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ABSTRACT

Black-box adversarial attacks have demonstrated strong potential
to compromise machine learning models by iteratively querying
the target model or leveraging transferability from a local surro-
gate model. Recently, such attacks can be effectively mitigated by
state-of-the-art (SOTA) defenses, e.g., detection via the pattern
of sequential queries, or injecting noise into the model. To our
best knowledge, we take the first step to study a new paradigm of
black-box attacks with provable guarantees — certifiable black-box
attacks that can guarantee the attack success probability (ASP) of
adversarial examples before querying over the target model. This
new black-box attack unveils significant vulnerabilities of machine
learning models, compared to traditional empirical black-box at-
tacks, e.g., breaking strong SOTA defenses with provable confidence,
constructing a space of (infinite) adversarial examples with high
ASP, and the ASP of the generated adversarial examples is theoreti-
cally guaranteed without verification/queries over the target model.
Specifically, we establish a novel theoretical foundation for ensur-
ing the ASP of the black-box attack with randomized adversarial
examples (AEs). Then, we propose several novel techniques to craft
the randomized AEs while reducing the perturbation size for better
imperceptibility. Finally, we have comprehensively evaluated the
certifiable black-box attacks on the CIFAR10/100, ImageNet, and
LibriSpeech datasets, while benchmarking with 16 SOTA black-box
attacks, against various SOTA defenses in the domains of computer
vision and speech recognition. Both theoretical and experimental
results have validated the significance of the proposed attack.!
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1 INTRODUCTION

Machine learning (ML) models have achieved unprecedented suc-
cess and have been widely integrated into many practical appli-
cations. However, it is well known that minor perturbations in-
jected into the input data are sufficient to induce model misclas-
sification [57]. Many state-of-the-art (SOTA) adversarial attacks
[2,7, 12, 14, 16, 43, 49, 57, 60, 92, 93, 95] have been proposed to
explore the vulnerabilities of a variety of ML models. Wherein, the
stringent black-box attack is believed to be closer to real-world
security practice [14, 64].

In black-box attacks, the adversary only has access to the tar-
get ML model’s outputs (either prediction scores or hard labels).
Through iteratively querying the target model, the adversary pro-
gressively updates the perturbation until convergence. Existing
black-box attack methods primarily utilize gradient estimation
[5, 16, 20, 28, 43], surrogate models [27, 63, 64, 76], or heuristic
algorithms [2, 7, 8, 35, 52] to generate adversarial perturbations.
Although these attack algorithms can empirically achieve relatively
high attack success rates (e.g., on CIFAR-10 [48]), their query pro-
cess is shown to be easy to detect or interrupt due to the minor
perturbation changes and high reliance on the previous pertur-
bation [13, 17, 51, 66]. For example, “Blacklight” [51] can achieve
100% detection rate on most of the existing black-box attacks by
checking the similarity of queries; some “randomized defense” meth-
ods [13, 17, 38, 55, 66] inject random noise to the inputs, outputs,
intermediate features or model parameters such that the perfor-
mance of existing black-box attacks can be significantly degraded
(since the query results are obfuscated to be unpredictable).

To break such types of SOTA defenses [17, 38,51, 55, 66], it is chal-
lenging to design an effective attack equipped with both high degree
of randomness to bypass the strong detection (e.g., Blacklight [51])
and high robustness to resist randomized defense. A feasible solution
is to add random noise to the adversarial example by the adversary,
but it will make the query intractable. Therefore, an innovative
method is desirable to carefully craft the adversarial example based
on feedback from queries using randomly generated inputs.
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To this end, we propose a novel attack paradigm, termed Cer-
tifiable Attack, that ensures a provable attack success probability
(ASP) on the randomized adversarial examples against the equipped
defenses (or no defense). Specifically, our attack strategy integrates
random noise into the queries while preserving the adversarial
efficacy of these queries. In particular, we model the adversarial
examples as a random variable in the input space following an
underlying noise distribution ¢, namely “Adversarial Distribution”.
Then, we design a novel query strategy and establish the theoretical
foundation to guarantee the ASP of the distribution throughout the
crafting process. A novel framework is also developed to find the
initial Adversarial Distribution, optimize it, and use it to sample the
adversarial examples.

