there exists a unique mapping

)xk

A: (W I,8)" > LP(J,8)

for which A is linear in each of its inputs and satisfies for x; €6, ;€ C®(J,R) (i =1,...,k) the formula
k
A (xl(p],...,xkgak) H=A (t,x],...,xk) H(p,- () (18)
i=1

11
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Clearly A is a canonical extension of A.
The extension A satisfies for any x; (-), ..., x; () € Whl (J, ®):
k

e S K+ DG H il ) 19

H./I(xl,...,xk)

noting carefully the stylized W in (19).

Proof. We assume without loss that J = [0, ] for some 0 < b < oo. First we will establish the uniqueness, and in so doing we will
obtain a formula for A; then we will show that the formula defines a mapping which satisfies (19).
For given ¢ € C* (R,R) and s € R let us define the translation operator

(7,0) (1) = @t — s)
Then if x,...,x, € & and ¢, ..., ¢, € C® (R,R) then by (18) it holds

./{(xlrsrpl,m,xer(pk)(t): txl,..., H(p,(t—s)

By (17) the right-hand side is differentiable in s for almost every ¢ € J fixed, and we have

9 -
gA (x175@15 o0, X, Ty @) ()

=—A(tx1 ... x; Z(p(I—Y)H(pJ(I—S)

J#i
Therefore, applying (18) again on the right, we have

0 -
EA (X]‘I'S(pl, ,xkrsgok) (1)

M»

A (xlrs(pl, ,xirs(p;, ,xkrstpk) )

By the linearity in each entry, if each x; () is a finite linear combination of terms like x, ¢, (¢), then

%f{ (rsxl ),... ,Tsxk(~)) 1)

M»

A (7% () oo T X ()4 7%, (D) (O

1

and since we have only taken finite combinations, for almost every ¢ € J the formula (as before) does hold strongly for each s € J.
Hence for any such ¢ we can integrate in s over a domain that depends on t, namely 0 < s < ¢, to deduce

A(x (0, x (0) = A (X1 () oo x ()

=— Z/O A (rsxl ),... ,rsxl'. ¢)s... ,TSXk(')) () ds
i=1

Again since the x, are finite sums of constant elements of ® times smooth scalar-valued functions, it is acceptable to replace A for
A under the integral on the right to obtain

A (x1(0), ., %, (0) () = A (x1 ()0, X () ()

=—Z/ A(tx (t=5),....x](t=9),....x (t =) ds
=170

Equivalently, this may be written

A(x1 ()% O) ) = A (1%, (0), ..., x, (0))

k t
+ Z/ A(tx1(8), ..., X (8), ..., x; (8)) ds
i=1 /0

Thus A is uniquely determined by .4 due to a density argument; this is justified by the continuity estimates we prove below.
Indeed, clearly we have

4 (131 @, 3 ©)

LP(J,®)
k k

<G [TIxOlls < [T lxlwi.e
i=1 i=1

12
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by (17). Additionally, using (17) again,

‘
H/ A(xp(8), .., X (8), .. X, (8)) ds
0

LP(J, &)

1
< /”.A(I,xl(s),...,xf.(s),...,xk(s))“ejds

0 LP(JR)
< ”/ ”A (t,xl(s),...,x?(s),...,xk(s))Hejds

J Lr(J,R)

’

S/J”.A(I,xl (8), s X; (s),...,xk(s)) ”(J’@)ds

< CO/J [lx; Ol (1;[ “xf' (S)”es>ds
J#i

<G5 TT % oy o
J#
k

<G H ”Xi”whl(J,es) d

i=1
By abuse of notation, we will write A in place of A in what follows.

Theorem 6.3. Given a separable Banach space & and a compact interval J C R where J = [0,b], some 0 < b < oo, suppose
A(t,x1.x;) 1 J XX S - & is linear in x,,x, for each 1 € J, and satisfies

”A (f,xl’xz)”Ll(J,@) <Gllxille [1*2lle

Let & > 0. There are numbers &%,5) > 0, depending only on C, and ¢, such that if
0<4;, <6 and 0<6,<8)
and the following three estimates
YT

<6
LI(J.®)

Y (x, € ®) ”A (fyx()sxz)”Ll(mj) <& [|Ix|ls

VY (x, € ®) ”A (r xzsxo)”Ll(J_@) <& |lxnlle

all hold for some x, € &, then the following holds as well:
There exists a unique function

xewhl(J,®)

such that for all t € J there holds
t
x (1) = xg +/ A(s,x(s),x(s))ds
0

and also

e
LY(J,®)

d
flx— xO”L‘”(J,QS) + HE {x—xo}
In particular, because %x =A@, x(1),x(1) and x is a constant, we have

[lA@x@),x (t))HLI(L@) <e

Proof. Fix x, € ® and define the map
F:whu, e ->whly,e)
via
S0 = xo+/otv4(s,x(5),x(3))ds
Then we have

[F)]@) —xy = / A (s, (x (s)— xo) + Xq, (x (s)— xo) + xo) ds
0

13
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that is

t t
[g(x)](r)—x():/ A(s,xo,xo)ds+/ A (s,x(s) = xq, %) ds
0 0 (20)

t t
+/ A(s,xo,x(s)—xo) ds+/ .A(s,x(s)—xo,x(s)—xo)ds
0 0

Note that the right-hand side is zero when 7 = 0. Hence by Lemma 6.2 and the bounds assumed in the statement of the Theorem,
there holds

I8 () - xo“w'vlu,@)

<26, + 88, [|x = xo[lyp1 (.6, + 6Co [|x = xO”%’\?l»l(J,QS)

For instance, in the first term, we have an extra factor of 2 because W'! counts an L® (J,®) and an L! (J, ®), and the L™ (J, ®) is
precisely bounded by the L! (J, ®) since the initial value is zero. Similar logic holds for the remaining terms.
The Lipschitz estimate from (20) reads as

IF () =T ®llwiiy,e)
< 852 +6€0 ([l = %ollwra sy * 15 = 5ollwiss. )| 1 = Flhwtaso

To conclude, we apply the Banach fixed point theorem in the metric space
B.={xeW 1 (1.0) |l =sollwirge << }

the metric provided by the W"! (J,®) norm (of the difference between any two elements). We may without loss assume ¢ is
sufficiently small.
The constraints are

26, + 86,6 + 6Cye? < €
and
85, +12Cpe < 1
The second constraint is satisfied once € < ﬁ and 6, < 11—6. To satisfy the first constraint, it then suffices to further require that
6y <ze. O
7. Dispersive estimates

7.1. Castella-perthame

First let us recall the family of homogeneous kinetic Strichartz estimates from Castella and Perthame, along with the key
dispersive estimates upon which they rely. [5,8] (We will not require the corresponding inhomogeneous Strichartz estimates.)

Lemma 7.1. Forany l <r<p<oo, if
fo € LTL? (R* X R?)
then for any t € R \ {0} it holds
T (1) fo € LPL" (R? X R?)
and we have the estimate
17O follugagssey < M0 ol apqeoneny

where C is an absolute constant independent of t and p.
Proposition 7.2. Whenever r,p € [1, o] are such that r > 2 and % =1- %, for any f, € L? there holds
/ 2. w2
T fo€ LILP LY (R xR* x R?)
Moreover, we have the following estimate:

||Tf0||L:L§Lﬁ,(RXR2XR2) <G| follr

the constant C, depending only on r.

14
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7.2. Intuition

We are nearly ready to discuss the meaning of (4), i.e.
L2xL* - L' (R, L?) (21
In fact, what we really mean is that this bilinear estimate holds for the gain operator O* composed with free transport, that is,

& 750 Th0) | s oy < € Wl o (22

whenever f,, hy € L%, This is a scaling-critical bilinear Strichartz estimate, and the space L' (R, L?) is essentially a stand-in for the
missing scaling-critical endpoint of the classical theory of Bourgain spaces, i.e. in the usual notation X% with (s, b) = (0, —%), for
which general theory does not exist without refinement of the functional setting.

Before we begin, let us explain heuristically why (22) should be true (since it is not entirely obvious at first glance). Let us
introduce the classical convolution acting in the velocity variable only,

(f #, h) @, x,0) =/ ftxu)h(t,x,v—u)du
R2
then if f,h € C (I, S) then we have for each (¢, x) € I x R? the Young’s inequality
£ bl <CIAL s Dl s (23)
” v ”L,,(Rz) L3 () L3 (R

Now since Q* apparently has a convolutive structure (but taken over manifolds respecting the energy and momentum constraints),
and in addition the collision kernel at hand is bounded and homogeneous of degree zero®, we might expect (23) to hold again for
o*:

0™ (Wl 2azy <CUAN 5+ Al s 24)

’ Ly (R?) L] (R?)
and it turns out (24) is true! It has been proven, and studied in detail (in far greater generality), by Alonso and Carneiro using
Fourier methods [1], and by Alonso, Carneiro and Gamba using a weighted convolution formulation of Q* [2], and was also proven
for Q; with a restricted class of collision kernels b by Arsenio [5] using the weak formulation of QbJr on the kinetic side. (Note that
Alonso and Carneiro [1] used a radial symmetrization technique on the Fourier transform of f in the proof, but their theorem makes
no assumption of radiality for f.)
So let us combine (24) with the homogeneous Strichartz estimates of Proposition 7.2 to “prove” (22):
o* (70 7o)

L(R,L?)

|71l s 17 Aol s
L2<1,L§LU3 (szR2)> L2(1,L§Ll,3 (RZxR2)>

< Cfoll 2 Poll 2

where we have applied (24) followed by Holder’s inquality (in x then 1) in the first step, and the endpoint case r = 2 of Proposition 7.2
in the second step, namely:

ITholl |, 4 < Cllhol 2 (25)
L2LEL (RXR2XR?)

Unfortunately, (25) is known to be false. [6] A more careful analysis is required.

Remark 7.1. For detailed treatments of an approach to proving (22) by way of the Wigner—Weyl transform, we refer the reader to
the previous articles of this series [10-12]. We use an alternative approach below which does not use the Wigner transform in its
usual formulation.

7.3. The basic estimate

First, a simple application of the endpoint Strichartz estimates of Keel and Tao. Before we can state the lemma, we need to
formally define the partial Fourier transform acting only in v:

[Fos] @x.m) = / T2V £ (1, x, v) dv

R2
Remark 7.2. The reader must take care to realize that the failure of endpoint Strichartz estimates for the Schrédinger equation in

two dimensions, which is well-known, has no bearing on our application of Keel-Tao. That failure represents the (2, o, 1) edge case
in Keel-Tao and it is not the case we are using here.

5 Since homogeneity of any other degree would impact the numerology of convolution inequalities

15
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Lemma 7.3. For any f, € L?, it holds
FTfoe 1 (R LY, (R*xR?))

and we have the estimate
||PUTf0||L2(R,L§'”(R2XR2)) <C ||f0||L2

for some absolute constant C.

Proof. Let us formally define the parameterized family of operators for r € R
Uvm=F,7OF,"

Clearly U (¢) acts boundedly on wa (R% x R?) for each ¢ € R, with operator norm equal to one.

The formal adjoint of U (¢) is U’ (—t): here we are using that the formal adjoint of 7 (¢) is 7 (—t), regardless of whether the base
field is R or C. (This is due to the fact that 7 commutes with complex conjugation.) Therefore, in order to apply the result of Keel
and Tao ([22], Theorem 1.2), with indices (in their notation)

(g.r,0) =(2,4,2)
we have only to prove for any Schwartz function ¢, (x,#) defined for (x,7) € R? x R? the estimate
-2
[V 0 Goll o, maxizy < C 1T [1Goll 1, moxe2) (26)

any t # 0 to conclude.
In fact (26) follows from Lemma 7.1 (with (p, r) = (c0, 1) in the notation of the Lemma as quoted above) interleaving two careful
applications of the Hausdorff-Young inequality, as we now show:

V0l ey = [T O 6] e

s¢ HT @ FJIgO”L};"LL(RzXRZ)

<cl?|

-1
Fy C:O”L;Lg?(RZxRZ)
-2
<Clr “CO”L;,I(RZXRZ)
We conclude by observing that the square-integrability of 7, f,, is equivalent to the square-integrability of f, by Plancherel. []
We turn to the main estimate upon which this entire article rests (originally obtained in the previous article of this series by a
slightly different proof [12]).

Proposition 7.4. For any f,, hy € L? there holds

o (776 7h0) |y gy < € Wl 2 o2

Proof. By a result of Alonso and Carneiro ([1], Theorem 1, with a =0, n =2, p = ¢ =4 and r = 2), it holds
|[F.0* (7 f0. T ho)

(Note carefully that in [1], a radial symmetrization technique was used in the proof, but the theorem there makes no assumption of
radiality.) Therefore, by applying Holder’s inequality in x followed by ¢, it holds for any interval 1

7.0t (7 10.7h0) |

sy < 1P T Soll ey 1P holl e @

(113, (R2xR2) ) (28)

<C|RT A |77 ho|

12(1,14, (R2xR2) ) 12(1,14, (R2xR2) )
the constant being independent of I. Of course by Plancherel
[7.0* (7 £0. 7o) | = llor 7 so.7ho)|
Combining (28) with Lemma 7.3 provides
HQ+ (Tfo’ Tho) HLI(I,LZ)
< CIFT foll

(113, (R2xR2) LI(1,12)

) 17,7 hol| (29)

12(1.L,, (R2xR2)
< C|lfoll 2 1Al .2

the conclusion being the special case I =R. []

12(1.L,, (R2xR2))

16
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Small time versions will also be required, again having been first obtained in the preceding article.

Proposition 7.5. Let f, € L% There is a real-valued function
87, (1) >0
defined for T > 0, which (as indicated) depends only on f, such that for f, fixed there holds

limsupé, (T)=0
T-0% fo
and for any hy € L? there holds

HQ+ (Tfo.Th <65, (D o]l 2 (30)

HL'(J(T) L2y —

and

|lo* (Tho.7 7o) <37, M [|Ao] 2 (1)

LI(J(T),L2) ~

where J (T) =[-T,T).

Proof. This is a simple refinement of Proposition 7.4. Indeed, considering just (30) (the proof of (31) being similar), taking again
the first half of (29) now with I = J (T) =[-T,T1], and to only h, applying Lemma 7.3 followed by Plancherel, we have

HQ+ (T fo: T ho) HLI(J(T),LZ)

<C ||F0Tf0” “FUThO“

12 (J(T),L;n (R2 XR2)>

<CII7T 1o

12(J) L, (RZX]RZ)>
LZ(J(T) L4 ,,(RZXRZ)) 7ol 2
Then again, by Lemma 7.3 and Plancherel we have
7T ol .08 o) S € Wl
so our hypothesis
foeL?
implies
=0

liTnL%lip |77 foll 12(J0) 14, (2x22))

hence we may conclude. []

7.4. Weights

We require weighted versions of the above estimates, particularly for the discussion of weak-strong uniqueness in Section 19.
Indeed by conservation of energy there holds for a > 0

1
M“UW+wmf

(WHﬂ)
Ca (] +|01]%)

IA

therefore
[01°Q* (f,h) < Cy - (O (101 I£1. |Bl) + @F (I£1. 1vI* |Al)) (32)

hold pointwise a.e. (7, x, v). Hence, the following weighted estimates follow from the unweighted versions:

Proposition 7.6. Let a > 0. Then if f,, h, are such that
() for (o) ho € L?
then

o) 0 (7 0. 7ho)| < Ca @) foll 2 160)" Aol

LY(R,L2) —

the constant C, depending only on a.
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Proposition 7.7. Let a > 0 and let f, be such that
() fo € L?
There is a real-valued function
8u sy (1) >0
defined for T > 0, which depends only on f, and a, such that for f,, a fixed there holds

lim sup §, T)=0
ITHL ;gp a.fo 1)
and for any hy with (v)* hy € L? there holds

[ o (770 700)| ) [[0)" holl 2

<
LIIm),L2) = %a.fy

and

<oy 0* (Tho. 7 1) gy () [(0) o] 12

<
LY(J(1),L2) —

where J (T) = [-T,T).
7.5. Truncated weights

The weighted estimates can be truncated at large velocities: indeed, if we denote for R > 0 the weight
Vg (v) = min ({v}), R)
via pointwise minimum, and similarly for « > 0 the shorthand
Vg = Vg () = vg (0)* = min ((U)“ ,R“)
then it is possible to show that
Ve (0) < Cy (Vi (V) + v (V))) (33)
To see this, consider first the case
max (/). (11)) < R
in which case we can compute
VE @ £ 0 S €, () 4 (1)) = €, (v () +vi ()
In the alternative case, we have
max (/). (1)) 2 R
which implies we at least have one of v% (/) = R* or v% (v/,) = R, so we can similarly compute
Ve (@) < RY < max (v (1) v (1)) £.C, (v (o) + i (0])

where we assume without loss of generality that C, > 1 in the last step.
Hence we have as before

Proposition 7.8. Let a > 0. Then if f,, hy € L* then for each R > 0 it holds
Q" (7o Thol | ol o]

the constant C, depending only on «; in particular, C, is independent of R.

C(l

<
LI(R,L2)

The small-time version of Proposition 7.8 is far more subtle. Indeed observe that we need to have a single 6 (T) that applies
independent of R, which does not immediately follow from the proof of Proposition 7.7 since that proof relies on an argument
involving the continuity of the integral, and would therefore have to be applied separately for each value of R, yielding a 6 (T') that
implicitly depends on R. Instead, to guarantee the independence of 5 (T') from R, we elect to assume once and for all that

(" foel?

in other words that we do not truncate f,. In that case, h, can be freely truncated and therefore it suffices to assume that h, € L?.
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Proposition 7.9. Let a > 0 and let f, be such that
() foel?
There is a real-valued function
8u sy (1)>0
defined for T > 0, depending only on f,, and a, such that for f,«a fixed there holds

lim sup 6, T)=0
ITHL f,‘ip a.fo (1)
and for any hy € L? there holds, simultaneously for all R > 1,

vrQ* (T 1o, Tho)” (34)

L2

(@) |[viho

<
LI(J(T).L2) = 50«/0

and

VEQ™ (T hy, Tfo)”

where J (T) = [-T,T).

LI(J(T).L2) < 8.z, (1) Hvih(’“ﬂ (35)

Proof. Letting f =7 f, and h = T h,, we have by (33) the pointwise bound
VRO (f 1) < Cy - (OF (Vg IS 1L 1R1) +OF (111, V5 1A1))

But in the first term on the right-hand side we can bound v§ < (v)® in the first entry, and 1 by v in the second entry (since R > 1),
so we obtain

VROt (f 1) < Cy - (OF ((0)* If1,vig Lhl) + QT (111, v IAl))
Again, for the first entry of the second term we can bound 1 by (v)* so, multiplying the constant by two, we obtain
VROT (f.h) < CO0T ((0) |11, v |hl)
Therefore, for any compact interval J C R there holds
a )+
HVRQ (TfO’ThO)”Ll(J,LZ)
e (@ 15D 7 G lrD) 1 1o

where we have used the fact that 7 commutes with taking absolute values, and also commutes with multiplication by any scalar
function of |v|. Finally, applying Proposition 7.5 with

(v)* fy in place of f
(noting that (v)* f, € L? by hypothesis), and
viho inplace of  hy

implies (34). The proof of (35) is similar. []
7.6. Time-dependent estimates
We can estimate Q" even when the arguments depend on time, not simply given by the free flow.

