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Abstract

Tropical ecosystems face escalating global change. These shifts can disrupt tropical 

functions such as resource acquisition and tissue protection, root responses can in

form about the strategies and vulnerabilities of ecosystems facing present and future 

global changes. However, root trait dynamics are poorly understood, especially in 

2

we obtained 266 root trait observations from 93 studies across 24 tropical coun

among different global change drivers but not among root categories. In particular, we 

observed that tropical root systems responded to warming and eCO2 by increasing 

sition being the most studied global change driver, it had some of the most variable 

effects on root characteristics, with few predictable responses. Episodic disturbances 

such as cyclones, fires, and flooding consistently resulted in a change in root trait 

shifts in plant community and nutrient inputs, while flooding changed plant regulatory 

that tropical forest root characteristics and dynamics are responding to global change, 

although in ways that are not always predictable. This synthesis indicates the need for 
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|

Tropical forests contain over half of the terrestrial global biodiver

et al., 2013; Pan et al., 2011

change is challenging to predict due to their high biogeochemical 

2016

component of the forests, our understanding of how global change 

will affect belowground functions, such as plant nutrient and water 

uptake, hinders our ability to predict the future of tropical forest re

2005

panding and compiling the knowledge of how tropical tree roots are 

currently responding to different global changes, individually or in 

combination, is particularly important for predicting future scenar

ios of C cycling and informing conservation and restoration efforts.

Global change in tropical ecosystems encompasses a variety of 

Warming may cause tropical ecosystems to reach unprecedented 

temperatures in recent history—surpassing photosynthetic optimum 

2015; Clark et al., 2013; Diffenbaugh 

2011

et al., 2020 Drought events are anticipated to become more se

2016; 

Duffy et al., 2015

2020 Flooding, a re

2005

1982 2011

Cyclones, a common disturbance for many 

1996; Lugo, 2008

predicted to become highly variable in their frequency and intensity 

2013; Fu et al., 2013

et al., 2013

Nitrogen

2021

Atmospheric CO2 

has been rapidly increasing globally, and although models indicate a 

positive photosynthetic response at the leaf level, tropical biomass 

2019; 

Yang et al., 2019 Fire severity is predicted to increase with global 

2017 2022

high tree mortality and threatening the remaining tropical forests 

2017

and interactions of these global changes and that roots perform 

protection, and reuse and cycling of elements; Freschet et al., 2021

root responses to different global change drivers are difficult to 

predict.

impacts on ecosystem processes from the individual plant to the 

2014

Huasco et al., 2021 2011

the primary input of new C to subsurface soils through root turnover 

2018; Rasse et al., 2005

root responses to different global change drivers might affect the 

tropical forest ecosystem biomass dynamics and, therefore, the 

quantified, presenting a significant knowledge gap in understanding 

the overall impacts of global change on tropical forest ecosystems 

2019 2015

Here, we assess the effects of the seven global change drivers 

tion. However, we predicted that the magnitude and direction of 

these changes would vary among different global change drivers. 

number and distribution of root trait studies in the tropics, followed 

by the current empirical understanding of the effects of each global 

based on our knowledge of tradeoffs mechanisms in the acquisition 

2021

these trends and discuss their impacts on ecological processes, high

lighting conceptual and empirical gaps for future studies.

|

the effect of the seven global change drivers on tropical root traits. 

Table 

Portuguese and evaluated all relevant studies. Our keywords en

compassed the most commonly measured root traits from different 

“root trait categories” following the definition adopted by a global 

replicated studies across root characteristics at species and community scales under 

different global change factors.

K E Y W O R D S

belowground, carbon allocation, disturbances, root traits, tropical forests
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https:// roots. ornl. 