1.1 Certifiable Attacks vs. Empirical Attacks

Compared with existing empirical black-box attacks, the Certifiable
Attack demonstrates multi-faceted advantages (also see Figure 1):

(a) Strong attack to break SOTA defenses. The randomness in
the certifiable attack allows it to effectively bypass detection
methods that rely on the similarity between the attacker’s
sequence of queries (e.g., Blacklight [51]), while traditional
empirical attacks often create a suspicious trajectory of highly
similar perturbations. The certifiable attack also provides a
provable guarantee of success for attacks using randomized
inputs, by taking into account the equipped defense and target
model, enhancing its resistance to randomized defense [13, 66].

®

=

Adversarial space vs. Adversarial example (AE). Distinct
from traditional empirical adversarial attacks, which uncover
model vulnerabilities with sample-wise inputs, the Certifiable
Attack seeks to explore an adversarial input space constructed
by an Adversarial Distribution. This continuous space facilitates
the generation of numerous (potentially infinite) adversarial
examples with a high ASP, thus revealing a more consistent
and severe vulnerability of the target model.

(c) Adversarial Examples (AEs) sampled from the adver-
sarial distribution are verification-free. Empirical attacks
search AEs by iteratively querying the target model and veri-
fying the query outputs (the final successful AE is also used to
query over the target model; then it will be verified and recorded
by the defender/target model). Instead, the certifiable attack
crafts the adversarial distribution with a guaranteed lower
bound of the ASP. Due to the highly dimensional and continu-
ous input space, AEs sampled from the adversarial distribution
can be considered unique (with noise in all the dimensions)
and have a negligible probability of being recorded by the de-
fender/target model after verification. The ASP of such AEs
are theoretically guaranteed (verification-free), and they are
new to the defender, posing more challenges for mitigation.

1.2 Randomization for Certifiable Attacks

To pursue certifiable attacks, we theoretically bound the ASP of Ad-
versarial Distribution based on a novel way of utilizing randomized
smoothing [24], a technique achieving great success in the certified
defenses with probabilistic guarantees.

The design for the randomization-based certifiable attack fol-
lows an intuitive goal, i.e., ensuring that the classification results
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are consistently wrong over the distribution. However, many new
significant challenges should be addressed. First, existing theories
(randomization for certified defenses, e.g., [24]) cannot be directly
adapted to certifiable attacks since they have completely different
goals and settings. Second, how to efficiently craft the Adversarial
Distribution that can ensure the ASP is challenging since it requires
maintaining the wrong prediction over a large number of random-
ized samples drawing from the distribution. Third, how to make the
Adversarial Distribution as imperceptible as possible is also challeng-
ing due to their randomness. By addressing these new challenges,
in this paper, we make the following significant contributions:

1) To our best knowledge, we introduce the first certifiable attack
theory based on randomization for the black-box setting, which
universally guarantees the attack success probability of AEs
drawn from different noise distributions, e.g., Gaussian, Laplace,
and Cauthy distributions, enabling a novel transition from de-
terministic to probabilistic adversarial attacks.

2) We propose a novel certifiable attack framework that can effi-
ciently craft certifiable Adversarial Distribution with provable
ASP and imperceptibility. Specifically, we design a novel ran-
domized parallel query method to efficiently collect probabilistic
query results from any target model, which supports the certifi-
able attack theory. We propose a novel self-supervised localization
method as well as a binary-search localization method to effi-
ciently generate certifiable Adversarial Distribution. We design a
novel geometric shifting method to reduce the perturbation size
for better imperceptibility while ensuring the ASP. Finally, we
have validated that diffusion models [39] can be used to further
denoise the randomized AEs with guaranteed ASP.