Lemma 7.10. Let0<a<b< o, I =[a,bl, and let f|, f»,¢,,¢, be measurable functions such that

fif2.6.6 € L, (I XR? X R?)
Vie({l,2}) fieC(I,L?)
vie{l,2) el (1,17

VGe(12) (g+0-V,)f=¢
Then Q* (fy. f») € L' (I, L*) and we have the bound

HQ+ (fl’fz)”Ll(I,LZ)
(36)
<C H /i @2 + Z 4i ”‘:i”Ll(l,LZ)"'C H ”Ci”Ll(J,L?)
i€(1,2) i€(1.2) i€(1,2)

19



T. Chen et al. Nonlinear Analysis 248 (2024) 113609

where

q = sup{HQ+ (T@=-a hyT(t-a) f, (a))HLl(,,LZ) tllholl 2 < 1}

4= sup{HQ+ (T(t-a)f,(@.,T (t-a) hO)”L‘(l o ol 2 < 1}
In particular, by Proposition 7.4,

lo* )iy <€ TT (Willisrzy + Meilirrezy) 37)

i€{1,2)
Proof. Expanding each f,, f, by Duhamel’s formula, we can decompose
O (fi.fr) =L+ L+ 1;+ 1,
where

Li=0"(T¢-af@.T¢-a)f)

'
ZZ=/ Q+(T(t—r){l(T),T(l—a)fz(a))df
Z3=/ Y (T—-a) fi(a).Tt-1)(v)dr

I, = /ar/a'Q+ (T@=7)¢ (n).T(1=7) & (ry)) drydry

Proposition 7.4 provides

I, ||L1(1,L2) <C _ H I£; @] 2

ie(1,2)
The definitions of ¢;, combined with Minkowski’s inequality and the fact that free transport preserves the L? norm, give us
12202112y S @ 6l oy

and

1Z:0 2y < @2 152l r2y
For example,
12201122

t
/Q+(T(z—r)§1(r),T(r—a)fz(a))dr

LY(1,L%)
t
<|[Nerre-nam.ra-0r@)|,0
a LY(I,R)
< ”/”Q+ (Ft-06@.T (-0 )| ,d7
1 LY(1,R)
s/IHQ’“ (Te-06@.Tt-af (a))”Ll(m) dr

< /ql |7 (=G =an& @2 dr
I
=q ”gl ||L1(I,L2)

and I; is similar.
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For 7, we can use a similar estimate:
I Zall 1122

'/at/atQ+ (T(t-7)¢(n).T(t-1) & (1)) drydr,

LY(1.L?)
t t
< // Q+(T(I—TI)C(Tl),T(t—r2)¢2(1-2))”L2dfldrz
o LI(I,R)
< //1|Q+(r(r—q)g(ﬁ),r(t_fz)gz(Tz))”LZd,lde
rer LI(IR)

S[Z”Q"‘ (T (l—rl)C(n),T(r—rz) %) (TZ))HLI([,LZ)dTIdTZ

sc/l/]”T(— (r1=a) & ()|, |7 (= (=) & (=), dryams
<Clclpaeylelngey O

7.7. Large time
We will need the following variant of Proposition 7.5 for our discussion of scattering, namely the proof of Lemma 17.1.

Proposition 7.11. Lete >0, f, € L% and
1 =10, 0)

be provided.
Then there exist numbers 6 > 0, T > 0, each 5, T depending only on €, f., such that whenever h, € L? satisfies

I(1p=T) Hho ~7 (1) f+°°HL2 <5
then each of the following bounds hold:

HQ+ (Tho’ Tho)“Ll(l,Lz) <€ e
V(g € L?) ”Q+ (ThO’TgO)”LI(LLZ) <ellgoll 2 (39)
Vieer?) [ (TaoTho)|,. .0 <eleolle (40)

Proof. Assume without loss of generality that
1
[f+eollz2 = 2

Then (38) follows from (39) simply by taking g, = A, as long as § is at most % Therefore, we only need to prove (39), the proof
of (40) being similar.
From (28) and Plancherel we know

”Q+ (Tho, T g) ”

L1(1.L?) 41)
<C ”FvThO||L2<,,L11”(R2X]Rz)) ”FuTgO”Lz(,,Liﬂ(szsz
thus applying Lemma 7.3 to g, we obtain
”Q+ (ThO’TgO)HLI(lﬂ) s¢ ”PUThO||L2(1,L‘}_,1(1R2><R2)> llgoll > (42)

So let us compute, using the triangle inequality followed by Lemma 7.3, denoting fy =T (fy) fyco'

|77 ho ||L2 (I-Li,n(RZXRz))

< |77 (o - 10)

‘Lz(l,L;q(szRZ)) +I|7T fol LZ(I,L‘}(‘,’(RZXRQ)
<Cly = foll + I foll o 11 ey

<Cé+ ‘ F,TT (1) f+°°”

12(114, (R2xR2) )
(note carefully the double 7 in the second term is not a typo!) Thus provided

cs <2l
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and picking a large enough T that

||7-’L,TT(T)f+°°||L2( ) <27 g

1LY, (R2XR?)

(which is possible by Lemma 7.3 and monotone convergence as T — oo, in view of the group property of 7) implies the result. Note
carefully that once T is chosen sufficiently large, any #, > T suffices to carry out the previous estimate: this justifies the order of
quantifiers in the Lemma statement. []

Remark 7.3. It is interesting to note that the proof of Proposition 7.11 tells us slightly more: namely (and perhaps surprisingly),
5 only depends on ||f,||;2 (due to the normalization condition at the start of the proof). It is only T' that depends on the profile
of f,. (as it must, by the scaling-criticality of L?).

7.8. Local temporal decomposition

We can adapt the proof of Proposition 7.5 to handle intervals, as opposed to neighborhoods of a point, by decomposing any compact
interval [0,T] into N nonuniformly-sized sub-intervals, saving © (¢) on each interval by letting N be sufficiently large depending
on ¢. This will seem unmotivated here but will become crucial when we consider propagation of higher regularity, the second part
of our main Theorem, and the decomposition leads naturally to propagation estimates like

(1= 0@)™

so that a finite bound on N is available for every ¢ sufficiently small.

Proposition 7.12. Let 0 <T < oo, I =[0,T], and let
h,g e C(I,L?)
be such that
(0, +v-V)h, (9, +v-V,)g eL'(I,L?)
and define the constant
Co(®) = llglpeorr2) + ” (0 +v-Vy) gHLl(I,LZ)
Let € > 0. Then there exists a number N € N and a partition
O=t)<t)<th < <ty_ 1 <ty=T

the cardinality N and endpoints {tj }j all depending on g and & but not on h, such that denoting I; = [tj,tj+1], j=0,1,...,N — 1, there
holds for each j the estimate

lo* (h’g)||L1(1j4,L2) +[o" G h)”Ll(Ij,LZ)
<CCy ()% <“h ()]0 +v-v2) h”Ll(,j‘L2)>

with C an absolute constant (independent of h,g,T,e, N and all the t ; ).

Proof. We may assume without loss of generality that each g, » are non-negative almost everywhere, namely

0<g(tx,v) ae (1,xv)€lxR>xR? (43)

0<h(t,x,v) ae. (t,x,0)€lxR?xR? 44

for, if we have established that case, then for general g, 4 we can simply apply the Lemma to |g|, |4, keeping in mind the pointwise
identities

(0 +0-V,) 8| =] (0 +0- V) lel|
and

(0 +0- V) h| =|(0,+0- V) |
as well as the pointwise inequalities

0" (h,g) < 0" (Ihl. g

and
0% (g.m) < 0% (gl |hD
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Viewing g as fixed, consider the linear operator
Lh=2{g)h=0"%(hg)+0" (g.h)
We will show, associating g with C (g) as in the statement of the Proposition, that

Hggh”Ll(I/,Lz)

<CCy @ x (”h ()], + (0 +0- v ], W))

for a suitable partition of I = [0,T], as in the statement of the Proposition. Then in view of (43)-(44) we have
0<0%(h,g) < £h

and
0<0%(g.h) < &h

so the conclusion follows.
Recall from the proof of Proposition 7.5 that for any interval

J=[ablCI
and for any g,, 7, € L?> and any @', a” € R (neither being necessarily equal to a, which is crucial) it holds
lo* (7 (1= a) &.7 (1= a") o)

sc‘

L1(J.L%)

F, [T (I - a') gO] ”LZ(J,LQ,,(szRz)) ”hO”L2
and
lo* (7 (1= a") b T (1 - a') &)

sc‘

LI(J.12)

Fy [T (t - a’) gO] |’L2(J,L§M(R2Xm2)) ”ilOHL2

where F,, is the Fourier transform in v. Together these imply

Hs (T (t1=d) &) (T (1-d") ilo)u

L'(J.L%) ) 45)
<c|p[r(t-d) |)L2(,,Li_ﬂ(R2XR2)) ol .2

and hence, by Lemma 7.3, also

[ (=)o} (7 (1=a") Ro) 1 1y < € N0z ol 2 (46)
We shall define

(=(0+v-Vy)g
and

E=(0,+v-V,)h
which in particular provides

ceeL'(1,L%) (47)
by hypothesis. Moreover we may write

Co (@) = gl oo (r,r2) + €N L1(7,12) (48)

Let us decompose the interval I = [0,T1], for a sufficiently large integer K € N to be chosen later, as
O=ry<7 <y <<t <17 =T
where
1
||§”L‘(.lk,L2) = E ”é”Ll(l,]})

with J, = [z, 7] This is possible due to (47); observe, in particular, that the partition {r, }, depends on g (which is in accordance
with the statement of the Proposition). Now from (48) we have

€I L1 (s, 22) < K71 Co (8) (49)
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For each k pick an positive integer L (k), sufficiently large to be chosen later, and times r,f such that

] 1 2 L(k)—-1 L) _
T =T < T <7 < < T < T = Ty

and

2
Fo [T (1= ) g (v)] HLZ(.’f’LiJ](RZX]RZ)>

2
F T (t—7) g ()] HLz(Jk,L;n(nz@xRZ))

=_Lw
L (k)

where the intervals {J{ },, J/ = [r{,7/*"], partition J,. (Note carefully the squares in the defining relation for J{.) In particular,
letting

L=inf{L(k) : ke {0,1,2,....K—1}}

we have by Lemma 7.3

7 (=) 8 ) [0, o) < 7 0

hence

Duhamel’s formula for ¢ € J; reads

_1
Pl (=) 8 ()] 21 11, sy < CL 00 @ 50)

s =T (t-7) g () +/ T(@—s)¢(s)ds

Tk

Additionally, for ¢ € J{ C J,, we have

1
h(t):T(t—r,f)h(‘r,f)+/{T(I—S)§(S)d5

k

ForreJ kf we may plug the two Duhamel formulas recorded above into £,A:
Ch=T1+L,+1;+1,
where

Li=2{T (1=n) g (n)} (T (1= ) h (7))
12=/tds2{T(t—s)C(s)}(T(r—r{)h(r{))

t
13://dss{r(t_fk)g(Tk)}va—s):(s))

k
t t

14=/ ds/fds’E{T(l—S)C(S)}(T(’_S/)g(sl))
'[k '[k

In what follows we will freely reduce (without comment) expressions like ||7 () (:)||;2 to simply ||-||;2 for any a € R, for the
sake of brevity. Also, since 7 € J¢, we will freely replace integrals like jrl resp. [% by [ }, Tesp. /;¢» as warranted by Minkowski’s
7 I

inequality applied to the inner L? alone.
In the case of 7, we may simply use (46):

”11”1‘1(15,]“2) <CG (9 ”h (T/f)”Lz
Similarly for 7, we again have (46):

12l 2) < /Jk dsC i@l 2 1 ()|, < cCot@ |1 ()

For 1,, by (46) again, along with (49),

!
”14”141(]{,[‘2) S //k dS/ka ds'ClIE (9l 2
<CK™'Cy () €l

£,
Ll (Jf,LZ)
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Lastly, and most technically, for 75, by (45) and (50), we have

||I3||L1(JE,L2)

s/ dsc)
i

<CLTIC, (@) ]

FolT (1= =) g (n)] ”Lz(,kf,Li_,,(szRz)) € )l 2

L (Jf,LZ)
Altogether we have
Hﬁgh”L‘(J:.U)

< CCy(g)x <Hh (TZ)“LZ + <K‘1 + L7%> “'fllLl(J,f,Lz))

1
Recalling that & = (0, + v~ V, ) h, letting K~! and L™2 each be smaller than 27'¢, and identifying the partition {I; }j of cardinality
N = KL with the partition {J/}, , provides the result. []

Corollary 7.13. Fix an integer M € N. Then Proposition 7.12 holds again under the added constraint that, for each j,
1
i1 =0l < 57
Proof. Partition I =[0,T] into M intervals I,, where

I,=|Z7,2 7
"M M

Then apply Proposition 7.12 to the intervals I,, in succession, starting with m = 0 and ending withm=M —1. [

m m+1 ]

8. Estimates with non-negativity

Lemma 7.10 can be refined under non-negativity assumptions: we do not need to assume that
(0,+v-V,) fieL' (1,L7)

as long as the f; are each non-negative and we have some control from above in Duhamel’s formula. This will be useful for the proof
of weak-strong uniqueness, Theorem 19.3.

Lemma 8.1. Let0<a<b<oo, I =[ab], andlet f|, f>.¢,,{, be non-negative measurable functions such that
S1:12: 6.6 € Ly, (I XR? X R?)
Vie(l,2) 0<f eC(I,L?)
Vie{l2) 0<¢elLl'(1,L%)
and that for almost every (t,x,v) € I x R? x R> we have the pointwise bounds for each i € {1,2}
t
0< f;(n) < T(t—a)f,-(a)+/ T(@—-1)¢(r)dr
a

Then Q% (f}. f>) € L' (I, L*) and we have the bound

HQ+ (fl’fz)”Ll(l,LZ) 1)
5
<C H /i @l|2 + Z 4 ||Sill 1.2y + € H Iill o (7.2
i€(1.2) i€(1.2} i€{1.2)
where
a=sn {07 (TG=ah. T (= £s@)],., o) ¢ olls <1}
&= sup{HQ+ (T (t—a)fy (@), T (t—a) ho)”Ll(m) ol < 1}
In particular, by Proposition 7.4,
HQ+ (fl’fz)”Ll(l,Lz) < Ciel{_f[Z) <||fi||L°°(l,L2) + ||§i||Ll(1,L2)> (52)
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Proof. For i=1,2 let us define forr € I
t
h; () = T(t—a)f,.(a)+/ T@—-1)¢(r)dr
a

Then for almost every (t, x,v) € I x R? x R? and each i = 1,2 we have the pointwise bound
0<fi<h

so it suffices to show

HQ+ (hl’h2)”Ll(l,L2)
<C H I/: @]l 2 + Z gi ||Ci||L1(1,L2)+C H ||§i||L1(LL2)
i€(1.2) i€(1.2) i€(1.2)

but this now follows from Lemma 7.10. []
9. The Q% equation

A local solution of the Boltzmann equation with gain term only, or gain-only Boltzmann equation, provides (in suitable regularly
classes) a local upper envelope to solutions of (1) with the same initial data. (The same can be said for a small forward interval of
any o, say [,y + ), taking the solution f (#,) of (1) at time ¢, as the initial data for the O* equation.) The main objective of this
section is to provide a detailed understanding of the gain-only Boltzmann equation, as a means for characterizing such a local upper
envelope.

9.1. The gain-only equation

The Q" equation, or gain-only Boltzmann equation, or simply the gain-only equation, refers to the following evolutionary equation:

(0, +v-V,)h=0Q" (h,h) (53)

and this Eq. (53) will be the sole concern of this section. Note carefully that the space L2, not L? L%, will be the relevant functional
setting for the study of (53).

Theorem 9.1. Given any 0 < h,, € L?, the gain-only Eq. (53) admits a unique local solution
hecC([0,T],L7)
satisfying
O (h,h) e L' ([0,T],L?) (54

and h(t = 0) = hy, the time T depending on the profile of h,. (In particular, the uniqueness assertion is conditional on the bound (54) for
O™ as applied to any candidate solution of (53): the constructed solution satisfies (54) regardless.) Additionally, for any r,p € [1, ] such
that r > 2 and } =12, it holds

he LI LPLY ([0,T]1xR2 xR?) (55)

X

There is a number #y, 0 < 1y < oo, such that if ||y || ;2 < o then we may take T = co.
Remark 9.1. The small data regime, characterized by the number #, in Theorem 9.1, was previously studied in [12].

Proof. This follows from Proposition 7.4, Proposition 7.5, and Theorem 6.3, taking ¢ = L? and
A(t, for ho) = T (=00 (T (1) £5, T (t)hy)

where we have implicitly employed the change of variables
h()=T (=)h()

to formally write for any solution & of (53) that
R =A(th@1),h(@®)

To see that h € C ([0,T], L?), observe by Duhamel’s formula

T(—I)h(t)—T(—S)h(S)=/ T (=0) Q" (h,h) (6) do

N
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we can bound by Minknowski’s inequality
t
T (=R =T (=) h ()l 12 s/ [oF (h, b)(o)]| 2 do

where we have used the fact that 7 preserves the L? norm. Therefore the time-continuity of 7 (—f) h (t), and hence 4 itself, follows
from (54).

The bound (55) follows from Proposition 7.2, as follows: first, note that by Duhamel’s formula the solution 4 of (53) satisfies for
0<t<T

'
h(t):T(t)h0+/ T (t—s)0% (h,h)(s)ds
0

T
gT(t)h0+/ T (t—s)0% (h,h)(s)ds
0

where we have replaced ¢ by T in the limits of integration; hence, by Minkowski’s inequality
Wl oy (0.71xR3xR3 )

< ”ThO”L;L‘;Lﬁ'([o,rjxkixmg)

T
+/ 1Tt = 0% (h. 1) (9|
0

L7y (0T 1xR3xRE) ds
T
<lolls+ [ 10t o2 ds

and recall that Q* (h,h) € L' ([0,71,L?). O

Remark 9.2. Since the initial data h, is non-negative almost everywhere, the solution of the gain-only equation is again non-
negative almost everywhere for positive times inside the domain of existence. To see this, expand the solution A (¢) in “powers” of
hy by iterating Duhamel’s formula ad infinitum. Every term of the resulting series is non-negative by the non-negativity of A, and
O, and the series is guaranteed to converge to 4 by the proof of Theorem 6.3.

