
Towards Sustainable Cloud Software Systems
through Energy-Aware Code Smell Refactoring

Asif Imran1, Tevfik Kosar2, Jaroslaw Zola2, M. Fatih Bulut3
1Department of Computer Science, California State University, San Marcos, California, USA

2Department of Computer Science & Engineering, University at Buffalo, Buffalo, New York, USA
3IBM TJ Watson Research Center, Yorktown Heights, New York, USA

Email: aimran@csusm.edu, {tkosar,jzola}@buffalo.edu, mfbulut@us.ibm.com

Abstract—Software applications and workloads, especially

within the domains of Cloud computing and large-scale AI model

training, exert considerable demand on computing resources,

thus contributing significantly to the overall energy footprint of

the IT industry. In this paper, we present an in-depth analysis

of certain software coding practices that can play a substantial

role in increasing the application’s overall energy consumption,

primarily stemming from the suboptimal utilization of computing

resources. Our study encompasses a thorough investigation of

16 distinct code smells and other coding malpractices across 31

real-world open-source applications written in Java and Python.

Through our research, we provide compelling evidence that vari-

ous common refactoring techniques, typically employed to rectify

specific code smells, can unintentionally escalate the application’s

energy consumption. We illustrate that a discerning and strategic

approach to code smell refactoring can yield substantial energy

savings. For selective refactorings, this yields a reduction of up

to 13.1% of energy consumption and 5.1% of carbon emissions

per workload on average. These findings underscore the potential

of selective and intelligent refactoring to substantially increase

energy efficiency of Cloud software systems.

Index Terms—Cloud software, code smells, software batch

refactoring, energy consumption, carbon footprint.

I. INTRODUCTION

Software applications are considerable consumers of com-
puting resources, leading to a significant energy consumption
and carbon footprint. Recent estimates suggest that Informa-
tion Technology accounts for approximately 11% of global en-
ergy consumption [1]. Projections indicate that by 2030, data
centers alone could account for 3–13% of global electricity
use, a stark increase from the 1% recorded in 2010, propelled
by escalating demands and emerging trends like large-scale
AI workloads [2]. The software industry is responsible for
about three percent of global carbon emissions, which is very
close to that associated with the aviation industry [3]. Certain
software coding practices, if left unattended, can trigger a
substantial surge in energy consumption, primarily stemming
from the suboptimal utilization of computing resources. These
coding practices are referred to as “code smells” (or sometimes
as “energy smells”) which are defined as characteristics in
software source code indicating a deeper, underlying issue [4].

Software engineers constantly strive to restructure their code
to eliminate the code smells, a mechanism popularly known as
refactoring [5]. While current code refactoring practices prior-
itize the elimination of smells that impact software correctness

[6], maintainability [7], and scalability [8], there has been a
significant oversight regarding the analysis of the impact of
such refactorings on energy consumption and carbon emission,
a critical issue related to code smells. Research has demon-
strated that certain code smells contribute to excessive resource
consumption in software [9]. However, the potential effects
of code smell refactoring practices on application energy
consumption and carbon emission have only been sparsely
studied. This knowledge gap and the disparity between theory
and practice serve as the driving motivation for this study.

Certain categories of code smells can substantially increase
energy consumption and carbon emission, particularly due to
inefficient utilization of computing resources. However, it is
crucial to note that not all code smell refactorings inevitably
lead to enhanced resource utilization. Intriguingly, certain
refactoring techniques and tools can inadvertently introduce
new complexities. For instance, refactoring the god class smell
involves decomposing a large class into smaller ones. This
segmentation necessitates increased interclass communication,
burdening the CPU with additional tasks, which in turn
escalates CPU usage. Similar implications can occur when
refactoring god method and long parameter smells, thereby
exacerbating the application’s CPU and memory consumption.

Previous research has predominantly focused on the impact
of code smell refactoring on resource consumption within the
context of smartphone applications [10]. However, these prior
investigations have often been narrowly focused, considering
only the isolated impact of a select few code smells and
disregarding the potential cumulative effects of refactoring a
broader array of smells [11]. Furthermore, these studies were
limited in scope, examining only a small pool of applications,
thus limiting their ability to form broad-based conclusions or
predictions regarding their influence on energy consumption.

This paper fills a void in this area by providing a com-
prehensive analysis on the impact of batch refactoring 16
different code smell types on the resource consumption of
31 real-life Java and Python applications. We find that batch
refactoring of code smells has a significant impact on the
application’s energy usage. Depending on the goal of the
application developers, this study enables intelligent selection
of which smells should be refactored together and which ones
not be refactored. If software engineers are concerned about
the resource consumption of their applications, this study will



Fig. 1: Approach to selectively and intelligently refactor code smells.

help the developers decide which smells to refactor jointly
to minimize the resource consumption. Also, we study if
refactoring code smells impact the energy consumption of
the software. We use the model presented in Section 2.3
to estimate the power and subsequent energy consumption
before and after refactoring smells for a specific workload.
Experiments on the 31 software show the impact of code
smells on energy consumption.

In this study, we use 3 different automated refactoring tools,
Jdeodorant [12] and JSparrow [13] for Java and pycharm for
Python [14] applications to detect and refactor the code smells.
We establish a benchmark where individual types of code
smells are detected and refactored in each software, followed
by an analysis of CPU and memory consumption and energy
utilization impact. Afterward, we conduct a batch refactoring
of smells and analyze their collective impact on energy usage.
We provide an approach to selectively refactor code smells,
which is illustrated in Figure 1.

The major contributions of this paper include the following:
• A detailed impact analysis of refactoring 16 different code

smell types on the energy consumption of 31 real-world
open-source Java and Python applications.

• An empirical evaluation of the change in energy utiliza-
tion and carbon emission after auto-refactoring specific
code smells in isolation as well as batch refactoring.

• A set of guiding principles to select the code smells that
will improve energy usage when refactored collectively.

The rest of the paper is organized as follows: Section
II explains the code smell types, the selected applications,
workloads, automated refactoring tools, and energy estimation
techniques used for this study. Section III presents the results
of the experimental study and a summary of our findings.
Section IV discusses the related work in this area, and Section
V concludes the paper.

II. METHODOLOGY AND EXPERIMENTAL SETUP

Our analysis includes 16 different code smell types, and to
the best of our knowledge, this is the most comprehensive
study in this area so far. All selected smells can be de-
tected and refactored using off-the-shelf automated refactoring
tools. Table I summarizes the 16 code smells, including
their properties, refactoring techniques, and their impact on
application resource utilization. For automated smell detection

and refactoring, we used jdeodrant [12] and jsparrow [13] for
Java and pycharm for Python [14] applications to detect and
refactor the code smells.