3) We comprehensively evaluate the performance of the certifiable
attack with different settings on 4 datasets, while benchmark-
ing with 16 SOTA empirical black-box attacks, against various
defenses. Experimental results consistently demonstrate that
our certifiable attack effectively breaks the SOTA defenses, in-
cluding adversarial detection, randomized pre-processing and
post-processing defenses, as well as adversarial training defenses
(Also, Table 1 shows a summary of the certifiable attack vs. SOTA
black-box attacks).

2 PROBLEM DEFINITION

Threat Model: We consider designing a certifiable attack where the
target model may or may not be protected by a defense mechanism.

o Adversary: We focus on the hard-label black-box attack, where
the adversary only knows the predicted label by querying the
target ML model. The adversary’s objective is to craft adversarial
examples to fool the model based on the query results.

e Model Owner: The model owner pursues the model utility. We
consider three different levels of the model owner’s knowledge
and capability: 1) The model owner has no awareness of the
adversarial attacks and is not equipped with any defense; 2)
The model owner is aware of the adversarial attack but has no
knowledge of the attack method. The model owner can deploy
general defense methods such as adversarial training [57]; 3)
The model owner is aware of the adversarial attack and has
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Figure 1: Empirical attacks vs. Certifiable attacks. (a) Certifiable attack can break the SOTA AE detection and randomized
defenses. (b) Certifiable attack uncovers space-wise vulnerability rather than sample-wise vulnerability. (c) Once certified,
Certifiable Attack can generate unlimited unique AEs with a guaranteed minimum ASP without querying the model for
verification, while the empirical attack requires verifying the attack result of crafted AE by query.

Table 1: Comparison of state-of-the-art empirical black-box attacks with certifiable attack

Black-box Attacks Query Perturbation ASP vs. Detection on vs. Randomized vs. Randomized
Type Type Guarantee Attacker’s Queries Pre-process. Defense Post-process. Defense
Bandit [44], NES [43], Parsimonious [59], Sign [1], Square [2], ZOSignSGD [54] Score-based  fw-bounded X X X v
GeoDA [68], HSJ [14], Opt [20], RayS [15], SignFlip [19], SignOPT [21] Label-based  feo-bounded X X X X
Bandit [44], NES [43], Simple [35], Square [2], ZOSignSGD [54] Score-based  £-bounded X X X v
Boundary [7], GeoDA [68], HSJ [14], Opt [20], SignOPT [21] Label-based  f£-bounded X X X X
PointWise [74], SparseEvo [85] Label-based ~ Optimized X X X X
Certifiable Attack (ours) Label-based ~ Optimized v v v v

knowledge about the attack method. The model owner can deploy
adaptive defenses that are specifically designed for the attack.

Problem Formulation: We first briefly review adversarial exam-
ples, and then formally define our problem. Given an ML classifier f
and a testing data x € R? with label y from a label set Y/ = [1,---C]
(where C is the number of classes). An adversary carefully crafts a
perturbation on the data x such that the classifier f misclassifies
the perturbed data x4, i.e., f(xqq,) # y under x4, € [Ig, Hb]d,
where [IIg, Hb]d is the valid input space. The perturbed data x4,
is called adversarial example. Imperceptibility is usually achieved
by restricting the ¢ or fo norm of the perturbation x,4, — x, or by
minimizing the magnitude of this perturbation.

In the black-box setting, an adversary can use empirical black-
box attack techniques (details in Section 6) to iteratively query the
classifier f and progressively update the perturbation until finding
a successful adversarial example for a testing example. However,
such attack strategies have key limitations: 1) query inefficient,
usually > 100 queries per adversarial example; 2) easy to be detected
by observing the query trajectory [13, 17, 51, 66]; and 3) lack of
guaranteed attack performance, i.e., cannot provably guarantee a
(un)successful adversarial example under a given budget.