Definition 9.1. Given any 0 < hy € L?, let S (hy) be the set of numbers T € (0, o) such that there exists a solution 4 of the
gain-only Eq. (53) with

hecC(0,T],L?)
satisfying
O (h,h) € L' ([0,T],L?)

and A (t = 0) = h. (Note that A is, as before, necessarily non-negative.)
We also note that S (k) is a connected subset of (0, co) with nonempty interior, by Theorem 9.1.
We shall denote by

Tg.o. (h()) =supS (h()) € (0, 0]
what we shall call the scaling-critical time of existence for the gain-only equation for the initial data hj.
Remark 9.3. By the definition of T, (ho) and uniqueness, the solution £ (1) guaranteed by Theorem 9.1 is continued for 0 <7 < T,

any 0 < T < Tg, (hg). It is obvious from the proof of Theorem 9.1 and the definition of T, (h,) that (55) holds for any
0<T <Ty, (o)

Henceforth we shall always take the initial data h, for the gain-only Eq. (53) to be non-negative at almost every point of its
domain. For 0 <7 < T, (hy) we define

3g.0. (h()) (t)

to be the unique solution of the gain-only Eq. (53), as specified in the definition of T, , (ho), corresponding to the initial data .
In particular,

(0 +0- Vi) {3g0. (ho) 0} = Q" (3g0. (o) 1. 3g.. (o) 1))

and 3g,, (hg) (0) = hy. Therefore, 3g.0. satisfies a restricted version of the semigroup property, which holds precisely to the extent
that the flow is defined as above; we refer to this property as simply the semigroup property of 3 .
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9.2. Lower semi-continuity

For what follows we define L>* to be the set of functions h, € L? such that hj(x,v) > 0 a.e. (x,v). L>* is topologized by the
L? norm of the pointwise difference between two elements, unless stated otherwise. When we refer to lower semi-continuity without
further qualification, we always (from here to the end of the article) mean this term in reference to the L? norm topology.

Our ultimate goal is to prove that T, is lower semi-continuous, and that the solution map 3, is itself continuous in a suitable
sense. The first step will be the construction of a family of lower semi-continuous lower bounds for T, , parameterized by £ > 0.
In other words, once we fix an ¢, we can obtain from this a lower semi-continuous function which bounds T, from below, and
satisfies an additional e-dependent bound. This function, to be constructed momentarily, shall be denoted F®.

It will be convenient to abbreviate

" (/. )

as
o* (N

and we will do so without further comment.

Lemma 9.2. Let ¢ > 0. Then there exists a function
FO 2 2% 5 R (+o0)
such that each of the following is true:
(1) For any h, € L>*,
0 < F (hy) < Tgo (ho)
(2) If hy € L** and hy, € L>* for k =1,2,3,... then
Jim [lhog = holl 2 =0 = F© (k) <liminf F' (ho)

(3) For any hy € L>*,

F©(hg)
A ”Q+ (3g.0. (h()) (t)) ”L2 dt<e (56)
Proof. First observe that if T, , (hy) < co then

Tg,u(ho)
/0 lo* (3g. () )], a1 = 0 o

for, if this were not so, then by Duhamel’s formula and Minkowski’s integral inequality we would have
1
IT (=) h(®) =T (=) ()l 2 < / [Q* (h(o))|;2do
s

where A (1) = Bg_o. (ho) (). In particular, letting |t — s| — 0, we find that the map ¢ — 7 (=) h (¢) then extends uniquely to a function
in

C ([0.Tgo. (ho)] . L)

hence h does so extend as well, and we can apply the local well-posedness theorem, Theorem 9.1, with initial data h (T, 0. (ho)) to
produce a solution of (53), with initial data h, but extended past Ty, (ho), in contradiction with the definition of Tyo. (ho)-
Hence we may define an extended-real-valued function z(® (hy),

0<17® (hy) <o

on L>* by the formula

© (hy) = sup {z >0 : / lo* (350 (ho) )|, dt <€ }
0
Then by (57) we see that
0 < 7@ (hy) < Tyo (ho)

and, moreover,

O (ho)
L o Gue () )<
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and the equality prevails whenever Ty, (hg) < c.
It will be proven that for kg, hy € L*™,

fim|lho = holl o =0 = liminf z (hgy) >0 (58)
Then if we write as B, (hy) C L? the open ball in L? of radius r > 0 centered about h, € L? then defining

FO () = sup(inf {<© (ho) 1 Rye B, (n) ()L} )

r>0

allows us to conclude.
We turn to the proof of (58). Assume that

tim |2, = holl 2 = 0

We need to place an asymptotic lower bound on 7 (hy ), the bound itself possibly depending on hy. By Theorem 6.3, it suffices
to show that for any 5 > 0 there exists a 0 < § < oo and an r > 0 (each depending on 5 and h) such that if h, € B, (h,) then

Viherd) [0t (7o Tho)| e <1 1ol ©

(16,6112

and symmetrically reversing the two entries of O*. The point is that § must be uniform across a ball (of radius r); in that case,
once 7 is taken sufficiently small (depending on h), it holds that for all large enough k, it must be that ® (h,, ) > 275, hence the
conclusion.

But by Proposition 7.5 applied to the limiting function h;, we can assume

1
v(foel?) ”Q+ (TfO’ThO)”LI([—a,a],LZ) =31 170l 22

and we also have

[0 (0. (o = F))[ 1 s 5112y = € 0 = Poll 2 1 oll2

so (59) holds when r < 20)™'y. O

Corollary 9.3. If hy € L** and T, (hg) < co then the set

3g0. (o) ([0.Tgo. (ho)))

is not pre-compact in L?.

Proof. Suppose otherwise: that is, the image of the set
[0’ Tg.o. (hO ))

by the map
1 3g, (hy) @

is pre-compact in L2. Let us denote the closure (in L?) of this image by K; then K is a compact subset of L2. Therefore, the lower-
semicontinuous function F( attains a minimum value on K. However, F(1) > 0 everywhere, so it follows that F(!) is bounded away
from zero on K.

Therefore, there exists an # > 0 such that

VO <1< Ty (hy), FO (34, (k) ) 21

Hence we may cover [0,T,, (hy)] by a finite set of open intervals of size <  and use the defining properties of F() and the
semigroup property of 3, , to conclude that

0% (3g0. (ho) ) € L' ([0.Tyq (ho)).L?)
and observe that this contradicts (57). [J
Corollary 9.4. For any hy € L**, if Ty, (hy) < oo then

t—»Tgl.il.'I(lhOY “Sg'o' (o) (I)HLZ -

Proof. Suppose the contrary; then there exists an increasing sequence of numbers 7, — Ty, (ho)” and a number 0 < C < oo such
that

o . (1) 0] <
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Since free transport preserve the L? norm, we have
o7 (40 (3o ) (1], <
By Duhamel’s formula,
T (=10) {3go. () (1)} = o+ [ 7 <10 (350, (he) ) s
therefore since h, € L>* we have

t
/Ok T (=) 0% (340, (ho) (9))ds| <C

sup

k 2
up to increasing C. Then again, by Duhamel’s formula and non-negativity (to increase the bounds of integration in the last line),
for 0 < s <t it holds

|7 =0 {350, (ho) 0} =T (=) (340 (o) )},

t
[ 700" (3go. (h) @) a0

<

12

Tg.o.(hf))
< / T (000" (3g0. (o) () do

L2
so by dominated convergence (letting s — Ty, (ho)” in the last line and expanding the definition of the L? norm to apply the
dominated convergence theorem, taking care not to apply Minkowski’s inequality), we find that the function

10 T (=0 {34, (ko) O}
admits a continuous extension from [0,T,, (hy)] to L?. In particular, 3¢, (ho)(:) also admits a continuous extension from
[o, Ty (ho)] into L2, in contradiction with Corollary 9.3. [
Lemma 9.5. Let hy, € L*>*; then, there exist numbers c,r > 0, depending only on hy, such that the following holds:

For any e > 0, there exists a § > 0 such that whenever

ACRAC) 2,4+

hy’shy eL
are chosen to satisfy

v(ie{1,2)) ”hg) —hOHLZ <r
and

AGEIAC)
76 =57, <2

then it follows
[3e0. (") 0300 () 0

where J = [0,5].

<e
L>(J,L2)

Proof. Let Eg), i = 1,2, be chosen as in the statement of the Lemma, for some r > 0 to be determined later. We can assume by our
choice of r, s, at the very least, that

inf {Tyo (hg) : |\ho—holl2<r} > o (60)

in view of Lemma 9.2. _
Letting ¥ (1) = 3,4, (izé”) (1), define

w@) =Y @) - 1P 1)
then it holds
(0, +0- V) w=0" (MY, w) + 0" (w, h®) (61)

and we denote w, = w (t = 0). Consider just the first term on the right; the second is handled similarly.
We may write

0* (A, w)
=0t (TH) w) + 0* (AV =T, w) (62)
=1, +1,
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Let us denote J, = [0,c].
We have previously seen (e.g. from the proof of Lemma 9.2, specifically (59)) that, by choosing r, o small depending on the small
parameter 1, we may have simultaneously for all 7181) within L?-distance r of hy and all 4, € L? that

LY(J5,L2) <nlkalz

‘Q* (Tizg”,no)

This estimate suffices to handle term Z,: indeed, it implies by Duhamel’s formula applied to w that

HQ+ (75 w) by 57 <||w0||Lz +[|@+0-v,) “’Huu{,.m)

the right-hand side being finite by (60), since w is simply the difference between two solutions which each have lifetimes strictly
larger than o.
Also, by Duhamel’s formula

t
@0 -7 0k = / T (-5 0" (hV () ds
0
and Proposition 7.4, it holds for any u, € L?

<cC “Q+ (h(]))”LI(.I,,,L2) [luol| 2

‘Q" (iz“) -ThY, Tuo)

Ll('lﬂ"Lz)
Note carefully we have substituted Duhamel’s formula into the first entry of OF, so that Q" is acting on another O* and a u; it
is to the outer Q* that we apply Proposition 7.4. By Lemma 9.2 with ¢ (the ¢ of Lemma 9.2, not related to the ¢ appearing in the
statement of the present lemma), for any » > 0 there exist r,¢ > 0 such that again, simultaneously for all 718) within L2-distance r
of hy and all u, € L?, it holds

cflo* G

<

So for any u, € L*> we may now write

‘Q" (A0 =THD . Tuy)

<
LY(J,.L2) = ||140||L2

so that, once again,

0 (K0 -73  w)

L'(J,.L2)

<n <||LUO||L2 + “(a, +oeVy) w”Ll(Ja-L2)>

which suffices for Z,.
To conclude, let us denote

(@) = @l 12) + ”(0, toVy) w”L'(Ju,LZ)

which we recall is finite in any case, and observe that

a(0) < [|woll 2 +2]|(0 + - V.) w <2a(o)

L'(J,.L%) —
Hence by (61) and the above estimates on 7, and I, we now have
7 e
a(o) < ”hf)l) - hg )HLZ + 16na (o)

1
32’

AQCEAC]
g,z < 27 =57

Letting = with the corresponding constraints on r, ¢ as specified above, yields by the definition of a(¢) that

as claimed. []

For the next lemma we denote by B, (hy) the ball of radius r in L? centered about hy € L>*.

Lemma 9.6. Let K C L>* be compact. Then there exists a o > 0, depending only on K, such that the following is true:
For every hy € K, there exists an r > 0 such that

v (izo € B, (ho) (1 1**) o < Ty, (hy)
and such that, denoting J,, = [0, o], the map
B, (ho) ﬂ LY 5 C (4, L), Ry 3g0 (o) ©)

is continuous.

31



T. Chen et al. Nonlinear Analysis 248 (2024) 113609

Remark 9.4. It is convenient for the proof to let r possibly depend on A, € K, although it is possible to show by the compactness
of K that r need not depend on A, even if we have only proven the claim allowing r to depend on 4. Indeed, choosing r for each

i

hg as in the Lemma, cover K by open balls of radius - about hg) as i ranges over a finite set.

Proof. For any h, € L>* we will write
0<o€A(h)CR

if and only if both the following hold: first, that there exists r > 0, depending on ¢ and A, such that
v (on € B, (ho) (1 1**)  0<27' Ty (o)

and second, that the map
B, (ho) [\ L** = C(10.01.L7). Ky 3g0 (Ro) ()

is continuous .
Also let us write

a (ho) =supA (ho)

the least upper bound of the set A (hy). By Lemma 9.5, a (hy) > 0 for each hy € L>+.
We have to show that for any compact K c L>*,

inf {a(hy) : hgeK} >0

By way of contradiction, suppose that there are points hy; € K, k =1,2,3,..., such that a (hy; ) — 0 as k — co. By the compactness
of K, we can pass to a subsequence converging in L?, say h, s — hy for some h, € K. Applying Lemma 9.5 to h,, we find that there
must exist a number k, such that a (hy,s) is bounded from below uniformly in &’ > k;, hence the contradiction. []

Remark 9.5. Observe that in the proof of Lemma 9.6, we have relied on the fact that Lemma 9.5 provides continuity of the solution
map not just at A, but across a small ball surrounding A, for a time bounded uniformly from below on said ball. In particular, we
obtain continuity on a relatively open set @ ¢ L>* with K C 0, the existence time being bounded from below uniformly on ©.

Theorem 9.7. T, is lower semi-continuous: that is, if hy € L>* and hy, € L>* for k=1,2,3,..., then
Jim {lhgs = holl =0 = Ty (ho) < liminf Tg o, (hox)

Moreover, the solution map 3, for (53) is continuous, in the following sense:
Denoting for hy € L* the open ball

B, (hy) = {hy € L* : ||hg — ho|;2 <r}

it holds that for any hy, € L>* and any compact interval J = [0,T], where 0 < T < Ty o. (ho) is chosen arbitrarily, there exists an r > 0,
depending only on T and hy, such that the map

B, (ho) ﬂ L>* > cC (J, Lz) s hy ~ 3g.0. (7’0) Q

is continuous.

Proof. First observe that for any 0 < T < Ty, (hg) the set

K =3g0. (o) (1)

is compact, being the image of the compact interval J = [0,T] by the continuous map 3, (ho) (-). Thus we may apply Lemma 9.6
to the set K.

For each 7, € J let B be the L? ball centered on 3, (k) (t)) guaranteed by Lemma 9.6: note carefully that we are taking the
solution at time t, € J, that is 34, (hy) (), as our initial data in the application of Lemma 9.6. In particular, by the compactness of
K, the solution map 3, is continuous on B’ for a time ¢ that is uniform in ¢, € J. Assume without loss (up to a possibly smaller
choice of the constant o) that T = Mo, M an integer.

The proof is by an induction backwards in time, starting at T. The starting point is the unit L? ball centered on 3g0. (ho) (D).
Take the preimage of this ball by the (partially defined) gain-only flow, at time o, and call U, the intersection of this preimage
with BT=¢. Then U' is open for the subspace topology of L>* c L?. Repeat the process, taking the preimage of U, by the time o
flow and intersecting with BT-%+D¢ to produce U, ,. Eventually we will have U,,, a relatively open subset of L>* that contains
ho; moreover, by construction, for any A, € U,, ¢ L>* the flow is defined for 0 < ¢ < T, and the flow is continuous on U,, for
0<t<T. O

32



T. Chen et al. Nonlinear Analysis 248 (2024) 113609
10. The comparison principle

Any smooth solution f of (1) with sufficient decay for large (x,v) is bounded from above pointwise at positive times by the
solution of the Q% Eq. (53) with the same initial data, for the full lifespan of the solution of (53). Thus, under such assumptions,
we may view the solution of (53) as an upper envelope for the solution of (1), at least on a small time interval. Setting aside “near
vacuum” results, solutions of the Q* equation are not global in general even for smooth data with rapid decay [21]; nevertheless,
we can take f (#,) as initial data in (53) to obtain, once again, an upper envelope valid for ¢ € [10,10 + ) for some small o > 0
depending on f (t,) (note: not the L? norm of f (1,), but the full profile). This comparison principle, the invocation of which is defined
to mean that we may obtain an upper envelope along sufficiently small half-open intervals starting from any ¢, in the (larger but
still half-open) domain of interest, is a fundamental property of any Boltzmann equation satisfying the Grad cut-off condition (the
principle is obviously meaningless in the non-cutoff case). Now it is not at all clear whether the renormalized solutions of DiPerna
and Lions [15] satisfy a version of the comparison principle in general. However, in the L? setting, we can make sense of (53) by
Theorem 9.1. Since the comparison principle is the foundation of everything to follow, we devote this section to formalizing the
comparison principle to the extent that we require.

Definition 10.1. Let f (#,x,v) be a non-negative measurable function (not necessarily solving Boltzmann’s equation (1)), defined in
the domain
I xR> x R?
where I =[a,b) and —oc0 < a < b < 0. Let us assume that for any compact set K of the product form
K=AxBxCcIxR*xR?
(namely A c I, and B, C c R?), there holds
flk €C (ALY (BxO))

In particular, the pointwise evaluation in time, f (1,), is well-defined for each ¢, € I.
For any 1, € I such that f (15) € L2, we shall write

fe%%}
if for any 7 € R such that

tel and 1y<t<tg+Ty, (f(t0))
we have

J0) <350, (1 (19)) (1=10)

for almost every (x, v).
For any subset F C I we will write

fesl
if
I
V(iheF) feB )
That is,
Bl =) B!
F I(QF {r0}

Similarly, if J = [a, b] is a compact interval, then letting I = [a, b), for any 1, € J we write

J
I EB

if either (i) #, = b and f (b) € L?, or (ii)

I
FEB )

For any subset F C J we write
f ey

if

J

V(1 € F) R

thus
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Lemma 10.1. If0<T, <Ty, I, =[0.T}) and I, = [T}, T,), and if

fe %2 and fe %2 (63)
then

fe %Z (64)

where I = [0,T;).

