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Abstract. In this work, we generalize Kac’s original many-particle binary stochastic model to
derive a space homogeneous Boltzmann equation that includes a linear combination of higher-order
collisional terms. First, we prove an abstract theorem about convergence from a finite hierarchy to
an infinite hierarchy of coupled equations. We apply this convergence theorem on hierarchies for
marginals corresponding to the generalized Kac model mentioned above. As a corollary, we prove
propagation of chaos for the marginals associated to the generalized Kac model. In particular, the
first marginal converges towards the solution of a Boltzmann equation including interactions up to
a finite order and whose collision kernel is of Maxwell type with cut-o!.
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1. Introduction. The aim of this paper is to derive a Boltzmann equation for
Maxwell molecules that incorporates higher-order collisions; we achieve that by gen-
eralizing Kac’s original stochastic binary model [28] via allowing multiparticle inter-
actions. With this purpose in mind, let us consider a space homogeneous gas of
indistinguishable particles, moving in d-dimensional Euclidean space. The system is
to be described by the probability density f = f(t, v) of finding a single particle with
velocity v \rightarrow Rd at time t \uparrow 0. The resulting Boltzmann-type equation will be of the
form

\omega tf = \varepsilon 1Q1(f) + \varepsilon 2Q2(f, f) + · · ·+ \varepsilon M QM (f, . . . , f) ,(1.1)

where (\varepsilon K)MK=1 is a normalized set of coe!cients:
\Biggr) 

\varepsilon K = 1. Here, M \rightarrow N is the
highest-order collision that will be relevant in our system, and (QK)MK=1 are the Kth
collisional operators, modeling the interactions between K particles.

Since the Boltzmann equation was introduced by Boltzmann [5] and Maxwell [30],
it has been the target of many mathematical studies. In particular, the problem of rig-
orously deriving a Boltzmann equation with binary interactions (of Maxwell type) was
first addressed by Kac in his foundational work [28]. By setting up an appropriate N -
particle stochastic process, Kac was able to show that an equation of the form (1.1)—
with the right-hand side containing only theQ2 term—emerges from the many-particle
dynamics in the N \downarrow \updownarrow limit. The framework introduced in [28] is now known as the
Kac model, and there is an active field of research around it; its simplicity is a fertile
playground for studying subtle questions that are otherwise very di!cult to approach
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5410 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

in more complex models arising from kinetic theory. Propagation of chaos, entropy

production, relaxation towards equilibrium, and well-posedness are among the most
studied questions for the Kac model and its generalizations. For a partial survey of ar-
ticles, see, e.g., [28, 33, 34, 7, 16, 17, 18, 13, 14, 26, 39, 20, 6, 19, 27, 10, 11, 31, 9, 12, 25]
and references therein.

Derivation of the Boltzmann equation in the deterministic, space-inhomogeneous
setting with hard spheres has been a major breakthrough in kinetic theory. The
first proof in this direction was given by Lanford [29]. More recently, this derivation
program has been revisited in a modern perspective by Gallagher, Saint-Raymond,
and Texier [23]. On the other hand, derivations of Boltzmann-type equations that
include higher-order collisions between the particles has just recently started to receive
more attention. In [1], I. Ampatzoglou and the second author of this paper derived the
nonhomogeneous Boltzmann equation for hard spheres, with the relevant interactions
being ternary. In [2], the same authors were able to simultaneously include both binary
and ternary interactions in their analysis. The problem of including arbitrarily higher-
order interactions remains open. We would also like to point out the recent work [3],
which implies that an equation of the type (1.1) including a linear combination of
collision operators can give better properties of solutions compared to the binary
Boltzmann equation. Specifically, in [3], Ampatzoglou, Gamba, Tasković, and the
second author of this paper have shown that the simultaneous existence of binary and
ternary collisions in a homogeneous Boltzmann-type equation yields better generation
in time properties of moments and time decay, compared to when only binary or
ternary collisions are considered. This gives additional motivation to study both
derivation as well as analysis of Boltzmann equations with higher-order collisions
such as (1.1), which is what we do in this paper in the context of Kac’s stochastic
framework.

More precisely, we introduce an adaptation of Kac’s original stochastic N -particle
model that simultaneously includes interactions up to order M \rightarrow N and prove that
(1.1) emerges in the N \downarrow \updownarrow limit. The model we propose is motivated by the work
of Bobylev, Cercignani, and Gamba [4] on well-posedness and self-similar solutions
of an equation that incorporates higher-order collisions between Maxwell molecules.
Inspired by [23, 2] we use hierarchy methods to obtain convergence from a certain
finite hierarchy of equations to the infinite hierarchy associated to the generalized
Kac model. Propagation of chaos then follows as a corollary.

1.1. Higher-order collisions. Let us now introduce higher-order collisions. We
shall not specify a concrete transformation map between pre- and postcollisional ve-
locities, but rather work in a general setting that satisfies three conditions, given in
the Hypothesis below. We present some examples in section 3.

The transformation law. For every K = 1, . . . ,M , we assume that we are given a
measurable space SK with a probability measure bK , together with a measurable map

TK : SK \nearrow RdK \downarrow RdK
.

We call K the order of the collision, SK the space of scattering angles, bK a collision

kernel, and TK the transformation law.

Throughout this work, we assume the following Hypothesis to be satisfied. Let
us denote by SK the group of permutations of K elements. We will abuse notation
and use the same symbol to denote a permutation \vargamma \rightarrow SK and its action over the
space RdK . Namely, \vargamma stands for the function defined by \vargamma (V ) \searrow (V\omega (1), . . . , V\omega (K))
for V = (V1, . . . , VK)\rightarrow RdK .
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5411

Hypothesis. For all \varpi \rightarrow SK , the map T
\varepsilon 
K \searrow TK(\varpi , ·) : RdK \downarrow RdK

is linear.

Additionally, the following hold:

(H1) T
\varepsilon 
K is an isometry.

(H2) For all \varrho \rightarrow C(RdK), it holds that

\Biggl[ 

SK
\varrho 
\Biggr] 
(T\varepsilon 

K)\rightarrow 1
V
\Biggl\lfloor 
dbK(\varpi ) =

\Biggl[ 

SK
\varrho [T\varepsilon 

KV ]dbK(\varpi ) \simeq V \rightarrow RdK
.(1.2)

(H3) For all \vargamma \rightarrow SK and \varrho \rightarrow C(RdK), it holds that

\Biggl[ 

SK
\varrho 
\Biggr] 
(\vargamma \Leftarrow T\varepsilon 

K \Leftarrow \vargamma \rightarrow 1)V
\Biggl\lfloor 
dbK(\varpi ) =

\Biggl[ 

SK
\varrho 
\Biggr] 
T

\varepsilon 
KV

\Biggl\lfloor 
dbK(\varpi ) \simeq V \rightarrow RdK

.

(1.3)

The conditions introduced above arise when considering elastic collisions between
particles whose pre- and postcollisional velocities are related by the formula

(v1, . . . , vK) \Rightarrow \Uparrow \downarrow (v\uparrow 1 , . . . , v
\uparrow 
K)\searrow T

\varepsilon 
K(v1, . . . , vK) ,(1.4)

where \varpi \rightarrow SK is a parameter that labels the directions in which the particles inter-
change momentum. With this interpretation in mind, we can give physical relevance
to the above hypotheses. (H1) states that there is conservation of kinetic energy.

(H2) states that, up to an average over the set of scattering angles, the transfor-
mation law TK is an involution. (H3) states that, up to an average over the set of
scattering angles, the transformation law TK does not depend on the labeling of the
particles, e.g., there is no preferred order in which the particles can enter a collision.

Remarks 1.1. A few comments are in order regarding (H1), (H2), and (H3).
(i) Even though our methods can be adapted to include transformation laws that

do not satisfy (H3), we include it to make the exposition simpler. Similar
assumptions have previously been made in the literature; see, for instance,
Definition 2.1(iv) in [8] for an example in the context of the quantum Kac
model.

(ii) From a mathematical point of view, we include K = 1 since it presents no
additional di!culties. Physically, it does not correspond to collisions between
the particles but can be understood as an interaction between a single particle
and its medium; a famous example is the thermostat model [7].

(iii) In order to accommodate certain models, we do not require conservation of
momentum to hold:

K\Biggr\rfloor 

i=1

v
\uparrow 
i =

K\Biggr\rfloor 

i=1

vi .(1.5)

For instance, the above-mentioned thermostat model is such an example. We
refer the reader to section 3 for details.

The collisional operators. In this setting, the transformation law TK defines the
collisional operators QK :

\Biggl\lceil K
i=1L

1(Rd) \downarrow L
1(Rd) present in the Boltzmann-type

equation (1.1) that we derive. More precisely, for K \uparrow 2 these operators are of the
form

QK(f1, . . . , fK)(v1)(1.6)

:=K

\Biggl[ 

SK\downarrow Rd(K\rightarrow 1)

\Biggr\rceil 
(\Downarrow K

\vargamma =1f\vargamma )(T
\varepsilon 
KV )\Uparrow (\Downarrow K

\vargamma =1f\vargamma )(V )
\Biggl\{ 
dbK(\varpi )dv2 . . . dvK
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5412 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

and analogously for K = 1, with SK \nearrow Rd(K\rightarrow 1) being replaced by S1. Notice above
that the kernel of QK is independent of the relative velocities and is integrable with
respect to the scattering angles. In the context of kinetic theory, such a model can
be interpreted as a gas of Maxwell molecules with an angular cut-o"".
Extension of the transformation law to N particles. Let K \rightarrow {1, . . . ,M} be a fixed
order of collision. We would like to define collisions of order K that happen in a
system of N particles; their velocities will be recorded by the so-called master vector

V = (v1, . . . , vN ) \rightarrow RdN . In order to select the particles that undergo a collision, let
us denote by

I(K) :=
\Biggr\} 
(i1, . . . , iK)\rightarrow {1, . . . ,N}K : ij \leftrightarrow = i\vargamma for j \leftrightarrow = \varsigma 

\Biggl\langle 
(1.7)

the set of all pairwise di""erent indices contained in {1, . . . ,N}K . Note that we do not
require the indices to be ordered; i.e., i1 < · · ·< iK may not hold.

Next, let us fix a collection of indices (i1, . . . , iK)\rightarrow I(K) and consider a permuta-
tion \vargamma \rightarrow SN satisfying \vargamma (1) = i1, . . . ,\vargamma (K) = iK . Then we will work extensively with
the new linear map

T
\varepsilon 
i1···iK := \vargamma \Leftarrow (T\varepsilon 

K \nearrow idRd(N\rightarrow K)) \Leftarrow \vargamma \rightarrow 1 :RdN \downarrow RdN
, \varpi \rightarrow SK .(1.8)

In words, the map T
\varepsilon 
i1···iK selects the particles labeled by indices (i1, . . . , iK) and

updates their velocities according to the transformation law (1.4), i.e., (vi1 , . . . , viK ) \Rightarrow \downarrow 
(v\uparrow i1 , . . . , v

\uparrow 
iK ), while leaving the rest invariant.

Remark 1.1. For the special case in which the indices are ordered, meaning that
i1 < · · ·< iK , one can write for V = (v1, . . . , vN )\rightarrow RdN the following:

T
\varepsilon 
i1···iKV = (v1, . . . , vi1\rightarrow 1, v

\uparrow 
i1 , vi1+1, . . . , viK\rightarrow 1, v

\uparrow 
iK , viK+1, . . . , vn) ,(1.9)

where (v\uparrow i1 , . . . , v
\uparrow 
iK )\searrow T

\varepsilon 
K(vi1 , . . . , viK )\rightarrow RdK

.

1.2. Generalized Kac model. As in Kac’s original approach for deriving a
binary Boltzmann equation, we shall construct a Markov process describing the N -
particle system and study the relevant master equation governing its dynamics. De-
tails of this construction can be found in section 4.

Our master equation is then given by
\Biggr\rangle 
\omega tfN =\#fN ,

fN (0) = fN,0 \rightarrow L
1
sym(RdN ),

(1.10)

where L1
sym stands for the space of L1 functions, invariant under permutation of their

variables. The generator \# : L1(RdN ) \downarrow L
1(RdN ) is the bounded linear operator

determined by the formula

\#f =N

M\Biggr\rfloor 

K=1

\varepsilon K

\Biggr\rfloor 

(i1,...,iK)\updownarrow I(K)

1

K!
\Bigg/ N
K

\Bigg\backslash 
\Biggl[ 

SK

\Bigg/ 
f \Leftarrow T\varepsilon 

i1···iK \Uparrow f
\Bigg\backslash 
dbK(\varpi ), f \rightarrow L

1(RdN );

(1.11)

we recall that the normalized coe!cients (\varepsilon K)MK=1 were first introduced in (1.1). We
note that, since \# is a bounded linear operator, the solution of the master equation
has regularity fN \rightarrow C

\nearrow 
t (L1

V ).

Remark 1.2. We would like to point out that the equation for \#f above includes
an average over the K particles that interact. Consequently, this operation produces

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

9/
25

 to
 1

28
.6

2.
21

6.
52

 . 
R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5413

a symmetrization of the distribution function f . This should not be confused with
the symmetry properties that the transformation law T

\varepsilon 
K may or may not have. For

more details, we refer the reader to the discussion contained in subsection 3.2.2.

1.3. Our results in a nutshell. Let us briefly explain the three main results
presented in this paper.

(1) Abstract convergence of hierarchies. Let (X(s))s\updownarrow N be a collection of Banach
spaces. For each N \rightarrow N, we consider the following system of equations:

\omega tf
(s)
N = CN

s,sf
(s)
N + · · ·+ CN

s,s+M\rightarrow 1f
(s+M\rightarrow 1)
N , s\rightarrow N,(1.12)

which we call the N-hierarchy. Here, each unknown f
(s)
N : [0, T ] \downarrow X

(s) is a time-
dependent, vector-valued quantity, and each operator CN

s,s+k :X
(s+k) \downarrow X

(s) is linear
and bounded, and its operator norm grows at most linearly with s \rightarrow N, uniformly
in N \rightarrow N. We show that if—in an appropriate sense and under additional mild
assumptions—the following limits hold,

lim
N\searrow \nearrow 

CN
s,s+k =C\nearrow 

s,s+k and lim
N\searrow \nearrow 

f
(s)
N (0) = f

(s)(0) \simeq s\rightarrow N, \simeq 0\nwarrow k\nwarrow M \Uparrow 1,

then it also holds for later times t\rightarrow [0, T ] that

lim
N\searrow \nearrow 

f
(s)
N (t) = f

(s)(t),

where the limiting objects satisfy the associated infinite system of equations

\omega tf
(s) = C\nearrow 

s,sf
(s) + · · ·+C\nearrow 

s,s+M\rightarrow 1f
(s+M\rightarrow 1)

, s\rightarrow N,

which we call the infinite hierarchy. See Definition 3, Definition 4 and Theorem 2.1
for details.

(2) BBGKY to Boltzmann hierarchy. Starting from the solution fN of the mas-
ter equation (1.10), we show that its sequence of marginals f

(s)
N (defined through a

partial trace procedure; see (2.19)) satisfies a finite system of equations of the form
(1.12), which we shall refer to as the BBGKY hierarchy. Under our assumptions on
the transformation law T

\varepsilon 
K and the kernel dbK(\varpi ), every condition of the abstract

convergence result is satisfied. Consequently, we can prove that there is convergence
to an infinite hierarchy, which we shall refer to as the Boltzmann hierarchy. A precise
statement can be found in Theorem 2.2.

(3) Propagation of chaos. This result concerns the derivation of the Boltzmann
equation (1.1). Namely, we assume that the initial data of the master equation fN,0 \rightarrow 
L
1
sym(RdN ) is such that its sequence of marginals (f (s)

N,0)s\updownarrow N converges weakly to a
tensor product (f\simeq s

0 )s\updownarrow N for some f0 \rightarrow L
1(Rd). We then prove that for all t \uparrow 0, it

holds in the weak sense that

lim
N\searrow \nearrow 

f
(s)
N (t, ·) = f(t, ·)\simeq s

,(1.13)

where f(t, v) is the solution of the Boltzmann equation (2.28), with initial data f0.
This is the content of Theorem 2.3.