We aim to address all these limitations and design an efficient
and effective certifiable black-box attack in the paper. Particularly,
instead of inefficiently searching adversarial examples one-by-one,
we want to certifiably find the underlying adversarial distribution
that the adversarial examples lie on.

Definition 2.1 (Certifiable black-box attack). Given a classifier
f:RY > Y, aclean input x € R? with label y € Y/, and an Attack
Success Probability Threshold p, the certifiable attack is to find an
Adversarial Distribution ¢(x’, x) with mean x” and parameters K2,
such that data sampled from ¢ have at least p probability of being

misclassified (i.e., adversarial examples). That is,

P st~ (' ie) Lf (Xado) #yl 2 p (1)
s.t. Xgqo € [Ha,nb]d‘ (2)

Design Goals: We expect our attack to achieve the below goals.

1) Certifiable: It can provide provable guarantees on the minimum
attack success probability of the crafted adversarial examples.

2) Verification free:
It can not only verify examples to be adversarial after querying
the model, but also verify examples before the query by giving
its ASP. This significantly boosts the effectiveness of adversarial
examples generation.

3) Query efficient: It needs as few number of queries as possible.
Fewer queries can definitely save the adversary’s cost.

4) Bypass defenses: It can generate imperceptible adversarial
perturbations that can bypass the existing detection and pre/post-
processing based defenses [13, 17, 51, 66].

2If @ is a Gaussian distribution, k is the standard deviation of ¢. If ¢ is a Generalized
normal distribution, k = (a, b), with a and b the scale and shape parameters of ¢,
respectively. Notice that, the distribution will be applied to all the dimensions in the
input, and Adversarial Distribution is a noise distribution over the input space.
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Figure 2: Overview of our certifiable black-box attack to generate certified adversarial distribution.

3 ATTACK OVERVIEW

At a high level, our certifiable black-box attack can be divided into
three phases. The overview of our attack is depicted in Figure 2.

Phase I: Adversarial Distribution Localization. This phrase ini-
tially locates a feasible Adversarial Distribution ¢ with guarantees
on the lower bound of attack success probabilities (i.e., satisfying
Eq. (1)). There are a few challenges. First, computing the exact prob-
ability P[f(x,4,) # y] is intractable due to the high-dimensional
continuous input space. Second, due to the black-box nature, there
exists no gradient information that can be used. To address the first
challenge and ensure query efficiency, we propose a Randomized
Parallel Query (RPQ) strategy that can approximate the probabil-
ity and ensure multiple queries are implemented in parallel. To
address the second challenge, we design two localization strate-
gies to enable learning a feasible adversarial distribution. The first
strategy adapts the existing self-supervised perturbation (SSP) tech-
nique [63], which facilitates designing a classifier-unknown loss
on a pretrained feature extractor such that the adversarial exam-
ples/perturbations can be optimized. The second one is based on
binary search. It first randomly initializes a qualified Adversarial
Distribution , and then reduces the perturbation size using the bi-
nary search algorithm. See Section 4.1 for more details.

Phase II: Adversarial Distribution Refinement. While success-
fully generating the adversarial distribution, the adversarial exam-
ples from it often induce relatively large perturbation sizes. This
phrase further refines the adversarial distribution by reducing the
perturbation size and maintains the guarantee of attack success
probability as well. Particularly, we propose to shift the adversarial
distribution close to the decision boundary of the classifier. This
problem can be solved by two steps: the first step finds the shifting
direction, and the second step derives the shifting distance and main-
tains the guarantee. We design a novel shifting method to find the
local-optimal Adversarial Distribution by considering the geometric
relationship between the decision boundary and Adversarial Distri-
bution. Deciding the shifting distance can then be converted to an
optimization problem. We then propose a binary search algorithm
to achieve the goal. See Section 4.2 for more details.