For each application, first, we compile and run the appli-
cation without refactoring. In the process, we gather data re-
garding CPU and memory utilization and energy consumption.
Second, we refactor them in two phases: in phase 1, we refac-
tor all occurrences of one particular type of smell. In phase
2, we refactor multiple types of smells together to analyze the
batch effect. Once all data is collected, we find the difference
in CPU and memory utilization and energy consumption be-
fore and after refactoring. Next, we normalize the differences
in resource usage by the instance of each type of smell that
was detected. This gives us the per-smell impact of a spe-
cific type for each application. Next, we use the power model
presented in Section 3.2 to estimate the power and energy
consumption of the applications. Afterward, we use the car-
bon footprint calculator [21] to calculate the carbon emissions
based on resource utilization. The carbon footprint estimation
model considers several factors, which include hardware spec-
ifications, the number of cores in the CPU, and the total ca-
pacity of the memory. Additionally, it requires the time for
which workloads are executed. Using runtime and data cen-
ter location, empirical estimates are provided using parameter
tuning and trial-and-errors [21].

For method-level data collection, we use a tool called hprof
[22]. We record the execution path of the code and note the
CPU and memory usage where the code smells are refactored.
This allows us to collect information on resource usage pre-
cisely of the refactored method. As a result, we can relate the
change in resource usage to refactoring. This is achieved by
tracking resource usage via method id, which is unique to a
method and assigned by the hprof tool. Using hprof, we col-
lect resource usage data every 10 ms. For Python, we load
the source codes in the pycharm and compile the code. After-
ward, we apply specific workloads to test the resource usage
before refactoring. When the applications run, we execute the
workload and collect the resource usage using logpid. Next,
we refactor the code smells in the same procedure discussed
earlier and re-collect the data using the same workload. The
workloads and experiments are detailed in the next section.

Next, we explain the applications and workloads that are
used in our experiments.



Smell Type Property Refactoring Technique Impact on Resource Utilization

cyclic dependency
Violates acyclic properties and
results in misplaced elements
[15]

Encapsulating all packages in a cy-
cle and assign to single team

Refactoring prevents the enhanced loops from repeating,
thus prevents resource wastage

god method Many activities in a single
method [4]

Divide the god method into multi-
ple smaller methods

Multiple processes in a single method cause less inter-
method communication, hence preserves resource usage

spaghetti code Addition of new code without
removing obsolete ones [16]

Replace procedural code segments
with object-oriented design

Unrefactored code contains length() and size() can have
a time complexity of O(n), refactoring results in using
isEmpty() instead of length() and size() which has a
complexity of O(1)

shotgun surgery Single behavior defined across
multiple classes[4]

Use Move Method and Move Field
to move repetitive class behaviors
into a single class

Refactoring removes the resource-consuming code blocks
which were applied in multiple locations

god class One class aims to do activities
of many classes [4]

Divide the large class into smaller
classes

Refactoring causes greater inter-class communication,
thus increasing resource consumption

lazy class
The class does not do enough
activity and can be easily re-
placed [4]

Use diamond operators to remove
re-implementation of interface

Refactoring lazy class prevents the consumption of excess
resource due to context switching from this class to the
other classes

refused bequest

When the child classes of a
parent are not related in any
way, caused mainly by forceful
inheritance [17]

Replace inheritance with delega-
tion

Restructuring of code due to refactoring removes forceful
inheritance, thereby preventing excess resource consump-
tion

temporary field When an instance variable is
set only for certain cases [4]

Remove unnecessary throws and
unused parameters

Refactoring results in removing temporary variables
which act as additional fields ad consume CPU and
memory in addition to the other variables

speculative generality
Codes which are placed by
programmers for anticipated
future events [18]

Eliminate the smell by boxing ob-
jects to use static strings.

As described above boxing the scalars to use the toString
method is a waste of memory and CPU cycles.

dead code Obsolete code which was not
removed [19]

Parse through the methods to re-
move redundant code.

Code which is no longer needed keeps calling the meth-
ods and allocates spaces in memory and consumes CPU
cycles. Refactoring removes this redundant code, thus
stopping resource wastage

duplicate code

A code block which was
copied in multiple classes
rather than called through an
object [4]

Apply proper inheritance Removal of duplicate lines of code in multiple places will
prevent CPU and memory from wastage

long parameter

When a method takes more
than 5 parameters it is gen-
erally called to have a long
parameter [18]

Simplify the lambda using method
reference

Refactoring excessive number of parameters in a method
will prevent caching at the beginning and this would
remove the extra load on the CPU, however, memory
usage will be increased

long statement
A statement in a code, e.g.
a switch statement containing
too many cases [20]

Divide the long statement into
smaller statements and establish
proper communication between
those.

Refactoring prevents loading a long statement into mem-
ory which would otherwise consume excess memory
resources.

primitive obsession
The undesirable practice of us-
ing primitive types when rep-
resenting an object. [20]

Use StringBuilder which en-
sures that no locking and syncing is
done, resulting in faster operation.

Removes the use of obsolete string manipulation tech-
niques like StringBuffer which allows locking but no syn-
chronization, thereby saving CPU and memory resource

orphan variable Variables that should be owned
by another member class [20]

Extract all the variables to a class
that should own them.

Refactoring ensures that a variable is transferred to a
class to which it should belong, thus preventing wastage
of CPU cycles and memory spaces while doing this
communication

middleman
When a class is delegating al-
most all of its functionality to
other classes [20]

Transfer functionality placed to the
classes that they were mediating

Presence of such a delegation-centered class will create
extra overhead in terms of resource consumption which
is prevented by refactoring

TABLE I: Characteristics and refactoring techniques of the analyzed software smells.

A. Java: Applications and Workloads

For Java applications, in order to understand the impact of
refactoring on resource utilization, the following workloads
are run (clustered by application categories):

Email clients. The applications analyzed under this cate-
gory are emf [23] and columba [24]. Predefined emails of
size 70 bytes are sent using SMTP server [25]. The emails are
sent to 2920 users who were identified as mail readers. The
average time to deliver an email is 3083.03 milliseconds with
a median of 2847.3 milliseconds.

Testing software. Eclipse bug dataset [26] is used as work-
load, which contains data about six applications that were an-
alyzed, namely jmeter [27], findbugs [28], cobertura [29],
emma [30], jstock [31], and pmd [32]. We merge all classes
and files into one large dataset, which results in 24,642 LOC

[33]. The workload consists of web services in Java, which
consists of Java Server Pages (JSP), servlets, Enterprise Java
Bean, and a database. The applications in the corpus are re-
sponsible for testing every conditional and loop statement.