Now we provide some context for our results with respect to applications and
previous works.

1. Why is our transformation law abstract? We decided to require that the trans-
formation law TK satisfies the general hypotheses (H1), (H2), and (H3).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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5414 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

This allows us to give several examples of transformation laws satisfying the
hypotheses (see section 3). Consequently, Theorems 2.2 and 2.3 apply in each
of those cases. This is in contrast with respect to most of previous works in
the field (see, e.g., [2, 23, 7]) that typically address specific examples.

2. Why do we have Theorem 2.1? We also remark that our derivation of the
generalized Boltzmann equation (1.1), as formulated in Theorem 2.2, is a
consequence of the abstract convergence result stated in Theorem 2.1. The
motivation for such a level of generality is two-fold: it allows us to identify
the estimates that are su!cient for the convergence process, and it provides
e!cient and robust notation that can be welcome when treating convergence
of hierarchies.

3. Why do we have Theorem 2.2, rather than just Theorem 2.3? In contrast to
Kac’s original approach [28], we prove propagation of chaos as a consequence
of convergence of hierarchies (Theorem 2.1). We are therefore able to handle
more general initial data. We do not require tensorized initial data.

4. What are the functional framework novelties of our approach? Studying con-
vergence of systems with finitely many particles to systems with infinitely
many particles has been successfully implemented in the context of deriva-
tion of nonlinear PDEs in many cases. These include works on derivation of
the nonlinear Schrodinger equations [21] as well as results on derivation of
inhomogeneous Boltzmann equations for hard spheres [23]. In this paper, we
study space homogeneous systems of Maxwell molecules with angular cut-o"".
Consequently, the relevant collision operators are bounded in L

1
v, which dic-

tates our main functional framework; see, e.g., Lemma 7.1 for a well-posedness
result. This is in contrast to the spaces that have been used in the deriva-
tion of the space inhomogeneous Boltzmann equation for hard spheres, which
are L

\nearrow 
x,v-based with exponential weights [23]. However, at the level of the

many-particle hierarchies, we employ similarly to [23] time-dependent expo-
nential weights (see the spaces Xµ in subsection 2.1). To the authors’ best
knowledge, this is the first application of L1

v-based spaces in the context of
the derivation of Boltzmann equations.

By completion of this work, the authors became aware of the works by Ueno [38]
and Tanaka [35, 36] in the late 1960’s. These works, as is the case with works on
Kac’s model, proved propagation of chaos for Markov processes driven by bounded
generators, which include some of our models. Their proofs are based on expansion
methods, pioneered by Kac [28] and then further developed by McKean [32]. As
mentioned above, our result is more general in the sense that we prove convergence
of hierarchies (Theorem 2.2) for more general initial data and obtain propagation of
chaos as a corollary. Hence the approaches can be understood as complementing each
other in terms of methods as well as the results.

Finally, let us mention that, in the last few decades, the problem of deriving an
explicit convergence rate for the limits (1.13) has received special attention and many
models have been investigated; see, e.g., [33, 34, 24, 16, 17, 18, 14]. Such a rate—
besides naturally depending on time t \rightarrow R, the number of particles N \rightarrow N, and the
order of the marginals s\rightarrow N—comes at the cost of requiring stronger assumptions on
both the initial data of the system and the test functions. Even though our methods
do not provide a convergence rate, we ask for minimal assumptions on these objects.

Open problems. Let us give a short list of future directions of investigation we
believe are interesting.

1. For the model at hand, we expect that a convergence rate in the limit N \downarrow \updownarrow 
for the marginals (1.13) can be derived, possibly depending nontrivially on

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5415

the total number of interactions M . One approach towards finding such a
convergence rate would be to employ the framework developed by Mischler
and Mouhot [33]. In this context, it would be interesting to understand the
stability properties of the PDE (1.1) with respect to Wasserstein metrics, as
pioneered by Tanaka [36]; see also the work of Cortez and Fontbona [18] and
the references therein for more recent developments.

2. It is well known that the inclusion of interactions in a gas of free particles
forces the system to reach statistical equilibrium. For the binary Kac model,
convergence to equilibrium can be understood in terms of the L2-spectral gap
of the (binary) linear operator \# = \#(N) that depends on particle number;
see, e.g., the work of Carlen, Carvalho, and Loss [11]. Hence, it is reasonable
to conjecture that the inclusion of additional collisions in the system would
enhance the convergence to equilibrium. Estimating the spectral gap and
its dependence on the order of collisions M would give insight into such a
phenomenon.

3. Recently in [3] it has been shown that the addition of ternary interactions
among particles that are already allowed to interact binary can in some in-
stances improve moment properties of the corresponding nonlinear equation.
The model (1.1) derived in the paper at hand could provide a relatively simple
framework for further investigating the question of propagation and genera-
tion of moments in nonlinear kinetic equations with higher-order interactions.

Organization of the paper. In section 2, we give precise statements of our three main
results. In section 3, a collection of examples that fit our framework are given, and a
few adaptations are mentioned. In section 4, we give the details of the construction
of the Markov process that gives rise to the master equation (1.10). Theorem 2.1 is
proven in section 5, whereas Theorems 2.2 and 2.3 are proven in section 6. Required
well-posedness results are proven in section 7, and we include Appendix A for a review
of the theory of Markov processes.

2. Main results. In this section, we state in detail our three main theorems.
The first one is an abstract convergence result; in order to state it, we dedicate
the next subsection to the necessary functional analytic spaces. This point of view
has the advantage of using only minimal estimates satisfied by collision operators.
Convergence then happens naturally under the right assumptions.

2.1. The functional framework. Let {X(s)}s\updownarrow N be a collection of Banach
spaces, and consider their direct sum

X :=
\Big/ 

s\updownarrow N
X

(s)
.(2.1)

For any given µ\rightarrow R, we consider the subspace of exponentially weighted sequences

Xµ :=
\Biggr\} 
F = (f (s))s\updownarrow N \rightarrow X : \swarrow F\swarrow µ := sup

s\updownarrow N
e
µs\swarrow f (s)\swarrow X(s) <\updownarrow 

\Biggl\langle 
.(2.2)

We introduce time dependence as follows. Fix T > 0, and consider the weight function

µ : [0, T ]\downarrow R , µ(t) :=\Uparrow t/T .(2.3)

We define the Banach space of uniformly bounded, time-dependent sequences as

Xµ := {F : [0, T ]\downarrow X : \swarrow F \swarrow µ := sup
t\updownarrow [0,T ]

\swarrow F (t)\swarrow µ(t) <\updownarrow }.(2.4)
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5416 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

2.1.1. The N-hierarchy. In this subsection, we introduce an abstract version of
the BBGKY hierarchy usually found in models that arise from kinetic theory. Before
we describe this in detail, let us introduce the following convenient notation: given
K = 1, . . . ,M , we work interchangeably with the lower case quantitiesm and k defined
through

M =m+ 1 and K = k+ 1.(2.5)

We assume that for N \uparrow M and s\rightarrow N we are given a collection of bounded linear
transformations

CN
s,s :X

(s) \Uparrow \downarrow X
(s)

.

.

.

CN
s,s+m :X(s+m) \Uparrow \downarrow X

(s)
,

which we refer to as the N-hierarchy operators. Intuitively, one may think of these
operators as the components of an infinite matrix, whose entries are nonzero only
within a distance m above the diagonal. Let us note that, in this framework, the
collection of operators {CN

s,s+k}
\nearrow ,m
s=1,k=0 may be infinite. In applications, however, they

are usually a finite collection; see, for example, Remark 6.2.
To the collection of operators mentioned above, we associate the following system

of equations, from now on referred to as the N-hierarchy:
\Biggr\rangle 
\omega tf

(s)
N = CN

s,sf
(s)
N + · · ·+ CN

s,s+mf
(s+m)
N ,

f
(s)
N (0) = f

(s)
N,0 \rightarrow X

(s)
,

s\rightarrow N.(2.6)

As will become clear during the proof of Theorem 2.1, it will be convenient to write the
N -hierarchy in mild form. To this end, we consider the linear operator CN :X \downarrow X

defined for F = (f (s))s\updownarrow N as

(CN
F )(s) := CN

s,sf
(s) + · · ·+CN

s,s+mf
(s+m)

.(2.7)

Definition 1. We say that FN = (f (s)
N )s\updownarrow N \rightarrow Xµ is a mild solution to the

N-hierarchy (2.6) with initial condition FN,0 = (f (s)
N,0)s\updownarrow N \rightarrow X0 if

FN (t) = FN,0 +

\Biggl[ t

0
CNFN (\varphi )d\varphi \simeq t\rightarrow [0, T ].(2.8)

We will work under the following assumption. We remind the reader that m =
M \Uparrow 1 is a fixed natural number.

Condition 1. There exist constants {Rk}mk=0, independent of s and N , such that

for all k= 0, . . . ,m there holds that

\swarrow CN
s,s+kf

(s+k)\swarrow X(s) \nwarrow Rk s\swarrow f (s+k)\swarrow X(s+k) , f
(s+k) \rightarrow X

(s+k)
.(2.9)

Under Condition 1, the following well-posedness result holds. A proof can be
found in section 7.

Proposition 2.1. Assume that the N -hierarchy operators satisfy Condition 1.
Then, for all T < (

\Biggr) 
Rke

k)\rightarrow 1
and FN,0 \rightarrow X0, there is a unique mild solution FN \rightarrow 

Xµ to the N -hierarchy (2.6). In addition, it holds that

\swarrow FN\swarrow µ \nwarrow (1\Uparrow \leftharpoonup 1)
\rightarrow 1\swarrow FN,0\swarrow 0, with \leftharpoonup 1 = T

m\Biggr\rfloor 

k=0

Rke
k \rightarrow (0,1) .(2.10)
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5417

2.1.2. The infinite hierarchy. If the N -hierarchy operators admit a formal
limit when N \downarrow \updownarrow , we would like to understand the solutions of the infinite hierarchy
they generate. To this end, for each s \rightarrow N we will consider a collection of bounded
linear transformations

C\nearrow 
s,s :X

(s) \Uparrow \downarrow X
(s)

.

.

.

C\nearrow 
s,s+m :X(s+m) \Uparrow \downarrow X

(s)
,

which we call the infinite hierarchy operators.

To these operators we associate the infinite hierarchy, defined as the infinite
system of equations given by

\Biggr\rangle 
\omega tf

(s) = C\nearrow 
s,sf

(s) + · · ·+C\nearrow 
s,s+mf

(s+m)
,

f
(s)(0) = f

(s)
0 \rightarrow X

(s)
,

s\rightarrow N.(2.11)

The mild form of the infinite hierarchy is defined analogously. Namely, we consider
the linear operator C\nearrow :X \downarrow X defined for F = (f (s))s\updownarrow N as

(C\nearrow 
F )(s) := C\nearrow 

s,sf
(s) + · · ·+C\nearrow 

s,s+mf
(s+m)

.(2.12)

Definition 2. We say that F = (f (s))s\updownarrow N \rightarrow Xµ is a mild solution to the infinite

hierarchy (2.11) with initial condition F0 = (f (s)
0 )s\updownarrow N \rightarrow X0 if

F (t) = F0 +

\Biggl[ t

0
C\nearrow F (\varphi )d\varphi , t\rightarrow [0, T ].(2.13)

We shall assume that the infinite hierarchy operators satisfy an estimate analogous
to the one introduced in Condition 1. Namely, we have the following.

Condition 2. There exist constants {\leftharpoondown k}mk=0 such that for all k = 0, . . . ,m and

for all s\rightarrow N

\swarrow C\nearrow 
s,s+kf

(s+k)\swarrow X(s) \nwarrow \leftharpoondown k s\swarrow f (s+k)\swarrow X(s+k) , f
(s+k) \rightarrow X

(s+k)
.(2.14)

The following well-posedness result is then available. A proof can be found in
section 7.

Proposition 2.2. Assume that the infinite hierarchy operator C\nearrow 
given in

(2.12) satisfies Condition 2. Then, for all T < (
\Biggr) 

\leftharpoondown ke
k)\rightarrow 1

and F0 \rightarrow X0, there is

a unique mild solution F \rightarrow Xµ to the infinite hierarchy (2.11). In addition, it holds

that

\swarrow F \swarrow µ \nwarrow (1\Uparrow \leftharpoonup 2)
\rightarrow 1\swarrow F0\swarrow 0 , with \leftharpoonup 2 = T

m\Biggr\rfloor 

k=0

\leftharpoondown ke
k \rightarrow (0,1).(2.15)

Remark 2.1. For the rest of the article, we ask the time interval [0, T ] to satisfy
the following condition:

T <m
\rightarrow 1

T\uparrow with T\uparrow :=min

\Big\backslash 
\left( 

\right) 

\left[ 
m\Biggr\rfloor 

k=0

Rke
k

\right] \rightarrow 1

,

\left[ 
m\Biggr\rfloor 

k=0

\leftharpoondown ke
k

\right] \rightarrow 1
 
 

 .(2.16)
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5418 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

Here, T\uparrow stands for the maximal time for which we can prove simultaneous well-
posedness of the two hierarchies; see Propositions 2.1 and 2.2. In particular, T\uparrow is
independent of the initial conditions. Consequently, an iteration procedure for proving
convergence for all t \rightarrow R is possible, provided global a priori bounds are satisfied by
the solutions of the finite and infinite hierarchies, respectively. For the Kac model,
these bounds follow from the fact that the solution of the master equation is the
density of a probability measure. The extra factor 1/m will be used to ensure that
certain integral remainder terms converge to zero. See section 5 for details.

2.2. Convergence of hierarchies. The notion of convergence that we are going
to study is known in the literature as convergence of observables. Before we describe
it, we introduce some notation. The bracket \propto ·, ·\prime stands for the pairing between X

(s)

and its dual X(s)\uparrow \searrow (X(s))\uparrow .

Definition 3. We introduce the two following notions of convergence:

1. The sequence (FN )\nearrow N=1 \rightarrow X converges pointwise weakly to F \rightarrow X, abbreviated

FN
pw\Uparrow \Uparrow \downarrow F, if

lim
N\searrow \nearrow 

\propto f (s)
N ,\varrho \prime = \propto f (s) ,\varrho \prime \simeq s\rightarrow N, \simeq \varrho \rightarrow X

(s)\uparrow 
,(2.17)

where FN = (f (s)
N )s\updownarrow N and F = (f (s))s\updownarrow N .

2. The sequence FN : [0, T ] \downarrow X converges in observables to F : [0, T ] \downarrow X if

for any s\rightarrow N and any \varrho \rightarrow X
(s)\uparrow 

lim
N\searrow \nearrow 

 
f (s)
N (t),\varrho 

\left\{ 
=
 
f (s)(t),\varrho 

\left\{ 
,(2.18)

uniformly in t\rightarrow [0, T ], where FN = (f (s)
N )s\updownarrow N and F = (f (s))s\updownarrow N .

Let us now make precise the notion in which we understand convergence from the
N -hierarchy operators CN to the infinite hierarchy operators C\nearrow .

Definition 4. Let X be the space introduced in (2.1). We say that a sequence of

operators T
N :X \downarrow X converges to T :X \downarrow X if for any sequence FN \rightarrow X such that

FN
pw\Uparrow \Uparrow \downarrow F it holds true that T

N
FN

pw\Uparrow \Uparrow \downarrow TF .

The following result is our first main theorem; it gives conditions under which
convergence in observables occurs, from the finite to the infinite hierarchy.