Phase III: Adversarial Example Sampling. Phases I and II craft
an Adversarial Distribution with guaranteed attack success proba-
bility, called “certifiable attack”. To transform the Adversarial Dis-
tribution into concrete AEs, we need to sample the AE from the

Adversarial Distribution. The sampled AEs naturally maintain the
certified ASP without the need for additional model queries. Op-
tionally, the adversary can verify the success of these sampled AEs
to ensure a successful attack, turning the certifiable attack into an
empirical attack. Specifically, the adversary can sequentially sample
the adversarial examples from Adversarial Distribution and query
the target model until finding the successful adversarial example(s).

4 CERTIFIABLE BLACK-BOX ATTACK

In this section, we present our certifiable black-box attack in detail.
We first introduce the Randomized Parallel Query strategy that
estimates the lower bound probability of being the adversarial ex-
ample (Section 4.1.1). We then develop two algorithms to locate the
feasible Adversarial Distribution (Section 4.1.2). Next, we propose
our refinement method to reduce the perturbation size, while main-
taining the guarantees of attack success probability (Section 4.2).
We also provide the theoretical analysis of the convergence and
confidence bound of the Shifting method.

.
Sampling

SEO]

Randomized
Parallel Query

Q(x") =89%

i ENgy

Figure 3: Illustration of randomized parallel query (returning
the probability Q(x”) that x” + ¢ is an adversarial example).

4.1 Adversarial Distribution Localization

4.1.1 Randomized Parallel Query. As stated, computing the exact
probability P[f(xq4,) # y] with x40, ~ @(x’, k) is intractable.
Here, we propose to estimate its low bound probability by the Monte
Carlo method. This requires the adversary to query the classifier
with random instances sampled from an Adversarial Distribution. By
noting that random instances can be queried efficiently in parallel,
we propose the Randomized Parallel Query (RPQ) to compute the
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Algorithm 1 Lower Bound of Attack Success Probability

Algorithm 4 Binary Search for Certifiable Attack Localization

Input: Mean x’ of the Adversarial Distribution ¢, classifier f, confidence
level @, Monte Carlo samples N, ground truth label y.
Output: The lower bound of attack success probability p,q,
1: €1,€2, .., EN,, ~ @(0,K)
2: Incorrect prediction count k « Zf\:,l 1[f(x" +€) # y]

m

3: return p,g, < LOWERCONFBOUND(k, Ny, 1 — @)

Algorithm 2 Smoothed Self-Supervised Perturbation (SSSP)

Input: Clean input x, feature extractor ¥, noise distribution ¢ (0, x ), max-
imum iterations n,qx, perturbation budget 7, step size 1, and noise
sampling number Ng.

Output: Updated mean x” of Adversarial Distribution

1 x =x
2: for n = 1to nymax do

3 L) e g ENIFE +a) - Flx+e)ll], e~ ¢

4 x —x" +nsgn(Veu L)

5: x' — Clip(x’, x —m, x+ 1)

6 x" « Clip(x’, 0.0, 1.0) (if x is an image)

7:

return x’

Algorithm 3 Smoothed SSP for Certifiable Attack Localization

Input: Clean input x, feature extractor #(-), RPQ function Q(-),
smoothed SSP algorithm SSSP(-) (Algorithm 2), initial perturbation
budget 7inis, step size y, ASP Threshold p, maximum iterations Np,qx.

Output: Mean x’ of Adversarial Distribution ¢, number of RPQs q.

1 x'=x,7="7init, N=0,g=0

2: while Q(x") < pand N < N,;,qx do

3 NN+l qe—q+l,me—m+y

4 x" «— SSSP(x’, F, m)

5. if Q(x’) < p then

6 return Abstain

7: else

8 return x’ and q

lower bound of the attack success probability as below:

Q(x/) = Padv < andv~(u(x',x) [f (xado) # Y]
= Pe~<p(0,x) [f(x/ +e) #y]. (3)

With a given x’, the lower bound probability p,4, can be estimated

via the Binomial testing on a zero-mean distribution ¢ (0, ¥) using
Clopper-Pearson confidence interval [50] following the Algorithm
1, where the LOWERCONFBOUND(k, N;;;, 1—) returns the one-sided
(1 — ) lower confidence interval.