2017; see Table 1 for descrip

plant functions, such as resource acquisition and cycling of elements 

2021

root order or diameter threshold. Our literature review considered all 

considered observational studies for abrupt disturbances, like cy

clones and fire. The literature survey encompasses studies published 

2024

The lack of replicated data across global change drivers and root 

p

2023

synthesis of the literature. This resulted in one score per available 

Table ; n

Table ; n

performed a contingency analysis comparing responsiveness among 

1995

|

|

tropical countries investigating root responses to global changes 

Figure 1; Tables 

Root system

Root anatomy

Root architecture

Root chemistry
14C, water content

Root dynamics Root productivity, root area and length growth, root lifespan/longevity, 
turnover, root mortality rate, root decomposition

association
nodules biomass/number

Root morphology Root diameter, root length per plant mass, root surface area, specific root 

Root physiology 4 3  or PO4  uptake rate, alcohol fermentation, 

metabolome, root phosphatase, and phosphodiesterase activity

TA B L E  1
categories” used to group root functional 
traits in this study. For each of the eight 
categories, we list their corresponding 
traits in our literature survey. These root 
trait categories encompass different 

the result section and used throughout 
Tables .
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system traits and measured root biomass and depth distribution, 

and very few reported root anatomy, morphology, stoichiometry, or 

Figure 2a,b

2, 

across all global change drivers come from in situ rather than pot 

Figure 2a

Figure 2b

From the contingency analysis, we found significant differences 

in the proportion of root responsiveness to global change among 
2 p Figure 3a; that is, 

root response rankings to different global change drivers are not all 

2 p Figure 3b; root response rankings in each 

change responses across root characteristics, whereas CO2

tion, cyclones, and flooding resulted in more uniform changes in root 

characteristics. The width of the bars in the mosaic plots indicates 

Figure 3a

root system and dynamics traits, such as biomass, root: shoot ratios, 

Figure 3b

root characteristics to the various global change factors across trop

ical forest studies and suggest mechanisms that account for these 

patterns.

|

2018; 

Tunison et al., 2024

et al., 2013; Feng et al., 2017 2022; Xiong et al., 2018; 

Xu et al., 2013

that warming will increase plant biomass production, including roots, 

Figure 4; 

2019

minimum to some changes in root mortality, potentially increasing 

2020 2022; Liu et al., 2019; 

Figure 4

Figure 4

Table 1
the y

y
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water availability becomes limited, more biomass may be allocated 

cantly alter morphological and architectural traits, such as specific 

2014

Figure 2a; Table 

2021

2019 2020

et al., 2020

2020; Figure 4

also found a decrease in root biomass at the community level after 7 

2021

These contradictory results are likely attributed to the differences in 

Table 

warming, upper canopy trees from some tropical sites could already 

et al., 2023

C stored in plant tissues overall and lower allocation to the roots 

2021

et al., 2021

2019

Figure 2a,b

2020

Figure 4

2021

water resource limitations caused by warming, allowing a greater 

2020

Yet, root decomposition was faster under warming for mangrove 

Rhizophora apiculata 2020

Elevated temperature did not change root autotrophic respiration 

Cryptocarya mackinnoniana, for which root 

2020

inclusion of a greater diversity of root traits, such as architecture, 

approaches to reduce or account for the drying effects caused by 

soil warming.

n n



| YAFFAR ET AL.

Drought affects plant growth, reproduction, and survival by reducing 

C assimilation through a reduction in photosynthesis and increasing 

tissue desiccation with declining plant water acquisition and trans

2018; Powers et al., 2020

to cause an overall decrease in root biomass and production due to 

plants closing their stomata to limit water loss, leading to a decline 

in photosynthesis and lower C assimilation and allocation to plant 

Table 

Figure 4

Figure 4

however, if the drought is too severe, this may not be possible due 

diameter if plants produce longer, thinner, deeper roots to increase 

Figure 4

Figure 2a

did not elicit changes in root biomass and root biomass production 

2015; Figure 4, Table 

2020 2019

et al., 2008

Figure 2b

however, the impacts of drought on root system traits can vary 

Table 

2008; 