Proof. This is an immediate consequence of the semigroup property of 3, , combined with the fact that O* is monotonic, i.e.
0<fo<hy = 0<0%(fy) <0%(hy)

In fact, this monotonicity property of O* implies that the gain-only flow 3, is monotonic as well (for # fixed):
0<fo<hy = 0<3g0 (fo) 0 < 3g0. (hy) )

whenever this makes sense (this can be established by writing 3, in terms of the initial data using an infinite iterated Duhamel
expansion, which is guaranteed to converge on a small time interval by the Banach contraction used in the construction of 3 ).
Combining the monotonicity and semigroup properties of 3¢, with the definition of ‘Bf; establishes the Lemma with a few lines of
straightforward algebra, which we recount next:

Indeed, it suffices to consider the case

nel, nhel
such that
1 <n +Tg‘0. (f (tl))
In that case, it immediately follows each
Ty <ty +Tyo (f (1))
and
ty < Ty + Ty (£ (Th))
by the semigroup property. Moreover, from the definition of B ’F we may deduce
1 (1) £ 3g0. (7 (1)) (2= Th)
using f € %Z, and also
F(1) <30, (f (1)) (T = 11)
using f € %;: and continuity in time. Therefore, applying the monotonicity of 3, followed by the semigroup property, we have
f(12) < 3g0. (£ (Th)) (2= Th)
< 3g0. [3g0. (f (1)) (11 =11)] (= T})
=3g0. (£ (1)) (2= 11)
as required. []
Proposition 10.2. If0<T < co and
fec(s,1) )3y
where J = [0,T], then
ot (f.fHeL (J.L7)
Proof. By Lemma 9.2 and the compactness of J, since f € C (J, L?) we have
inf Ty o (f @) 2 inf FO(f 1) =1>0

where F() is the function from the statement of Lemma 9.2 in the case ¢ = 1. Hence we can use f € B to estimate, by the
monotonicity of O7,

FO(fg))
/ [0 (f@)|,» dt < / lo* (3g0. (£0) @), =
Iy 0
<1
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where Jy=J N [to, to+ n], and we have set ¢ = 1 on each side of (56) to establish the last line. Since 5 is independent of 7,, we can
conclude by covering J by a finite collection of closed intervals, each of size at most . []

Note carefully that Proposition 10.2 relies on continuity into L? but does not require f to solve Boltzmann’s equation (1). For
functions f which actually satisfy (1), at least to the point where Duhamel’s formula is valid, we have the following converse to
Proposition 10.2 (which we first establish on a small time interval, followed by longer time intervals):

Lemma 10.3. If f > 0 solves Boltzmann’s equation (1) on I = [0,T) in such a way that Duhamel’s formula holds, and in addition
fec(1.L?

and
ot (Hel(J.L%)

for each compact sub-interval J C I, then for some ¢ > 0 there holds
fe %;z

where I, = [0,0).

Proof. Obviously by the hypotheses for any & > 0 there is a ¢ > 0 such that

/ |oF (f ()] j2ds <27e (65)
0

but we leave the choice of a particular ¢ for later. We will use (65) in combination with the proof of Theorem 6.3 to close a Banach
fixed point iteration for the gain-only equation, the limit of which coincides with 3, , by uniqueness, and show that f lies below
the function so constructed. Hence we shall show that f € %"; ,eachty e I,.

Fix t, € I,. The new iteration is defined for 7 € [ty, o) by the formulas

KOO =T (t—1) f (o) +/ T (t—s)0%(f(s)ds

fo
t
KDy =T (t=19) f (1) +/ T (t-350% (h® () ds
To

In particular, it follows that

(0, +v-V,) (KD =T (t=15) f (t5)) = O (f )
with A1 (1y) = f (1,); hence, by (65), there holds

@ _ —
Hh T (t tO) Y (to)”Lm(l_g,Lz)

+ ”(a, +0-V ) (D =T (1=1,) f (zo))”
<2. (2’16) =¢

Ll (l_(T’L2)

where I} = [to,c) ; but we may now notice that the norm on the left (the sum of both terms) is exactly the one used to define the
ball B, appearing in the proof of Theorem 6.3. Therefore, for small enough ¢ we have the convergence of A% in L? as k — oo, and
by uniqueness the limit is equal to

3g.o. (f (’0)) (’ - IO)

eachr e [to,a).
To conclude, let us show by induction that f(r) < A (1) for each t € [ty,0) and each k. By Duhamel’s formula and the
non-negativity of f,

t
f(t)sT(t—to)f(t0)+/ T (t—35)0"(f(s)ds

fp

and the expression on the right is just 21 by definition, so
f0<hV
for such ¢. Now suppose, for some k, that we have

F<h® @
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for each such ¢z, then by Duhamel’s formula and the monotonicity of O+ we also have

t
f(z)sr(r—ro)f(to)+/ T (t—5) Q% (f (s)ds

fo

t
sT(t—tO)f(t0)+/ T (t—s5)0% (h® (5)) ds

fp
= p+D (g
Passing to the limit in k we find that for any 7, <t < ¢ it holds
J®) £ 3g0.(/ (1)) (1=10)

almost every (x,v). [
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Proposition 10.4. If f > 0 solves Boltzmann’s equation (1) on I = [0,T) in such a way that Duhamel’s formula holds, and in addition

fec(1.L?
and
or(nHel' (4,17
for each compact sub-interval J C I, then

fes]

Proof. Define
C=sup{ ceWO.T) : feBY }
where I = [0,0). By Lemma 10.3 we have ¢ > 0. Suppose
c<T
by way of contradiction. We can show from definitions that
1
fesB I,
Then again, by Lemma 10.3, we also have for some § > 0 that
Irys\I¢
/e %lgaﬂs\lg
Hence Lemma 10.1 implies that
femi

Ieys

contradicting the definition of ¢{. [

11. Pointwise convergence and the fundamental lemma

The following Lemma utilizes the uniform square integrability results from Section 5 to pass to pointwise limits in the comparison
principle, under suitable conditions. The Lemma also allows us to propagate L convergence from one point in time to a later point
in time, under the same conditions. We will use this Lemma both in the construction (by compactness) of (:)-solutions, and similarly,

the passage to limits of (x)-solutions, in Sections 15 and 16, respectively.

Lemma 11.1 (The Fundamental Lemma). Consider the interval I = [a, b) where —c0 < a < b < oo, and let f,, f be measurable, non-negative

functions (not necessarily solving Boltzmann’s equation) with common domain

I xR?x R?

such that, for any compact set K of the product form
K=AXBxCcCIxR>xR?

(namely A c I, and B, C c R?), it holds

Fulg» flxk €C(A L' (BxC))

In particular, pointwise evaluation in time is well-defined. We also require

fa@@), f(a) € L}, (R* X R?)
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Furthermore, let us assume f, satisfy
VineN) f,€B, (66)

making no such assumption for f.
Finally, assume that there holds

nlgg /2@ —=f@|,2=0 (67)
as well as the pointwise convergence
fo—f ae (@Lxv)elxR>xR? (68)

Then, given all the above, we may conclude that

fe %fg} ©
where

Iy=1()[a.a+ Ty, (f @)
and we have

,}H{}o I/ = f||L2(J,L2) =0 7o

for any compact sub-interval J C I,

Proof. Let I be as in the statement of the lemma, and let J C I, be a compact sub-interval. By Theorem 9.7, (67) implies that

lim ”38-0- (fu @) ¢ —a)=3g0 (f (@) (- —a)

oy =0

where we have used the compactness of J to drop from L*® to L? in the time variable. Therefore, by Lemma 5.3 with
E =J xR?*xR?

we find that the sequence
{3g0. (/@) (- —a)},

is uniformly square integrable in J x R? x R2. In particular, by Lemma 5.2 and (66), the sequence

{ra (')},,
is uniformly square integrable in J x R? x R2. Therefore, by Lemma 5.4 and (68), we immediately deduce
,}L‘L‘o /. = f||L2(J,L2) =0 (71)

which is (70). In particular, we have
fer*(J,L?

So there only remains to prove (69).
Recall again that

Jim 350, (/@) ¢ =@ = 3g0. @) ¢ =), ) =0
Therefore, passing to a subsequence in n, say n,,, m = 1,2,3, ..., we find that in the limit m — oo we have the pointwise convergence

3g0. (fnm (a)) (- —a) = 340 (f @) (- —a) ae. (,x,0) € J XxR* xR

Combining this pointwise convergence of 3, , with the pointwise convergence from (68), and the fact that J is an arbitrary compact
subinterval of I, we find that

fe ‘B(’g}
which is (69). Indeed, since f, € %{a),
F (=30 (f @)t~ )
< [f =30 S @@= = [£,, 0340 (£, @) - a)
= [f O =1, 0] = [3g0. F @ =0 = 340 (£,, @) =)

and both terms on the last line tend to zero pointwise almost every (f,x,v) as m — 0. []
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12. Entropy and entropy dissipation

For any non-negative measurable function A (x, v) such that
Locpy<ihologhy € L'

the entropy H (hy) € (—c0,+00] is defined by

H (hy) = /]RZXR2 hg (x,v)log hy (x, v) dxdv

where the real-valued function s — slogs (s > 0) is understood, by continuity, to take the value 0 at s = 0.
More generally, we will decompose

H (hg) = H* (hy) = H™ (h)
where

H™ (hy) = /h g hg (x, v)log hy (x, v) dxdv
0

and

_ 1
H™ (h :/ hy (x,v) 1o dxdv
(7o) 0<hy<l 0 gho(XaU)

Recall from (5) the norm
0]l .1 =/ (1+1x = vt + [v]?) | hg (x, v)| dxdv
2t R2xR2

where 7 € R, and Lé is a shorthand for L% o- The next lemma shows that the entropy is well-defined in Lé, although possibly taking

the value +oo: to this end, it suffices to pfove that the negative part H~ (hy) is finite.
We shall require the (unsigned) entropy densities defined via the functions a* : R — R,

_ 1
a” (s) =1y - slog 3

at (s) =1, -slogs

SO

H* (hy) = /ozi (ho) dxdv

Lemma 12.1. Forany 0<a<b,
0<at(h)—a'(a) < %(b+a)(b—a>

In particular, letting a =0 and b = s > 0, we have
2
o)<
a’ (s) < 5
Proof. For any s > 1 we have
dia+(s)= I+logs<l+(s—-1)=s
N

Hence we may compute by the fundamental theorem of calculus: for any 0 < a < b (see Fig. 1),

b
0§a+(b)—a+(a)§/ sds:%(b+a)(b—a) d

Lemma 12.2. The function a~ is continuous on the whole real line; moreover:

(1) The restriction of a~ to (0,1) is smooth and concave.
(2) o~ attains a unique maximum value a~ (e7!) = 7L,
(3) o~ is increasing on (0,e7!).

(4) o~ is decreasing on (e7!,1).

(5) On compact subintervals of (0,1], a~ is Lipschitz.
(6) Whenever s € [e™!,1], it holds a~ (s) < s.
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Fig. 1. Graph of a~.

Proof. The continuity is trivial, as is the smoothness on (0, 1). The concavity on (0, 1) follows from the formula

> _ 1
ﬁ(t (s) = —; <0
which in turn implies that o~ takes a unique maximum (which must lie in the interval (0, 1)).
Since
d _
—a” (s)=—1—logs (72)
ds

we easily observe that ™ is (strictly) increasing on (0,e~!) and (strictly) decreasing on (¢!, 1). In particular, the unique maximum
is attained at s = e~!, and we compute

a” (e_l) =e !

The Lipschitz continuity on (0, 1] follows again from (72) and the fact that log s is bounded on compact subsets of (0, 1].
Since o~ is decreasing on (e~!,1) we can compute, for s € (e71, 1),

a ()< a” (e_l) =el<s

Hence a= (s) < s for s € [e7!,1]. O

Lemma 12.3. For any non-negative measurable function h, € L;, we have
H~ (ho) < o
In fact, for any T € [0, ),
H™ (ho) < Co+ ol (73)
where the additive constant C, is given by
Co= / (14 1xP + J0l?) exp (=1 = x| = vl?) dxdv 79
R2XR2

which is simply ’H (m0)| where my = exp (=1 — |x|* = |0]?).

Proof. We will require the (non-normalized) Gaussian function m; on R? x R? defined by
mg (x, ) = exp (—1 - |x|2 - |u|2)
and we also define via free transport (10), denoted 7T,

m, =T (t)ym
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which is what will allow us (by the choice + = T) to introduce the parameter T in (73) without accepting a T-varying loss in
constants. Note that m,, (hence m;) is everywhere bounded above by el

Choose an arbitrary time T" with 0 < T < o0, which will be considered fixed for the rest of the proof of this lemma.

Let us decompose the set {0 < hy < 1} into two parts, which we will denote A, B, via the formulas

A={(xv) : 0<hy(x,v) <mp(x,0)}

B={(x0) : mp(x,0)<hy(x,v)<1}

Denote the respective integrals H, (hy) and H} (hy), providing a decomposition of H~ (hy) as their sum.
Let us first handle H, (ho)- Recall that ||my |, < e”!. Additionally, by Lemma 12.2(3), for 0 < s < ¢~! we have that o~ is
increasing so H, (ho) has the bound

Hy (ho) < H™ (mr)
But the transport semigroup 7 (-) preserves the Lebesgue measure on R? x R? so we have
H™ (mp) = H (mo)
and, since 0 < mq (x,v) < e™! <1, H™ (my) = —H (my) is the constant C, appearing in (73) and (74).

For Hp (h), simply observe that for all s € (0, 1] the function s log% is a non-negative decreasing function, so we can simply
bound log - by log -, that is,
hgy mp

Hy (hy) s/ (1+ |x = 0T |* + |0|?) ho (x, v) dxdv
R2xR2
and the right-hand side is just ||Ap]|,1 . O
2T

The (local) instantaneous entropy dissipation D, corresponding to (1), is defined for any non-negative measurable function 4 (7, x, v)
by the formula

I'p!

(DM (%) = / (W', — hh,) log —* dodvdy, 75)
4 Jsixr2xm? hh,

where h = h(t,x,0), h, = h (t,x,0,), ' = h(t,x,0'), and b}, = h (1, x,0,). Now since

—blog &
(a )Ogb

is non-negative for each pair of positive numbers a, b (since the sign of a — b is always equal to the sign of (loga — log b)), it follows
that D (h) is always non-negative (although it may be infinite).
Any 0 < f € C1([0,T1,S) solving (1) on [0, 7] with initial data f, = f (t = 0) is known to satisfy the entropy identity

H(f®)+ /0 /R  D(f @pdxdr=H (fo) (76)

each 0 <t < T. The (space-)time integral of the (local) instantaneous entropy dissipation is simply known as the entropy dissipation
(at time 7, although the 7 dependence may be suppressed).

Remark 12.1. The integrand in the dissipation functional is possibly ambiguous if the quantities A, h,, #’, k., vanish at some point
of the integration domain. Such a situation cannot happen at + > 0 for classical solutions of (1) as long as the initial data is not
identically zero (see [30], Chapter 2, Section 6, titled “Lower bounds”, and references therein). Unfortunately, it is sometimes hard
to prove that f (¢,x,v) > 0 a.e. (x,v) for t > 0 at low regularity. The convention used by DiPerna and Lions in [16] is to set the
integrand to infinity at any point (t, X, 0,0y, o) where any of h, h,, h', b/, vanishes, and we follow the same convention so as to make
use of their results.

In regimes of lesser regularity, the equality (76) may be downgraded to an entropy inequality, or fail altogether. In the L? regime,
the version of the entropy inequality we shall ultimately require is

t
H(f(t))+/ /ZD(f(T))dxdT < H (fo)
o Jr
almost every 7. To this end, we consider the terms H* and H~ separately:

Lemma 12.4. For any non-negative measurable function h, € L?, the positive entropy integral H* (hy) is finite, being bounded by the
square of the L* norm:

H* (hy) < |lholl72 77

Moreover, for any hy ., hy, € L> we have
17 () = 1% (12| < s Dol ) - Do = ol 79
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Proof. Both bounds follow immediately from Lemma 12.1. In particular, for (78) we use Lemma 12.1 with the Cauchy-Schwarz
inequality,

1
|HJr (hoy) = H* (hgp)| < 3 70,1 + Aol 2 101 = Poall 2

and conclude by the triangle inequality. []

Lemma 12.5. Let us be given non-negative measurable functions
hy, by, € L)

forn=1,2,3, ..., such that
sup [l < e

and
hy, (x,0) = hy(x,v) ae. (x,v) € R? x R?

as n — oo. Then

lim H™ (hy,) = H~ (hy)

n—oo

Proof. Let us denote
Er={(x,0)eR?xR* : 1+ |x+[v*>R*}

and observe that for each R > 1, by the continuity of a~, we may apply the dominated convergence theorem on the complement of
Eg due to the fact that

V(s eR) 0<a(s) <el

and the complement Elg of Ey is a bounded set: that is,

V(R >0) li'rln/Eg a (hy,) dxdv = /C a” (hy) dxdv

Ex

Hence if only we can show

lim sup/ a” (hg,)dxdv=0
Eg

R—0 ,cN

then we will be done. To this end, we will decompose H~ in a manner similar to the proof of Lemma 12.3.
Let us define the non-Gaussian function

L
7 (x,v) = exp [— (1+ |x|? + Ivlz) 2
and note that ||y||;« = e~!. Let us consider separately the sets (depending on 1) where
0< hy,(x,0) <y(x,0)
and
Y (x,0) < hy, (x,0) < 1

>

In the first case we have, by Lemma 12.2(3) and the fact that ||y||;« = e

lim sup/ <y @ (hon) dxdv
Egp " ’

R—-00 ;e

< lim/ a (y)dxdv=0
R—00 Eg

so it only remains to consider the second case. Then again, since log - is a decreasing non-negative function for 0 < s < 1, for the
second case we only need to show

1
lim sup/ (1+ x>+ [v]?) 2 by ,dxdv =0 (79)
ER

R—00 e

but this follows immediately from the uniform boundedness of the sequence { ho,n},, in L;, since
1
(1+1x]*+v*)? < % (14 1xP* + [0f)

for each (x,v) € Ex. [
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13. (*)-Solutions
13.1. Definitions
We recall the notion of renormalized solution as introduced by DiPerna and Lions.

Definition 13.1 ([15]). Let I = [a,b), where —c0 < a < b < o0, and suppose
0< fely (IxR*xR?)
Then we say f is a renormalized solution of (1) provided that

L e
TV Ne Li (I xR? xR?)

and it holds

a2 1 _
(E +U-Vx)10g(l D=1 (@ (f.H -0 (f.))

in the sense of distributions on I x R? x R2.

Throughout this article, although not formally required in the definition of renormalized solutions, we impose the requirement
that solutions of Boltzmann’s equation will at least be in L! uniformly in ¢, which in particular implies that p s is in Li uniformly
in ¢, i.e.

feL®(I,L') and p,eL® (I, L. (R?)

In particular, given a solution f defined for a <t < b, the function F (¢, x, v) satisfying

F#(t,x,v):/ (ps)" (0.x,0)do

is well-defined almost everywhere (recall that the notation F* is defined by (11)) [15]. Thus we can view p ¢ as an integrating factor
in Boltzmann’s equation to write a solution f in the form

7 x,0)— f*(s,x,v)exp (— (F#(t,x, v) — F* (s, x, U)))
: (80)
:/ ot (f. ) (z.x,v) - exp (= (F* (t. x,v) = F¥ (r,x,0))) dr

for almost all x,v € R? and a < s < t < b. This form of Boltzmann’s equation is particularly convenient because it can be stated under
minimal integrability assumptions (for example, neither O nor O~ need be locally integrable, as long as they can be integrated
along almost every characteristic). It is possible to show [15] that renormalized solutions of Boltzmann’s equation (1) (having constant
collision kernel, so that the loss term is proportional to p,) verify (80) whenever p, € L*® (I,L! (R2)).