Theorem 2.1 (convergence of hierarchies). Assume that the N -hierarchy op-

erators CN
satisfy Condition 1 and that the infinite hierarchy operators C\nearrow 

satisfy

Condition 2. Let FN \rightarrow Xµ be a mild solution, corresponding to initial data FN,0 \rightarrow X0,

of the N -hierarchy (2.8), and let F \rightarrow Xµ be a mild solution, corresponding to initial

data F0 \rightarrow X0, of the infinite hierarchy (2.13). In addition, assume that

(A1) FN,0
pw\Uparrow \Uparrow \downarrow F0,

(A2) supN\Leftarrow 1 \swarrow FN,0\swarrow 0 <\updownarrow , and

(A3) CN
converges to C\nearrow 

in the sense of Definition 4.

Then FN converges in observables to F .

2.3. BBGKY and Boltzmann hierarchies. The next result of this paper
concerns the application of Theorem 2.1 to our generalization of the Kac model. In
order to state it, let us first introduce the marginals of the solution of the master
equation (1.10). Indeed, we consider the following trace map:

Trs+1,...,N :L1
sym(RdN )\downarrow L

1
sym(Rds), s\rightarrow N,(2.19)
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5419

where we recall that L1
sym stands for L1 functions invariant under permutation of their

variables. The trace map is then defined for f \rightarrow L
1
sym(Rd) as

Trs+1,...,N [f ](Vs)(2.20)

=

\Big\backslash 
\right\} \left( 

\right\} \right) 

 
Rd(N\rightarrow s) f(Vs, vs+1, . . . , vN )dvs+1 · · ·dvN , s <N,

f(V ), s=N,

0, s >N,

Vs \rightarrow Rds
.

In particular, note that the trace map preserves permutational symmetry.
Let fN be the solution of the master equation (1.10). We now introduce its

marginals as the sequence of functions

f
(s)
N := Trs+1,...,N [fN ], s\rightarrow N.(2.21)

One may show that the dynamics of the sequence of sth marginals fits the abstract
functional framework introduced above. Namely, by letting X

(s) =L
1
sym(Rds) we will

show in section 6 that f (s)
N satisfies

\omega tf
(s)
N = CN

s,sf
(s)
N + · · ·+ CN

s,s+mf
(s+m)
N \simeq s\rightarrow N,(2.22)

where CN
s,s+k :L

1
sym(Rd(s+k))\downarrow L

1
sym(Rds) are operators that can be computed explic-

itly. We shall refer to (2.22) as the BBGKY hierarchy.

In order to display the structure of the operators {CN
s,s+k}

\nearrow ,m
s=1,k=0, let us first

introduce some notation that will be used for the rest of the article.

Notation. Let s \rightarrow N and k \rightarrow {0, . . . ,m}. Given Vs = (v1, . . . , vs) \rightarrow Rds
, vs+1, . . . ,

vs+k \rightarrow Rd
, an index i \rightarrow {1, . . . , s}, and a scattering angle \varpi \rightarrow SK , we record the pre-

and postcollisional velocities by the following vectors in Rd(s+k):

Vs+k := (Vs ; vs+1 , . . . , vs+k ),(2.23)

V
\uparrow i
s+k := (v1, . . . , v

\uparrow 
i , . . . , vs ; v

\uparrow 
s+1, . . . , v

\uparrow 
s+k ),(2.24)

where (v\uparrow i , v
\uparrow 
s+1, . . . , v

\uparrow 
s+k)\searrow T

\varepsilon 
K(vi, vs+1, . . . , v

\uparrow 
s+1)\rightarrow RdK .

The operators that drive the BBGKY hierarchy then take the form (recall that
K = k+ 1)

(CN
s,s+kf

(s+k))(Vs)

(2.25)

=
\varepsilon K N\Bigg/ N

K

\Bigg\backslash 
 
N\Uparrow s

K\Uparrow 1

 s\Biggr\rfloor 

i=1

\Biggl[ 

SK\downarrow Rdk

\Biggr\rceil 
f
(s+k)(V \uparrow i

s+k)\Uparrow f
(s+k)(Vs+k)

\Biggl\{ 
dbK(\varpi )dvs+1 . . .dvs+k

+ RN
s,s+k.

The operator RN
s,s+k is a reminder term defined in (6.49) and whose explicit form we

do not display here. Importantly, we will also show in section 6 that the operators
CN
s,s+k satisfy Condition 1.

In section 6, we will show that the operators CN
s,s+k given by (2.25) converge as

N \downarrow \updownarrow to the operators C\nearrow 
s,s+k :L

1
sym(Rd(s+k))\downarrow L

1
sym(Rds) given by

(C\nearrow 
s,s+kf

(s+k))(Vs)(2.26)

= \varepsilon KK

s\Biggr\rfloor 

i=1

\Biggl[ 

SK\downarrow Rdk

\Biggr\rceil 
f
(s+k)(V \uparrow i

s+k)\Uparrow f
(s+k)(Vs+k)

\Biggl\{ 
dbK(\varpi )dvs+1 . . .dvs+k,
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5420 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

where Vs+k and V
\uparrow i
s+k are as in (2.23) and (2.24), respectively. We verify that these

operators satisfy Condition 2 (see Lemma 6.4) and therefore fit the abstract functional
framework.

We are now ready to introduce the Boltzmann hierarchy as the infinite hierarchy
(2.11) with the operators C\nearrow 

s,s+k given by (2.26):

\omega tf
(s) = C\nearrow 

s,sf
(s) + · · ·+ C\nearrow 

s,s+mf
(s+m)

.(2.27)

Our main result concerns the limit from the BBGKY to the Boltzmann hierarchy.

Theorem 2.2 (from BBGKY to Boltzmann). Let X
(s) = L

1
sym(Rds). Let FN

and F be mild solutions to the BBGKY hierarchy (2.22) and Boltzmann hierarchy

(2.27), with initial data FN,0 \rightarrow X0 and F0 \rightarrow X0, respectively. Additionally, assume

that FN,0
pw\Uparrow \Uparrow \downarrow F0 and that supN\Leftarrow 1 \swarrow FN,0\swarrow 0 < \updownarrow . Then FN converges in observables

to F .

We prove Theorem 2.2 as a corollary of Theorem 2.1; its proof can be found in
section 6.

2.4. The Boltzmann equation. We start this subsection by noting that the
ansatz (f\simeq s)s\updownarrow N is a solution of the Boltzmann hierarchy (2.27) if f \rightarrow C([0, T ];L1(Rd))
solves the following nonlinear equation:

\Biggr\rangle 
\omega tf = \varepsilon 1Q1(f) + · · ·+ \varepsilon MQM (f, . . . , f),

f(0, ·) = f0 \rightarrow L
1(Rd) ,

(2.28)

where the collision operators QK : L1(Rd)K \downarrow L
1(Rd) were defined in the introduc-

tion; see (1.6). We use the following notion of mild solution.

Definition 5. We say that f \rightarrow C([0, T ];L1(Rd)) is a mild solution of (2.28)
corresponding to the initial condition f0 \rightarrow L

1(Rd) if

f(t) = f0 +

\Biggl[ t

0

M\Biggr\rfloor 

K=1

\varepsilon KQK

\Biggr\rceil 
f(s), . . . , f(s)

\Biggl\{ 
ds \simeq t\rightarrow [0, T ].(2.29)

Global well-posedness for (2.28) was studied in [4] in a slightly di""erent setting.
In section 7, we adapt their proof to our situation and obtain the following result.

Proposition 2.3 (global well-posedness). For all f0 \rightarrow L
1(Rd) with

 
Rd f0(v)dv=

1 and \swarrow f0\swarrow L1 \nwarrow 1, there is a unique mild solution f \rightarrow C(R,L1(Rd)) to the Boltzmann

equation (2.28). In addition,
 
Rd f(t, v)dv= 1 and \swarrow f(t)\swarrow L1 \nwarrow 1 for all t\rightarrow R.

Remark 2.2. Note that the operators QK are continuous in L
1 (see, for instance,

Lemma 7.1). Therefore the map t \Rightarrow \downarrow QK(f(t), . . . , f(t)) \rightarrow L
1 is continuous and the

fundamental theorem of calculus shows that the global mild solution f of Proposi-
tion 2.3 given by (2.29) is of class C1.

Now we are ready to state our result concerning propagation of chaos for the
master equation (1.10). Namely, we prove the following result.

Theorem 2.3 (propagation of chaos). Let fN,0 \rightarrow L
1
sym(RdN ) be nonnegative and

normalized to unity:

\swarrow fN,0\swarrow L1 =

\Biggl[ 

RdN

fN,0(V )dV = 1.
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5421

Further, assume that its sequence of marginals (f (s)
N,0)s\updownarrow N converges pointwise weakly

to the tensor product (f\simeq s
0 )s\updownarrow N for some f0 \rightarrow L

1(Rd). Let fN (t) be the solution of

the master equation (1.10), with initial data fN,0. Then, for all t \uparrow 0, s \rightarrow N, and

\varrho s \rightarrow L
\nearrow (Rds) it holds that

lim
N\searrow \nearrow 

\propto f (s)
N (t, ·),\varrho s\prime =

 
f(t, ·)\simeq s

,\varrho s

 
,(2.30)

where f(t, v) is the solution of the Boltzmann equation (2.28), with initial data f0.

Remark 2.3. Since the solution of the master equation fN (t) is the probability
density function of a probability measure (see section 4), it holds that

\swarrow fN (t)\swarrow L1 =

\Biggl[ 

RdN

fN (t, V )dV = 1 \simeq t\rightarrow R(2.31)

and similarly for its sequence of marginals f (s)
N (t).

3. Applications. In this section, we describe a set of examples that fit the
framework introduced in section 1 and further developed in section 2. Namely, they
satisfy (H1), (H2), and (H3), and Theorems 2.2 and 2.3 can be applied to each of
those models. Some of the examples we consider have already been studied in the
literature, and we recover existing results (see examples (1) and (2) below). Example
(3), on the other hand, is new.

The following formula is helpful when trying to verify the symmetric condition
(H3). Let us regard a linear map T : RdK \downarrow RdK as a collection of blocks T =
[Tij ]Ki,j=1, where each Tij :Rd \downarrow Rd is linear. Then it holds that

\Bigg/ 
\vargamma \Leftarrow T \Leftarrow \vargamma \rightarrow 1

\Bigg\backslash 
i,j

= T\omega (i),\omega (j), i, j = 1, . . . ,K \vargamma \rightarrow SK .(3.1)

3.1. Examples. (1) Binary collisions. Let K = 2, and take SK = Sd\rightarrow 1
1 , the

(d\Uparrow 1)-dimensional unit sphere. The transformation law TB is then defined according
to the formulae

v
\uparrow 
1 = v1 + \propto \varpi , v2 \Uparrow v1\prime \varpi ,(3.2)

v
\uparrow 
2 = v2 \Uparrow \propto \varpi , v2 \Uparrow v1\prime \varpi (3.3)

for \varpi \rightarrow Sd\rightarrow 1
1 . It is straightforward to verify that TB is an involution that conserves

both energy and momentum. Hence, (H1) and (H2) are verified. Furthermore, we
may write in block form

T
\varepsilon 
B =

 
1d \Uparrow \propto ·,\varpi \prime \varpi \propto ·,\varpi \prime \varpi 

\propto ·,\varpi \prime \varpi 1d \Uparrow \propto ·,\varpi \prime \varpi 

 
, \varpi \rightarrow Sd\rightarrow 1

1 ,(3.4)

where 1d is the d-dimensional identity. In particular, it follows that (T\varepsilon 
B)11 = (T\varepsilon 

B)22
and (T\varepsilon 

B)12 = (T\varepsilon 
B)21. This observation, combined with (3.1), implies that \vargamma \Leftarrow T\varepsilon 

B\Leftarrow \vargamma \rightarrow 1 =
T

\varepsilon 
B for any \vargamma \rightarrow S2, which in turn implies (H3).

(2) Kac’s toy model. In dimension d = 1, Kac [28] originally considers S2 = (\Uparrow \rightharpoonup ,\rightharpoonup )
and the transformation law (v1, v2) \Rightarrow \downarrow T

\varpi 
toy(v1, v2) determined by the matrix

T
\varpi 
toy =

 
cos\leftharpoonup sin\leftharpoonup 
\Uparrow sin\leftharpoonup cos\leftharpoonup 

 
for \leftharpoonup \rightarrow (\Uparrow \rightharpoonup ,\rightharpoonup ).(3.5)
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5422 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

Since this is an isometry, it satisfies (H1). We now proceed to verify (H2) and (H3).
To this end, we calculate that for \vargamma = (1 2)\rightarrow S2 and \leftharpoonup \rightarrow (\Uparrow \rightharpoonup ,\rightharpoonup ) it holds that

\vargamma \Leftarrow T \varpi 
toy \Leftarrow \vargamma \rightarrow 1 = [T \varpi 

toy]
\rightarrow 1 =

 
cos\leftharpoonup \Uparrow sin\leftharpoonup 
+sin\leftharpoonup cos\leftharpoonup 

 
= T

\rightarrow \varpi 
toy .(3.6)

Consequently, we find that \vargamma \Leftarrow T \varpi 
toy \Leftarrow \vargamma \rightarrow 1 = (T \varpi 

toy)
\rightarrow 1 \leftrightarrow = T

\varpi 
toy for general \leftharpoonup . However,

a change of variables \leftharpoonup \Rightarrow \downarrow \Uparrow \leftharpoonup shows that (H2) and (H3) are verified, provided we
consider an interaction kernel of the form db2(\leftharpoonup ) = f(\leftharpoonup )d\leftharpoonup , where f \uparrow 0 is integrable
and even f(\leftharpoonup ) = f(\Uparrow \leftharpoonup ). These are exactly the conditions considered originally by Kac
[28].
(3) Symmetric collisions of order K. Consider the set of scattering angles

SK = {\varpi = (\varpi 1, . . . ,\varpi K)\rightarrow RdK | \varpi 2
1 + · · ·+ \varpi 

2
K = 1}(3.7)

endowed with a probability measure of the form b(\varpi )d\varpi , where (b \Leftarrow \vargamma )(\varpi ) = b(\varpi ) for
all \vargamma \rightarrow SK . We consider the transformation law TK given by

v
\uparrow 
i = vi \Uparrow 2

K\Biggr\rfloor 

\vargamma =1

\propto \varpi \vargamma , v\vargamma \prime \varpi i , i\rightarrow {1, . . . ,K}.(3.8)

A straightforward calculation shows that TK is an involution that conserves energy.
In addition, the block form representation [T\varepsilon 

K ]i,j = \rightharpoondown i,j1d\Uparrow 2 \propto \varpi j , ·\prime \varpi i and (3.1) imply
that for all \vargamma \rightarrow SK it holds that

\vargamma \Leftarrow T\varepsilon 
K \Leftarrow \vargamma \rightarrow 1 = T

\omega (\varepsilon )
K , \varpi \rightarrow SK .(3.9)

Since the underlying probability measure is invariant under the change of variables
\varpi \Rightarrow \downarrow \vargamma 

\rightarrow 1
\varpi , one verifies that hypothesis (H3) is satisfied. Note that TK does not

conserve momentum. However, if the space SK is replaced by

S
\downarrow 

K = {\varpi \rightarrow SK |\varpi 1 + · · ·+ \varpi K = 0},(3.10)

one may easily verify that conservation of momentum holds.

3.2. Other models. In our results, we always assume that (H1), (H2), and
(H3) are satisfied. We note that there exist models in the literature that fail to
satisfy at least one of these conditions and we give two such examples. However, our
methods can be adapted to cover theses cases.