Editors. We study seven applications here, which are jedit
[34], jhotdraw [35], antlr [36], aoi, galleon, batik [31], and
jruby [37]. Multiple bots conduct activities in the editor, such
as typing, loading saved pictures, drawing simple shapes, and
using various editor properties. The workload of each bot is
9.9 MB and a total of 109 virtual bots are used [38], [39]. The
total time for the workload of all bots is 180 seconds.

Project management. The applications in this category in-
clude ganttproject [40], xerces [41], javacc [42], nekohtml
[31], log4j [43], and sablecc [42]. Multiple bots conduct
project management activities [44]. Three sample projects are



chosen: automated tender and procurement management, col-
lege management system, and resource monitoring system for
ready-made garments. For each of the projects, bots check
whether the project management tool is available all the time.

Parsers. The applications considered in this category are ant
[31], jparse [45], and xalan [41]. The workload contains a set
of incorrect and correct inputs [46], [47]. The incorrect input
is fed into the parser and ensured that the correct error code
is returned by the parser. For the correct input, the expected
Abstract Syntax Trees (AST) are described in a format that can
be correctly parsed. The AST of the correct input is verified
by a third-party XML-based parser considered to be bug-free.

B. Python: Applications and Workloads
For Python applications, in order to evaluate the impact of

refactoring on resource utilization, the following applications
and workloads are run:

OpenStack. OpenStack is a Cloud platform providing users
with virtual machine instances that can be used for Software
as a Service (SaaS), Platform as a Service (PaaS), or Infras-
tructure as a Service (IaaS) [48]. It is the most popular open-
source Cloud platform in both academia and industry [49]. To
test the OpenStack source code, we compile it from the source
code and launch VM instances. The OpenStack processes, in-
cluding nova-compute, are allocated to a single node, and the
resource consumption of that core is monitored.

Sentry. Sentry is a tool that reports and documents excep-
tions thrown by Python code running at the back-end servers.
Sentry runs in the background and acts as a central hub to
monitor and report errors. Test case workloads provided by
pytest are used for the experiments.

Tensorflow. To test Tensorflow we use the
tf.distribute.Strategy to run the ”2017 US Internal
Migration” dataset and train the system. The database con-
tains 80 years of data and it is used to train the Tensorflow
model to predict the internal migration trend for the next two
years. The size of the dataset is 3.2 GB large, which con-
tains detailed information regarding migration population,
age, gender, occupation, and economic conditions.

Tornado. Tornado is a scalable framework with an asyn-
chronous networking library primarily used for long-lived net-
work applications. For Tornado, the inbuilt test suite is used
to generate the data, which is used as a workload. The frame-
work is synchronous, so the test results are completed when
the method which is being tested returns.

Rebound. Rebound is a popular tool used by software engi-
neers. It is a command-line tool written in Python that fetches
all the solutions from stack overflow related to a problem. As
a workload, we call the sim.integrate(100.) function, which
presents 100 pre-specified erroneous code blocks in rebound
and relies on it to fetch the solutions from stack overflow.

Kivy. Kivy is a Python library that is built over OpenGL ES
2 that allows rapid development of multi-touch applications.
The workload for Kivy is generated using its own module
called recorder, which allows to replay of keyboard events in
sample applications with Kivy running at the backend. A demo

 0

 100

 200

 300

 400

 500

jstock
ant

emf
columba

xerces

jhotdraw

jruby
jedit

antlr
javacc

jparse
ganttproject

jmeter

findbugs

log4j
pmd

xalan
aoi

galleon

batik
nekohtml

cobertura

emma
sablecc

openstack

sentry
tensorflowmodel

rebound

tornado

kivy
falcon

cyclic dependency
dead code
duplicate code
god class
god method
lazyclass
long parameter
long statement
middle man
orphan variable
primitive obsession
refused bequest
shotgun surgery
spaghetti code
speculative generality
temporary field

Fig. 2: Code smell distribution across the 31 applications analyzed
in this study.

login page is launched with Kivy which simulates clicking on
a login button. the is click option in recorderkivy.py is set to
true, and the screen coordinates for the click are specified.
Next, the recorder is set to execute one click per second, and
this is repeated for 2 hours. This workload ensures that the
critical code segments of Kivy are called, a number of which
also contain code smells.

Falcon. It is a WSGI library for building web APIs.
The workload mainly includes simulating requests to a
WSGI client through class falcon.testing.TestClient(app, head-
ers=None)[source] class which is a contextual wrapper for
simulate *() function. This class simulates the entire app life-
cycle in a single call, starting from the lifespan and disconnect-
ing process. This workload is repeated by passing the number
of repetitions to the simulate request() function. It is repeated
300 times, and the CPU and memory usage are recorded. The
process is repeated after refactoring the Falcon source code.

C. Energy Model

We use a power model to detect power consumption in watts
based on the CPU utilization. We use average CPU utilization
over time t and calculate average power consumption over that
period. The time value shows the length of time for which the
system was running to complete the workload. The following
equations are used to calculate the power and energy estimates.

Pt = (Ccpu → Ucpu) → PBP (1)

Et = Pt → T (2)

where,
• Pt = refers to the power consumption
• Et = refers to the estimated energy consumption
• Ccpu:CPU co-efficient for single and multi-core process-

ing
• Ucpu: Average CPU utilization to complete the task
• PBPser: Processor base power
• T = refers to the time in hours for execution of workload



-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

dead code

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

cyclic dependency

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

long parameter

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

middleman

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

god class

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

god method

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

lazy class

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

duplicate code

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

long statement

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

orphan variable

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

primitive obsession

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

refused bequest

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

shotgun surgery

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

spaghetti code

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

speculative generality

-0.4

-0.2

 0

 0.2

 0.4

-0.2  0  0.1

temporary field

Legend
jstock
antlr
ant
jedit

jhotdraw
jparse
javacc
pmd
emf

columba
xerces

ganttproject
log4j
jruby
jmeter

findbugs
xalan
aoi

galleon
batik

nekohtml
cobertura
emma
sablecc

openstack
sentry

tensorflow
rebound
tornado

kivy
falcon

Fig. 3: Normalized plots of the impact of refactoring each code smell individually (per instance) on resource usage. X-axis: change in CPU
usage (%); Y-axis: change in memory usage (%) of the application.

In server environments, accessing hardware information
such as disk and network usage may not be possible. Also,
users may not be able to connect power monitoring devices to
the servers as those may be located in various regions com-
pared to the users. Under current circumstances, it may be
useful to estimate power consumption using CPU utilization.
Earlier studies have shown a strong relationship between CPU
and power. The correlation between CPU and power was found
to be 87.81%. As a result, we adopt a CPU-based model that
will give us considerably accurate results for our experiments,
thus letting us measure the energy consumption of data trans-
fer tools in a data center environment with high confidence.