We are now ready to define (x)-solutions of (1), although we defer til Section 15 the proof of their existence. Recall again, from

),
ol :/ (14 IxI? + [0]?) | Ao (x. v)] dxd
2 R2xR2

and that the entropy is well-defined and finite on L? (] L}, by Lemma 12.3 and Lemma 12.4.

Definition 13.2. Let us be given a non-negative measurable function

feLl ([0,00)xR>xR?)

loc

Then we will say that f is a (x)-solution of (1) provided that f is a renormalized solution of (1) on [0, o), with

fa=0=fel*(L (81)
for which
fec(0,0),L" (82)

and that there exists a number T* (f),
0<T*(f) <00

with corresponding interval
() =[0,7*()

such that the following holds:
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For each compact sub-interval J C I'* (f) it holds

fec(J.L? (83)
and

ot (f.HelL(J.1?) (84)
and, in the event T* (f) < oo, we also require

fec(orn).L? (85)

Additionally, we require that for almost every ¢ with
0<t<o

we have each of the following estimates:

/ f@®dxdv= / fodxdv (86)
R2xR2 R2xR2
/ vf () dxdv = / v fodxdv (87)
R2xR2 R2xR2
/ lo]? £ (t) dxdv < / lv|? fodxdv 88)
R2xR2 R2xR2
/ |x — vt]? f () dxdv < / [x|? fodxdv (89)
R2xR2 R2xR2
and
1
H(f @)+ / / ZD(f(S))dxdsSH(fo) (90)
0 JR

Remark 13.1. Note carefully that uniqueness is unknown, at present, in the class of (x)-solutions for a given initial data f,, even
on an arbitrarily small time interval [0,5] C I'* (f). This is why the notation T* (f), I'* (f) makes explicit reference to the solution
f, not only the initial data f: for a given f, there may well be multiple (x)-solutions f with initial data f,, but different values of

T (f)-
13.2. Discussion

A (%)-solution, as provided by Definition 13.2, is intuitively understood as a global renormalized solution which happens to be
(simultaneously) a distributional solution on some (possibly finite) interval I* (f). The solution can be viewed as an L? solution on
I* (f), but the solution is not continuous into L on any interval J containing I* (f) as a proper subset; therefore, the solution is in
this sense maximal. Note carefully that maximality is for the solution, not the data, in view of possible non-uniqueness: two maximal
solutions need not coincide for any ¢ > 0, nor do their intervals I* need to coincide.

The idea of constructing a renormalized solution of (1), which is also a solution in some stronger sense on some initial interval,
has been studied previously by Lions: see [26], Theorem V.1. In that reference, Lions establishes a class of global renormalized
solutions which satisfy in addition certain differential inequalities, which Lions refers to as dissipation inequalities; the solutions so
obtained are called dissipative solutions. He proves the existence of such solutions (Theorems IV.1 and IV.2 of the same reference);
however, general renormalized solutions are not guaranteed to satisfy such dissipation inequalities. The differential inequalities are
defined via testing a dissipative solution f against functions drawn from a class of higher integrability and decay. (Here testing is
not meant in a distributional sense, but a different sense reminiscent of viscosity solutions.) Taking a classical (or sufficiently strong)
solution f as the test function in the differential inequalities leads immediately to his Theorem V.1 on weak-strong uniqueness, namely
f = f insofar as f is defined and so controlled (i.e. on the initial interval).

Remark 13.2. At no point in this paper do we employ dissipative solutions, weak solutions in the sense of [26], or differential
inequalities so obtained, although we mention them in passing; note carefully that the strong compactness result of [26] does not
require dissipation inequalities in its general formulation, namely Theorem II.1 of that reference.

13.3. Integrability and time continuity

The objective of this sub-section is to show that the O* bound (84) combined with the initial data condition (81) automatically
implies the L2 continuity (83), and that (x)-solutions are distributional solutions of (1) on I* (f): in particular, each of O* and O~
is in

L

loc

(I* (f) x R? x R?)

Of course this is immediate for Q* from our assumption (84); hence, we only have to prove local integrability for 0~, and the L2
time continuity of f.
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Lemma 13.1. For any compact interval J C R, and any f (1, x,v) such that the right-hand side is finite, it holds

1 1
”pf”Lﬁ(J,Liﬁ(RZ)) s¢ ”(U)z fHZ‘”(.I,L‘) “f“za(J’LiLHZ(szRz))

v

the constant depending on neither J nor f.

Proof. By Holder’s inequality,

060 = [ 70500 CIO) S €505

Also, by interpolation
1 1
IS Ol gy < €[ F Oy ) 17 O

hence

1 1
pr@x) £ C @27 wxofy o 1 Exoly,

3
Apply the norm L? (R?) to both sides and use Hélder.

s (r)HLi/z(Rz) <cljw?s <z>1|f, I (z>||fﬁ3/2 o)

Take the L°® (J) norm for the ¢ variable on both sides and apply Holder’s inequality once more to conclude. []

Let us show that a renormalized solution on [0, o) satisfying (81), (86), (88), and (89), as well as (84) with J = [0,T],
automatically satisfies the local integrability

O~ (/. /) =pnsf €L, (I XR*xR?)

loc

We will need the Strichartz estimates

I7holl | 5

L L3 L2 (RXR2xR?)

1 xto

< Cllo 2 oD

and

L} L7 L] (RXR2xR2)

I7holl 7 7 7 < Clholl (92)

which hold for any h, € L? by Proposition 7.2.
First, for r € J by (80) we have the pointwise upper bound

t
Fx,0) < [T ) fo] (x0)+ / [T (=50 (f./) ()] (x,v)ds (93)
0

Here we have used the non-negativity of p, to bound the exponential factors involving F* (i.e. integrating factors) uniformly by 1.
In any case, substituting 7" for ¢ in the upper limit of the Duhamel integral on the right side of (93), and using the non-negativity
of O* (f, f), we have

T
f@x0) <T@ fo] (x.0)+ /0 [T@—-90"(f. /)] (x.v)ds
Applying Minkowski’s inequality and (91), we obtain

LAl 3
3 J.L3L2 (IR2><R2)>

T
<C ||f0||L2+/ 7 @=90" (. N 3 ds (94)
0 L3<J,L§L3 (RlxR2)>

T
<c (||fo||Lz + /0 ot (7. N O 2 ds)

and the right-hand side is finite by hypothesis. Combining this with Lemma 13.1 and the fact that f (1) € Lét each 7 allows us to
conclude that

3
ppeLS (J,Lf (R2)>
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On the other hand, by Holder’s inequality,

fll 7 7 1

Ioorl, 3,3 <l 0
xR?) LOL2 (JxR?) L} L2 L) (JXR2xR?)

LB LD L] (IxR?
so arguing again by the Duhamel inequality, as in the proof of (94) above, using now (92) to place

Y

feL}LIL] (J xR*xR?)

we may conclude that

42 21 7

O (f./H=p;f €LFLPLS (J xR xR?)
so, in particular,
O (f.f)=psf €L} (JxR*xR?)

Thus (1) holds in the sense of distributions on J = [0, T].

Remark 13.3. We have actually shown more, namely that for a («)-solution f,
o (f.NHe Lf.x,v,loc (I*(f)x Ri X Rlz})
for some p > 1. It is also true that
O (fif)eL) o (I"(f)XR;XR]) (95)

t,x,v,loc

for some p > 1, although it does not follow immediately from (84) alone, due to the L' integrability in time. There are many ways
to see this (e.g. using Strichartz and convolution inequalities), but perhaps the simplest is to use conservation of mass to interpolate
against (84). Indeed,

lox (.0l <clfI?

96
LoL? LL([O,«;)x[Ri xRE) LY Ll.u(l()@o)XRixR%) 06

follows (by Holder’s inequality) immediately from the fact that, considered in the velocity variable only, due to the constant collision
kernel, Q* is continuous as a map L! (R?) x L! (R?) — L! (R?). Interpolating (96) against (84) (which remains a valid operation
in fractional integrability in this case), an epsilon away from the (84) endpoint, provides a quantitative p > 1 for which (95) holds.

It remains to show, again with J = [0,7] and under the same assumptions, that

fec(J,L?)

Indeed, we have by Duhamel’s formula, for 7 € J,
T(—T)f(f)+/O[T(—S)Q_(fsf)(s)ds=fo+/0,7(—S)Q+(f,f)(S)dS

and the terms are all non-negative (on both sides). Since f, € L* and Q% (f, f) € L! (J, L?), we therefore have
T (0 (f,/) ) e L? (R)zc ><]R12,,L,1 J,R))

Of course we also have
T (00" (f. /) € L* (R2xR2, L! (J,R))

which follows directly from our hypothesis O (f, ) € L! (J, L?) and Minkowski’s inequality.
Now by Duhamel again, for 0 < s <t < T we have

t
T(—t)f(t)—T(—S)f(S)=/ T 0 {0* (/. -0 (/.NH} () dr

so taking the L2 norm of both sides (without applying Minkowski) it follows from dominated convergence in time® that the map
=T (=0 f®

is in the class
C(J,L%)

But the continuity of 7 (—1) f () is equivalent to the continuity of f (t), so we find that f € C (J, L?).
We also have:

6 Expand the L?> norm of the Duhamel integral to obtain a double integral involving two time variables, say 7 and 7/, and let #,s each be drawn from a
shrinking family of open neighborhoods of some fixed ¢, € J
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Proposition 13.2. If f is a (x)-solution of (1) then

I8t
Fe€B

Proof. Follows immediately from Proposition 10.4 and the definition of (x)-solution. []
14. Criterion on finite-time breakdown of continuity

The criterion (85) in the definition of (x)-solutions implies that (x)-solutions are in some sense maximal (indeed, verifying this
maximality plays a central role in the proof of existence of (x)-solutions, as we shall see in Section 15). One might conjecture, based
on Corollary 9.4, that

li t =
im0l = oo ©7)
whenever T* (f) < oo; however, it is not at all clear whether (97) holds for every (x)-solution f of (1) with T* (f) < co. Indeed (97)
cannot follow simply from the local existence theory’, due to the scaling-criticality of L? for (1).

Nevertheless, there are several scaling-critical criteria which one can prove for finite-time breakdown of continuity of (1): the
next Theorem establishes two such criteria, one stated in terms of the gain-only flow (namely 7 ), the other in terms of a time
integral for the gain term Q, reminiscent of functional settings studied by Klainerman and Machedon. [23,28]

Theorem 14.1. Let f be a (x)-solution of (1) corresponding to some initial data
0<fye L)L}
Then each of the following is true:
(1) For any compact sub-interval J C I* (f),
inf Ty o, (/ () > 0 (98)
(2) Either T* (f) = oo or each of the following holds:
(1) For any t € I* (f) there holds
Too, (f ) ST (f)—t (99)
hence
,Ei[ﬂ*{ /.)Tg.o‘ (f@®)=0
(2) There holds

/(f ot (f. /@) 2dt = (100)
I*(f)

Proof. The (unconditional) first claim (98) follows immediately from the lower semi-continuity of Ty .., since f is continuous into
L? on compact subintervals of I* (f). Moreover, the time-continuity argument from Section 13.3 shows that, subject to the condition
T* (f) < oo, the O blow-up (100) must hold, since otherwise we would have continuity on the compact interval

fec(lo.T*(n].L?)

in contradiction with the definition of (x)-solution. Thus we only need to show that if 7* (f) < co then (100) implies (99).
Suppose (99) fails to hold; then there exists a time #, € I'* (f) such that

Tg.o. (f (t())) > T* (f) _t()

This implies by the definition of Ty ,, that

J= /T*(f)—’o HQ+ (3go. (f (1 ))(s))” ds < oo
0 8.0. 0 12

Hence, by the comparison principle Proposition 13.2, for

tg <t <T*(f)

7 Or uniqueness, for that matter, should it hold
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it holds
t
[ oG nwlpdisg
1o

Therefore, by monotone convergence,

T*(f)
/’0 10" (1. @) 2 di < T <0
in contradiction with (100). [
15. Existence of (:)-solutions
15.1. The truncation scheme

In order to construct local solutions of Boltzmann’s equation at low regularity, we will be relying on a compactness argument
based on a modified equation which is known to be globally well-posed. This will be essentially the same scheme as appears in
the original work of DiPerna and Lions ([15] Section VIII and references therein), where both the evolution and the initial data
are modified. Crucially, for the purposes of this paper, the modified collision kernel must be bounded from above pointwise by
the uniform constant determined by the normalization of (1): this is required because later we will need to prove the comparison
principle for the modified equation whereas our definition of ‘Bf is in reference to the standard version of the gain-only flow. Recall
again that the definition of %’, does not require f, to solve Boltzmann’s equation.

Let us recall the spatial density

py(1,x) =/ f(t,x,v)dv
R2

and formally set

1

(d,+v-VX)fn=W

{0 (1. 1)-05 (10t} (101)
where 0 < f, (t = 0) = f,, € S approaches f; in a sense to be specified later, and
b, € Cy¥ (R?xS') c L' (R?xs') () L (R* xS') (102)

refers to a smooth compactly supported collision kernel (depending only radially on the relative velocity for each n) satisfying the
pointwise constraints

YineN) 0<b, < (103)
2z
and

b, — ZL almost everywhere (104)
v/4

as n — oo, having defined Qbi by substituting b, for b in (2) and (3).
For technical reasons, we'shall also assume that, for each n € N, there exists a number §, > 0 (tending to zero as n — o) such
that

min (|z],|z]7") <8, = b,(z0)=0 (105)
and, for z #0,
min<|Z|'|"|,1— lZI.IU|> <5, — b, (z.6) =0 (106)
z zZ

These conditions intuitively forbid scattering events with small or large relative speed, or those residing inside a set of deflection
angles, that set being defined explicitly and having small measure.

We recall below (cf. [5,15]) a simple global well-posedness result for the truncated Eq. (101): in fact, for the proof, it will be
slightly modified further still by initially substituting P11l for p, , since we do not know a priori that £, is non-negative for positive
values of .

We turn to the basic global well-posedness result for (101).

Theorem 15.1. For n € N, let b, be given as above and let f,, € S be a non-negative function; furthermore, assume that for each n there
exists ¢, > 0 such that, for all (x,v) € R*> x R?,

1 1
Fuo Gei0) 2 eqexp (=3 Ix? = 3 1o (107)
Then there exists a unique non-negative mild solution

£, €C'([0,),5)
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of the truncated Boltzmann Eq. (101) such that f, (t = 0) = f,o; moreover, for all (t,x,v) € [0, %) X R? x R2,

fnt,x,0)>0
Additionally, for each t > 0, we have the global conservation of mass,
/ fn @, x, v)dxdv:/ o (x,0)dxdv (108)
R2xR2 R2xR2
the global conservation of momentum,
/ vf, (t,x, U)dxdu:/ vfno(x,v)dxdv (109)
R2xR? R2xR2
the global conservation of kinetic energy,
/ |U|2f,, (t,x,v)dxdv:/ |U|2f,,0(x,u)dxdu (110)
R2xR2 R2xR? ’
a similar conservation law for spatial moments,
/ |x — vt|? £, (¢, x, v)dxdv=/ 1x|2 £, (x, ) dxdv a11)
R2xR2 R2xR2 ’
and
/ (x—ut)~uf,,(t,x,u)dxdu=/ X0 f0x,0)dxdv (112)
R2xR?2 R2xR?2 ’
and the entropy identity
t
1
H t —F—F——D dxdt = H 113
(f,,())+/0 /]RZ g, O (fn (@) dxdr (fno) (113)
where D, refers to the entropy dissipation defined in reference to the collision kernel b,, namely
1 lhl
D, (h)= - b, (W'h —hh,)1 *dodvd 114
by (1) 4/31szsz "( * *) o8 hh, oava. 114)

where b, denotes b, (v — v,) (the integrand is everywhere finite since f, is nowhere vanishing).

Proof. See Appendix. []
15.2. The comparison principle

We aim to show that the Schwartz solutions f, from Section 15.1 satisfy the comparison principle:
fn €8] (115)
where I = [0, ). Now due to the fact that f, is Schwartz we clearly have
O (fnfu) € L' (4.17)

for any compact J C I, and that the proof of Proposition 10.4 only depends on Lemma 10.3. The only problem is that f, does
not satisfy (1), but rather (101). But the proof of Lemma 10.3 does not actually require f, to satisfy (1): the proof carries through
(simply replacing f by f, everywhere) if only it holds the pointwise upper bound for 0 <7, <7 < 00

t
f,,(t)sT(t—to)f,,(to)+/ T(-s)Q" (f,(s)ds
fp

noting carefully Q% is that of (1), not (101). But we can verify this inequality directly from Duhamel’s formula:

! Q-b: (fn’fn)_Q;” (fn’fn)
fn(t)=7(t—s)fn(s)+/ T(-1) 1 - (r)dr
s +n
‘ O (fur 1)
ST(t—s)f,,(s)+/ T(t—1) ———— (7)d71
P L+n=lp,

ST(@=9/, (S)+/ T@-00; (/1) (Ddz

t
<T@=39)/, (s)+/ T =10 (fu f,) (0 dr

s

where we have used the uniform bound b, < (27)~! in the last step. Hence we may conclude (115).

48



T. Chen et al. Nonlinear Analysis 248 (2024) 113609
15.3. The convergence argument
We are ready to prove:

Theorem 15.2. For any
0< fy € L? ﬂ L

there exists a (x)-solution of (1) corresponding to the initial data f,.

Proof. To begin, consider the unique solutions f, from Theorem 15.1, corresponding to non-negative Schwartz initial data f,
which we assume to satisfy each of the following:

Him [|fno = Foll 2y 11 =0 (116)
lim f,o(x,0) = fo(x,v) ae (x,v) € R xR? 117)
n—oo i
1 1
Fno Z €y exp (—5 Ix* = 3 Ivlz) (118)
with ¢, » 0 and n — 0, no other conditions being imposed on the sequence f, . Note that (116) implies

li 24 ol — foldxdv=0 119
tim [ (1l 1) 0 = fol e 119)

Such a sequence can be constructed by first producing a sequence of smooth compactly supported approximants £, , via convolution
and truncation, and then writing f;, as the sum of f,, and the function on the right-hand side of (117) with, say, c, = i Passing
to a subsequence, also denoted f,(, provides (117).

It follows immediately that

sup || fnoll 2 2y < 0
and hence by Lemmas 12.3 and 12.4 we also have

sup H* (f,0) < o

neN
Then following the DiPerna-Lions argument [15,16] one shows the weak compactness for the solution sequence f,, and that any
limit point is a renormalized solution of (1). Moreover, passing to a subsequence n,, (m € N), and using the L! (norm topology)
compactness result of Lions [26], we may assume (aside from the usual weak convergence) the pointwise convergence

fa, = f ae. (5,x,0) €[0,00) X R* X R?

as m — oo, where f is a renormalized solution of (1). Our claim is that the limiting function f is, in fact, a (x)-solution of (1).