3.2.1. Bobylev–Cercignani–Gamba model. For K \nwarrow M , suppose that one
is given scalar velocities (v1, . . . , vK) \rightarrow RK . In [4], the authors propose a model for
economic games in which the particles (or players) undergo a transformation law Ta,b

of the form

v
\uparrow 
i = avi + b

\Biggr\rfloor 

j \Rightarrow =i

vj , i\rightarrow {1, . . . ,K},(3.11)

where the real-valued coe!cients a and b are random variables on a probability space
(\#,F ,P). Note that even when K = 2, this transformation fails to conserve energy
unless the coe!cients are heavily constrained; conservation of energy would force
|a2\Uparrow b

2|= 1. Note, however, that the relation [\vargamma \Leftarrow Ta,b\Leftarrow \vargamma \rightarrow 1]i,j = [Ta,b]\omega (i),\omega (j) = [Ta,b]i,j
implies that condition (H3) is verified, independently of the underlying probability
space or the specific structure of the coe!cients a and b.
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5423

One may still consider the situation in which d(\varpi ) := |detT\varepsilon 
a,b| > 0, that is, the

case for which Ta,b is invertible. By keeping track of the d(\varpi ) factor, we expect that
results analogous to Theorems 2.2 and 2.3 can be proven, leading to a Boltzmann
equation (2.28), with a collisional operator given by

QK(f1, . . . , fK)(v1)

:=K

\Biggl[ 

SK\downarrow R(K\rightarrow 1)

 
1

d(\varpi )
(\Downarrow K

\vargamma =1f\vargamma )
\Bigg/ 
[Ta,b]

\rightarrow 1
V
\Bigg\backslash 
\Uparrow (\Downarrow K

\vargamma =1f\vargamma )(V )

 
dbK(\varpi )dv2 . . . dvK .

3.2.2. Nonsymmetric ternary collisions. Let us focus on the ternary case
K = 3 and consider the (2d\Uparrow 1)-unit sphere S3 := S2d\rightarrow 1 with the usual surface measure
d\varpi . As noted in [1], the relevant transformation law Tter is defined as

v
\uparrow 
1 = v1 \Uparrow c(v1, v2, v3;\varpi )(\varpi 1 + \varpi 2),

(3.12)

v
\uparrow 
2 = v2 + c(v1, v2, v3;\varpi )\varpi 1, c(v1, v2, v3;\varpi ) =

\propto \varpi 1, v2 \Uparrow v1\prime + \propto \varpi 2, v3 \Uparrow v1\prime 
1 + \propto \varpi 1,\varpi 2\prime 

,

(3.13)

v
\uparrow 
3 = v3 + c(v1, v2, v3;\varpi )\varpi 2,

(3.14)

where \varpi = (\varpi 1,\varpi 2) \rightarrow S2d\rightarrow 1. Despite conserving energy and momentum, hypothesis
(H3) is not satisfied for this model. Let us further explain. We note that symmetries
can be understood at two levels.

1. At the level of the collisional laws of the particles. This is a condition on a
map T :RdK \downarrow RdK of K variables. In this level, the interaction in [1] is not
symmetric since there is one preferred particle. One can check by hand that
the ternary interaction from [1] does not satisfy (H3).

2. At the level of the evolution of the distribution function. In this level, sym-
metry of the function is recovered by the “average” over the K variables.
However, symmetry at the particle level is not: at each interaction, particles
still interact asymmetrically.

We expect, however, that our methods can be adapted to show that similar results
hold true, leading to a Boltzmann equation with a collisional operator of the form

Q3 =Q
(1)
3 + 2Q(2)

3 ,

where, for f \rightarrow L
1(R), we have

Q
(1)
3 [f ](v1) =

\Biggl[ 

S3\downarrow R2

\Biggr\rceil 
f(v\uparrow 1)f(v

\uparrow 
2)f(v

\uparrow 
3)\Uparrow f(v1)f(v2)f(v3)

\Biggl\{ 
db(\varpi )dv2dv3,(3.15)

Q
(2)
3 [f ](v2) =

\Biggl[ 

S3\downarrow R2

\Biggr\rceil 
f(v\uparrow 1)f(v

\uparrow 
2)f(v

\uparrow 
3)\Uparrow f(v1)f(v2)f(v3)

\Biggl\{ 
db(\varpi )dv1dv3.(3.16)

Namely, the strategy of the proof will follow along the same lines but would require
keeping track of more complex combinatorics.

4. The master equation. In order to accommodate higher-order interactions
among particles, in this section we construct a new Markov process. We are inspired
by the pioneering work of Kac [28], where the author outlined the procedure for
constructing the Markov process corresponding to binary interactions. Our Markov
process then leads to the master equation (1.10).
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5424 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

For simplicity of exposition, we work with Euclidean space RdN , instead of re-
stricting ourselves to the energy spheres

EN := {V = (v1, . . . , vN )\rightarrow RdN : |V |=
\infty 
N}.(4.1)

Our methods can be easily adapted to incorporate restrictions to EN (since conser-
vation of kinetic energy satisfied by the transformation law leaves the energy spheres
invariant).

First, we describe the heuristics behind constructing our Markov process. As
noted above, we incorporate higher-order collisions given by the transformation law
(1.4). Then we give a sketch of the mathematical details of its construction as a jump
process. We refer the reader to Appendix A for a brief review of the theory of Markov
processes, including the notation that will be extensively used in this section.

In order to construct the continuous time Markov process VN , we will first con-
struct the simpler discrete time process YN , where YN (n) represents the state of
our N -particle system after the nth collision. Recall that we fix (SK , TK , bK) with
K = 1, . . . ,M as introduced in section 1. Fix positive parameters {\varepsilon K}MK=1 that
satisfy the normalization condition

\varepsilon 1 + · · ·+ \varepsilon M = 1.(4.2)

Here the parameters \varepsilon K represent the probability that a given collision will be of
order K. Given the distribution of YN (n), we obtain the distribution of YN (n+ 1),
the system after one collision, by following the steps:

1. Select K \rightarrow {1, . . . ,M} with probability \varepsilon K . This determines the order of the
system’s next collision.

2. Select which K of the N particles will undergo this collision by choosing an
ordered index (i1, . . . , iK) uniformly from IK . This choice has probability

(K!)\rightarrow 1
\Bigg/ N
K

\Bigg\backslash \rightarrow 1
.

3. Select the impact parameter \varpi \rightarrow SK according to the law dbK(\varpi ).
4. Update the velocities as follows:

YN (n+ 1) = T
\varepsilon 
i1,...,iK (v1, . . . , vN ),

where T
\varepsilon 
i1,...,iK is given by (1.8).

If we start with a given initial distribution YN (0) of our N -particle system, we can
formally construct our process YN completely by repeating the above steps.

To construct YN rigorously , we introduce a Markov transition function acting on
V \rightarrow RdN and a Borel set B \rightarrow B(RdN )

(4.3)

µN (V,B)

:=
M\Biggr\rfloor 

K=1

\varepsilon K

\Biggr\rfloor 

(i1,...,iK)

1

K!
\Bigg/ N
K

\Bigg\backslash 
\Biggl[ 

SK
1B(T

\varepsilon 
i1,...,iKV )dbK(\varpi ) , V \rightarrow RdN

, B \rightarrow B(RdN ),

whose (bounded) generator PN :Cb(RdN )\downarrow Cb(RdN ) satisfies

(PN\varrho )(V ) :=

\Biggl[ 

RdN

\varrho (U)µN (V,dU)(4.4)

=
M\Biggr\rfloor 

K=1

\varepsilon K

\Biggr\rfloor 

(i1,...,iK)

1

K!
\Bigg/ N
K

\Bigg\backslash 
\Biggl[ 

SK
\varrho (T\varepsilon 

i1,...,iKV )dbK(\varpi ) V \rightarrow RdN
.
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5425

Given fN,0 \rightarrow Prob(RdN ), the space of probability measures on RdN , by Proposi-
tion A.2 we can find a probability space (\$,F ,P) and a Markov chain {YN (n)}\nearrow n=0 :
\$\nearrow N0 \downarrow RdN whose transition function is µN and whose initial law is determined
by fN,0. In other words, it holds that for all n\rightarrow N0 and B \rightarrow B(RdN )

P[YN (n+ 1)\rightarrow B|YN (0), . . . ,YN (n)] = µN (YN (n),B),(4.5)

P[YN (0)\rightarrow B] = fN,0(B).

By computing the one step transition probability for YN , it can be checked that µN

given in (4.3) is the correct transition function for our process YN .
In order to introduce continuous time into our process, consider an independent

Poisson process {M(t)}\nearrow t=0 with rate N (see Definition 14 in Appendix A) and define
the Markov process VN (t) as the jump process

VN (t) :=YN (M(t)).(4.6)

In particular, it can be shown that this jump process corresponds to the transition
semigroup {T (t)}t\Leftarrow 0 whose (bounded) generator is

LN :=N(PN \Uparrow id) :Cb(RdN )\downarrow Cb(RdN ),(4.7)

where PN is defined in (4.4). The reader is referred to section 2.2 of [22] for details.
Our starting point for the derivation of the Boltzmann equation (1.1) will be the

dynamics associated to the law of the process VN (t). More precisely, let us denote its
law by FN (t, ·). This is a probability measure on RdN , invariant under permutations,
with the symmetric property being equivalent to the particles being indistinguishable.
We make the additional assumption that the initial data has a symmetric density
fN,0 \rightarrow L

1
sym(RdN ). Consequently, FN has a density fN that evolves according to the

master equation

\Biggr\rangle 
\omega tfN =\#fN ,

fN (0) = fN,0 \rightarrow L
1
sym(RdN ),

(4.8)

where the generator \# : L1
sym(RdN ) \downarrow L

1
sym(RdN ) is the bounded linear operator

determined by the formula

\#f =N

M\Biggr\rfloor 

K=1

\varepsilon K

\Biggr\rfloor 

i1···iK

1

K!
\Bigg/ N
K

\Bigg\backslash 
\Biggl[ 

SK

\Bigg/ 
f \Leftarrow T\varepsilon 

i1,...,iK \Uparrow f
\Bigg\backslash 
dbK(\varpi ), f \rightarrow L

1
sym(RdN ).

(4.9)

Remark 4.1 (relationship to the deterministic setting). The Liouville equation
is the deterministic analogue of the master equation (4.8). Furthermore, N is chosen
for the rate of the Poisson process M(t) in (4.6) to ensure a constant number of
collisions per unit time per particle in the limit N \downarrow \updownarrow and is analogous to the
Boltzmann–Grad scaling in the deterministic setting.

5. Proof of Theorem 2.1. Throughout this section, we assume that the es-
timates contained in Conditions 1 and 2 are satisfied, together with assuming that
T > 0 satisfies (2.16). First, we introduce some notation and prove some preliminary
inequalities.
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5426 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

In what follows, we will be using the same notation introduced in subsection 2.1.
For s\rightarrow N, let us introduce the canonical projections

\rightharpoonup s :X =
\Big/ 

r\updownarrow N
X

(r) \Uparrow \downarrow X
(s)(5.1)

defined for F = (f (s))s\updownarrow N \rightarrow X as \rightharpoonup s(F ) := f
(s). In particular, in terms of the objects

F : [0, T ] \downarrow X and FN : [0, T ] \downarrow X, convergence of observables (see Definition 3) is
equivalent to the following statement: for all s\rightarrow N and for all \varrho s \rightarrow X

(s)\uparrow , there holds
that

lim
N\searrow \nearrow 

\propto \rightharpoonup sFN (t),\varrho s\prime = \propto \rightharpoonup sF (t),\varrho s\prime (5.2)

uniformly in t\rightarrow [0, T ].
Let CN

,C\nearrow :X \downarrow X be the linear transformations introduced in (2.7) and (2.12),
respectively. The introduction of the projections (\rightharpoonup s)s\updownarrow N will be particularly useful
for proving norm estimates for the sth components of the iterated powers of C\nearrow (CN ,
resp.), namely for the operators

(C\nearrow )n =C\nearrow \Leftarrow · · · \Leftarrow C\nearrow 
    

n times

, n\rightarrow N.(5.3)

More precisely, the following lemma holds true.

Lemma 5.1. (a) If CN
satisfies Condition 1, then for every \varsigma \rightarrow N, s \rightarrow N, and

F \rightarrow X there holds that

\swarrow \rightharpoonup s

\Biggr] 
(CN )\vargamma F

\Biggl\lfloor 
\swarrow X(s) \nwarrow 

m\Biggr\rfloor 

k1=0

· · ·
m\Biggr\rfloor 

k\omega =0

s(s+ k1) · · · (s+ k1 + · · ·+ k\vargamma \rightarrow 1)(5.4)

\nearrow Rk1
· · ·Rk\omega \swarrow \rightharpoonup s+k1···+k\omega F\swarrow X(s+k1···+k\omega ) .

(b) If C\nearrow 
satisfies Condition 2, then for every \varsigma \rightarrow N, s \rightarrow N, and F \rightarrow X there holds

that

\swarrow \rightharpoonup s

\Biggr] 
(C\nearrow )\vargamma F

\Biggl\lfloor 
\swarrow X(s) \nwarrow 

m\Biggr\rfloor 

k1=0

· · ·
m\Biggr\rfloor 

k\omega =0

s(s+ k1) · · · (s+ k1 + · · ·+ k\vargamma \rightarrow 1)(5.5)

\nearrow \leftharpoondown k1
· · ·\leftharpoondown k\omega \swarrow \rightharpoonup s+k1···+k\omega F\swarrow X(s+k1···+k\omega ) .

Proof. We shall only present a proof for (b); that of (a) is identical. In what
follows, we omit the subscript X

(s) from the norms \swarrow · \swarrow X(s) . The proof goes by
induction on \varsigma \rightarrow N. Indeed, for \varsigma = 1 let s \rightarrow N, let F = (f (s))s\updownarrow N \rightarrow X, and estimate
using Condition 2 that

\swarrow \rightharpoonup s

\Biggr] 
C\nearrow 

F
\Biggl\lfloor 
\swarrow = \swarrow C\nearrow 

s,sf
(s) + · · ·+C\nearrow 

s,s+mf
(s+m)\swarrow \nwarrow s

\Bigg/ 
\leftharpoondown 0\swarrow f (s)\swarrow + · · ·+ \leftharpoondown m\swarrow f (s+m)\swarrow 

\Bigg\backslash 

= s

\Biggr\rfloor 
\leftharpoondown k\swarrow \rightharpoonup s+k F\swarrow .(5.6)

Assume now that the result holds up to \varsigma \rightarrow N. Then, for s \rightarrow N and F \rightarrow X, we have
that
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5427

\swarrow \rightharpoonup s

\Biggr] 
(C\nearrow )\vargamma +1

F
\Biggl\lfloor 
\swarrow \nwarrow 

m\Biggr\rfloor 

k1=0

· · ·
m\Biggr\rfloor 

k\omega =0

s(s+ k1) · · · (s+ k1 + · · ·+ k\vargamma \rightarrow 1)

\nearrow \leftharpoondown k1
· · ·\leftharpoondown k\omega \swarrow \rightharpoonup s+k1···+k\omega C

\nearrow 
F\swarrow 

\nwarrow 
m\Biggr\rfloor 

k1=0

· · ·
m\Biggr\rfloor 

k\omega =0

s(s+ k1) · · · (s+ k1 + · · ·+ k\vargamma \rightarrow 1)

\nearrow \leftharpoondown k1
· · ·\leftharpoondown k\omega 

m\Biggr\rfloor 

k\omega +1=0

(s+ k1 + · · ·k\vargamma )\leftharpoondown k\omega +1
\swarrow \rightharpoonup s+k1+···k\omega +1

F\swarrow .(5.7)

This finishes the proof of the lemma.

The following lemma will be useful throughout the proof of convergence. We
recall that the well-posedness time T\uparrow was defined in (2.16).