We use the Processor Base Power (PBP) value to maximize
the power consumed by the servers during the execution of
the workload. PBP value is provided by CPU vendors, which
indicates the the power drawn by a processor for a thermally
significant period when it is at 100% peak utilization.

III. EXPERIMENTAL RESULTS

In this section, we discuss the results of our experiments
for both Java and Python applications. Figure 2 shows the
frequency of 16 analyzed code smell types across all studied
applications. The distribution shows that while the number
of smells differs between applications, no single smell domi-
nates. For example, Cyclic Dependency code smell is prevalent
in the highest numbers in Java source codes as we detect 725
instances of this smell as seen in the Figure. On the other
hand, 259 instances of Orphan Variable are detected. Given
the assessment of smell distribution, we perform individual
and batch refactoring of all applications, and we record the
CPU and memory usage and the energy consumption before
and after the refactoring. Figure 3 shows the relative change in
resource usage we observed. Here, we define relative change
as the difference in CPU and memory usage between before
and after refactoring. The dataset for generating Figure 3 is
provided 1 for reproducibility. We note that in the case of

1https://github.com/asif33/batchrefactoring/tree/scatter

https://github.com/asif33/batchrefactoring/tree/scatter


Python applications, our tools can detect and refactor the fol-
lowing smells: dead code, cyclic dependency, long parameter,
middleman, god method, and god class. Below, we summarize
our findings for each smell type.

dead code: We know that dead code is a code that is ei-
ther redundant because the results are never used or is never
executed. Since the results are never used, but the code is get-
ting executed, it is common to expect that it leads to CPU
and memory waste. In cases when the code is not executed,
it can still have adverse effects due to adding code bloat. Our
results confirm that CPU usage can be improved by remov-
ing dead code smells. Dead code makes the runtime footprint
larger than it needs to be, thereby consuming excess resources
in terms of CPU and memory, which can be critical for large-
scale data center applications like OpenStack.

cyclic dependency: This smell can cause a domino effect on
the code when a small change in one module quickly spreads
to other mutually recursive modules. The smell causes infinite
recursion in 134 instances where it is found. In 63 instances,
it results in memory leaks in Java by preventing garbage col-
lectors from deallocating memory. The extent of the impact of
this smell is also dependent on the type of software, as a sim-
ilar type of application is found to behave similarly. Analysis
of the refactored code shows that the refactoring eliminates
the enhanced loops in most parts of the software, thereby im-
proving resource usage. The enhanced loop traverses each loop
one by one, thereby requiring increased CPU utilization even
when traversal of the entire array may not be required. The
refactoring tools address this and remove the enhanced loops.

Removing unwanted loops results in loop unrolling, which
is observed in the refactored code of both Java and Python
datasets. The loop unrolling reduces CPU and memory con-
sumption by removing loop overhead. At the same time, loop
control instructions and loop test instructions are eliminated,
so the resources required to conduct those activities are freed.
The total number of iterations is reduced to improve resource
efficiency. As seen in the figure, in all cases of Python and
Java, the removal of cyclic dependency code smell improves
resource utilization performance.

long parameter: For long parameter code smell, it is seen
that out of the 31 applications, all are showing positive mem-
ory change and negative CPU change, meaning memory usage
degraded after refactoring the software smell. When we look
towards refactoring, for example, in jhotdraw, the tool used
“Introduce Parameter Object” refactoring.

If we consider an example of a long parameter smell found
in openstack, we notice that a method with many parame-
ters is refactored where the parameters are distributed to three
methods, preserving the functionality. Although the above seg-
regation is a better way to provide useful and reusable classes,
it is causing the unboxing of the parameters from one to 3
methods. If one method contained all parameters, then all
those parameters could have been cached at the beginning,
and it does not require loading into memory multiple times.
However, this would provide an extra load on the CPU as the
parameters that are not required at the initial stage of polygon

formation would still be called. Refactoring it in the mech-
anism described above breaks the concatenation, hence pre-
venting caching.

Although the modularization of code improves readability, it
worsens memory usage as more instructions need to be loaded
into memory. Similar behavior applies to the remaining 3 ap-
plications which show these traits. For openstack we notice
that the CPU utilization reduces by 7.9%, which is signifi-
cant compared to others. It must be stated that the number of
smells of the long parameter in openstack is found to be 40,
significantly higher than the same smell being found in other
apps. This large number of smells may have contributed to
improving CPU usage.

middleman: Elimination of middleman smells contributes
to the improvement of CPU and memory usage. The most im-
provement is seen in ganttproject with CPU and memory
usage reductions of 0.61% and 0.29% respectively. There are
58 instances of middleman code smell in the ganttproject,
resulting in a significant performance improvement. Also, the
ganttproject is a CPU-intensive project occupying a signifi-
cant percentage of CPU when running, thus yielding greater
change in CPU than memory. For the Python dataset, sentry
had the maximum number of middleman code smells de-
tected. When the 27 code smells in sentry are refactored, per
smell improvement in CPU and memory is 0.44% and 0.13%,
respectively, for every smell refactored.

god class: In the list of applications that are refactored, it is
seen that the extract class refactoring mechanism caused the
resource usage to worsen [50]. Refactoring this smell involves
a large class being separated into multiple smaller classes, each
with lesser responsibilities, hence extra time and resources are
required for inter-class communication. As a result, CPU and
memory usage increases. Further analysis shows that inter-
class communication increases as large classes are extracted
into multiple small classes. We inspect all the new methods
that are created and find the average lines of code in those. In
most cases, we see that usually 16.14 lines of code trigger and
complete operations on a variable or object, based on slicing,
a new method needs to be made with those. From a software
engineering perspective, such large volumes of extraction are
desirable. However, from the standpoint of resource usage,
such granular segregation may cause a huge volume of context
switching and inter-method communications, which may add
a high volume of overhead.

god method: The behavior of the graph for the god method
is similar to that of the god class. All values are positive, which
shows that refactoring the god method code smells increases
resource usage. Besides, the normalized increase is quite high
for the god method compared to other kinds of code smells.
To refactor the god method, the extract method mechanism is
used. So, a large method is broken down into multiple smaller
methods, which increases inter-method communication.

lazy class: The same behavior is seen for refactoring lazy
class smell where each category of applications is showing
similar behavior. One exception is that JRuby is located very
close to the group of document editors. The reason is that



the number of lazy class smells of JRuby is only 9. Similar
resource consumption changes are seen for the group of edi-
tors, where the number of smells ranges from 9-13 for all the
applications. Hence, for lazy class, the number of smells is
proportional to the impact on resource usage.