2002 2018

2015

and CO2

displaying species or community level depends on the organism level for which more data is available for each global change driver in the 
Tables 



|YAFFAR ET AL.

drought treatment and control plots. However, a reduction in root 

2019

2014

2005

2014

Furthermore, fine root growth, length, and surface area were con

sistently lower in droughted plots compared with controls after 

et al., 2008

drought increased root growth when water was more available, pos

sibly to compensate for low annual growth rates. In contrast, root 

2014

2015

Figure 3; Table 

tance of considering multiple factors, such as species versus com

munity traits, developmental stage, soil depths where roots were 

Table 

Drought can also shift C allocation between aboveground and 

2015

tivity right after the drought and more C allocated to the canopy, 

suggesting a mechanism to replace lost and damaged leaves to in

2002

periment, drought led to higher biomass allocation to roots in seed

2015

2020

2000

et al., 2008 2020

2019

2019

higher root: shoot ratios in the dry plots versus the wet ones, but 

tion during drought periods offer valuable insights into the plasticity 

of responses from different species and communities.

Regarding root morphology patterns, a greenhouse study found 

2015

2008

2020

et al., 2006

cost, being important strategies for coping with drier conditions 

are probably more vulnerable to decreased soil moisture in wet

2009 2019

tropical trees do not adapt to changes in soil moisture, as already 

2001

2000

how root traits in different soil depths might adapt to longer, drier 

Few studies have measured root chemistry and physiologi

Figure 2a,b

2020

in southwest China found that belowground autotrophic respiration 

et al., 2019

2017

relatively lower water content in roots than those that were vulner

able to the drought treatment, potentially aiming to reduce water 

2008

of such root adaptation in tropical forests. Root hydraulic conduc

tance increased in the intermediate stages of wilting in a tree seed

2003

yet, it is unclear why this occurred, and there are very few studies on 

root hydraulics in general. Due to the close link between soil water 

and nutrient uptake by roots, drought could also affect fine root trait 

2021

Further studies should account for the interaction among these fac

accompanied by increased levels of CO2, anaerobic decomposi

1982; 

2011

enhance photosynthetic efficiency to survive under flooding, and 

2016; Figure 4

Consequently, root production is reduced, mortality increases in 
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2003 2013; Figure 4

phological, anatomical, and physiological adaptations to avoid 

1995

tissue, greater root porosity, formation of adventitious roots and/

or hypertrophic lenticels, pneumatophores, the induction of fer

2015 2012; 

2011

Few studies have measured root responses to flooding in tropical 

Figure 2b; Table 

2013

studies have also shown physiological and anatomical adaptations 

2003; Ow 

et al., 2019 2010

2010

2020

2003 2010

2003 Figure 4

Root physiological responses to flooding include a change in 

the metabolic rates of specific compounds that guarantee enough 

2022

Guazuma ulmifolia

et al., 2022

serine, threonine, and proline; Ribeiro et al., 2022

2022

2019 Melaleuca cajuputi, a tropical tree species 

adapted to flooding, responded by moving from glycolysis within 

its root system to enhancing alcohol fermentation, an anaerobic 

et al., 2005

Salix marti-

ana

hypodermis compared with Tabernaemontana juruana, allowing the 

2002

suggest coordinated regulatory mechanisms for flood tolerance 

2003; 