Lemma 5.2. Let s\rightarrow N, let µ\uparrow \Uparrow 1, and let n\uparrow 10.
(a) If CN

satisfies Condition 1, then for all F \rightarrow Xµ there holds that

\swarrow \rightharpoonup s

\Biggr] 
(CN )nF

\Biggl\lfloor 
\swarrow X(s) \nwarrow se

\rightarrow µs
n! (mT

\rightarrow 1
\uparrow )n (en)s/m\swarrow F\swarrow µ .(5.8)

(b) If C\nearrow 
satisfies Condition 2, then for all F \rightarrow Xµ there holds that

\swarrow \rightharpoonup s

\Biggr] 
(C\nearrow )nF

\Biggl\lfloor 
\swarrow X(s) \nwarrow se

\rightarrow µs
n! (mT

\rightarrow 1
\uparrow )n (en)s/m\swarrow F\swarrow µ .(5.9)

Proof. Similarly as before, we shall only present a proof of (b). Let s,n,µ be as
in the statement of the lemma, and for the sake of the proof let us denote \lhook = s/m.
Then, for any 0\nwarrow k1, . . . , kn \nwarrow m, we have the following upper bound:

s(s+ k1) · · · (s+ k1 + · · ·+ kn\rightarrow 1)\nwarrow s(s+m) · · · (s+ (n\Uparrow 1)m)

= sm
n\rightarrow 1(sm\rightarrow 1 + 1) · · · (sm\rightarrow 1 + (n\Uparrow 1))

= sm
n\rightarrow 1(\lhook + 1) · · · (\lhook + (n\Uparrow 1))

= sm
n\rightarrow 1(n\Uparrow 1)!(\lhook + 1) · · ·

\Biggr\rceil 
\lhook 

n\Uparrow 1
+ 1

\Biggl\{ 

\nwarrow sm
n
n!(\lhook + 1) · · ·

\Biggr\rceil 
\lhook 

n
+ 1

\Biggl\{ 
.(5.10)

For notational convenience, we have replaced n\Uparrow 1 by n; since we are only interested
in the asymptotic behavior when n\downarrow \updownarrow , such a replacement is harmless. Next, using
the fact that log(1 + x)\nwarrow x for all x\uparrow 0, one finds that

(\lhook + 1) · · ·
\Biggr\rceil 
\lhook 

n
+ 1

\Biggl\{ 
= exp log

\left[ 
(\lhook + 1) · · ·

\Biggr\rceil 
\lhook 

n
+ 1

\Biggl\{ \right] 

= exp

\left[ 
log(\lhook + 1) + · · ·+ log

\Biggr\rceil 
\lhook 

n
+ 1

\Biggl\{ \right] 

\nwarrow exp
\Biggr\rceil 
\lhook 
\Bigg/ 
1 + 1/2 + · · ·+ 1/n

\Bigg\backslash \Biggl\{ 
.(5.11)

For n\uparrow 10, one has the standard bound
\Biggr) n

j=1 1/j \nwarrow log(n)+1. Consequently, we find
that

(\lhook + 1) · · ·
\Biggr\rceil 
\lhook 

n
+ 1

\Biggl\{ 
\nwarrow exp

\Biggr\rceil 
\lhook log(n) + \lhook 

\Biggl\{ 
= (en)s/m.(5.12)
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5428 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

Next, we use the definition of the norm \swarrow · \swarrow µ (see (2.2)) to find that

\swarrow \rightharpoonup s+k1+···+knF\swarrow X(s+k1+...+kn) \nwarrow exp
\Bigg/ 
\Uparrow µ(s+ k1 + · · ·+ kn)

\Bigg\backslash 
\swarrow F\swarrow µ.(5.13)

Hence, by Lemma 5.1 and (5.10), (5.12), (5.13), we find that

\swarrow \rightharpoonup s(C
\nearrow )nF\swarrow X(s) \nwarrow sm

n
n! (en)s/m

\nearrow 
m\Biggr\rfloor 

k1...kn

exp
\Bigg/ 
\Uparrow µ(s+ k1 + · · ·+ kn\rightarrow 1)

\Bigg\backslash 
\leftharpoondown k1

· · ·\leftharpoondown kn \swarrow F\swarrow µ,(5.14)

from which the desired estimate follows after elementary manipulations, taking into
account the definition of the well-posedness time T\uparrow ; see (2.16).

We are now ready to give a proof of Theorem 2.1.

Proof of Theorem 2.1. Let FN = (f (s)
N )s\updownarrow N \rightarrow Xµ and F = (f (s))s\updownarrow N \rightarrow Xµ be

as in the statement of Theorem 2.1, with initial data FN,0 = (f (s)
N,0)s\updownarrow N \rightarrow X0 and

F0 = (f (s)
0 )s\updownarrow N \rightarrow X0, respectively. Recall that existence and uniqueness of mild

solutions of both hierarchies is guaranteed by Propositions 2.1 and 2.2. The idea of
the proof is as follows: for fixed s \rightarrow N, starting from both the finite and the infinite
hierarchies in mild formulation, we iterate the integral formulas n\rightarrow N times. Next, we
show that the initial conditions match in the limit N \downarrow \updownarrow and the integral remainder
term vanishes as n\downarrow \updownarrow , uniformly in N .

Let us be more precise. First, we write the mild formulation of the solutions of
both hierarchies:

FN (t) = FN,0 +

\Biggl[ t

0
CNFN (\varphi )d\varphi ,(5.15)

F (t) = F0 +

\Biggl[ t

0
C\nearrow F (\varphi )d\varphi .(5.16)

Next, let us fix s\rightarrow N and iterate n times the above equations to get

FN (t) =
n\Biggr\rfloor 

\vargamma =0

t
\vargamma 

\varsigma !
x(CN )\vargamma FN,0 +

\Biggl[ t

0
· · ·

\Biggl[ tn

0
(CN )n+1FN (tn+1)dtn+1 · · ·dt1,(5.17)

F (t) =
n\Biggr\rfloor 

\vargamma =0

t
\vargamma 

\varsigma !
(C\nearrow )\vargamma F0 +

\Biggl[ t

0
· · ·

\Biggl[ tn

0
(C\nearrow )n+1F (tn+1)dtn+1 · · ·dt1.(5.18)

Once we project with \rightharpoonup s and consider the pairing with \varrho s \rightarrow X
(s)\uparrow , we note that the

contribution to this di""erence arises due to two terms:
  \propto \rightharpoonup sFN (t),\varrho s\prime \Uparrow \propto \rightharpoonup sF (t),\varrho s\prime 

  \nwarrow SN,n(t) + IN,n(t),(5.19)

where SN,n(t) is the sum given by

SN,n(t) :=
n\Biggr\rfloor 

\vargamma =0

t
\vargamma 

\varsigma !

  \propto \rightharpoonup s(C
N )\vargamma FN,0,\varrho s\prime \Uparrow 

 
\rightharpoonup s(C

\nearrow )\vargamma F0,\varrho s

   (5.20)

and where IN,n(t) is an integral remainder term defined as

IN,n(t)

(5.21)

:=

\Biggl[ t

0
· · ·

\Biggl[ tn

0

 
\swarrow \rightharpoonup s(C

N )n+1FN (tn+1)\swarrow X(s) + \swarrow \rightharpoonup s(C
\nearrow )n+1F (tn+1)\swarrow X(s)

 
dtn+1 · · ·dt1,
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5429

and we assume without loss of generality that \swarrow \varrho s\swarrow X(s)\uparrow \nwarrow 1. We study these two
terms separately.
Integral Remainder Terms IN,n. It su!ces to estimate the time integrals, with
respect to n, uniformly inN . We actually show that each integral separately converges
to zero in X

(s) norm, once we project via the map \rightharpoonup s. Since the estimates are identical
for FN (t) and F (t), we only present a proof for the latter.

First, we introduce the following notation, convenient for estimating the nested
integrals:

dt̄n+1 \searrow dtn+1 · · ·dt1, n\rightarrow N.

Further, we recall that in section 2 we have introduced the function

µ(t) =\Uparrow t/T, t\rightarrow [0, T ],

where T <m
\rightarrow 1

T\uparrow ; see (2.16). In view of Lemma 5.2, we find that, for all n \rightarrow N and
tn+1 \nwarrow t\nwarrow T , the following estimate holds:

\swarrow \rightharpoonup s(C
\nearrow )n+1F (tn+1)\swarrow X(s)(5.22)

\nwarrow se
\rightarrow µ(tn+1)s (n+ 1)! (mT

\rightarrow 1
\uparrow )n+1 [e(n+ 1)]s/m\swarrow F (tn+1)\swarrow µ(tn+1).

Consequently, we find that

\Biggl[ t

0
· · ·

\Biggl[ tn

0
\swarrow \rightharpoonup s(C

\nearrow )n+1F (tn+1)\swarrow X(s)dt̄n+1 \nwarrow s(n+ 1)!(mT
\rightarrow 1
\uparrow )n+1 [e(n+ 1)]s/m

(5.23)

\nearrow 
\Biggl[ t

0
· · ·

\Biggl[ tn

0
e
\rightarrow µ(tn+1)s\swarrow F (tn+1)\swarrow µ(tn+1)dt̄n+1

\nwarrow s(n+ 1)!(mT
\rightarrow 1
\uparrow )n+1 [e(n+ 1)]s/m

\nearrow \swarrow F \swarrow µ
\Biggl[ t

0
· · ·

\Biggl[ tn

0
e
\rightarrow µ(tn+1)sdt̄n+1

\nwarrow s(n+ 1)!(mT
\rightarrow 1
\uparrow )n+1 [e(n+ 1)]s/m

\nearrow \swarrow F \swarrow µes
T

n+1

(n+ 1)!

= s(mTT
\rightarrow 1
\uparrow )n+1[e(n+ 1)]s/me

s\swarrow F \swarrow µ.

We recall that T was chosen small enough in (2.16) so that mTT
\rightarrow 1
\uparrow < 1 holds true.

Therefore, as n\downarrow \updownarrow , the integral remainder term vanishes.
Controlling the Sum SN,n. First, we show that the following result holds.

Lemma 5.3. Let FN \rightarrow X converge pointwise weakly to F \rightarrow X, and let CN
con-

verge to C\nearrow 
in the sense of Definition 4. Then, for all \varsigma \rightarrow N, it holds that (CN )\vargamma FN

converges pointwise weakly to (C\nearrow )\vargamma F . In other words, for all s \rightarrow N, \varsigma \rightarrow N, and

\varrho s \rightarrow X
(s)\uparrow 

it holds that

lim
N\searrow \nearrow 

\propto \rightharpoonup s

\Biggr] 
(CN )\vargamma FN

\Biggl\lfloor 
,\varrho s\prime =

 
\rightharpoonup s

\Biggr] 
(C\nearrow )\vargamma F

\Biggl\lfloor 
,\varrho s

 
.

Proof. The proof goes by induction on \varsigma \rightarrow N. The case \varsigma = 1 follows from the
definition of convergence from CN to C\nearrow . Assume now that the result holds for
\varsigma \rightarrow N, i.e., GN = (CN )\vargamma FN converges weakly to G= (C\nearrow )\vargamma F . It follows that CN

GN

converges pointwise weakly to C\nearrow 
G. This finishes the proof.
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5430 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

Conclusion. First, we take the limit N \downarrow \updownarrow . Namely we put our two estimates
together to find that for all n\uparrow 1 there holds that

limsup
N\searrow \nearrow 

  \propto \rightharpoonup sFN (t),\varrho s\prime \Uparrow \propto \rightharpoonup sF (t),\varrho s\prime 
  (5.24)

\nwarrow limsup
N\searrow \nearrow 

SN,n(t) + limsup
N\searrow \nearrow 

IN,n(t)

\nwarrow s(mTT
\rightarrow 1
\uparrow )n+1[e(n+ 1)]s/me

s

 
\swarrow F \swarrow µ + sup

N\updownarrow N
\swarrow FN\swarrow µ

 
.

Thanks to Proposition 2.1, one has that \swarrow FN\swarrow µ \nwarrow (1\Uparrow \leftharpoonup 2)\rightarrow 1\swarrow FN,0\swarrow 0 for all N \uparrow 1.
Thus, supN\updownarrow N \swarrow FN\swarrow µ <\updownarrow due to our assumptions on the initial data. The conclusion
of the theorem now follows after we take the n\downarrow \updownarrow limit.

6. Proofs of Theorems 2.2 and 2.3. Throughout this section, fN denotes the
solution of the master equation (1.10), and (f (s)

N )s\updownarrow N denotes its sequence of marginals,
defined in (2.21). We recall that these quantities are symmetric with respect to the
permutation of their variables.

6.1. Calculation of BBGKY. In what follows, we fix the number of parti-
cles N \uparrow M and some order s \nwarrow N of the marginals. We start with the following
calculation:

\omega tf
(s)
N = \omega tTrs+1,...,N

\Bigg/ 
fN

\Bigg\backslash 
=Trs+1,...,N

\Bigg/ 
\omega tfN

\Bigg\backslash 
=Trs+1,...,N

\Bigg/ 
\#fN

\Bigg\backslash 
,(6.1)

where we recall that \# is the linear operator introduced in (1.10). Hence, due to (6.1),
linearity of the trace map, and the definition of \#, it follows that

\omega tf
(s)
N =

M\Biggr\rfloor 

K=1

\varepsilon K
N

K!
\Bigg/ N
K

\Bigg\backslash 
\Biggr\rfloor 

i1···iK

Trs+1,...,N

\Bigg/ 
\#i1···iKfN

\Bigg\backslash 
,(6.2)

where for each K = 1, . . . ,M and (i1, . . . , iK) \rightarrow I(K), defined in (1.7) we have intro-
duced the operator

\#i1···iKf =

\Biggl[ 

SK

\Bigg/ 
f \Leftarrow T\varepsilon 

i1···iK \Uparrow f
\Bigg\backslash 
dbK(\varpi ) , f \rightarrow L

1(RdN ).(6.3)

Thus, it remains to calculate the quantity Trs+1,...,N (\#i1···iKf) for arbitrary (i1, . . . ,
iK)\rightarrow I(K) and f \rightarrow L

1
sym(RdN ).

The first step in this direction is exploiting the symmetric condition given in (1.3)
in (H3). This is the content of the following lemma. Recall that SK stands for the
group of permutations of K elements.

Lemma 6.1. For all K = 1, . . . ,M , (i1, . . . , iK)\rightarrow I(K), and \rhook \rightarrow SK , it holds that

\#i\varepsilon (1)···i\varepsilon (K)
=\#i1···iK .(6.4)

Proof. We divide the proof into two steps. In the first one, we assume that the
collection of indices is a permutation of the first K indices: {1, . . . ,K}. In the second
step, we show how the general case follows from the particular one.

Step one. Let \rhook \rightarrow SK be any permutation of the elements {1, . . . ,K}, and denote
by \% = \rhook \nearrow idN\rightarrow K its natural extension to SN . Let f \rightarrow L

1
sym(RdN ) \in C(RdN ), and

denote by \#+ =\#+ id the gain term of (6.3). Then we calculate that for all V \rightarrow RdN
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5431

[\#+
1···Kf ](V ) =

\Biggl[ 

SK
f
\Biggr] 
T

\varepsilon 
1···KV

\Biggl\lfloor 
dbK(\varpi )(6.5)

=

\Biggl[ 

SK
f
\Biggr] 
T

\varepsilon 
K(v1, . . . , vK);vK+1, . . . , vN

\Biggl\lfloor 
dbK(\varpi )(6.6)

=

\Biggl[ 

SK
f

\Bigl\langle \Bigg/ 
\rhook 
\rightarrow 1 \Leftarrow T\varepsilon 

K \Leftarrow \rhook 
\Bigg\backslash 
(v1, . . . , vK);vK+1, . . . , vN

\Bigr\rangle 
dbK(\varpi )(6.7)

=

\Biggl[ 

SK
f

\Bigl\langle \Bigg/ 
\%\rightarrow 1 \Leftarrow (T\varepsilon 

K \nearrow idRd(N\rightarrow K)) \Leftarrow \%
\Bigg\backslash 
V

\Bigr\rangle 
dbK(\varpi )(6.8)

=

\Biggl[ 

SK
f
\Biggr] 
T

\varepsilon 
\varrho (1)···\varrho (K)V

\Biggl\lfloor 
dbK(\varpi )(6.9)

= [\#+
\varrho (1)···\varrho (K)f ](V ),(6.10)

where we have used (H3) to obtain (6.7). Since L1
sym\in C is a dense subspace of L1

sym,
this finishes the proof of the first step.