Now we can estimate p,4, given an Adversarial Distribution with

known mean/location x”. The next question is how to decide x” to
satisfy Eq. (1), i.e., locating the adversarial distribution that includes
certifiable adversarial examples (with probability at least p).

The simplest way is random localization, where the input x is
uniformly sampled from the input space [I14,11,]¢, e.g., [0, 1],
followed by the RPQ to check if p,q, is larger than p. However,

random localization could not generate a good initial adversarial
distribution due to the high-dimensional input space. Below we
propose two practical localization methods to mitigate the issue.

Input: Clean input x, RPQ function Q(-), ASP Threshold p, random search
iterations N, and binary search iteration Np, error tolerance Q.
Output: Mean of initial Adversarial Distribution x”, number of RPQs gq.
1:n=0m=0,g=0,x"=x
2: while Q(x’) < pand n < N, do
3: x’ ~ Uniform([0,1]9)

4: q<—qg+ 1,
5: if n > N, then return Abstain
6: while m < Nj, and ||x’ — x*||; < Q do
7: if Q(¥3*) > p then
. r_ xFx!
8: X =5
9: else
10: ¥t = X

2
11: return x’

4.1.2  Proposed Localization Algorithms. We notice the adversarial
distribution localization is similar to empirical black-box attacks on
generating adversarial examples. Here, we propose to adapt these
empirical attack algorithms and design two localization algorithms.

Smoothed Self-Supervised Localization: To better locate the Ad-
versarial Distribution, we propose to adapt the self-supervised per-
turbation (SSP) technique [63]. Specifically, SSP generates generic
adversarial examples by distorting the features extracted by a pre-
trained feature extractor on a large-scale dataset in a self-supervised
manner. The rationale is that the extracted (adversarial) features
can be transferred to other classifiers as well.

As our attack uses RPQ, we compute the feature distortion over
a set of random samples from the Adversarial Distribution. Formally,

X' =arg max Eeg(0.0) LIF (X" +€) = F(x +e)l2]
st ||x’ = x|l <7 (4)

where ¥ is a pre-trained feature extractor. The perturbation budget
7 is initially set to a small value and later increased in multiple
attempts of localization, ensuring that smaller perturbations are
identified first. This optimization problem can be solved via the
Projected Gradient Ascent method [57]. Let the adversarial loss be
L(x') =Bep[IF (" + €) = F (x + €)|2]. Then we can locate the
Adversarial Distribution via iteratively update x” with x” = x” +
n sgn(Vy L), where sgn(-) is the sign function, and n denotes the
step size. The details for localizing the Adversarial Distribution are
summarized in Algorithms 2 and 3.

Binary Search Localization: Another method is to randomly ini-
tialize the location of Adversarial Distribution such that p,q, > p,

and then reduce the gap between p,4, and p, as well as the pertur-

bation via binary search. The algorithm is presented in Algorithm 4.
This method is efficient in reducing the perturbation size once the
feasible Adversarial Distribution is found by random search. Figure
6 and 7 visualize some x,4, during the crafting process for both
Binary Search Localization and SSSP Localization.

4.2 Adversarial Distribution Refinement

Though our localization algorithms can find an effective Adversarial
Distribution, our empirical results found the perturbation size can be
large (See Table 5.4.3). This occurs possibly because the pretrained
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feature extractor is too generic and the generated adversarial pertur-
bation is suboptimal for our target classifier. To mitigate the issue,
we propose to reduce the perturbation by refining the Adversarial
Distribution while still maintaining the condition Eq. (1).

Our key observation is that the optimal perturbation is achieved
when the adversarial example is close to the decision boundary of
the target classifier. Hence, we propose to shift the Adversarial Dis-
tribution until intersecting the decision boundary, thereby locating
the locally optimal point on that boundary.