duplicate code: Similar behavior is seen for refactoring du-
plicate code smell. It is seen that the apps belonging to the
same category are behaving similarly, emphasizing the fact
that similar types of apps have the same impact when the
code smell is refactored. Ant, xalan, maven, and xerces are
found to show significant improvement in CPU resources af-
ter refactoring. Analysis of the code in xerces shows that it
parses the XML documents and places the variables in those
in a list, reiterating through it multiple times.

orphan variable: Similar categories of applications are seen
to behave similarly in terms of change in resource usage when
the orphan variable is refactored. As a result, it can be stated
that the category of applications can be used to group the
impact of refactoring the code smell. The email clients, namely
emf and columba, are seen to have the maximum impact of
refactoring this code smell.

primitive obsession: After refactoring the primitive obses-
sion code smell, it is seen that for primitive obsession, the
change in resources data can be used to group the applica-
tions by category. One of the rules used by the refactoring
tool is to replace StringBuffer with StringBuilder. It is
recommended to use StringBuilder because no locking and
syncing is done. Hence, it is faster. When running programs in
a single thread, which is generally the case, StringBuilder

offers performance benefits over StringBuffer.
refused bequest: We see that the impact of automated refac-

toring is higher for the group of code analyzer apps than the
others. This is because the testing apps loaded the source code
in memory to run the tests. The presence of unused methods
and variables in the code which is loaded into memory results
in excessive resource usage by the applications. On average,
after refactoring 0.284% of CPU and 0.147% of memory are
reduced for each refused bequest smell refactored.

shotgun surgery: For log4j, it is seen that refactoring the
shotgun surgery significantly contributes to improving memory
resources by 7%. Refactoring this code smell also improves
the unpredictability and efficiency of the generated random
values. Simplification of the data structures occurred in 21 of
the cases of refactoring, a high percentage of 61.76% where
this refactoring is done, thus simplifying the code significantly.
As most of the loops are used to read and load the logs in
memory, simplifying it meant that less memory is required
for loading.

spaghetti code: The jruby application has the highest im-
pact due to refactoring the spaghetti code smell. The number
of spaghetti codes detected in this application is 57, which is
higher than any application in the list. This results in more loc
being refactored and greater change in resource usage before
and after refactoring. One of the rules of refactoring spaghetti
code replaces the concat() method on Strings with the + op-
erator. It has slight performance benefits if the size of the

concat() is large. Another rules replaces length() or size()
with isEmpty(). This rule provides performance advantages
since isEmpty() time complexity is O(1) whereas length()
and size() can have a time complexity of O(n).

speculative generality: It is seen that the code parser cate-
gory showed the highest change in CPU and memory utiliza-
tion for speculative generality. This category of applications
has 76 cases of speculative generality and non-normalized
CPU usage improves by 4.63% and memory usage improves
by 1.47% due to refactoring of the smells. This increase is
mainly due to the removal of excess code that was added but
not called in the system. These codes keep using heap memory
and CPU for basic, non-required computations.

temporary variable: Given the lower number of smells de-
tected for this smell type in the applications, the grouping of
applications in the plots based on category implies that the
smell is having an impact on the resource change. Also, the
refactoring does not keep temporary fields, thus making those
final, leading to improvement in resource consumption.

A. Impact of Batch Refactoring
In addition to analyzing the individual impact of code smells

on resource usage (as presented in the previous section), we
also study the combined impact of code smells and their refac-
toring on resource usage. In this study, we investigate whether
the combined impact is equal (or similar) to the summa-
tion of the individual impacts of refactoring different smell
types. With this requirement in mind, we refactor the smells
in batches and present the results in Figures 4, 5, and 6.
1) Refactoring All Code Smells Together:

First, we refactor and analyze the combined impact of all
16 code smells. In this section, we provide the findings in
terms of CPU and memory utilization (%), energy consump-
tion (Joules), and carbon emission (gCO2e). Figure 4 shows
the combined impact of refactoring all smells together.

Impact on CPU: Combined refactoring of all the smells,
irrespective of impact, can provide useful information as to
whether those smells improve resource usage or worsen those.
It is seen that although the individual impacts of performance
degrading smells are significant, refactoring all 16 smells in
31 applications together resulted in an improvement of the
resource usage overall since the type of resource usage im-
proving smells are larger compared to those which worsen
performance. From the CPU perspective, it is seen that the
total CPU usage of ant improved by 30.01% which is sig-
nificant and desirable. At the same time, the least percentage
improvement was seen in Javacc which is 8.10%. It is seen
that the presence of the numbers of various types of smells
greatly influences the percentage improvement of CPU.

Impact on memory: A similar pattern is seen for memory
consumption, where the usage improves after refactoring the
16 smells together, where ant shows the highest improvement
of 39.70%. The lowest change in CPU usage is seen for jparse
with a 3.50% improvement. Again the increase can be credited
to the total instances of the various types of smells found in
the un-refactored code.



(a) impact on CPU utilization(%)

(b) impact on memory utilization (%)

(c) impact on energy consumption (%) and carbon emission (%)

Fig. 4: Combined impact of refactoring all code smells considered
in this study on the application’s CPU and memory utilization (%),
energy consumption (%), and carbon emission (%).

Impact on energy consumption and carbon emission: Figure
4c shows the energy savings by refactoring all 16 code smells
together. It is seen that energy savings in OpenStack, ant,
and Jmeter range between 76-139 joules. Average energy
savings account to 6.01% (88.46 joules) for the 31 software
considered here. The blue bars in the plot are used to show en-
ergy consumption (in Joules), and the green bars show carbon
emission estimations (in grams of carbon dioxide equivalent -
gCO2e) for each of the 31 applications. Negative values show
an improvement (decrease) in energy consumption, whereas
positive values show an increase in energy consumption. It is
seen that 15.98 grams of carbon emission can be saved on
average by refactoring the 16 code smells in the 31 software.
2) Refactoring Smells That Decrease Resource Usage:

This section states the combined impact of refactoring the
smells that positively impact resource usage. Similar to the last
section, we highlight the impact on CPU and memory utiliza-
tion (%), energy consumption, and carbon emission (gCO2e)
separately and analyze the results as shown in Figure 5.

Impact on CPU: We analyze refactoring of smells that con-
sistently improve the resource utilization for our application set
and found that cyclic dependency, duplicate code, dead code,

primitive obsession, speculative generality, shotgun surgery,
long parameter, middle man, refused bequest, orphan vari-
ables, long statements, and temporary fields meet our condi-
tion. We proceed to refactor the aforementioned smells alto-
gether and determine the total change in resource utilization
when they are refactored together. Out of the 31 applications,
columba, log4j, and jruby give errors when the smells which
improved performance individually are refactored together. As
shown in Figure 3 for CPU, it is seen that the range of per-
centage improvement of CPU stretches from 7.6% for jparse
till 37.70% for ant. We proceed to sum up the impact of refac-
toring those smells individually for comparison purposes. It is
seen that combining impact stretches from 7.86% to 38.87%.
Upon calculation of the differences, it is seen that combin-
ing all the smells whose refactoring improves performance
shows consistent behavior to refactoring them individually and
adding the values. The difference in the values ranged from
0.26% to 1.46% which are seen for jparse and emf , respec-
tively. The mean deviation is 0.61%.