Step two. Now let (i1, . . . , iK) \rightarrow I(K) be arbitrary and consider \rhook \rightarrow SK and
\% \rightarrow SN as in step one. First, we make a general observation: for all \vargamma \rightarrow SN , f \rightarrow 
L
1
sym(RdN ), and V \rightarrow RdN , the following identity holds for the associated gain term:

[\#+
\omega (1)···\omega (K)f ](V ) =

\Biggl[ 

SK
f
\Biggr] \Bigg/ 
\vargamma \Leftarrow (T\varepsilon 

K \nearrow idRd(N\rightarrow K)) \Leftarrow \vargamma \rightarrow 1
\Bigg\backslash 
V
\Biggl\lfloor 
dbK(\varpi )(6.11)

= [\#+
1···K(f \Leftarrow \vargamma )](\vargamma \rightarrow 1

V ).

Consequently, the same identity holds for the full operator as well. Now we choose
\vargamma such that \vargamma (1) = i1, . . . , \vargamma (K) = iK . Then, step one and the general observation
imply that

[\#i1···iKf ](V ) = [\#1···K(f \Leftarrow \vargamma )](\vargamma \rightarrow 1
V )(6.12)

= [\#\varrho (1)···\varrho (K)(f \Leftarrow \vargamma )](\vargamma \rightarrow 1
V )(6.13)

= [\#1···K(f \Leftarrow \vargamma \Leftarrow \%)]
\Bigg/ 
(\%\rightarrow 1 \Leftarrow \vargamma \rightarrow 1)V

\Bigg\backslash 
(6.14)

= [\#\omega (\varrho (1))···\omega (\varrho (K))f ](V ).(6.15)

Since \vargamma (\rhook (\varsigma )) = i\varrho (\vargamma ) for all \varsigma \rightarrow {1, . . . ,K}, the proof is complete.

We apply Lemma 6.1 in order to get a simplified expression of \#. More precisely,
we obtain that for all K = 1, . . . ,M it holds that

\Biggr\rfloor 

i1···iK

\#i1···iK =
\Biggr\rfloor 

i1<···<iK

\Biggr\rfloor 

µ\updownarrow SK

\#iµ(1)···iµ(K)
= K!

\Biggr\rfloor 

i1<···<iK

\#i1···iK .(6.16)

Consequently, we may plug this back in (6.2) to conclude that

\omega tf
(s)
N =

M\Biggr\rfloor 

K=1

\varepsilon K
N\Bigg/ N
K

\Bigg\backslash 
\Biggr\rfloor 

i1<···<iK

Trs+1,...,N

\Bigg/ 
\#i1···iKfN

\Bigg\backslash 
.(6.17)

Thus, it su!ces to calculate Trs+1,...,N (\#i1···iKf) only for ordered indices i1 < · · ·< iK

and symmetric functions f \rightarrow L
1
sym(RdN ). The following family of operators is defined

with that purpose.

Definition 6. Let K = 1, . . . ,M, let n= 1, . . . ,K, and denote r\searrow K\Uparrow n. For all

indices 1\nwarrow i1 < · · ·< in \nwarrow s, we define the operator

C
s,K,n
i1···in :L1

sym(Rd(s+r))\downarrow L
1
sym(Rds)
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5432 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

as follows:

1. For r= 0, we set C
s,K,n
i1···in :=\#i1···iK .

2. For r\uparrow 1 and s+ r\nwarrow N , we set

C
s,K,n
i1···inf

(s+r)(Vs) :=

\Biggl[ 

SK\downarrow Rdr

\Bigg/ 
f
(s+r)(V \uparrow i1···\uparrow in

s+r )

\Uparrow f
(s+r)(Vs+r)

\Bigg\backslash 
dbK(\varpi )dvs+1 · · ·dvs+r,

where Vs \rightarrow Rds
, Vs+r \searrow (Vs, vs+1, . . . , vs+r)\rightarrow Rd(s+r)

, and

V
\uparrow i1···\uparrow in
s+r := (v1, . . . , v

\uparrow 
i1 , . . . , v

\uparrow 
in , . . . , vs ; v

\uparrow 
s+1, . . . , v

\uparrow 
s+r)\rightarrow Rd(s+r)(6.18)

with (v\uparrow i1 , . . . , v
\uparrow 
in , v

\uparrow 
s+1, . . . , v

\uparrow 
s+r) = T

\varepsilon 
K(vi1 , . . . , vin , vs+1, . . . , vs+r)\rightarrow RdK

.

3. For r\uparrow 1 and s+ r >N , we set C
s,K,n
i1···in \searrow 0.

Remarks 6.1. A few comments are in order.
(i) Let us briefly try to motivate the involved notation. As we shall see, one of

the main results of this section is Lemma 6.5, and its proof relies on a careful
classification of small and large terms. In particular, the index n introduced
in Definition 6 helps with this classification. Namely, the operators with
n= 1 give rise to the leading-order contributions. The n\uparrow 2 terms give rise
to remainder terms. See also Remark 6.3.

(ii) It can be helpful to keep in mind that s is the order of the marginal and r

is the number of interacting particles that get traced over by the operator
C

s,K,n
i1···in .

(iii) C
s,K,n
i1···in is bounded with operator norm \swarrow Cs,K,n

i1···in\swarrow \nwarrow 2.

The following lemma is the main result concerning the operators just introduced.

Lemma 6.2. Let K = 1, . . . ,M, let n= 1, . . . ,K, and let r \searrow K \Uparrow n. Assume that

s+ r\nwarrow N , and consider K ordered indices such that

1\nwarrow i1 < · · ·< in \nwarrow s < in+1 < · · ·< in+r = iK \nwarrow N.(6.19)

Then, for all f \rightarrow L
1
sym(RdN ), the following identity holds:

Trs+1,...,N

\Bigg/ 
\#i1···iKf

\Bigg\backslash 
=C

s,K,n
i1···in [Trs+r+1,...,Nf ] .(6.20)

Remark 6.1. The main consequence of the previous result is that the left-hand
side of (6.20) is independent of the last r indices (in+1, . . . , in+r).

Proof. Since s+ r\nwarrow N , there are two cases.
(i) Let r= 0. Then i1 < · · ·< iK \nwarrow s. In particular, all of the particles that are being
traced out are not interacting. Consequently, it is easy to show that

Trs+1,...,N

\Bigg/ 
\#i1···iKf

\Bigg\backslash 
=\#i1···iK [Trs+1,...,Nf ] =C

s,K,n
i1···in [Trs+1,...,Nf ] .(6.21)

(ii) Let r \uparrow 1. Let f \rightarrow L
1
sym(RdN ), and fix Vs \rightarrow Rds. Let µ be any permutation

of the elements {s + 1, . . . ,N}. Then we may implement the change of variables
(vs+1, . . . , vN ) \Rightarrow \downarrow (vµ\rightarrow 1(s+1), . . . , vµ\rightarrow 1(N)) in the following expression:

\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] 
T

\varepsilon 
i1···iK (Vs;vs+1, . . . , vN )

\Biggl\lfloor 
dvs+1, . . . ,dvN

=

\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] 
T

\varepsilon 
i1···iK (Vs;vµ\rightarrow 1(s+1), . . . , vµ\rightarrow 1(N))

\Biggl\lfloor 
dvs+1, . . . ,dvN

=

\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] \Bigg/ 
T

\varepsilon 
i1···iK \Leftarrow (ids\nearrow µ

\rightarrow 1)
\Bigg\backslash 
(Vs;vs+1, . . . , vN )

\Biggl\lfloor 
dvs+1, . . . ,dvN ,(6.22)
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5433

where we recall that we identify ids \nearrow µ
\rightarrow 1 with its group action over RdN , i.e., we

write

(ids \nearrow µ
\rightarrow 1)(Vs;vs+1, . . . , vN ) = (Vs;vµ\rightarrow 1(s+1), . . . , vµ\rightarrow 1(N)).

Next, since f \rightarrow L
1
sym, there holds that f = f \Leftarrow µ̄, where we denote µ̄ \searrow ids\nearrow µ \rightarrow 

SN . Therefore, denoting V \searrow (Vs, vs+1, . . . , vN ), we obtain, thanks to (6.22) and
permutational symmetry, that
\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] 
T

\varepsilon 
i1···iKV

\Biggl\lfloor 
dvs+1, . . . ,dvN =

\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] 
(µ̄ \Leftarrow T\varepsilon 

i1···iK \Leftarrow µ̄\rightarrow 1)V
\Biggl\lfloor 
dvs+1, . . . ,dvN

=

\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] 
T

\varepsilon 
µ̄(i1)···µ̄(iK)V

\Biggl\lfloor 
dvs+1, . . . ,dvN ,(6.23)

where the last line follows from the definition of T\varepsilon 
i1...iK (see (1.8)) upon conjugation

with µ̄. Since 1 \nwarrow i1 < · · · < in \nwarrow s, we must have µ̄(i\vargamma ) = i\vargamma for 1 \nwarrow \varsigma \nwarrow n.
Further, since s+ 1 \nwarrow in+1 < · · · < in+r \nwarrow N , we may choose µ such that µ(in+1) =
s+ 1, . . . , µ(in+r) = µ(iK) = s+ r. Consequently, we find that

\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] 
T

\varepsilon 
i1···iKV

\Biggl\lfloor 
dvs+1, . . . ,dvN =

\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] 
T

\varepsilon 
i1...in,s+1···s+rV

\Biggl\lfloor 
dvs+1, . . . ,dvN .

(6.24)

Next, using the notation introduced in Definition 6, we are able to write

T
\varepsilon 
i1...in,s+1···s+rV = (V \uparrow i1···\uparrow in

s+r , vs+r+1, . . . , vN ) .(6.25)

Hence, we may use Fubini’s theorem over the space Rd(N\rightarrow s) = Rdr \nearrow Rd(N\rightarrow s\rightarrow r) to
find that

\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] 
T

\varepsilon 
i1···iKV

\Biggl\lfloor 
dvs+1, . . . ,dvN

(6.26)

=

\Biggl[ 

Rd(N\rightarrow s)

f
\Biggr] 
V

\uparrow i1···\uparrow in
s+r , vs+r+1, . . . , vN

\Biggl\lfloor 
dvs+1, . . . ,dvN

=

\Biggl[ 

Rdr

\Biggr\rceil \Biggl[ 

Rd(N\rightarrow r\rightarrow s)

f
\Biggr] 
V

\uparrow i1···\uparrow in
s+r , vs+r+1, . . . , vN

\Biggl\lfloor 
dvs+r+1 · · ·dvN

\Biggl\{ 
dvs+1 · · ·dvs+r

=

\Biggl[ 

Rdr

f
(s+r)[V \uparrow i1···\uparrow in

s+r ] dvs+1 · · ·dvs+r,

where, in order to obtain the last line, we have used the definition of the marginals
introduced in section 2. Similarly, one can prove that

 
Rd(N\rightarrow s) f [V ]dvs+1 . . .dvN = 

Rdr f
(s+r)[Vs+r]dvs+1 · · ·dvs+r.We subtract these two identities and integrate against

dbK(\varpi ) to prove our claim.

Definition 7. For N \uparrow M , 1 \nwarrow s \nwarrow N , and 0 \nwarrow k \nwarrow m, we define the linear

operator

CN
s,s+k :L

1
sym(Rd(s+k))\downarrow L

1
sym(Rds)

according to the formula

CN
s,s+k :=

M\rightarrow k\Biggr\rfloor 

n=1

\varepsilon k+n
N\Bigg/ N
k+n

\Bigg\backslash 
 
N \Uparrow s

k

 \Biggr\rfloor 

1\Uparrow i1<···<in\Uparrow s

C
s,k+n,n
i1,...,in

.(6.27)
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5434 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

Remark 6.2. It is straightforward to verify that, for each N \rightarrow N, there is only
finitely many operators that are nonzero. In particular, CN

s,s+k = 0 for any s \rightarrow N
satisfying s+ k >N .

We are now ready to record the BBGKY hierarchy.

Lemma 6.3. For all N \uparrow M and 1 \nwarrow s \nwarrow N , let fN denote the solution of the

master equation (1.10) and let (f (s)
N )s\updownarrow N be its sequence of marginals, defined in (2.21).

Then it holds that

\omega tf
(s)
N =

m\Biggr\rfloor 

k=0

CN
s,s+kf

(s+k)
N .(6.28)

Proof. First, following the same argument of the proof of Lemma 6.2, we may
verify that for s < i1 < · · ·< iK it holds that

Trs+1,...,N

\Bigg/ 
\#i1···iKf

\Bigg\backslash 
= 0.(6.29)

Next, we use the following decomposition of the set of ordered indices:

\Biggr\rfloor 

i1<···<iK

Trs+1,...,N

\Bigg/ 
\#i1···iKf

\Bigg\backslash 
=

K\Biggr\rfloor 

n=1

\Biggr\rfloor 

i1<···<iK
in\Uparrow s<in+1

Trs+1,...,N

\Bigg/ 
\#i1···iKf

\Bigg\backslash 
,(6.30)

where for notational convenience we denote iK+1 =N + 1. In other words, n counts
the number of the indices {i\vargamma } that are less than or equal to s. In addition, we note
that

s < in+1 < · · ·< iK \nwarrow N =\ni N \uparrow s+ (K \Uparrow n).(6.31)

We implement (6.31) by means of a characteristic function 1K,n \searrow 1(N \uparrow s+K \Uparrow n).
Thus, we may write, thanks to (6.17) and Lemma 6.2,

\omega tf
(s)
N =

M\Biggr\rfloor 

K=1

\varepsilon K
N\Bigg/ N
K

\Bigg\backslash 
K\Biggr\rfloor 

n=1

1K,n

\Biggr\rfloor 

i1<···<iK
in\Uparrow s<in+1

Trs+1,...,N

\Bigg/ 
\#i1···iKfN

\Bigg\backslash 

=
M\Biggr\rfloor 

K=1

\varepsilon K
N\Bigg/ N
K

\Bigg\backslash 
K\Biggr\rfloor 

n=1

1K,n

\Biggr\rfloor 

i1<···<iK
in\Uparrow s<in+1

C
s,K,n
i1···inf

(s+K\rightarrow n)
N .(6.32)

Note that Cs,K,n
i1···inf

(s+K\rightarrow n)
N does not depend on the indices in+1 < · · ·< in+r, so these

can be summed out. We find that

\omega tf
(s)
N =

M\Biggr\rfloor 

K=1

\varepsilon K
N\Bigg/ N
K

\Bigg\backslash 
K\Biggr\rfloor 

n=1

1K,n

\Biggr\rfloor 

1\Uparrow i1<···<in\Uparrow s

\bigsqcup 

\bigsqcup 
\Biggr\rfloor 

s+1\Uparrow in+1<···iK\Uparrow N

1

\oint 

\oint C
s,K,n
i1···inf

(s+K\rightarrow n)
N

=
M\Biggr\rfloor 

K=1

\varepsilon K
N\Bigg/ N
K

\Bigg\backslash 
K\Biggr\rfloor 

n=1

1K,n

\Biggr\rfloor 

1\Uparrow i1<···<in\Uparrow s

 
N \Uparrow s

K \Uparrow n

 
C

s,K,n
i1···inf

(s+K\rightarrow n)
N .(6.33)
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5435

Further, note that 1K,nC
s,K,n
i1···in =C

s,K,n
i1···in . Finally, we make the substitution r=K\Uparrow n

to obtain

\omega tf
(s)
N =

M\rightarrow 1\Biggr\rfloor 

r=0

M\rightarrow r\Biggr\rfloor 

n=1

\varepsilon r+n
N\Bigg/ N
r+n

\Bigg\backslash 
 
N \Uparrow s

r

 \Biggr\rfloor 

1\Uparrow i1<···<in\Uparrow s

C
s,r+n,n
i1···in f

(s+r)
N

=
m\Biggr\rfloor 

r=0

CN
s,s+rf

(s+r)
N ,(6.34)

where on the last line we recall that M \Uparrow 1 =m. This finishes the proof.

The next result shows that the operators that drive the BBGKY hierarchy fit the
abstract framework introduced in section 2.