4.2.1 Certification for Adversarial Distribution Shifting. We pro-
pose a theory on shifting the Adversarial Distribution while main-
taining the attack success probability. We denote ¢(x’ + 5, k) as a
shifted distribution for the Adversarial Distribution ¢(x’, k) by a
shifting vector §. Then, the shifted Adversarial Distribution ensures
the ASP if § satisfies the condition presented in Theorem 1.

THEOREM 1. (Certifiable Adversarial Distribution Shifting)
Let f be a classifier, € be the noise drawn from any continuous proba-
bility density function ¢(0,x). Let p be the predefined attack success
possibility threshold. Denote p,q4, as the lower bound of the attack

success probability. For any x” satisfies

PLf(x" +€) #y] 2 pado = Q(x") 2 p, (©)
P[f(x"+8+¢€) # y| = p is guaranteed for any shifting vector § when
@4 [@7" (pado)] = P ()

where ®_! is the inverse cumulative density function (CDF) of the ran-

dom variable %, and @, the CDF of random variable —Jféigi) .

PRroOF. See detailed proof in Appendix A.1. O

Theorem 1 ensures the minimum attack success probability if Eq.
(5) and Eq. (6) hold while without querying ¢ (x” + 6, k). Eq. (5) re-
quires finding a x” such that the RPQ on samples of ¢ (x’, ) returns
a Pado = P, and Eq. (6) ensures any § meeting this condition will

not reduce the attack success probability of the shifted Adversarial
Distribution below p. Further, Theorem 1 works for any continuous
noise distributions, e.g., Gaussian, Laplace, Exponential, and mix-
ture PDFs. We also present the case when the noise is Gaussian in
Corollary 2.1 in Appendix A.2. It shows the shifting perturbation §
should satisfy ||8||2 < o[® ™ (pagy) — P~ 1(p)], where &1 is the
inverse of Gaussian CDF. o
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Algorithm 5 Shifting Direction

Input: Mean of the Adversarial Distribution x’, clean input x, vectors {v'},
a vector u, maximum iteration M, updating step size r’.
Output: The shifting direction w
1: Initialize w with random noise
2. if {0’} is empty then

3: w=x-x

4: else

5 for j =1to M do

6: we— w+n’ sgn[VW(Z{F=1 sin(of, w) + cos(u, w)) |
7 we— W

8: return w

Algorithm 6 Shifting Distance

Input: Mean of Adversarial Distribution x’, noise distribution ¢, random-
ized query function Q(-), the shifting direction algorithm SD(-) (Al-
gorithm 5), error threshold e, ASP Threshold p.

Output: The shifting perturbation §

1we SD(x/):padv — Q(X’)

2: find a scalar a such that § = aw and O, [P (pado)] > p
3: find a scalar b such that § = bw and @, [®~! (paao)] < p
4: while @, [®Z (pgao)] < por > p+eandn < Ni do

5 if @4 [®Z! (pugo)] > p then

6 4 (arb)
: 2

7: else

s b lah

9: S« Mw, ne—n+1l

2
10: return &

4.2.2 Obtaining Refined Adversarial Distribution. Since the Ad-
versarial Distribution can be shifted by any § satisfying Eq. (6), we
propose to shift it toward the clean input with the maximum § that
does not break the guarantee. By iteratively executing the RPQ
and applying the Theorem 1, the Adversarial Distribution can be
repeatedly shifted with a guarantee until approaching the decision
boundary (where p 4, = p).

The problem of shifting the Adversarial Distribution to reduce
the perturbation can be solved by two steps: first finding the shift-
ing direction, and then deriving the shifting distance while main-
taining the guarantee. Here, we design a novel shifting method
to find the locally optimal Adversarial Distribution by considering
the geometric relationship between the decision boundary and
the Adversarial Distribution, which is called “Geometrical Shifting”.
Specifically, through using the noisy samples of Adversarial Distri-
bution to “probe” the decision boundary, we shift the RandAE along
the decision boundary and towards the clean input until finding
the local optimal point on the decision boundary (see Figure 4 for
the illustration). If none of the noisy samples can approach the deci-
sion boundary, we simply shift the Adversarial Distribution directly
toward the clean input without considering the decision boundary.