Impact on memory: Memory usage is impacted significantly,
with a range of 25.47% and 47.77% for the apps and an av-
erage improvement of 28.63%. It is seen that jmeter shows
the maximum improvement, whereas emf shows the mini-
mal effect on memory. Further analysis shows that when the
smells are refactored in jmeter, the spatial locality volume in-
creases due to the rearrangement done to it. Also, compression
is conducted by dissolving longer parameters, which results
in smaller and smarter formats. Finally, temporal localities are
increased by refactoring smells like a refused bequest, shot-
gun surgery, and speculative generality, which cache trash-
ing, hence reducing memory usage. Reduce and reuse refer to
techniques that minimize memory operations with the tempo-
ral locality that reduce cache fetches. This is accomplished by
reusing data still in the cache by merging loops that use the
same data with a mean deviation of 0.64%.

Impact on energy consumption and CO2 emission: Fig-
ure 5c shows the energy consumption and carbon emission
impact of refactoring the code smells which improve re-
source usage. A positive correlation is observed between en-
ergy consumption and improvements in the CPU and memory
utilization. It is seen that energy consumption decreases by
8.71% (128.22 joules) on average. Falcon, Aoi, Jedit, and
Findbugs show the greatest improvement in energy consump-
tion when the code smells are removed. The carbon footprint
improves by 4.31% (25.51 grams) on average for the 31 appli-
cations. Hence, it is seen that selectively refactoring the code
smells improves energy consumption and carbon emissions.
3) Refactoring Smells That Increase Resource Usage:

In this section, we present the combined impact of refac-
toring the smells that negatively impact resource usage.

Impact on CPU: It is seen that refactoring god class,
god method, and feature envy negatively impacts performance
when refactored. Upon analysis of the normalized graph for
god class and god method, it is seen that per smell impact
of god class is found to be around 0.22%-0.50%, whereas
for god class it is 0.20%-0.22%, indicating that a software



(a) impact on CPU utilization (%)

(b) impact on memory utilization (%)

(c) impact on energy consumption (%) and carbon emission (%)

Fig. 5: Combined impact of refactoring code smells that improve
resource usage on the application’s CPU and memory utilization (%),
energy consumption (%), and carbon emission (%).

engineer who is focusing on refactoring and has optimizing
resource usage and energy consumption in mind should avoid
refactoring god classes and god methods.

At the same time, it is seen that ganttproject suffers from
the largest percentage increase in CPU usage, which is unde-
sirable. In total ganttproject has 61 occurrences of smells of
god class and god method, refactoring which greatly impacts
the resource usage, with a degradation of 16.30%. On average,
the total degradation of CPU usage after refactoring the smells
for 31 applications is found to be 7.79%. Upon refactoring the
individual smells and adding the total change in CPU usage,
we get similar values to refactoring them altogether.

Impact on memory: Refactoring god class and god method
also worsen memory usage for all 31 applications. Log4j
has the highest degradation of memory consumption, which is
19.50% when the concerned smells are refactored altogether.
Also, refactoring those individually and adding up the values
results in a total memory consumption of 20.01%, which is
only 0.51% greater than combined refactoring. This ensures
that the results add up to individual impact, and hence, are
consistent. The large number of smells of god classes and
god methods, which sum up to 100 instances of smells being

(a) impact on CPU utilization (%)

(b) impact on memory utilization (%)

(c) impact on energy consumption (%) and carbon emission (%)

Fig. 6: Combined impact of refactoring code smells that worsen re-
source usage on the application’s CPU and memory utilization (%),
energy consumption (%), and carbon emission (%).

present in the code, leads to a large volume of refactoring done
in the code by implementing extract class and extract method
refactoring procedures. This contributes to the large distortion
of memory usage before and after refactoring. Overall, we see
that individual refactoring impacts add up when the refactor-
ing is done in a combined procedure. The mean deviation in
CPU utilization is 0.64% and the mean deviation in memory
utilization is 1.47%.

Impact on energy consumption and CO2 emission: Fig-
ure 6c shows the impact of refactoring the code smells which
increase resource usage on energy consumption and carbon
emission. A positive correlation is observed between energy
consumption and resource usage increase when certain code
smells are refactored. It is seen that energy consumption in-
creased from 23-88 joules across the 31 applications when
specific code smells are refactored. Average energy wastage
accounts for 10.01% for the 31 software considered here. It is
seen that Ant, Jemeter, and OpenStack emit the result in
the highest carbon emissions in this case. The carbon emission
worsens by 3.16% on average for the 31 applications. This il-
lustrates the importance of selective refactoring code smells
when building energy-intensive applications.



IV. RELATED WORK

Automated batch refactoring techniques are known to sig-
nificantly improve overall software quality and maintainability,
but their impact on energy utilization and carbon emission is
not well studied in the literature. Oliveira et al. conducted an
empirical study to evaluate nine context-aware Android apps
to analyze the impact of automated refactoring of code smells
on resource consumption [51] of Android applications. They
studied three code smells, namely god class, god method, and
feature envy. They found that for the three smells, resource
utilization increases when they are refactored. Although their
findings are useful, it is limited to the analysis of three code
smells only. At the same time, the importance of analyzing the
impact of batch refactoring code smells on software resource
usage was not considered.

To understand the relationship between Android code smells
and nonfunctional factors like energy consumption and per-
formance, Palomba et al. [17] conducted a study with nine
Android-specific smells and 60 Android applications. Their
results showed that some smell types cause much higher en-
ergy consumption compared to others and refactoring those
smells improved energy consumption in all cases. Although
the results are consistent with our findings, the authors only
addressed the individual impact of nine code smells, and the
analyzed smells were specific to Android applications.

The impact of multiple refactoring on code maintainability,
also known as batch refactoring, was explored by Bibiano et al.
[52]. They argue that removing an individual code smell in a
code block increases the tendency to introduce new smells by
60%. Therefore, the importance of analyzing the combined and
complex impact of refactoring code smells in a batch rather
than individual smells is proposed. Şanlıalp et al. [53] also
emphasized studying the combination of multiple refactoring
techniques and its impact on energy combination of software.
Besides maintainability, it is also essential to study the effect
of batch refactoring on the resource usage of the application.