Lemma 6.4. Assume M/N \nwarrow  \triangleleft \rightarrow (0,1). Then the operators (CN
s,s+k)

m
k=0 satisfy

Condition 1 with constants (Rk)mk=0 given by

Rk = 2
M\Biggr\rfloor 

\vargamma =k+1

\varepsilon \vargamma 

(1\Uparrow  \triangleleft )\vargamma 

 
\varsigma 

k

 
.(6.35)

In the upcoming proof, we will make use of the following two inequalities:

(1\Uparrow k/n)k
n
k

k!
\nwarrow 
 
n

k

 
\nwarrow n

k

k!
\simeq n\rightarrow N, \simeq k\nwarrow n,(6.36)

which can be easily derived by noting that

(1\Uparrow k/n)knk = (n\Uparrow k)k \nwarrow n(n\Uparrow 1) · · · (n\Uparrow (k\Uparrow 1))\nwarrow n
k
.(6.37)

Proof. We assume without loss of generality that s\nwarrow N , for otherwise CN
s,s+k = 0

for any k\uparrow 0. First, recalling that \swarrow Cs,K,n
i1···in\swarrow \nwarrow 2 we find that

\swarrow CN
s,s+k\swarrow =

\bigodot \bigodot \bigodot \bigodot \bigodot \bigodot 

M\rightarrow k\Biggr\rfloor 

n=1

\varepsilon k+n
N\Bigg/ N
k+n

\Bigg\backslash 
 
N \Uparrow s

k

 \Biggr\rfloor 

1\Uparrow i1<···<in\Uparrow s

C
s,k+n,n
i1,...,in

\bigodot \bigodot \bigodot \bigodot \bigodot \bigodot 
(6.38)

\nwarrow 2
M\rightarrow k\Biggr\rfloor 

n=1

\varepsilon k+n
N\Bigg/ N
k+n

\Bigg\backslash 
 
N \Uparrow s

k

  
s

n

 
,(6.39)

where we have used the fact that
\Biggr) 

1\Uparrow i1<···<in\Uparrow s =
\Bigg/ s
n

\Bigg\backslash 
. Next, we use (6.36) to

estimate

N

 
N \Uparrow s

k

  
s

n

 
\nwarrow N

 
N

k

  
s

n

 
\nwarrow N

k+1

k!

s
n

n!
.(6.40)

Similarly, for the denominator we find that
 

N

n+ k

 
\uparrow 
\Biggr\rceil 
1\Uparrow (n+ k)/N

\Biggl\{ n+k N
n+k

(n+ k)!
\uparrow (1\Uparrow  \triangleleft )n+k N

n+k

(n+ k)!
,(6.41)

where, for the second inequality, we used the fact that (n+ k)/N \nwarrow M/N \nwarrow  \triangleleft . We
put together (6.39), (6.40), and (6.41) to find that

\swarrow CN
s,s+k\swarrow \nwarrow 2

M\rightarrow k\Biggr\rfloor 

n=1

\varepsilon k+n(1\Uparrow  \triangleleft )\rightarrow (n+k)

 
n+ k

k

 
s
n

Nn\rightarrow 1
\nwarrow Rk s,(6.42)

where, in the second inequality, we have used the upper bound s
n
N

\rightarrow (n\rightarrow 1) \nwarrow s, fol-
lowed by a change of variables \varsigma = n+ k. This finishes the proof.
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5436 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

6.2. Convergence of operators. For s \rightarrow N and 0 \nwarrow k \nwarrow M , we introduce the
operator

C\nearrow 
s,s+k :L

1
sym(Rd(s+k))\downarrow L

1
sym(Rds)

given by

(C\nearrow 
s,s+kf

(s+k))(Vs)

:= \varepsilon KK

s\Biggr\rfloor 

i=1

\Biggl[ 

SK\downarrow Rdk

\Biggr\rceil 
f
(s+k)(V \uparrow i

s+k)\Uparrow f
(s+k)(Vs+k)

\Biggl\{ 
dbK(\varpi )dvs+1 · · ·vs+k

for k\uparrow 1 and with the obvious modification for k= 0. Here V \uparrow 
s+k is as in Definition 6.

Our following result establishes convergence of operators, which in turn allow us
to apply Theorem 2.1. In order to state it, we introduce on X =\bigtriangleup s\updownarrow NL1

sym(Rds) the
linear operators

(CN
F )(s) :=

m\Biggr\rfloor 

k=0

CN
s,s+kf

(s+k)
, F = (f (s))s\updownarrow N,(6.43)

where CN
s,s+k was defined in Definition 7, and

(C\nearrow 
F )(s) :=

m\Biggr\rfloor 

k=0

C\nearrow 
s,s+kf

(s+k)
, F = (f (s))s\updownarrow N.(6.44)

Lemma 6.5. Let CN
be as in (6.43) and C\nearrow 

be as in (6.44), respectively. Then,

CN
converges to C\nearrow 

in the sense of Definition 4.

Remark 6.3 (heuristics). Let us briefly informally explain the motivation for
the proof of Lemma 6.5. To this end, we consider the following simplified system of
equations as a prototypical example:

\omega tf
(s)
N =

1

N

\Biggr\rfloor 

1\Uparrow i1\Uparrow i2\Uparrow N

E
s,s+1
i1,i2

f
(s+1)
N(6.45)

for some linear operators E
s,s+1
i,j . Here N \uparrow 1 is large, and 1 \nwarrow s \nwarrow N is the “order”

of the marginals, and 1\nwarrow i1, i2 \nwarrow N label the indices of the interacting particles. One
can then split the sums as follows:

1

N

\Biggr\rfloor 

1\Uparrow i1\Uparrow i2\Uparrow N

E
s,s+1
i1,i2

=
1

N

\Biggr\rfloor 

1\Uparrow i1\Uparrow s\Uparrow i2\Uparrow N

E
s,s+1
i1,i2

+
1

N

\Biggr\rfloor 

1\Uparrow i1\Uparrow i2\Uparrow s

E
s,s+1
i,j(6.46)

if we also assume that Es,s+1
i1,i2

= 0 for i1, i2 > s. A counting argument shows that the
first term is O(1) and contributes to leading order. The second term is O(1/N) and
vanishes in the limit. The upcoming proof separates the indices i1 \nwarrow · · · \nwarrow iK in the
same spirit, according to the index n\uparrow 1, which labels the number of indices below s.

Proof. Let us fix k \rightarrow {0, . . . ,M \Uparrow 1}. First, we decompose the BBGKY operator
into a leading-order term and a remainder term:

CN
s,s+k = C̃N

s,s+k +RN
s,s+k.(6.47)
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5437

This decomposition follows from (6.27). The leading-order term corresponds to the
n= 1 contribution, whereas the remainder term corresponds to the n\uparrow 2 contribution.
Explicitly, we have

\bigodot CN
s,s+k := \varepsilon k+1

N\Bigg/ N
k+1

\Bigg\backslash 
 
N \Uparrow s

k

 \Biggr\rfloor 

1\Uparrow i\Uparrow s

C
s,k+1,1
i(6.48)

and

RN
s,s+k :=

M\rightarrow k\Biggr\rfloor 

n=2

\varepsilon k+n
N\Bigg/ N
k+n

\Bigg\backslash 
 
N \Uparrow s

k

 \Biggr\rfloor 

1\Uparrow i1<···<in\Uparrow s

C
s,k+n,n
i1,...,in

.(6.49)

The following is enough to prove our claim. Let FN = (f (s)
N )s\updownarrow N \rightarrow X converge

weakly to F = (f (s))s\updownarrow N \rightarrow X. Then, for all s \rightarrow N and \varrho s \rightarrow L
\nearrow (Rds), we have the

following:
1. There holds that

lim
N\searrow \nearrow 

 
\bigodot CN
s,s+kf

(s+k)
N ,\varrho s

\left\{ 
=
 
C\nearrow 
s,s+kf

(s+k)
,\varrho s

\left\{ 
.

2. There holds that

lim
N\searrow \nearrow 

 
RN

s,s+kf
(s+r)
N ,\varrho s

\left\{ 
= 0.

We shall assume for simplicity that k\uparrow 1, the case k= 0 being analogous.
Proof of item 1. Let us denote by Ds+k,s = (C\nearrow 

s,s+k)
\uparrow : L\nearrow (Rds) \downarrow L

\nearrow (Rd(s+k))
the Banach space adjoints of the limiting collisional operators. In particular, they
admit the representation

(Ds+k,s\varrho s)(Vs+k) = \varepsilon k+1(k+ 1)
s\Biggr\rfloor 

i=1

\Biggl[ 

SK

\Biggr\rceil 
(\varrho s \Downarrow 1k)(V

\uparrow i
s+k)\Uparrow (\varrho s \Downarrow 1k)(Vs+k)

\Biggl\{ 
dbK(\varpi ),

where 1k is the dk-dimensional identity. A straightforward calculation based on a
change of variables shows that

\propto \bigodot CN
s,s+kf

(s+k)
N ,\varrho \prime = 1

k+ 1

N
\Bigg/ N\rightarrow s

k

\Bigg\backslash 
\Bigg/ N
k+1

\Bigg\backslash \propto f (s+k)
N ,Ds+k,s\varrho s\prime .(6.50)

Since Ds+k,s\varrho s \rightarrow L
\nearrow (Rd(s+k)), we use weak convergence of the marginals to calculate

that

lim
N\searrow \nearrow 

\propto \bigodot CN
s,s+kf

(s+k)
N ,\varrho \prime = lim

N\searrow \nearrow 

\left[ 
1

k+ 1

N
\Bigg/ N\rightarrow s

k

\Bigg\backslash 
\Bigg/ N
k+1

\Bigg\backslash 
\right] 

lim
N\searrow \nearrow 

\propto f (s+k)
N ,Ds+k,s\varrho s\prime 

= \propto f (s+k)
,Ds+k,s\varrho s\prime 

= \propto C\nearrow 
s,s+kf

(s+k)
,\varrho s\prime .(6.51)

This finishes the proof of item 1.
Proof of item 2. First, we establish a norm estimate for the remainder term. The

same analysis done in Lemma 6.4 can be carried out for the remainder term to find
that for N \uparrow  \triangleleft 

\rightarrow 1
M

\swarrow RN
s,s+k\swarrow \nwarrow 2

M\rightarrow k\Biggr\rfloor 

n=2

\varepsilon n+k

(1\Uparrow  \triangleleft )n+k

 
n+ k

k

 
s
n

Nn\rightarrow 1
.(6.52)
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5438 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

For s \nwarrow N and n \uparrow 2, we can now use the alternative upper bound s
n = s

2
s
n\rightarrow 2 \nwarrow 

s
2
N

n\rightarrow 2 to find that the following estimate holds:

\swarrow RN
s,s+k\swarrow \nwarrow Ck

s
2

N
,(6.53)

where Ck =
\Biggr) M

\vargamma =k+2(1 \Uparrow  \triangleleft )\rightarrow \vargamma 
\varepsilon \vargamma 

\Bigg/ \vargamma 
k

\Bigg\backslash 
. Next, fix s \rightarrow N and note that, thanks to

weak convergence and the uniform boundedness principle, the quantity Ks = supN\updownarrow N
\swarrow f (s)

N \swarrow L1
sym

(Rds) is finite. Thus, we find that the following estimate holds:

|
 
RN

s,s+kf
N
s,s+k,\varrho s

 
| \nwarrow Ks \swarrow RN

s,s+k\swarrow \swarrow \varrho s\swarrow L\updownarrow \nwarrow KsCk s
2

N
\swarrow \varrho s\swarrow L\updownarrow ,(6.54)

from which our claim follows after taking the N \downarrow \updownarrow limit.

Proof of Theorem 2.2. Lemma 6.4 implies that the operator CN satisfies Condi-
tion 1. Similar arguments show that C\nearrow satisfies Condition 2. Further, Lemma 6.5
shows that CN converges to C\nearrow in the sense of Definition 4. In order to prove The-
orem 2.2, it su!ces to apply Theorem 2.1 to any mild solutions of the BBGKY and
Boltzmann hierarchies, respectively.

Proof of Theorem 2.3. Let fN be the solution of the master equation (1.10),
(f (s)

N )s\updownarrow N its sequence of marginals (2.21), and f0 \rightarrow L
1(Rd) the initial datum for

which f
(s)
N (0) converges pointwise weakly to f

\simeq s
0 . We apply Theorem 2.2 to con-

clude that (f (s)
N )s\updownarrow N converges in observables to F = (f (s))s\updownarrow N—the solution of the

Boltzmann hierarchy (2.27) with initial data F0 = (f\simeq s
0 )s\updownarrow N—over [0, T ].

Finally, let f(t, v) be the solution of the generalized Boltzmann equation (2.28)
with initial data f0. A straightforward calculation shows that (f\simeq s)s\updownarrow N is a mild
solution of the Boltzmann hierarchy (2.27). Because of Proposition 2.2, the Boltz-
mann hierarchy is well-posed. Uniqueness then implies that f (s) = f

\simeq s for all s \rightarrow N.
Consequently, for all \varrho s \rightarrow L

\nearrow (Rds) it holds that

\propto f (s)
N (t),\varrho s\prime \Uparrow \downarrow 

 
f(t)\simeq s

,\varrho s

 
as N \downarrow \updownarrow 

uniformly in t\rightarrow [0, T ]. Since T is independent of the initial conditions and thanks to
the global a priori bounds

sup
N\updownarrow N

sup
s\Uparrow N

\swarrow f (s)
N (t, ·)\swarrow L1 = 1 \simeq t\uparrow 0,(6.55)

one may repeat the above argument to prove convergence for arbitrarily large t \uparrow 0.
This finishes the proof.

7. Well-posedness.

7.1. The hierarchies. In this subsection, we address the question of well-
posedness of the finite and infinite hierarchies, respectively. We only give a proof
of Proposition 2.2, the other one being completely analogous.

Proof of Proposition 2.2. For simplicity, let us denote C \searrow C\nearrow . Let F =
(f (s))s\updownarrow N \rightarrow Xµ. Then we obtain thanks to Condition 2 the following estimate:
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5439

\bigodot \bigodot \bigodot \bigodot \bigodot 

 \Biggl[ t

0
C
\Biggr] 
F (\varphi )

\Biggl\lfloor 
d\varphi 

 (s)
\bigodot \bigodot \bigodot \bigodot \bigodot 
X(s)

\nwarrow 
\Biggl[ t

0
\swarrow 
\Biggr\rceil 
C
\Biggr] 
F (\varphi )

\Biggl\lfloor \Biggl\{ (s)
\swarrow X(s) d\varphi 

\nwarrow 
\Biggl[ t

0

m\Biggr\rfloor 

k=0

s\leftharpoondown k\swarrow f (s+k)(\varphi )\swarrow X(s) d\varphi 

=

\Biggl[ t

0

m\Biggr\rfloor 

k=0

s\leftharpoondown ke
\rightarrow µ(\varsigma )(s+k)

e
µ(\varsigma )(s+k)\swarrow f (s+k)(\varphi )\swarrow X(s) d\varphi 

\nwarrow 
\Biggl[ t

0

m\Biggr\rfloor 

k=0

s\leftharpoondown ke
\rightarrow µ(\varsigma )(s+k) d\varphi \swarrow F \swarrow µ

\nwarrow T

m\Biggr\rfloor 

k=0

s

s+ k
\leftharpoondown ke

\rightarrow µ(t)(s+k) \swarrow F \swarrow µ

\nwarrow 
\left[ 
T

m\Biggr\rfloor 

k=0

\leftharpoondown ke
k

\right] 
e
\rightarrow µ(t)s\swarrow F \swarrow µ = \leftharpoonup e

\rightarrow µ(t)s\swarrow F \swarrow µ,(7.1)

where we have defined \leftharpoonup := T
\Biggr) m

k=0 \leftharpoondown ke
k \rightarrow (0,1).