Ow et al., 2019 2010

with flooding, Heliocarpus popayanensis

2010

country but in a riparian forest found that Parapiptadenia rigida in

2010

also developed hypertrophied lenticels, superficial and adventitious 

roots, and root aerenchyma, which confer these trees the advantage 

2010

affect the mechanisms by which symbiosis with microorganisms can 

start. For instance, in species growing under hydroponic conditions, 

2013; Goormachtig et al., 2004

satile infection plasticity allowing efficient nodulation in flooded and 

Figure 3a,b

chyma formation and root porosity, other traits, such as hydraulic 

tainty lies in the responses of tree species in ecosystems predicted 

et al., 2013

causing total defoliation in canopy species, uprooting trees, and 

et al., 1991

2014

Depending on the cyclone's intensity, the canopy loss can, in 

the short term, considerably decrease C allocation to the roots 

at the species level, reducing root production and total fine root 

Figure 4 1993

shortly after the disturbance. Differences in coarse root traits 

such as morphology, architecture, and anatomy can determine 

which trees will resist uprooting during a cyclone disturbance, but 

fine root traits can also be important in tree recovery after the 

2001

fects of a cyclone and the canopy opening include a shift in the 

2022

et al., 2021
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et al., 2021

2021

Figure 2b; Table 

reported an immediate decline in fine root biomass following a 

cyclone disturbance due to physical disturbance and defoliation. 

Root biomass declined 40% after 2 months of a simulated hur

1993

after Hurricane Hugo passed through these sites due to root 

2005 1991

et al., 2005 1991

2009

1999

Puerto Rico that was interrupted by consecutive hurricanes Irma 

the hurricane disturbances in 2017, likely due to the change in for

est composition where the understory flourished after canopy 

2021

tions also decreased fine root production compared with control 

2021

2021

environmental or anthropogenic disturbances can affect root func

1991 1991

through changes in soil nutrient availability, photosynthesis rates, 

1999 1991; 

Teh et al., 2009 2009 2021

2005 1991

et al., 1999 2009

allocated stored C to the production of new fine roots after canopy 

age of the C allocated for new roots increased with forest age in 

seasonally dry forests, suggesting plant adaptation to recover from 

cyclone disturbances.

On root morphological responses to cyclones, no apparent 

changes have been found for root length, diameter, branching ratio, 

2021 2016

2021

removal, with an even sharper decrease in root P after Hurricane 

1993

centration from different species in Puerto Rico were found after 

2021

contrasting responses can be attributed to the differences in en

vironmental conditions after the hurricanes, the time of root mea

surements after the disturbance, and the root order selection for 

measurements.

Only a few studies measured root physiology and microbial as

Figure 2a,b

2021 2010

2009

2020

cially from root traits such as root architecture, morphology, and 

effects of cyclones.

2015

weathered soils or early successional and montane tropical forests, 

plant biomass allocation away from root biomass and root produc

2011 1989; Liu et al., 2020

2008

tion may cause indirect effects on roots via decreased soil pH and 

2016

availability, root biomass might decrease as a sign of alleviation of 

nutrient limitation, or contrarily, if the limitation of those elements 

to facilitate uptake of the limiting resources. For instance, root phos

2008

duce interacting and conflicting impacts, such that there could be 

Figure 4

2015; 
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2022

Figure 2a

onto the soil surface, they may not fully capture the impacts on 

canopy processes and throughfall, which are typical of atmospheric 

deposition.

that forest ecosystems vary substantially in plant growth responses 

Table 2019 2018

2011

2011

et al., 2010

et al., 2013

2001

et al., 2011

2022 2021

2001

2013

2015; Yavitt et al., 2011

Table 2008; Lugli et al., 2021; 

2015

2021

2018

2011; 

2015 2022

2022

2013

2015; Lugli et al., 2021 2019

2015 2013

2013; Lugli 

et al., 2021

2022

2015; Lugli et al., 2021 2015 2013

2022

2013

Figures 3a and 4

2001

2022

2017

2021

2013

change in all the Hawaiian study sites across a range in soil fertility 

2001

tropical forests.