We note that the L! time continuity (82) follows from the DiPerna-Lions argument. Let us turn to the bounds on moments and
entropy.

Let us begin with the kinetic energy bound. Since f is the weak limit of the sequence f,, it follows for any non-negative function
@ (t,x,v), smooth and compactly supported in all variables, with ||¢||;~ < 1, and assuming ¢ is supported in a time interval (a, b) of
size 7,

/ - [v|% @ (1, x,v) f (, x, v) dtdxdv
(0,00)xXR*XIR:

= lim |v|2(p(t,x,u)f,l (t, x,v)dtdxdv
= J(0,00)xR2xR2

< zliminf sup / |v|2f,, (t,x,v)dxdv
RZxR2

=00 te(a,b)

— 00

= rliminf/ [0|? £, (x, v) dxdv
n R2xR2 '

where we have used (110) in the last step. By (119) and the arbitrariness of ¢ we deduce (88). Similarly we deduce (89) from (111).
Turn now to the mass bound; we only sketch the proof. For any compact set K ¢ R2 x R2, we can decompose

/]RZ o [ (t,x,0v)dxdv
X.

=/f,,(t,x,v)dxdu+/ fn (@t x,0)dxdv
K (R2XR2)\K

The first term on the right converges (in a suitable sense) to fK f (t)dxdv, and the second can be made small uniformly in »n by
suitable choice of K, due to (110) and (111). Hence we deduce (86) as a consequence of (108) and the bounds on second moments
in x and v. Similarly, we can use (109) to deduce (87).
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The entropy inequality is far more subtle and has been studied by DiPerna and Lions in [16]. In that reference it was proven that,
for a sequence of renormalized solutions (or solutions of the truncated model, etc.), and ignoring notational details for simplicity,

t t
//D(f(t))dxdrsliminf//D(f,,(t))dxdr
0o JRr? n=ee Jo JR2

The proof is non-trivial but it is based on convexity arguments combined with a careful definition for dissipation functional. We
also have, by convexity,

H (f (1)) < liminf H (f, (1))
Therefore, to deduce (90) from (113), the key is to prove the limits at the initial time,
nli_gloHi (fuo) = H* (fo)

This follows from (116) and (117), using Lemma 12.4 for H* and Lemma 12.5 for H~.
It remains to identify a T* (f) € (0, o] which verifies (83), (84) and (85).
The fundamental lemma, Lemma 11.1, implies that for some § > 0,

0" (f.f)e L' ([0.8),L7)

since (by the lemma) f is controlled pointwise by the gain-only flow based at f, for ¢ € [0, 5) (some & depending only on f)), whereas
the gain-only flow has the requisite O* bound in Lt] Li’u for small enough time intervals.
So let us define

T*(f)=SuP{ Te€00) : QT (f, el ([O,T],Lz) } (120)
and

()= 0.7 ()

Clearly (84) follows trivially from the definition of 7* (f). Now even though we have not yet proven that f is a (x)-solution, we
can still apply the arguments from Section 13.3 to conclude from (84) that, on any compact sub-interval J c I'* (f), it holds

fec(J,L?
hence we have (83). So it only remains to prove (85).
Before we proceed to prove (85), let us prove a preliminary result. Let T be a real number with 0 < T < T*(f); then

f €C([0,T], L?), so by the lower semi-continuity of T, , we know that there exists r; with

inf T,
O<nr < dnf Teo. (f @)

Therefore, by partitioning [0, 7] into suitable consecutive sub-intervals of size

nr nr
between — and —
4 2
and inductively applying Lemma 11.1 finitely many times (using our freedom to wait to choose the next interval of the partition
until after the previous invocation of the lemma), we can deduce that up to extraction of a further subsequence still denoted f, ,

there holds

lim
m—0oo

Say O =F @), =0 (121)

for almost every ¢+ € [0,T]. In particular, by the arbitrariness of 7" and diagonalization, the same can be said for almost every

re I* (f).
To complete the proof, let us suppose that (85) fails; that is,

fec(lo.T*(n].L?)

Then by the lower-semicontinuity of 7, (-) we may choose r such that
0 < inf T, t
<r ) 80 (f @)
Let us pick an intermediate time ¢, with
T ()= 5 <tg<T*(/)

for which (121) holds. Then applying Lemma 11.1 one last time, we can conclude from (69) that f is bounded pointwise by the
gain-only flow based at f (t,), up to a slightly larger time than T* (f), say 7 where

TN <I<T (N + 7
hence for some T’ > T* (f) we have

ot (£, HelL ([o.1].L?)
which contradicts (120). [
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16. Limits of (*)-solutions

For the next theorem, we consider a sequence f, of (x)-solutions to (1), corresponding simply to initial data f,, € L? ()L},
without assuming any higher regularity or decay for f, or f,,. We shall assume that we have prepared the sequence f, by passing
to subsequences, prior to the application of the theorem, so as to simplify the statement of the theorem itself.

Theorem 16.1. For each n € N let f,, be a (x)-solution of (1) with initial data
fao=fat=0)€ L* (| L}

Furthermore, let us assume that, for some renormalized solution f of (1),
Jn= S

where the convergence is (at least) in the weak topology of L' (K) for each compact K C [0, ) x R x R%, (cf. [15]), and that there holds
the convergence of the initial data

lim || f,.0 = foll 2 =0

n—oo

and

lim D ‘/DMZ @ (fuo = fo) dxdv| =0 (122)

(pE{l,ul,vz,\v|2,|x|2,x~u}
where f, = f (t = 0), and additionally that (cf. [26])
fo—= [ ae (tx,v)€[0,00)x R> x R?
Then it follows that f is a (*)-solution of (1) with
0<T*(f) < lim inf T*(f,)

the liminf being necessarily non-zero (but possibly infinite). (But even if each T* (f,) is finite we do not exclude the possibility T* (f) = oo,
provided the liminf is infinite, as indicated.)
Moreover, there exists a subsequence n,, such that both the following hold: first, for each compact sub-interval J C I* (f),

Fun =1
and, second, for almost every t € I* (f), it holds
Suy = F 0|, =0

lim
m—oo

=0
L2(JXR2XR?)

lim ‘
m—oo

Proof. Clearly we may assume without loss of generality, by passing to a further sequence (still denoted f,) which saturates the
liminf in the theorem statement, that for some 7' with 0 < T < oo, the limit

7=l (£)

exists in the extended real line. By lower-semicontinuity of Ty, () and the strong L? convergence at ¢ = 0, along with (99), we have
T>Ty, (fo) >0

which follows from the chain of (in)equalities
T = lim T* (£,) 2 liminf T, (f,0) 2 Tyo. (/o) >0

Let us furthermore define
Ty=sup{T €(0,0) : QT (f,f)e L ([0,T],L?) }

where the set is non-empty by passage to the limit in the comparison principle following Lemma 11.1: indeed, T > Ty ,, (fo) > 0.
In what follows we will assume that each T, T is finite: the proof is simpler in the case that T = 0 and T, < . (There are two
cases remaining: that each Ty, T is infinite, and that T, = oo and T is finite; but, there is nothing to show in the first case, and the
proof below shows that the second case is impossible.)

Let us denote the shorthand

Iy=[0.T,)  Jy=[0.T]

I=[07T) J=][0.1T]
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By Proposition 13.2,

*(fu)

*(fn)

hence by the definition of 7', we find that for any compact subinterval J c I there exists an integer N € N, depending on J, such
that

VmeN) f,eB

YmeN : n>N) f,€B)

Before we turn to the core of the proof, let us pass to an even further subsequence (still denoted f,,) such that both the following
hold: first, for any compact sub-interval J c I, I,

lim |, = fll 2 (sxeoxzey = 0 (123)

and, second, for almost every t € I, (I,
nlg{_lo |fn@®—=75®|2=0 (124)

This is possible by inductively applying Lemma 11.1 as in the proof of Theorem 15.2. Note that we need I, to guarantee the
square-integrability (with time continuity) of f along J, whereas we need I to guarantee the comparison principle on J for f,
for all large enough » depending on J: these two, with the necessary convergence at t+ = 0, are the keys to inductively applying
Lemma 11.1. We can moreover conclude that

IyNI
S €3,

for almost every t, € Iy () I.
We must also prove the moment bounds and entropy inequality. The key to proving (86)-(89) is that we have assumed, for
@ e {Lv, 050, |x*,x - v},

lim @fpo dxdv = / @fodxdv (125)
R2xR2

n=0 Jra w2

which, by non-negativity of f, ¢, f, and combined with the assumption that f, , > f, strongly in L2, provides us
sup ||fn,0||L2r]L; <o (126)

but note carefully that we are neither assuming nor asserting that f, , converges to f, strongly in L? [ Lé, contrary to the proof
of Theorem 15.2. In any case, using (125) and the known estimates for the (x)-solutions f,, we can deduce (86)-(89) similarly to
the proof of Theorem 15.2. Similarly, using again the results of DiPerna and Lions from [16] as in the proof of Theorem 15.2, we
obtain (90) by noting that

Jlim H*(f,0) = H* (o)

using, as before, Lemma 12.4 and Lemma 12.5, and our assumptions on f, , (namely strong L? convergence, the boundedness in
Lé, and pointwise convergence, all at 1 = 0).

We have only to show that 7, < T (where T, comes from the Q% integral for f whereas 7 comes from the sequence f,), and
that

ot (f.NH &L 1y, L?) 127)

which encodes the maximality property of (x)-solutions. Indeed, given (127), assume that f is continuous from [0, T* (f)] into L2
and deduce a contradiction with the comparison principle cf. the proof of Proposition 10.2.
Let us begin by proving instead the statement

ot (f. e L (I,17) (128)

Indeed, if this were not the case, then arguing as in Section 13.3, the reader can verify that we would have continuity on the closed
interval

fec(J,L?
and moreover that T, > 7. From this we obtain that, by lower-semicontinuity of Ty 0. (-), we may choose r such that

0<r< :25_ Tgo. (f (@)
So pick a time 7 with

T- % <i<T (129)
such that (124) holds. Now by (99), for each large enough » we have

Tgo. (fu (7)) <T7(f,) =7
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We wish to let n — oo in this inequality; indeed, on the right we simply obtain
T-7
whereas on the left, by lower semi-continuity of Ty, () and the fact that 7 verifies (124), we find that
Ty (7 (7)) <timint Ty (7, (7)
hence
Tgo. (f (f)) <T-i
The quantity on the left is no less than r, hence
r<T -7

which contradicts (129).

We conclude that (128) holds; this immediately implies that Tj, < T. But (128) also implies the following: in the case that T;, = T,
we immediately have (127), so there is nothing more to show in that case. Therefore, to conclude the proof, we are free to prove
(127) under the simplifying assumption that T, < T'.

Suppose the desired conclusion fails. Then we have

o*(f.Ne L (1, L?)
and in particular, continuity on the closed interval J, = I, | {T,}, i.e.
fec(JL?)
so choose, as before, an r, satisfying
0<rg < jnf Tyo (f )
As before, pick a time 7, with
Ty- 20 <1y <,
0= 5 <l <o
such that (124) holds. Then by Lemma 11.1 and using that Tj, < T, we can conclude that
€ B!
I fo}
where T = [ty,b) with b = min (7,1, + ry) > Tp). In particular, by our choice of r, as (less than) an inf over J, and that 7, € J,,
to+Tyo (f (10)) Zto+rg2b> T
Hence for any compact subinterval J of [0, b),
ot (f.fH el (4,17

which contradicts the definition of 7. [
17. Scattering
17.1. The scattering lemma

The Lemma to follow expresses a type of stability against perturbations of scattering states.

Lemma 17.1. Suppose
f+oo € L2

Then there exist numbers €, T > 0, each depending only on f,,, such that the following holds:
Forany ty > T,

Tgo. (h ) =
”ho—T(tO)f+m|‘L2 <e = aid ’
/000 HQ+ (3g.0. (ho) (t))”Lﬁ dt < o

Proof. An immediate consequence of Theorem 6.3 with Proposition 7.11, cf. the proof of Theorem 9.1. []
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17.2. The scattering criterion
We are ready to characterize scattering solutions of (1).

Theorem 17.2. Let f be a (x)-solution of (1); then the following are equivalent:

(1) T*(f) = oo and f scatters
&)

/ lO* (f. /@2 dt < 0
I“(f)

Proof. (1) = (2). Since f scatters by hypothesis, there exists an
fre € L2

such that
Jim (170 =T 0 frallz =0

Let &, T be as in the statement of Lemma 17.1. Pick a number 7 such that
V(I2T) |fO=TO frolli2 <e

and let
ty = min (T, 7~")

Then 7, > T and
I/ )7 ) o] <

hence by the Lemma we have
Tgo. (f (10)) =

and

/000 ”Q+ (3g0. (f (1)) (t))HL2 dt < o

Thus by Proposition 13.2 we have

/||Q+(f(t))||detS/0 0¥ (3go. (7 (1)) @) 2 dr < o0
fo

and Q* (f) € L' ([0,1y] , L?) since T* (f) = oo, so by adding the two time integrals, we may conclude.
(2) = (1). Since we have assumed

T*(f)
[ et ol <
it follows from Theorem 14.1 that
T"(f)=c
that is
/Ow |t (f )]l ;2 dt < (130)
Also, we have Duhamel’s formula, for 0 < s <,
TEDFO=T(=9)f(s)= [rT(—T) o (f (¥))dr
hence
ITEDfFO=T ) fOl2 < /Soo ot (f )2 dr
the right-hand side tending to zero as s — co by monotone convergence and (130). Thus there exists f,., € L? such that
Jim (T (=0 f () = frooll 2 =0
which is equivalent to
Jim [lf 0 =T @) frall 2 =0

so we may conclude. []
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18. Exclusive scattering
18.1. Definition

Definition 18.1. A non-negative measurable function f, € L?> ) L; will be said to be exclusively scattering if, for every (x)-solution
Jf with initial data f (r = 0) = f;, it holds that

T*(f)=c0 and f scatters

and in such case we write f, € £.

Remark 18.1. Observe that the definition of & makes no mention of uniqueness; in particular, it is a property of the initial data f,,
not of a (x)-solution (since there might be many («)-solutions corresponding to any given f,, € £). When we say that f, is exclusively
scattering, or equivalently f, € £, we are simply saying that it is not possible to identify a («)-solution of (1) with initial data f,
that does not scatter.

18.2. Perturbations
We begin with a simple lemma.

Lemma 18.1. Let (Z,d,) be a metric space (not necessarily complete). Suppose that for a subset U C Z, it holds that for every u € U
and for every sequence {Zn},, C Z with

Jim d (z,,u) =0
there exists a subsequence {z,, } such that
") m
(Vm) z, €U
Then U is openin Z.
Proof. If U is not open then there must be a point u € U and a sequence {zn}n c Z\U such that z, »uin Z. [

Recall from (7) the X norm

Al :=IlAll2 + D

oe{1 o1 g, o 52, x0}

/ @ (x,v) h(x,v)dxdv
R2xR2

which leads to define (8) the incomplete metric space
X = (L2’+ ML dX)

where L2 is the set of non-negative functions in L> and
dy (hj’) =[r- h”x

and we are ready to show:
Theorem 18.2. €& is openin X.

Proof. Let {f,,}, C X be a sequence such that
Jim || £o,, = foll, =0

for some f, € £. By Lemma 18.1, it suffices to show that there exist infinitely many » for which f,, € €.

So suppose the opposite: then, there exists N such that f,, ¢ £ for each n > N. Now the sequence f, is clearly uniformly
bounded in L? Lé; in particular, we also have uniform bounds on entropy and entropy dissipation for any («)-solutions associated
with the f;,. For each n > N let us pick a ()-solution f, such that f, (t =0) = f;, and f, is not a global scattering solution (that
is, either T* (f,) < o0, or T* (f,) = oo but f, does not scatter). This is possible because, for n > N, we have f,, ¢ £. Passing to a
subsequence, applying Theorem 16.1, and passing to a further subsequence, we can eventually find a subsequence #,, such that all
the following hold:

(1) The sequence { S, } converges, weakly and for a.e. (¢, x, v), and for a.e. (x,v) at t = 0, to a (x)-solution f with f (t = 0) = f,.
(2)
T* () < liminf T* (fm) (131)
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(3) For a.e. t with 0 <t < T* (f),
Jim |7, @ =fo|, =0 (132)

(4) For each m:

either T* (fnm) < oo, 0r T* (fnm) = oo but f, does not scatter. (133)

But now we see that, since f is a («)-solution with initial data f), and by hypothesis we have f,, € &, it follows from the definition
of &€ that

T*(f)=o0

and f scatters. In particular, by (131),

m—oo

lim inf T* (fnm) =

Moreover, by the scattering lemma, Lemma 17.1, there exist numbers T, ¢, depending only on the solution f just identified,® such
that any (x)-solution f which comes within an e-ball of f in L? at any one time at least T necessarily satisfies 7* (f) = oo and f
scatters. But now we see that (132) implies that

A(fe[T,T+1]) AWM eN) V(m> M)

fn,n (f) _f(f)“Lz <&

so for all m > M we have that T* ( fnm) = o0 and fn, scatters, which contradicts (133). [J

19. Weak-strong uniqueness
19.1. Propagation of weighted estimates

We know by now that (x)-solutions exist for any non-negative f, € L>[) Lé. However, if f; is chosen from a more restrictive
functional space, then we can say more. We begin with the gain-only equation, then we upgrade the result to the full Boltzmann
equation.

Lemma 19.1. Let 0 < a < oo. Assume f, is such that
() fo e L?

and let
0<T < Ty, (fo)

Then the solution h (t) of the gain-only Boltzmann equation with initial data f i.e.
h(t) =3g0. (fo) @)

satisfies

(VY*he L®([0,T1,L*) and (v)* Q% (h,h) € L' ([0,T], L?)