Park et al. investigated whether existing refactoring tech-
niques support energy-efficient software creation or not [9].
Since low-power software is critical in mobile environments,
they focused their study on mobile applications. Results show
that specific refactoring techniques like the Extract Class and
Extract Method can worsen energy consumption because they
did not consider power consumption in their refactoring pro-
cess. The goal was to analyze the energy efficiency of the
refactoring techniques themselves, and they stated the need
for energy-efficient refactoring mechanisms for code smells.

Pérez-Castillo et al. stated that excessive message traffic de-
rived from refactoring god class increases a system’s power
consumption [54]. It was observed that power consumption in-
creased by 1.91% (message traffic = 5.26%) and 1.64% (mes-
sage traffic = 22.27%), respectively, for the two applications
they analyzed. The heavy message-passing traffic increased
processor usage, which proved to be in line with the increase
in power consumption during the execution of those two ap-
plications. The study was limited to only god class code smell.

However, a detailed analysis is required to determine the im-
pact of code smell refactoring on resource consumption.

An automatic refactoring tool that applied the Extract Class
module to divide a god class into smaller cohesive classes was
proposed in [12]. The tool aimed to improve code design by
ensuring no classes are large enough, which is challenging to
maintain and contains a lot of responsibilities. The tool refac-
tored code by suggesting Extract Class modifications to the
users through a User Interface. The tool was incorporated into
the Eclipse IDE via a plugin. The authors consulted an expert
in the software quality assessment field to give his expert opin-
ion to identify the effectiveness of the tool. Results show that
in 12 cases (75%), the evaluator confirmed that the classes
suggested being extracted indeed described a separate con-
cept. According to the expert, two of these classes could be
extracted and used as utility or helper classes. However, the
effect of such refactoring on resource usage of the software
was considered to a limited extent.

V. CONCLUSION

In this paper, we evaluate the impact of batch refactoring 16
code smells on the resource usage of 31 open-source Java and
Python applications. We provide a detailed empirical analy-
sis of the change in the CPU and memory utilization, energy
consumption, and carbon emission after auto-refactoring spe-
cific code smells in isolation as well as in combination with
other smells. Obtained results highlight that the refactoring
techniques adopted for code smells such as god class and god
method adversely affect CPU and memory usage as well as
energy consumption and carbon emission of the application.
Refactoring Long Parameters smell results in improvement of
CPU usage but worsens memory usage. Refactoring all other
code smells improves resource usage for the same workload.
We notice that applications belonging to the same category are
impacted similarly by refactoring specific smells. Also, the im-
pacts of smells on resource consumption for Java and Python
applications are quite similar; hence, our results can be gener-
alized. Combined refactoring of various code smells adds up
to the impact of refactoring those smells individually.

Our study provides compelling evidence that various com-
mon refactoring techniques, typically employed to rectify spe-
cific code smells, can unintentionally escalate the application’s
energy consumption. We illustrate that a discerning and strate-
gic approach to code smell refactoring can yield substantial
energy savings. For selective refactoring, this yields a reduc-
tion of up to 13.08% of energy consumption per workload.
We also obtain a carbon emission reduction of 5.10% for spe-
cific applications. These findings underscore the potential of
selective and intelligent refactoring to substantially enhance
the energy efficiency of software applications.

Based on these observations, we suggest a set of guiding
principles for selecting the correct set of code smells to be
refactored for the most efficient resource utilization.

ACKNOWLEDGEMENTS

This project is in part sponsored by NSF under award num-
bers 2343284 and 2343285.



REFERENCES

[1] L. Belkhir and A. Elmeligi, “Assessing ict global emissions footprint:
Trends to 2040 & recommendations,” Journal of cleaner production,
vol. 177, pp. 448–463, 2018.

[2] A. S. Andrae and T. Edler, “On global electricity usage of communica-
tion technology: trends to 2030,” Challenges, vol. 6, no. 1, pp. 117–157,
2015.

[3] R. Memon, “Calculating software carbon intensity,” URL
https://www.thoughtworks.com/en-us/insights/blog/ethical-
tech/calculating-software-carbon-intensity, 2023.

[4] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.

[5] X. Ge, Q. L. DuBose, and E. Murphy-Hill, “Reconciling manual and au-
tomatic refactoring,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 211–221.

[6] M. Paixão, A. Uchôa, A. C. Bibiano, D. Oliveira, A. Garcia, J. Krinke,
and E. Arvonio, “Behind the intents: An in-depth empirical study on
software refactoring in modern code review,” in Proceedings of the 17th
International Conference on Mining Software Repositories, 2020, pp.
125–136.

[7] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, and
R. E. Johnson, “Use, disuse, and misuse of automated refactorings,” in
2012 34th International Conference on Software Engineering (ICSE).
IEEE, 2012, pp. 233–243.

[8] E. Murphy-Hill, “Scalable, expressive, and context-sensitive code smell
display,” in Companion to the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications,
2008, pp. 771–772.

[9] J. J. Park, J.-E. Hong, and S.-H. Lee, “Investigation for software power
consumption of code refactoring techniques.” in SEKE, 2014, pp. 717–
722.

[10] R. Verdecchia, R. A. Saez, G. Procaccianti, and P. Lago, “Empirical
evaluation of the energy impact of refactoring code smells.” in ICT4S,
2018, pp. 365–383.

[11] C. Wang, S. Hirasawa, H. Takizawa, and H. Kobayashi, “A platform-
specific code smell alert system for high performance computing appli-
cations,” in 2014 IEEE International Parallel & Distributed Processing
Symposium Workshops. IEEE, 2014, pp. 652–661.

[12] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “Jdeodor-
ant: identification and application of extract class refactorings,” in 2011
33rd International Conference on Software Engineering (ICSE). IEEE,
2011, pp. 1037–1039.

[13] S. IT-Consulting. (2020) Jsparrow.
[14] H. Gulabovska and Z. Porkoláb, “Survey on static analysis tools of

python programs.” in SQAMIA, 2019.
[15] S. Sarkar, G. M. Rama, N. N. Siddaramappa, A. C. Kak, and S. Ra-

machandran, “Measuring quality of software modularization,” Mar. 27
2012, uS Patent 8,146,058.

[16] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on pro-
gram comprehension,” in 2011 15th European Conference on Software
Maintenance and Reengineering. IEEE, 2011, pp. 181–190.

[17] F. Palomba, D. Di Nucci, A. Panichella, A. Zaidman, and A. De Lucia,
“On the impact of code smells on the energy consumption of mobile
applications,” Information and Software Technology, vol. 105, pp. 43–
55, 2019.

[18] G. Samarthyam, G. Suryanarayana, and T. Sharma, “Refactoring for
software architecture smells,” in Proceedings of the 1st International
Workshop on Software Refactoring, 2016, pp. 1–4.

[19] E. Gamma, Design patterns: elements of reusable object-oriented soft-
ware. Pearson Education India, 1995.