For microbial associations, most studies found decreased colo

2001 Inga punctata

2013

2014

2021

2001

2018

addition, independently of background soil fertility across some 

2013; 

2021 2019

sites and were not always in accordance with baseline soil fertility. 

with the most root trait observations in our review, there is still gen

erally poor replication across sites with similar baseline fertility and 

omy and architecture.

concentration

The increasing concentration of CO2 in the atmosphere is funda

mentally different from the other global change drivers discussed 

here. Rather than being episodic and geographically variable, CO2 

creasing global atmospheric CO2 concentration is the main driver of 

global climate changes, its effects on fine roots are likely to be indi

rect responses: the direct effects of CO2 occur only in leaves, with 

changes in roots being secondary or tertiary responses to changes 

in C allocation or interactions with water or nutrient economies. 
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2 responses 

2013 2023

or forests, the relative response of root growth or root: shoot ratio 

to equivalent CO2 was inconsistent, often varying with soil nutrient 

Figure 4; Table 

responses in tropical ecosystems will be shaped by the overriding 

 

to greater CO2 stimulation of photosynthesis in warmer tempera

2008

2019; Yang et al., 2019

increase—the primary mechanism of CO2 response—an increase in 

sible increases in root production and biomass, deeper root distribu

activity. Testing these predictions in CO2

should be a high priority because of the interactions of root sys

2012 2 of root 

morphology within the same species and root order are less likely, 

Testing these predictions will require carefully separating individual 

ments and model projections from subtropical and warm temperate 

forests, and guided by these and the few studies from tropical spe

Figure 2a,b

sponses to eCO2 in the tropics.

2

biomass and total length under eCO2 1995; Reef 

et al., 2016 1989

responses were absent or tended to decline with eCO2

1995; Reef et al., 2016 1989

stimulation of C allocation aboveground. Fine root productivity is 

2021

2 has been observed in 

temperate forest eCO2 2000; 

2004

with eCO2

2020

2022

ductivity measurements in tropical forests are often confined to the 

2020

ests, eCO2 has often been associated with deeper root distributions 

2010

et al., 2012

layer are a unique feature of wet tropical forests growing in highly 

1978 2021

1978

source of nutrients in tropical forests, the role of roots growing in 

more superficial soil layers should be addressed.

sponses to eCO2 2

2016

creased their above and belowground biomass in eCO2 regardless of 

2

2016

potentially show enhanced biomass under eCO2 2016

This speculation sets forth a worthwhile hypothesis and leaves open 

as Dipterocarp forests. Effects of eCO2

tion and hyphal growth have been studied in many temperate tree 

2014 1987; 

Treseder, 2004

Beilschmiedia pendula

2 1996

2019

ical tree seedlings in eCO2 to a greater metabolic capacity to acquire 

in tropical tree seedlings grown in eCO2 2019; Thomas, 

2000; Trierweiler et al., 2018

2

2008 2

2017

have failed to find support for this hypothesis at the individual and 

2018

2013 2014 2019

cially in changing climate, warrants further study.

Interactions between eCO2 and nutrient availability have been 

key to evaluating ecosystem response to eCO2 2014

2022

ests project a diminished response to eCO2 when P limitation is fac

2019

might be alleviated if there are mechanisms whereby eCO2 increases 

2022
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2019

2012; Phillips 

et al., 2012

trees grown in eCO2 indicated that phosphatase activity was stim

2019

2 

level, as the whole forest responds to increasing competition and de

mand for soil P. The quality of the root tissue produced under eCO2 

cycling. Increased CO2

in root tissue quality, resulting in higher root P concentrations in a 

study with seedlings of Avicennia germinans, a tropical mangrove tree 

2016

forests have provided valuable information on forest responses to 

2011

2015

https:// 

Fires not only kill and damage trees aboveground but burn 

belowground biomass as well. In places where fires are common, 

2020; Durigan et al., 2012; Fidelis 

et al., 2013

2012

2012

2020; Durigan et al., 2012; Hoffmann et al., 2004; 

2009

root biomass is followed by increasing investment in belowground 

2012

1984

traits include a reduction in belowground biomass and heightened 

2005; Delitti et al., 2001

1984

long run, subsequent fire events may shift community composition 

Figure 4 2019; Issifu et al., 2021

Pausas, 2011

of surviving plant species, so we focus here on observations of 

Figures 2b 

and 4; Table 

Table 

2005

1984

2001

1996

biomass and C concentrations of roots 

vary significantly with stand age in a fire recovery chronosequence 

2020

et al., 2005; Issifu et al., 2021

ity to fire also varied, with no responses detected in savannas and 

2015

1996

2007

of fire on belowground root biomass and the lack of photosynthate 

investment from burnt aboveground organs to sustain root symbiont 

associations.