Proof. Fixing 0 <T < T, (fo) with I =[0,T] we may define
Co (D) = 1Al L (1.12) + [QF ()| g 12y < o0

and observe that O (h, h) is exactly (6, +uv- VX) h. If, as in Section 7.5, we write
Vg = min ((v)*,R%)

then we have each
(0,+v-V,)h=0"%(hh)

and

(0, +v-V,){vih} = viO* (h, )

8 Which need not be unique!
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Let us apply Proposition 7.12, viewing g as & and h as vih, to deduce the existence of a finite partition I = |J; I}, I; = [tj,t g w1
such that

for (il 1+ 2]

Ll (1;,12) Li(1;,12)

RQ+(h )HL' 1,12 >

where we label C; to fix the constant once and for all. Now according to Proposition 7.12, the partition depends on 4 but not on
v h; this may seem paradoxical since the pointwise quotient of these two is the known function v§, but what it really means in this
context is that the partition does not depend on the parameters «, R. Crucially, v is bounded above by R* so we know that

sclco(T)x<

v%h(tj)” +e

Vihe L™ (I,L*) and viQ*(h,h)e L' (1,L%)
Also, as in the discussion of Section 7.5, we may write

vgQ* ()|

LY(1;,L2)

<23 <”Q+ ("lfeh’h)”u(l,,u) +o (rim] (l,vﬁ))

therefore

V0" (o)

L1(1;,12)

gzz*iclco(T)x( +e

vgh (fj)

RQ+ (A, h)“u 1;.12 )
Let us assume that
25C,Cy(T)e = %
so that

.
<23,

veQ* (h.h)|

ah(tj)”Lz

LY(1;,L2%)

On the other hand,

veh () ”
Therefore

veQ* ()

-1
a

s ”VRfOHLZ + Z

=0

vRQ* ()|

LY(1;,L%)

Li(1;,L2)

<zt

vrQ" (1, h)HLl(l,,L2)>

We conclude by a finite induction in j. Indeed, suppose that

j-1
(0" (h,hy e (L' (I,,L?)
i=0

then we have

vgQ* ()|

Ll(1;,12)

Jj—1
<2*3¢,6,(T) <||<U>” Solliz + X @) Q" ml'““”Lz))

i=0

therefore by monotone convergence in R as R — o it follows

J
(0" (h,hy e L' (I,,L?)
i=0

so we finally obtain

()* Q" (h,h) e L' (I,L?)
which in turn implies

(vy*he L (1,L7)
since (v)* fo € L*. [
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Proposition 19.2. Let a > 0. Assume f is a (+)-solution of (1) with initial data 0 < f, € 12 N Lé such that
() fo e L?
Then for any compact sub-interval J C I* (f),
(V) feL®(J,L*) and () O"(f,.f)eL'(J,L?)
Remark 19.1. Note carefully that Proposition 19.2 neither requires uniqueness, nor does the proof imply uniqueness. All it says is
that if the initial data satisfies a certain L2-based weighted estimate, then any (+)-solution f corresponding to f, enjoys the same
estimate on compact subintervals of I* (f).
Proof. Let T be any real number such that
0<T <T*(f)
Since f € C ([0,T], L?), by lower semi-continuity of T, , we may pick r with
0<r< Ei[r(l)’fﬂ Tyo. (f )
We may assume without loss of generality that
T =kr
for some k € N. Let us define, for j =0,1,2,..., k-1,
I =[jr.G+1)r]
Denote by P; the statement
(W*feLl®(I;,L*) and (*Q'(f,f) el (I,L?)
Combining Lemma 19.1 with Proposition 13.2 and the assumption
() fo e L?
immediately lets us conclude P,. Similarly, if
Py, P, Py, ..., Py

all hold, then Lemma 19.1 combined with Proposition 13.2 imply P,. [
19.2. Weak-strong uniqueness

Uniqueness holds in the (x)-solution class assuming the existence of a classical solution, up to the time 7% (f) where continuity
breaks down. More precisely, we have the following:
Theorem 19.3. Let f be a (+)-solution of (1), corresponding to some initial data 0 < f, € L? N Lé. Furthermore, assume that
W foeL?
and also assume that
V(0<T<T*(f) (v)?felL?([0,T],L¥L? (R*xR?))

Then the following uniqueness holds in the class of (x)-solutions:
For any (x)-solution h of (1), corresponding to the same f, it holds

T (h)y=T"(f)
and for almost every (t,x,v) € I* (f) x R x R?,

h(t,x,0) = f (1,x,0)
There is no claim of uniqueness for t > T* (f).
Remark 19.2. Note carefully that Theorem 19.3 does not address uniqueness in the class of renormalized solutions. That is, even
on I* (f), we do not exclude (by this argument) the possibility that there exist renormalized solutions for the initial data f, that
do not coincide with f, regardless of the particular bounds we have assumed for f alone. From the proof below, we can only say

that any such renormalized solution does not possess an L! (J, L2) bound for Q" (h) on compact subintervals J c I* (f). That is,
precisely as written, uniqueness is only shown to hold in the class of (x)-solutions, and only on I* (f).
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Proof. The proof is a standard Gronwall-type argument on the difference equation (and relying, in particular, on the non-negativity
of f,h). Let us define

w=h-f
and let T be such that
0<T < min (T*(f),T* ()

and denote I = [0,7T]. Due to the characterization of breakdown of continuity, namely Theorem 14.1, it suffices to show that
w (t, x,v) = 0 for almost every (t,x,v) € I x R? x R?, whenever T is so chosen.
Clearly w € C (I, L*) and w(t = 0,x,v) = 0 a.e. (x,v). Also, by Proposition 19.2 we have

(Y feL®(L,L*) and (0)*0Q%(f,f)eL' (I L?) (134)

(vYheL®(I,L*) and (0)*Q"(h,h)e L' (I,L?) (135)
so w = h — f immediately provides
(Y we L™ (I,L%) (136)

We have by Duhamel’s formula

t
W <700 f)+ [ Ta-ofwretnm}a
0

@R <T@ (07 fo) + /0' T =0 {0 (i@} dr
therefore by Lemma 8.1 we may deduce
ot (7 £.*h). o (A r) eL! (1.1
therefore
©?O*(f.h), (v)*0F(hf) eL'(I,L?)
which in turn implies (by expanding w = h — f)
()?0* (w.h), ()0 (f.w) € L'(I.L?) (137)
Moreover, w satisfies the following difference equation in the sense of distributions:
(0 +v-V,)w=0% (w, h)+ 0" (f,w) — wpy — fp,
We can equivalently write
(0, 40V, +p,) w=0% (w.h)+ 0" (f.w) - fp, (138)

and view p, as an integrating factor in Duhamel’s formula, precisely as is done in (80). In particular, since 2 > 0 a.e. (¢, x, v), we
find that p, > 0 a.e. (7, x) so that, as long as we work purely in mixed Lebesgue spaces (which we will), the term p,, is completely
harmless (the fact that the terms on the right of (138) need not be non-negative is irrelevant: we will be estimating each in absolute
value).

Remark 19.3. Technically we have not shown that wp,, is locally integrable. However, it turns out wp,, is, indeed, locally integrable:
this is because the estimates to follow indirectly imply that fp,, is locally integrable, and we may write

wpp =hpp— fpr—frw

and the first two terms on the right are just the losses O~ (h, h) resp. O~ (f, f), which we have already shown to be locally integrable
on compact sub-intervals of I'* (h) resp. I'* (f).

Let us multiply the right-hand side of (138) by sgn (w) (as if to write an energy estimate for |w|) and decompose into its three
terms: namely,

M = Ml + M2 - M3
where

M; = sgn(w) 0" (w, h)

M, = sgn(w) 0F (f, w)
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and
Ms =sgn(w) fp,
so that
(0,+U~Vx+ph) |w| =

Sincew=h-f€C (I s Lz), we see that ||w (?)|| ;2 is a continuous function of 1 € I. Moreover, since f and & coincide when
t =0, we see that w (¢t = 0) is zero almost everywhere. Let us assume that |[w (r)|| > is not identically zero for all € I and derive a
contradiction. In that case, we can define

to=inf {r € [0,T] : |lw®l >0}

and observe that 0 <, < T (the case ¢, = 0 being permitted at this stage), and w = 0 for 0 < <, due to the time continuity of w
into L. In particular, w (1 = 15, x,v) = 0 a.e. (x, v). To obtain the contradiction, we shall show that w =0 for 0 < <, for some ¢,
strictly larger than ¢,.

The style of argument is to estimate an integral in terms of itself, the constant being less than one over any small enough time
interval: in particular, this type of argument relies on the finiteness of the integral, and such estimates generally imply “if it is finite,
then it is zero”. Therefore, before we begin, it will be useful to establish that

(Y Me L' (1,L7) (139)
To this end, let us show that

(Y M; € L' (1,L7)
for i € {1,2,3}. For M, and M,, this follows immediately from (137). For M5, we have by Holder’s inequality

”<U>2 M3”L1(LL2) = ”< o)* fHL2 (rLe13(r2xr2)) ”p“"‘ ”L2 (rL3(®2))

<C”<U> f”L2 1L°°L2(R2><R2) ”<U> w”LZ(I,LZ)

where we have used that

P = gy < € 007w (140)
We know that (v)? w € L? (1, L?) by (136) and the compactness of /, and it is a hypothesis of the Theorem that
(v)* f € L* (I,LY L2 (R? X R?)) (141)
so we may conclude (139).
By Duhamel’s formula with w (1 = #y) = 0, for ¢ € [t,,T| we may write
el < [ 7a-nlm@as (142)
1o
hence, multiplying through by (v)? and commuting with the free transport, we have
<u>2|w|<r>s/tt7(r—r>{<v>2 M (@)} de (143)
0
Therefore, letting J, = [ty, x| for x € [1,,T],
H<U>2 w”L‘”(.IK.,LZ) < ”<U>2 M”Ll(.l,(,Lz) (144)

Let us define for x € [t), T|
el) = ”<U>2 M”L‘(JK,LZ)

so that

e(k) < z H<U>2 M, “

L'(J,.L2)

We will show that e (¢,) = 0 for some 1, > #4 to conclude the Theorem.
Let us first estimate M5 since it is the easiest term. Indeed

|Ms| < f o
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so recalling (140) and (144) we have

[ 2] s, 1oy < 2]

LI L12) = Plul

LZ(JK.,L§°L§.(R2><R2)) |

]

L2(JK,L§(R2))

sclors]

12(1.LP L3 (ROXR2)

/|

12(4,.12)

ol

<Clr1p)?

211 L(R2XR?) L2(J,,L2)

1
S C(k=19)2 [[(0)° f||L2(1,L§°L3-(R2xR2)) e
so if (k —ty) is sufficiently small then by (141) we have

”<U>2 M3”L1(JK,L2) < }Le(’()

We now turn to M, (the estimate for M, is similar, by substituting f for 4). Let us denote

B={¢{el]

loc

(R?xR?) = o2 <1}

and then let us additionally define for « € [1,,T] with J, = 1y, ]

_ + _ _ 2
4= sup 0 (7 (1=10) 0. T (1=t0) {0 () )| -
Then since (v)? & (t,) € L%, by Proposition 7.5 we have
lirrh qg(k)=0 (145)
K—>In

We will apply Lemma 8.1 to estimate
0* (7wl (o) )
which can only be larger than (a constant times) (v)> | M;|. Indeed, we know that
t
Wl < [ 7a-n{@ e}
To
and also
P h) <T (t—10) {<U>2 h (10)}
t
+/ Ta-o{w? ot thwm}dr
To
in particular w (1 = t,) = 0. Hence by Lemma 8.1 we may write, again with J, = [ty «],

0* (@ lwl () )

L(J,.L2)

<q) [ M|

LI(JeL?)

+C w2 ot h)”Ll(JK,LZ) @ M“LI(JK,LZ)
< <q(x> +C |y ot mn],, (JK,L2>> e(x)

Then by (135) and (145) we have

,}Ln} (q x)+C “(U>2 o (n, h)” L'(J, L2)>
0 "

therefore for (x —1,) sufficiently small it holds

le (k)

”<U>2M1”L1(JK,L2) < 4

Altogether we find that for all (x — 1) sufficiently small it holds

e(x) < f—g(r)

and since we know e (x) < oo this implies e (k) = 0 for some «;, > 1, reaching the desired contradiction. []
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19.3. Exclusive scattering

Weak-strong uniqueness allows us to establish exclusive scattering simply by proving the existence of a single scattering
(x)-solution with sufficient integrability and decay:

Corollary 19.4. Suppose 0 < f, € L* [ L} is such that
W?*foeL?
and that there exists a (x)-solution f of (1), with initial data f,, such that
T*(f) = 0 and f scatters
and
V(T <o) (v)?feL?([0,T],LYL? (R?xR?))
Then f, € €.
Proof. Since f satisfies the conditions of the weak-strong uniqueness theorem, Theorem 19.3, globally in time, it follows that any
(x)-solution with initial data f, coincides with f for all # > 0. On the other hand, by hypotheses, f is a global scattering (:)-solution.

Therefore, every (x)-solution with initial data f is a global scattering (s)-solution (being simply f), so we conclude that f;, € &€, by
the definition of the class €. []

20. Proof of the main theorem: Part I

Let a,b,c > 0 and consider the moving Maxwellian distribution
meb (t, x,v) = aexp (—b ] = c|x — Ut|2)

with initial data

mg’b’c (x,v) = aexp (=b|v]* — ¢ |x|*)

Clearly, m®>¢ scatters (since it is an exact solution of the free transport equation); moreover, since m**¢ € C'([0,),S),
Theorem 19.3 implies that any («)-solution corresponding to the initial data mg’b’c is global and coincides with m**¢. Therefore,

mg'b'c is exclusively scattering, i.e. m**° € £. Hence, by Theorem 18.2, there exists an & = ¢ (a, b, ¢) > 0 such that if f, € X and

0
| fo = mi<||, <2-e (146)
then f;, € &; by the definition of the X-norm
”ho“x = ||h0||L2 + Z ‘/RZXRan(x,U)h(x,v)dxdu

cpe{l, vy, vy, |02, X2, X‘U}

we see that (146) follows from our hypotheses (13)—-(14). On the other hand, given f, € &, it follows from the definition of £ that
any (x)-solution of (1) corresponding to initial data f,, is global and scatters; but by Theorem 15.2, there does indeed exist such a
(*)-solution.

21. Higher regularity
21.1. Preliminaries

We will be using difference quotients in order to establish propagation of regularity on the full (recall, half-open) interval I* (f).
This is slightly subtle because we are using L' in the time variable: this turns out not to be an issue, as we shall show momentarily.
Let us define the translation by a € R along the unit vector e € R? for h, € L?:

(rgho) (x,0) = hy (x + ae, v)
Then we define the finite difference operator for a # 0
Di=a'(z0-1)
where [ is the identity. Fixing once and for all an orthonormal basis {e;},_, , of R? we denote

i=

1

2\ 2
D hy|

|D%ho| = (Z
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and || D®hy| 2 is then the L2 norm of | D?hg|. The symbol V, denotes differentiation in the sense of distributions with respect to the
variable x € R?.
For this subsection (specifically the following two lemmas) we follow the presentation of the book by Evans ([20] subsection
5.8.2).
Lemma 21.1. For any hy € L? such that V., h, € L?, and for any a € R\ {0},
1

[1D%holl 2 <22 [ Vho| 12

Proof. We have by the fundamental theorem of calculus
1
(D2 1y ) x.0) =/ (e, - V. ho) (x + abe;, v) db
0

therefore
1
logl,. < /|

Lemma 21.2. Let hy € L? be such that

wel (e Viho)| o db < Vol 2 OO

i 10"l <

Then V.hy € L? and it holds

1
9ol 2 < 23 Jimint |||l 2

la|—0

Proof. Let us define
M = liminf || D%h,
liminf || DAl -
and pick a sequence g, € R\ {0} with g, — 0 such that
Jlim [[D% o> = M
Then for i = 1,2 it holds

lim sup
k—o0

Dt hy

L’SM

Hence we can pass to a weak limit along a subsequence {“kn }n
De"hy = u; € L?
and moreover
fluill 2 < M

On the other hand, by duality and the dominated convergence theorem, for any smooth and compactly supported function ¢, on
R% x R?,

/R .., Pomdxdv = lim @D hodxdv
X

n—=00 [p2yp2

n—oo

== /]RZ - hge; - V., podxdv
X

=— lim / hoD, " podxdv
R2XR2 !

which implies
u=e;-V.hy [
The key is to realize that L! only occurs in the time variable, whereas the difference quotient only occurs in the space variable,
and apply Fatou’s lemma.
Lemma 21.3. Let ¢ € L' (1, L?) for some interval I C R, and further suppose that

By <0

Then V¢ € L' (I, L?) and it holds

1
||VxC||L1(1,L2) <22 liminf [[D*Cll 11y 12)

1
0<|a|~0
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Proof. Since ¢ € L' (1, L?), we have ¢ () € L? for a.e. t € I; we want to apply Lemma 21.2 for almost every such 1. Let us define
— limi a
M= (l)lglﬂllggllD g”Ll(l,L2)
and take a sequence g, € R\ {0} such that
Jim 1011112 = M
Then by Fatou’s lemma, the quantity
liminf || D% (9] 2
is finite for a.e. r € I, and we note that

liminf | D*C (1)]| ;2 < liminf | D%¢ (1)]| .2 (147)
0<|a|—0 k— oo

Therefore, since we also have ¢ (1) € L? for a.e. t € I, by Lemma 21.2, we have that V¢ (1) € L? for aeet € I
Now we estimate, using Lemma 21.2, followed by (147) and finally Fatou’s lemma:

19y = 19 @l
1
<22 [ liminf ||D¢ (¢ dt
<2t [ mint 1% 0l
1
<22 /liminf [[D%E D)l 2 dt
I k—o0
1
§2§liminf/||D”kC(t)||Lz dt
k— oo I
L
=22 Jim 0% Clluiraz)
1
=22M
21.2. The gain-only equation

Let us recall the Sobolev norms (12) for non-negative real numbers a, ,
Ifollsas = |0 V0% fo| .

We have already propagated H%# for (1) for any § > 0 by Proposition 19.2. The objective of this sub-section is to propagate H>? for

the gain-only equation. Then we will close out our treatment of regularity by propagating H>?2 for the full Eq. (1) in the subsequent

sub-section, which will turn out to be sufficient to propagate Schwartz regularity and conclude Part II of the main theorem.
Before we begin, let us observe that for some constant C > 0 we have the equivalence of norms

CHfollarz < M follwoz + 1V sollwor < €l follara

Moreover, denoting by the symbol
D3 /o

the matrix of second-order distributional derivatives of f, € L? in the x variable only, we have for some other constant C > 0
T olluzz < 1Follioz + | D20 s < € Mol 2z

H02 =
The propagation proofs for the gain-only equation will be similar to the proof of Lemma 19.1 and will also rely on the conclusion
of that Proposition.