[20] A. Shvets, “Java code smells, https://refactoring.guru/, 2021.”
[21] L. Lannelongue, J. Grealey, and M. Inouye, “Green algorithms: quan-

tifying the carbon footprint of computation,” Advanced science, vol. 8,
no. 12, p. 2100707, 2021.

[22] K. O’Hair, “Hprof: a heap/cpu profiling tool in j2se 5.0,” Sun Developer
Network, Developer Technical Articles & Tips, vol. 28, 2004.

[23] R. M. Santos, M. C. R. Junior, and M. G. de Mendonça Neto, “Self-
admitted technical debt classification using lstm neural network,” in
ITNG 2020. Springer, 2020, pp. 679–685.

[24] F. Dietz and T. Stitch, “Columba email client project,” URL:
http://columba.sourceforge.net/testing/index.php(visited on 2/11/2021),
2017.

[25] L. Riungu-Kalliosaari, O. Taipale, and K. Smolander, “Testing in the
cloud: Exploring the practice,” IEEE software, vol. 29, no. 2, pp. 46–
51, 2011.

[26] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Third International Workshop on Predictor Models in Soft-
ware Engineering (PROMISE’07: ICSE Workshops 2007). IEEE, 2007,
pp. 9–9.

[27] E. H. Halili, Apache JMeter. Packt Publishing Birmingham, 2008.
[28] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Us-

ing findbugs on production software,” in Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming systems and ap-
plications companion, 2007, pp. 805–806.

[29] J. Aarniala, “Instrumenting java bytecode,” in Seminar work for
the Compilerscourse, Department of Computer Science, University of
Helsinki, Finland, 2005.

[30] Y. Y. Liu, B. Hu, L. P. Rao, and L. Pan, “Java code coverage test
technology based on emma,” in Advanced Materials Research, vol. 1049.
Trans Tech Publ, 2014, pp. 2069–2072.

[31] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe, H. Melton,
and J. Noble, “Qualitas corpus: A curated collection of java code for em-
pirical studies,” in 2010 Asia Pacific Software Engineering Conference
(APSEC2010), Dec. 2010, pp. 336–345.

[32] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding
tools for java,” in 15th International symposium on software reliability
engineering. IEEE, 2004, pp. 245–256.

[33] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repos-
itory,” in Proceedings of the 2005 OOPSLA workshop on Eclipse tech-
nology eXchange, 2005, pp. 35–39.

[34] M. Wenzel, “Isabelle/jedit–a prover ide within the pide framework,”
in International Conference on Intelligent Computer Mathematics.
Springer, 2012, pp. 468–471.

[35] J. Savolskyte, “Review of the jhotdraw framework,” Harlow, Information
and Media Technologies, 2004.

[36] T. J. Parr and R. W. Quong, “Antlr: A predicated-ll (k) parser generator,”
Software: Practice and Experience, vol. 25, no. 7, pp. 789–810, 1995.

[37] C. Nutter, T. Enebo, O. Bini, N. Sieger et al., “Jruby,” URL: http://jruby.
org/(visited on 12/11/2013), 2014.

[38] F. Jacob, D. Hou, and P. Jablonski, “Actively comparing clones inside
the code editor,” in Proceedings of the 4th International Workshop on
Software Clones, 2010, pp. 9–16.

[39] G. J. Myers, “A controlled experiment in program testing and code
walkthroughs/inspections,” Communications of the ACM, vol. 21, no. 9,
pp. 760–768, 1978.

[40] S. Cromar, “Ganttproject,” in From Techie to Boss. Springer, 2013, pp.
225–229.

[41] T. W. Leung, Professional XML Development with Apache Tools: Xerces,
Xalan, FOP, Cocoon, Axis, Xindice. John Wiley & Sons, 2004.

[42] A. J. Dos Reis, Compiler Construction Using Java, JavaCC, and Yacc.
John Wiley & Sons, 2012.

[43] W. Z. Liu, Q. Y. Tao, Q. He, and L. J. Yu, “Application of log4j in
e-commerce services,” in Applied Mechanics and Materials, vol. 635.
Trans Tech Publ, 2014, pp. 1517–1521.

[44] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., “A berkeley view of
cloud computing,” UC Berkeley EECS Technical Report EECS-2009-28,
2009.

[45] J. James, “Jparse: A java parser,” Retrieved (11 September 2004) from
http://www. ittc. ku. edu/JParse.

[46] L. Duong, H. Afshar, D. Estival, G. Pink, P. R. Cohen, and M. John-
son, “Multilingual semantic parsing and code-switching,” in Proceedings
of the 21st Conference on Computational Natural Language Learning
(CoNLL 2017), 2017, pp. 379–389.

[47] M. D. Ćirić and S. R. Rančić, “Parsing in different languages,” Facta
universitatis-series: Electronics and Energetics, vol. 18, no. 2, pp. 299–
307, 2005.

[48] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Openstack: toward an open-
source solution for cloud computing,” International Journal of Computer
Applications, vol. 55, no. 3, pp. 38–42, 2012.

[49] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica et al., “Above
the clouds: A berkeley view of cloud computing,” Technical Re-
port UCB/EECS-2009-28, EECS Department, University of California,
Berkeley, Tech. Rep., 2009.



[50] K. Alkharabsheh, Y. Crespo, M. Fernández-Delgado, J. R. Viqueira, and
J. A. Taboada, “Exploratory study of the impact of project domain and
size category on the detection of the god class design smell,” Software
Quality Journal, pp. 1–41, 2021.

[51] J. Oliveira, M. Viggiato, M. F. Santos, E. Figueiredo, and H. Marques-
Neto, “An empirical study on the impact of android code smells on
resource usage.” in SEKE, 2018, pp. 314–313.

[52] A. C. Bibiano, E. Fernandes, D. Oliveira, A. Garcia, M. Kalinowski,
B. Fonseca, R. Oliveira, A. Oliveira, and D. Cedrim, “A quantitative
study on characteristics and effect of batch refactoring on code smells,”
in 2019 ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM), 2019, pp. 1–11.

[53] İ. Şanlıalp, M. M. Öztürk, and T. Yiğit, “Energy efficiency analysis
of code refactoring techniques for green and sustainable software in
portable devices,” Electronics, vol. 11, no. 3, p. 442, 2022.

[54] R. Pérez-Castillo and M. Piattini, “Analyzing the harmful effect of god
class refactoring on power consumption,” IEEE software, vol. 31, no. 3,
pp. 48–54, 2014.


	Introduction
	Methodology and Experimental Setup
	Java: Applications and Workloads
	Python: Applications and Workloads
	Energy Model

	Experimental Results
	Impact of Batch Refactoring

	Related Work
	Conclusion
	References