The effect of fires can impact root tissue quality, though a lack of 

2018; Issifu et al., 2021

burnt plots had three times the wet season soil respiration as burnt 

2012

impact root C and nutrient dynamics belowground, though further 

studies, especially at the species level, are required to conclusively 

determine if and how different species can cope with this global 

in plant community would favor species with root acquisitive traits 

Figure 2a,b

might be compromised as they may lack root traits that promote fire 

2016; Hoffmann et al., 2004

Hence, it is imperative that we identify relevant root traits for as

sessing future species' capacity to adapt to fire events.

|

This review highlights the inherent diversity in root trait responses 

to global change drivers. In summary, root traits across different 

categories were responsive to global change drivers, although the 

presence and direction of changes were specific to the different 

responses to global change drivers remains consistent across root 
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trait categories. However, we acknowledge the potential for broader 

datasets in the future to unveil novel patterns not captured in this 

study, especially if less commonly measured traits are included.

was the global change with most measurements in tropical regions, 

it was the one where root traits were least responsive, potentially 

2

less studied physiological root traits and microbial associations could 

be more prone to responses than other commonly measured traits. 

Drought was also among the global change drivers stimulating fewer 

changes in root traits, but in general, we found increased root:shoot 

ratio at the same time as increasing total root length, potentially in

gradual and almost uniform increase in warming and CO2 around the 

globe, these were the least studied global change drivers, together 

with fire. From these few studies, roots from tropical species seemed 

very responsive to eCO2 and warming, with generally increased root 

2

2, likely to increase soil resource acqui

sition to support plant growth. The abrupt changes in environmental 

conditions after flooding, cyclones, and fire also translate into root 

responses related to root physiology and chemistry and changes 

species that are frequently affected by floods. The plant community 

change following fire and cyclones generally decreases root biomass 

but increases productivity and investment in acquisitive morpholog

acquisitive plants are established in the newly disturbed habitats.

diversity in root responses to global change, we list the scale of 

mental timeframe and treatment intensity, and the potential inter

actions between global changes and other limiting environmental 

2022

Figure 4

Incorporating functional grouping or syndromes based on root trait 

2022

et al., 2023

global changes could shed light on compensatory mechanisms be

tween above and belowground plant tissues, where, for instance, 

the lack of or weak changes in some root traits could be counter

related to resource acquisition and use will likely be essential to 

predict the forest's role as future C sinks. In that sense, the out

trait responses from the most dominant species. In addition, un

derstanding these responses across different soil depths and the 

interaction between roots, microbes, and environmental properties 

will strengthen the link between root traits and their functions. This 

will likely move the focus of this research field away from only com

and into physiological, chemical and anatomical traits that are likely 

to respond faster to environmental changes.

cyclone studies, which are episodic and destructive global change 

drivers that generally result in the establishment of new species. 

derstanding root responses, although the interpretation of results 

2004

disturbances such as cyclones, fires, and flooding decrease root 

biomass, and under elevated CO2 and warming, the C losses from 

tropical soils could be even more significant. Furthermore, due to 

2022; Lugli et al., 2021 2019

standing differences in soil nutrient availability will help us predict 

directly or indirectly and how this might interact with other global 

2

of great value in overcoming empirical limitations in predicting root 

2024; 

2004

widespread, studying the less affected ecosystems might help us 

establish how resilient forests would be. The heterogeneity of 

ferent global changes vary among tropical regions using consistent 

2020

might result in different forest response trajectories due to global 

change. The plasticity of plant root traits, their ability to sustain 

tion becomes vital in developing robust mitigation and adaptation 

strategies for tropical regions.
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