Lemma 21.4. Assume f, is such that
@ (Vo) fo € L2
and let
0<T < Ty, (fo)
Then the solution h (¢) of the gain-only Boltzmann equation with initial data f i.e.
h(t) =3¢, (fo) ®
satisfies
(v (V,)h e L™ ([0,T1, L?)
and

(v)*(V,) Q" (h.h) € L' ([0,T], L?)
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Proof. Fixing any 0 < T < Ty, (fo) with I = [0, T] we may define

Co (T) = |lhll oo (1,102 + || QT (R, h)“Ll(l,HO-Z) (148)

which is finite by Lemma 19.1.
Let e € R? be a unit vector. We have each
(0, +v-V,) {(v)zh} = ()2 0" (h.h) (149)
and
(0 +0-v,) {(? Dgn}
(150)
= (0 Q* (Deh ) + 5 { ()? ©* (h. ;D) |

where D¢ is the finite difference operator which has been previously defined, and we have applied the product rule to commute D?
with Q. Let us in particular denote

&= (0 +v-v,) {(y Din}

The key is to apply Proposition 7.12, recalling that the conclusion of the Proposition is independent of one of the two arguments
of Q*: this is why it does not bother us that a is a variable, nor that the right-hand side of (150) contains D¢h and 77 D¢h. The
symbol g in the Proposition will stand for the present (v)? h (this is why we use H%? in the definition (148) of C, (T) above), and
we decompose I =J; I}, I; = [t inf +1], as in the Proposition, depending on some & > 0 to be chosen later. The claim is that if

Jj=1

O* (h,hye (VL' (1, H"?) (151)
i=0

then

J
o*(nme (L' (1, H'"?) (152)
i=0

which allows us to conclude after finitely many inductive iterations. We remark that

t
ROl iz < ol gz + /0 0% (1) (5)] 12 dis

so there is nothing more to show, once the claim is established.
Let us assume (151); we know, in particular, that

h(t;)eH"Y

and we need to show that
Q" (h,hye L' (I, H'?)

In fact, since {{ = (u)2 D:Q* (h, h), by Lemma 21.3 we only need to show that
ger (1,1)

uniformly in @ € R\ {0} for any unit vector e € R%. Note carefully that we already know this membership for each a because ¢ is just
defined by a finite difference; therefore, it is permissible to estimate {¢ in terms of itself, with a small enough constant, uniformly in
a.

We proceed by (150), noting that the left hand side is just {J:

”CSHU (1;,L2)

(07 Q" (D2h,h) + 5 { (w7 O (h7;"Dih) }

L(1;,L%)

<[lo* (w?peal. w2 n)

LY(1;,L2)

+ ‘Q* (<U>2 h, () 72 |Dgh|)

LI(1;,L2)
<Gy @x (|| )]y +e 1€l 12 )
We conclude by choosing & no larger than 2-'C~'Cy(T)™!. O

The following lemma is similar to Lemma 21.4, both in statement and in proof, and we only sketch the details.
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Lemma 21.5. Assume f is such that
W (V. fo e 1?
and let
0<T <Ty, (fo)
Then the solution h (t) of the gain-only Boltzmann equation with initial data f,, i.e.
h(0) = 30, (fo)
satisfies
(VY (V ) he L ([0,T], L?)
and

()’ (V,)* Q* (h.h) € L' ([0,T1, L?)

Proof. Fixing any 0 <T < Ty, (fo) with I = [0,T] we have

Il oz, 12y + 107 )| 1y ppray < o0 (153)

which follows from Lemma 21.4.
Let e,e’ € R? be two orthogonal unit vectors, and let us denote

uy =€ -V.h
Then we may write
(9, + - V,) { ) Deue }
= (0 Q* (Dfug, h) + ¢ { )? Q" (h, 7,"Diug) } + F
where by (153) it holds
FelL'(1,L%)

The conclusion then follows similarly to the proof of Lemma 21.4. []

21.3. The full Boltzmann equation

Proposition 21.6. Let f be a («)-solution of (1) with initial data
0<f@=0)=f
Then provided
fo€ H??
it follows that for each
0<T <T*(f)
it holds
feL®([0,T], H*?)
and

0*(f.f) € L*([0,T], H*?)
Remark 21.1. Note carefully that both O+ and Q™ are placed in H>?.

Proof. Let us recall, to start, the following bilinear estimate from the previous article [10]: for any &, 710 € H*’, with a, § each
real numbers strictly greater than % <= %), it holds

o= (Th0. TR0) | 5 gy = € Molliges ol e (154)
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Combining this estimate with the p = 2 case of Lemma 6.2 immediately implies a free upgrade to L? in time given a bound L! in
time for any such a, §: for example,

>0 (s Pl 2oz

ue{£}

2
S C <||f()||H2,2 + Z ”Q” (f’ f)”L]([O,T],HZYZ)>

ue{x}

Therefore we will only concern ourselves with the L! estimate.
Fix 0 < T < T* (f), and observe that by Proposition 19.2 it holds

Co (T) = IS | oo o1, m02) + lo* (faf)||L|([0,TJ,Ho,z) < oo
Moreover, since f € C ([0,T1, L?), we have
0< inf Tyo (f @) (155)
So let us pick a real number 5 > 0 such that
0<n< inf Tyo (/@) (156)
Fixing any ¢, € [0, T] let us define an interval I based at t, via the formula
I=1(ty) = [to. 10 + 1]
and note that I is guaranteed to be a sub-interval of I* (f). We are going to show that if ¢, € [0,T] is chosen such that
f (1) € H*?
(which is true for ¢, = 0 in any case), then
o*(f.NH el (I.H??)
which, since f (ty) € H?2, in turn implies
feL®(1,H>?)
Since # is independent of ¢, € [0,T], we can then conclude
0*(f.f)e L' ([0.T], H*?)
and
feL®([0,T], H*?)

which implies the Proposition since T' € (0, T* (f)) is chosen arbitrarily.
Before we begin, we need to use the gain-only equation. Indeed, since f (1y) € H>?, by Lemma 21.5 we have

350,/ (10)) € L™ (1. H22)
hence by Sobolev embedding
() 3g0. (f (t9)) € LPLILY (I xR* x R?) € LY, L2 (I x R* x R?)
so by the comparison principle
() f € LY L] (I XxR* xR?)
thus by Holder in v
pr €LY (IxR?)
So let us define the real number B by

n= o

+los]
L3, L2(IXR2XR?) TlLes (1xr2)

which we may consider a constant for the remainder of the proof.
So let us take M € N sufficiently large and ¢ > 0 sufficiently small to be chosen later (each ¢, M possibly depending on each
T, B), and apply Corollary 7.13 to partition (for some N > M)

N-1
I=[tg.t9+n] = U I;
=0
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where I; = [tj,tj+1] and
fo <t <ty < - <ty_ <ty=tg+n

and for each j it holds

1

lin =] < 3 (157)

and additionally the estimates of Proposition 7.12 hold with ¢ on each [;.
Let us denote by P/*, « € {1,2}, the statement

VO<i<j)  O(f.Hel' (I,H*?)
and note that
L Ol a2
< | oll e + /O [ (12t (- N ez +1Q7 (F+ /) Ol a2 ) ds

Observe that P®! and P%? each trivially hold, since there is no i with
0<i<0

We are going to show that, under the hypotheses of the Proposition,
pi2 — pitll

for each j, and
Py pitl2 — pi2

for each j > 1. The Proposition then follows after finitely many inductive steps.
Pi? = P! Since f (1) € H>2, we can deduce from P/ that

7 e ([igr,) 1)
In particular,
£ () € 22
We need to show that
o*(f./HelL' (I,H")
In fact, since f solves (1), it suffices to establish each
o (f.fHelL (1;,H'?)
and
(0 +v-V,)feL (1;,H?)

since the difference of these two is O~ (f, f). But in fact the second assertion implies the first (since f (t;) € H*? c H'?), so we
need only show

(0, +v-V,)feL (I, H?)
Let e € R? be a unit vector and define for a € R \ {0}
o= (0, +v-V,) {(u)ngf}
noting that the right-hand side is identical to
(v)? DEQ* (f. f) = (v)* DEQ™ (f. f)
We know that
¢tell(1;,L7)

and we only prove the uniformity in a of this estimate.
Now let us observe

g =0 (Dif.f) + 2t {(0) Q" (f.5,°Dir) }
+(0)? DI (f./)
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so, as in the proof of Lemma 21.4, we have

el 22y < €Co@ s (|7 ()] o +€ 16011, 02))
+||@? peo .0

LI(1;,12)
so let us estimate the last term.
[ D2~ (s f)”Ll )
< ‘ Lo (1;,L2) i H<U> /- p|D/|”L°°1L2
= ﬁ ”pf”Loo [;xR?) “<U> Dgf‘LW(I JL2)

L3, L2 (I xR2xER?) “p|D f|”L°°L2 (I;xR2)

< %‘ Lm(l-x]RZ “<U>2 Dsf‘Lm(l/,Lz)
fl L L3 (I;xR>XR?) “<U>2 bef ‘LW(II,LZ)

<BM™! H<v>2 Df

)Lw(rj,ﬂ)
<M (|1 ()] o + 181 12 )
Therefore we may write

a -1 a

e lr 1, 02y < CCo@x (|7 ()] o + (e + BMT) 1201, 129 )

so the desired implication follows by taking ¢ sufficiently small (depending on 7) and M sufficiently large (depending on B).
P/l 4+ pI-12 — PJ? Combining P/! with the (a, ) = (1,2) case of (154) along with the p = 2 case of Lemma 6.2 immediately

implies

0= (f. e L*(|0.;] , H'?)
This estimate implies, in turn, that f coincides with the known local H'?2 solution [10] of (1) on [0, tj]. But, on the other hand,
since we have P/~!2, we know f (1;_,) € H*?, so the known theory of propagation of regularity [11], Theorem 2.3(i) immediately
implies

0*(f. /)€ L* (I;_y, H*?)

which was what we wanted. []

Known propagation of regularity results allow us to promote H>? to S, as follows:

Theorem 21.7. Let f be a distributional solution of (1) on a compact interval J = [0, T], such that
”f”LBO(]‘HZ,Z) < oo and |IQi (faf)”Ll(J’HLZ) <o

and fy = f(t=0) € S. Then f € C' (J, S). Moreover, the solution is unique on all of J once its initial value f, is determined.

Proof. By Theorem 2.3 (i) and (i) of [11], we have f € L® (J,H**) and Q*(f, f) € L! (J, H**) for any natural number k;
i.e., we propagate all derivatives in x and moments in v. These can be traded in for moments in x and derivatives in v by Theorem
2.2 (i) and (ii) (respectively) of [11]; indeed, since Theorem 2.2 of [11] is stated in terms of weights (whereas H** is defined purely
by differentiation in [11] via the Wigner transform), we can also mix any number of moments in x with any number of derivatives
in v, in any H**, by the same theorem (direct analysis also suffices for the mixed case, in view of the proof of the theorem). Hence
f (1) €S for every t € J. Time regularity is proven in Proposition 2.4 of [11], in H**, for any natural number k; time derivatives of
mixed moments and derivatives likewise follow as discussed in Remark 2.5 of the same reference. The uniqueness assertion follows,
for instance, from Proposition 2.5 of [11]. []

Theorem 21.8. Let f by a (x)-solution of (1) corresponding to some Schwartz initial data 0 < f,, € S. Then
fec(r<(n.s)
Moreover, for any (+)-solution f of (1) corresponding to the same f;, it holds that T* (f) = T* (f), and f = f on I* (f).
Proof. By Proposition 21.6, f satisfies the conditions of Theorem 21.7 on any compact sub-interval J c I*(f). (Likewise,

Proposition 21.6 and Theorem 21.7 also apply to any other candidate (x)-solution f, so the uniqueness again follows from
Theorem 21.7). [
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22. Proof of the main theorem: Part II

Let feC ([0, 00), L2) be as in Part I of the main theorem, corresponding to some 0 < f;, € S satisfying (13) and (14). Then by
Theorem 21.8, we have

fec (I*(f).S)
Then since

T*(f) =
we have

f€C' (10,0),5)
Hence, by Theorem 19.3, if f is any other («)-solution corresponding to the same initial data f;, we find that 7* (f) = T* (f) = o
and f coincides with f.
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Appendix. Well-posedness for the truncated equation

All the content of this appendix can be found in [15], Section VIII; we recall the proof of Theorem 15.1 below for the convenience
of the reader.

A.1. Global well-posedness in L'

We will prove the global well-posedness in
C ([0,00), L")

for the equation

(0 +0-9.) £ = (14700 ) {08 () =05, (1)} (A1

and the proof will also imply the (local in time) Lipschitz estimate for the solution map, for any T > 0,
”fn - f"||L°°([0,T],L)l(>v(]R2><R2)) < et ”fn,O - f"»0||Li'U(R2xR2) (A.2)

This subsection, in fact, only uses the fact that b, € L*; the remaining subsections of this appendix will make use of the other
technical assumptions on b,.

The proof of global well-posedness is by a fixed point argument and controlled iteration in time. Since the collision kernel b, is
bounded pointwise by (2z)~!, by collision invariants it holds

o; (f.h SN pygey 12N 1 (2
n o(B) o(B?)

Ly(R?)
hence, due to the fact that p| ;| is identified with the norm L! (R?), we have
an f. N

S””f” 1 2%R2
-1 L ,(R*xR
1+n plfnl e )

Ll (R2xR?)

Next, consider that if 0, = Q7 - Q; then the quantity

Qy (/. 1) 0y, (h,h)
L+n7lpy 14+nlpy,

may be re-written as the sum of

), (/.) = Qy, (h.1)
(] - ||f||LL(R2)) (] +n! ||h||L},(Rz)>

1, =
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and

L Qo DAl gy = s, )l 1y

n (1 +n-! ||f||L},(R2)> (1 +at “h“Lb(RZ))

1, =

But
Oy, ([, ) =0y, (h)=0y (f.f—W)+Qy (f—hDh)
each of which is estimated in L! (R?) (pointwise in x) as before, and then controlled uniformly in x by a factor in the denominator
of 7,; hence,
7 ”L}H,(RZXRZ) <2n|lf - h“Ll.VU(Jsz]RZ)
As for 1,, it is the sum of three terms,

. 0y, (f = 1 D) 1Al 1 2

Iy =~
Lo Q,, (. f) (”h”L},(RZ) - ”f”L},v(Rz))
22=
n (1 +n1 ”f”Ll(R2)> (1 +n7! ||h”Ll‘,(1R2))
an (h, f—h) ”f“L,l(]RZ)
Iy=-- '
23

n (1 + -1 ”f”LL(RZ)) (1 +n! ||h||L},(R2)>

each of which satisfies as before

||12,i||L}“,,(R2xR2) <nllf = h”L;U(RZxRZ)
Altogether we have
Q,,in 0N

P <nllfllip
1+ n*lplfl . Ly ,(R?xR?)
Ly o(R2XR?)

Q, (/.1) _ 0y, (h,h)
L+n7lp T+nlpy,

<Snlf = hll) (s
L (R2xR?) ’

so using Duhamel’s formula and Banach’s fixed point theorem we conclude the existence of a unique local mild solution on a time
of order © (n~!) irrespective of f,. Therefore the equation is globally well-posed for each n fixed. The Lipschitz estimate (A.2), for
the solution map, is immediate.

A.2. L*® Bounds

By a change of variables and using our technical support assumptions (105) and (106), one can show (estimating in the velocity
variable only):

0 (f.1) <Gyl My geey 1 W)
' 1(®2)

LP(R?) ~
Since we are dividing Q, by
—1
L | full e
at each (¢, x), it follows

O (fus f)

<C ©
Trao < Gl e

LY, (R2XR?)

Therefore, by Gronwall, for each T > 0,
fn € LY., (10, TIXR* x R?)
A.3. Gaussian lower bounds
For a number K, to be chosen momentarily, let us define

8 (b x,0) = ¢,exp (=Kt = 3 I —orl? = 2 o)
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where ¢, is as in (107). Then it follows
(0, +v-V,+K,)g,=0
For the loss term only, we have the estimate at every (z, x, v),
o~ (I£l-14:0)
T — < Kn |fn|
1+n |1

which defines K. Therefore, if we assume that f, is everywhere non-negative, then it follows
(0 +0-V+K,) £, 20" (£, fu) 20

hence
(0, +v -V +K,) (fy—8,) 20

and clearly f, — g, > 0 for t = 0. Hence, if the solution f, is everywhere non-negative, then we deduce a quantitative lower bound
fn = &, Which therefore acts as an a priori estimate (for » fixed), which implies both that f, is everywhere non-negative and that

fn28,>0.
In particular, we can replace P15, by p;,, and the integrand in the instantaneous entropy dissipation D (f,) is everywhere finite.

A.4. Collision invariants

For any smooth function ¢ = ¢(t,x,v) of at most polynomial growth, and any Schwartz function h = h(t, x,v), executing a
pre-post change of variables on the gain term only, and using the symmetries of b, (see e.g. [9]), it holds

/ 00, (h,h)du:/ b, (W' R, — hh,) dodv
R2 " R2

:/ b, (@' — @) hh,dodv
R2

1
== b, (¢ + 9, —p—0,)hh,dv
2 Jr2

If, at each (7, x), ¢ (¢,x,-) € span {1, vy, Uy, |u|2} (the implicit constants possibly depending on (t, x)), then the quantity

o +e -0,
is everywhere vanishing (due to conservation of mass, momentum, and kinetic energy across a collision). Such functions ¢ are
referred to as collision invariants (when expressed in v only). Thus, assuming that the solution is Schwartz (to be discussed next),

we immediately obtain (108) by taking ¢ = 1, and (109) by taking separately ¢ = v, and ¢ = v,, and (110) by taking ¢ = |v]?. For
example,

4
dt R2xR2

f,,dxdv:/ 1-0y (fus fu) dxdv=0
R2xR?2

yields (108). Similarly we obtain (111) by taking ¢ = |x — vt|?, and observing that this function is both an exact solution of the free
transport equation, and a linear combination of collision invariants at each (z, x). We similarly obtain (112) by taking ¢ = (x — vr)-v.
We obtain (113) similarly by letting ¢ = log f in the above calculation and applying collision symmetries once more (which replaces
% by A—l‘ and thereby provides an everywhere non-negative integrand). Note that since, by the previous subsection, f, is bounded
from below by a Gaussian jointly in (x,v) for 0 < # < T, it follows that the negative part of log f grows at most quadratically, so
there is no problem in justifying the multiplication of the equation by log f.

A.5. Schwartz class
First we show that all moments in x, v are finite, and then that all gradients are finite, all in L'. We freely make use of the fact

that f, € L' (] L™, and use differential inequalities without careful justification (which is routine).
The moment estimate is

d k k
£ + dxd
01 Jon s o (51" 101") dxde
Oy (fus £
5/ £ lx]%! |v|dxdv+/ # lol* dxdv
R2XR2 r2xr2 | L+n~lp

< [ Al 1) dnaw
RZxR2

where we have used integration by parts and that |x|* is a collision invariant in the first step (as it is constant in v), and the fact
that f, € L*® ([O, T],L! N L°°) for each T > 0 along with the boundedness and support conditions on b, in the second step.
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Finally we estimate the first derivatives in x; the derivatives in v, as well as all higher derivatives in x and v, are similar.

4

dt R2xR2
</ |0F (1Vutal )|+ [F (£ V1))
~ Jr2xm2 L+ntp,

|05 (£ £2)

n

P AR UmA
R2xR2 —1
<1+n pfn)

< / V. f, | dxdv
RZxR2

|V S| dxdv

dxdv

[V sallLy(m2y dxdv

Here we have again used that f, € L*® ([0,T], L' (| L*®) for each T > 0 along with the boundedness and support assumptions on

b,
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