On Xµ we introduce the map F \Rightarrow \downarrow F0 +
 t
0 CF (\varphi )d\varphi =:M[F ]. Linearity of C

and the estimate contained in (7.1) imply that \swarrow M[F ]\Uparrow M[G]\swarrow µ \nwarrow \leftharpoonup \swarrow F \Uparrow G\swarrow µ for
all F ,G\rightarrow Xµ. Therefore, M is a contraction. Let r= (1\Uparrow \leftharpoonup )\rightarrow 1

\leftharpoonup \rightarrow (0,\updownarrow ), and define
R := r\swarrow F0\swarrow X0

. Then estimate (7.1) and the triangle inequality show that

\swarrow M[F ]\Uparrow F0\swarrow µ \nwarrow \leftharpoonup \swarrow F \swarrow µ \nwarrow \leftharpoonup \swarrow F \Uparrow F0\swarrow µ + \leftharpoonup \swarrow F0\swarrow µ \nwarrow R

whenever \swarrow F \Uparrow F0\swarrow µ \nwarrow R. Therefore, M maps the ball BR(F0) \bigtriangledown Xµ or radius R

around F0 into itself. The conclusion of the theorem now follows from Banach’s fixed
point theorem. The continuity estimate also follows easily from our considerations.

7.2. The Boltzmann equation. The main goal of this subsection is to prove
Proposition 2.3. First, we prove the following two lemmas.

Lemma 7.1 (local well-posedness). For all f0 \rightarrow L
1(Rd), there exists 0 < T\uparrow =

T\uparrow (\swarrow f0\swarrow L1) such that there is a unique mild solution

f \rightarrow C
\Bigg/ 
[0, T\uparrow ],L

1(Rd)
\Bigg\backslash 
\in C

1
\Bigg/ 
(0, T\uparrow ),L

1(Rd)
\Bigg\backslash 

to the Boltzmann equation (2.28) with initial data f0.

Proof. The operators QK satisfy the following estimates: for f, g \rightarrow L
1, there holds

that

\swarrow QK(f)\swarrow L1 \nwarrow 2K\swarrow f\swarrow KL1 ,(7.2)

\swarrow QK(f)\Uparrow QK(g)\swarrow L1 \nwarrow 2K2
\Bigg/ 
\swarrow f\swarrow K\rightarrow 1

L1 + \swarrow g\swarrow K\rightarrow 1
L1

\Bigg\backslash 
\swarrow f \Uparrow g\swarrow L1 .(7.3)

Thanks to these estimates, a proof based on a fixed-point argument on C([0, T\uparrow ],
L
1(Rd)) shows that there is a unique solution to the integral equation f(t) = f0 + t
0

\Biggr) M
K=1 \varepsilon KQK [f(s), . . . , f(s)]ds. We leave the details to the reader.
Finally, note that thanks to the estimate (7.3), it is easy to show that the map

t \Rightarrow \downarrow QK [f(t), . . . , f(t)] \rightarrow L
1(Rd) is continuous. It then follows from the funda-

mental theorem of calculus that f \rightarrow C
1
\Bigg/ 
(0, T\uparrow ),L1

\Bigg\backslash 
and (2.28) holds in the strong

sense.
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5440 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

Lemma 7.2 (conservation of mass). Let f \rightarrow C([0, T\uparrow ],L1(Rd))\in C1
\Bigg/ 
(0, T\uparrow ),L1(Rd)

\Bigg\backslash 

be the continuous solution of the Boltzmann equation in mild form (2.28). Then

\Biggl[ 

Rd

f(t, v)dv=

\Biggl[ 

Rd

f0(v)dv \simeq t\rightarrow [0, T\uparrow ].(7.4)

Proof. Since (2.28) holds in the strong sense, we may calculate thanks to a change
of variables that

\omega t

\Biggl[ 

Rd

f(t, v)dv=

\Biggl[ 

Rd

\omega tf(t, v)dv(7.5)

=
M\Biggr\rfloor 

K=1

\Biggl[ 

Rd

\varepsilon KQK [f(t), . . . , f(t)](v) dv= 0 \simeq t\rightarrow (0, T\uparrow ).

This finishes the proof.

Proof of Proposition 2.3. Let f be the solution to the Boltzmann equation (2.28),
with initial data f0 satisfying

 
Rd f0(v)dv = 1 and \swarrow f0\swarrow L1 \nwarrow 1, whose existence is

guaranteed by Lemma 7.1. Our goal will be to show that \swarrow f(t)\swarrow L1 \nwarrow 1 for all t\rightarrow (0, T\uparrow ),
after possibly reducing T\uparrow by a constant depending only on M and {\varepsilon K}MK=1. One
may then patch the solutions obtained by Lemma 7.1 to obtain global well-posedness.

First, we note that thanks to conservation of mass, the collisional operators given
in (1.6), when acting on f , may be written as

QK [f(t), . . . , f(t)] =Q
(+)
K [f(t), . . . , f(t)]\Uparrow Kf(t), K = 1, . . . ,M,(7.6)

where Q
(+)
K :L1(Rd)K \downarrow L

1(Rd) corresponds to the gain term

Q
(+)
K [f1, . . . , fK ](v1) =K

\Biggl[ 

SK\downarrow RdK

(\Downarrow K
\vargamma =1f\vargamma )(T

\varepsilon 
KVK) dbK(\varpi )dv2 · · ·dvK .(7.7)

Consequently, f satisfies the equation

\omega tf + \lhook f =
M\Biggr\rfloor 

K=1

\varepsilon KQ
(+)
K [f, . . . , f ],(7.8)

where \lhook =
\Biggr) M

K=1 \varepsilon KK > 0. Thus, Duhamel’s formula implies that

f(t) = e
\rightarrow \varphi t

f0 +

\Biggl[ t

0
e
\rightarrow \varphi (t\rightarrow s)

M\Biggr\rfloor 

K=1

\varepsilon KQ
(+)
K [f(s), . . . , f(s)]ds, t\rightarrow (0, T\uparrow ).(7.9)

Next, we adapt the main ideas of the authors in [4]1 and give only a sketch of the
proofs. Indeed, we consider the sequence of Picard iterates {fn}n\Leftarrow 0 defined as

f0(t) := f0,(7.10)

fn+1(t) := e
\rightarrow \varphi t

f0 +

\Biggl[ t

0
e
\rightarrow \varphi (t\rightarrow s)

M\Biggr\rfloor 

K=1

\varepsilon KQ
(+)
K [fn(s), . . . , fn(s)]ds, n\uparrow 1.(7.11)

1We note that the authors consider Picard iterates for an equation similar to ours but in Fourier
space and in di!erent functional spaces.
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5441

We will use the iterates to show that \swarrow f(t)\swarrow L1 \nwarrow 1. Indeed, if \swarrow f0\swarrow L1 \nwarrow 1, an induction
argument shows that \swarrow fn(t)\swarrow L1 \nwarrow 1 for all n \uparrow 0 and t \rightarrow (0, T\uparrow ). Next, note that
the gain operators Q(+)

K satisfy the estimate (7.3) with a possibly di""erent constant.
Consequently, for a possibly smaller T\uparrow , the following contraction estimate is satisfied
thanks to (7.3):

sup
t\updownarrow [0,T\uparrow ]

\swarrow fn+1(t)\Uparrow fn(t)\swarrow L1 \nwarrow  \triangleright sup
t\updownarrow [0,T\uparrow ]

\swarrow fn(t)\Uparrow fn\rightarrow 1(t)\swarrow L1 , n\uparrow 1,(7.12)

for some fixed  \triangleright \rightarrow (0,1). Thus, the sequence fn converges to the (unique) solution
of (7.9). We conclude that \swarrow f(t)\swarrow L1 = limn\searrow \nearrow \swarrow fn(t)\swarrow L1 \nwarrow 1 for all t \rightarrow (0, T\uparrow ). This
finishes the proof.

Appendix A. Markov processes.

A.1. Review of the general theory. We give a brief review of the basic notions
and results from the theory of Markov processes that we use to construct our model;
we follow closely the discussion in [22, Chapter 4]. In what follows, we let (\$,F ,P) be
a probability space and E a locally compact metric space, with its Borel sets B(E).
Continuous time. Let us define what we understand for a (continuous-time) Markov
process.

Definition 8. A stochastic process X = (X(t))\nearrow t=0 : \$\nearrow [0,\updownarrow ) \downarrow E is called a

Markov process if

P
\Biggr\rceil 
X(t+ s)\rightarrow B

  FX
t

\Biggl\{ 
= P

\Biggr\rceil 
X(t+ s)\rightarrow B

  \vargamma 
\Bigg/ 
X(t)

\Bigg\backslash \Biggl\{ 
\simeq t, s\uparrow 0, \simeq B \rightarrow B(E),

(A.1)

where FX
t = \vargamma 

\Bigg/ 
X(s) : 0\nwarrow s\nwarrow t

\Bigg\backslash 
.

Some Markov processes are characterized by more tractable objects. Indeed, let
(T (t))t\Leftarrow 0 be a semigroup on Cb(E), the bounded real-valued continuous functions on
E.

Definition 9. We say that the Markov process X corresponds to (T (t))t\Leftarrow 0 if

E
\Bigl\langle 
\varrho 
\Bigg/ 
X(t+ s)

\Bigg\backslash   FX
t

\Bigr\rangle 
=
\Bigg/ 
T (s)\varrho 

\Bigg\backslash \Bigg/ 
X(t)

\Bigg\backslash 
\simeq t, s\uparrow 0, \simeq \varrho \rightarrow Cb(E).(A.2)

If a Markov process corresponds to a semigroup, it is completely determined by it in
the following sense.

Proposition A.1 (see [22, Chapter 4, Proposition 1.6]). Let X be a Markov

process that corresponds to (T (t))t\Leftarrow 0. Then the finite dimensional distributions of X
are completely determined by (T (t))t\Leftarrow 0 and the law of X(0).

Discrete time. Let us define what we understand as a (discrete-time) Markov chain.

Definition 10. A discrete-time stochastic process Y = (Y (k))k\updownarrow N0
:\$\nearrow N0 \downarrow E

is called a Markov chain if

P
\Biggr\rceil 
Y (n+ k)\rightarrow B

  FY
n

\Biggl\{ 
= P

\Biggr\rceil 
Y (n+ k)\rightarrow A

  \vargamma 
\Bigg/ 
Y (n)

\Bigg\backslash \Biggl\{ 
\simeq n,k \rightarrow N0, \simeq B \rightarrow B(E),

(A.3)

where FY
n = \vargamma 

\Bigg/ 
Y (k) : k \rightarrow {0, . . . , n}

\Bigg\backslash 
.

Similarly as before, we can specify Markov chains in terms of more concrete
objects. To this end, we define transition functions.
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5442 E. CÁRDENAS, N. PAVLOVIĆ, AND W. WARNER

Definition 11. A function µ :E\nearrow B(E)\downarrow [0,\updownarrow ) is called a transition function if

\Biggr\rangle 
µ(x, ·)\rightarrow Prob(E) \simeq x\rightarrow E,

µ(·,B)\rightarrow L
\nearrow (E) \simeq B \rightarrow B(E).

(A.4)

Definition 12. We say that the Markov chain Y has µ as a transition function if

P
\Biggr\rceil 
Y (n+ k)\rightarrow B

  FY
n

\Biggl\{ 
= µ

\Bigg/ 
Y (n),B

\Bigg\backslash 
, n\rightarrow N0, B \rightarrow B(E).(A.5)

Heuristically, transition functions correspond to the probabilities for the Markov
chain to go from one state to the next one. That one may always construct Markov
chains with prescribed transition functions and initial laws is the content of the fol-
lowing result.

Proposition A.2 (see [22, Chapter 4, Theorem 1.1]). For every transition func-

tion µ and probability measure \oldstyle{0} \rightarrow Prob(E), there exists a Markov chain Y that has

µ as a transition function and \oldstyle{0} as the law of Y (0).

Jump processes. If one is given a transition function µ, one may construct Markov
processes with explicit transition semigroups; these are called jump processes, which
we describe below.

Definition 13. Let Y be a Markov chain with transition function µ. We define

its generator to be the linear map P :C(E)\downarrow C(E) given by

(P\varrho )(x) :=

\Biggl[ 

E
\varrho (y)µ(x,dy), x\rightarrow E, \varrho \rightarrow Cb(E) .(A.6)

Let (M(t))\nearrow t=0 denote a Poisson process with parameter  \triangleright independent of Y.
We let the jump process associated to Y with parameter  \triangleright be the stochastic process
V= (V (t))\nearrow t=0 defined by

V (t) := Y
\Bigg/ 
M(t)

\Bigg\backslash 
, t\uparrow 0 .(A.7)

Proposition A.3 (see [22, Chapter 4, section 2]). The stochastic process V
defined by (A.7) is a Markov process that corresponds to the semigroup {exp

\Bigg/ 
t \triangleright (P \Uparrow 

Id)
\Bigg\backslash 
}t\Leftarrow 0.

Here we will give a sketch of the proof of the above proposition.

Proof. Let \oldstyle{1}\rightarrow C(E). The transition semigroup T (t) for the Markov process V (t)
is defined through T (s)\oldstyle{1}

\Bigg/ 
V (t)

\Bigg\backslash 
=E[\oldstyle{1}

\Bigg/ 
V (t+ s)

\Bigg\backslash 
|Ft]. Using the memoryless property

of the Poisson process M(t) along with the law of total probability, we can calculate

T (s)\oldstyle{1}
\Bigg/ 
V (t)

\Bigg\backslash 
=E[\oldstyle{1}

\Bigg/ 
V (t+ s)

\Bigg\backslash 
|Ft] =E[\oldstyle{1}

\Biggr\rceil 
Y
\Bigg/ 
M(t+ s)

\Bigg\backslash \Biggl\{ 
|Ft]

=E[\oldstyle{1}
\Biggr\rceil 
Y
\Bigg/ 
M(t+ s)\Uparrow M(t) +M(t)

\Bigg\backslash \Biggl\{ 
|Ft]

=
\Biggr\rfloor 

k\Leftarrow 0

P
\Bigg/ 
M(t+ s)\Uparrow M(t) = k

\Bigg\backslash 
E[\oldstyle{1}

\Biggr\rceil 
Y
\Bigg/ 
k+Mt

\Bigg\backslash \Biggl\{ 
|Ft]

=
\Biggr\rfloor 

k\Leftarrow 0

e
\rightarrow \leftharpoonup s ( \triangleright s)

k

k!
P

k
\oldstyle{1}
\Bigg/ 
V (t)

\Bigg\backslash 

= exp
\Bigg/ 
t \triangleright (P \Uparrow Id)

\Bigg\backslash 
\oldstyle{1}
\Bigg/ 
V (t)

\Bigg\backslash 
.(A.8)

This finishes the sketch of the proof.
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BOLTZMANN WITH HIGHER-ORDER COLLISIONS 5443

Definition 14. A Poisson process M(t) with rate  \triangleright > 0 is a stochastic process

taking values on N with the following conditions:

1. M(0) = 0.
2. For all si < ti, the increments M(ti)\Uparrow M(si) are independent random vari-

ables.

3. E[M(t)] =  \triangleright t.

Furthermore, the Poisson process is a Markov process and thus has the “memoryless”

property, implying that its increments satisfy,

M(ti)\Uparrow M(si) =M(ti \Uparrow si) \simeq si < ti.(A.9)
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pages Exp. No. XIX, 12, Ecole Polytech., Palaiseau, 2001.

[11] E. A. Carlen, M. C. Carvalho, and M. Loss, Determination of the spectral gap for Kac’s
master equation and related stochastic evolution, Acta Math., 191 (2003), pp. 1–54.

[12] E. A. Carlen, J. S. Geronimo, and M. Loss, Determination of the spectral gap in the Kac
Model for physical momentum and energy-conserving collisions, SIAM J. Math. Anal., 40
(2008), pp. 327–364, https://doi.org/10.1137/070695423.

[13] E. Carlen, D. Mustafa, and B. Wennberg, Propagation of chaos for the thermostated Kac
master equation, J. Stat. Phys., 158 (2015), pp. 1341–1378.

[14] K. Carrapatoso, Quantitative and qualitative Kac’s chaos on the Boltzmann’s sphere, Ann.
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