Finding the Shifting Direction: The geometrical relationship
is presented on the right-hand side of Figure 4. Denote x” as the
mean of the current Adversarial Distribution. When sampling the
adversarial examples from the Adversarial Distribution, we mark
the failed adversarial examples as x}r, xi, . xi, . x’j, aka., “samples
fell into the original class”. The normalized vector from x% to x’ is
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Algorithm 7 Certifiable Attack Shifting

Input: Mean of Adversarial Distribution x’, noise distribution ¢, random-
ized query function Q(-), shifting distance algorithm SHIFT(-) (Algo-
rithm 6), distance threshold eg, ASP Threshold p, max iteration Np,.

Output: The shifted mean x’

I Pady «— O(x’), 8 « Surrr(x’),n=0

: while p,g, > p and ||8]|2 = es and n < Nj, do

X' —x"+6, pady — Q(x'), 8 « SHIFT(x'),n — n+1

if ||x’ — x||2 < ||8]|2 then return x

2
3:
4
5

: return x’

denoted as v’. The normalized vector from x’ to x is denoted as w.
If the Adversarial Distribution has no samples crossing the decision
boundary, then we can shift the Adversarial Distribution straight
toward the clean input (along the direction of ) until it intersects
the decision boundary, otherwise, the shifting should be along the
decision boundary but not cross it (without changing the certifiable
attack guarantee). Note that the input space is high-dimensional,
thus there could be many directions along the decision boundary.
To reduce the perturbation, the direction should be similar to the
vector u as much as possible. Based on these geometric analyses,
the goals of the geometrical shifting can be summarized as: The
shifting direction should lie relatively parallel to the direction of u;
and be relatively vertical to the vectors v'.

Formally, denoting the shifting direction as w, then the goal of
finding the shifting direction can be formulated as:

k .
w = arg max Zi—l sin(o*, w) + cos(u, w) 7)

where sin(-) and cos(-) denote the sine and cosine function, and
Eq. (7) can be solved via the gradient ascent algorithm.

Calculating the Shifting Distance: The shifting distance can be
determined by maximizing ||J||2 that satisfies the constraint of Eq.
(6), i.e., when the equality holds. We use binary search to approach
the equality and the Monte Carlo method to estimate the CDF of

random variable (p;e(;i;) and wfe(i;,)c) , similar to [41]. Algorithm

5, 6, and 7 show the details of finding the shifting direction, shifting
distance, and the shifting process, respectively.

Convergence Guarantee and Confidence Bound: Any § com-
puted by Algorithm 6 will satisfy the certifiable attack guarantee
since it strictly ensures @, [®Z!(pgq,)] = p. Further, with a cen-
tralized noise distribution, the shifting algorithm is guaranteed to
converge once the located Adversarial Distribution is feasible.

THEOREM 2. If the PDF of noise distribution ¢(x) decreases as
the |x| increases, with the satisfaction of Eq. (5), given any direction
vector w, the Shifting Distance algorithm guarantees to find § such
that &4 [®~1(pag,)] = p with confidence (1 — a)(1 — 2e~2NmA*)2,
where (1—a) is the confidence for of estimating p,q,, Nm is the Monte

Carlo samples, and A is the error bound for the CDF estimation.

PRrOOF. See detailed proof in Appendix A.3. O

4.3 Discussions on Our Attack

Realizing Our Certifiable Attack: Our certifiable attack does not
have extra requirements on realization compared to empirical black-
box attacks. To implement our attack, we only need to predefine
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a continuous noise distribution and a threshold of certified attack
success probability. The adversary then adds the noise sampled
from the distribution to the inputs and queries the target model.
Then, Adversarial Distribution can be crafted by RPQ and our theory.

Randomized Query vs. Deterministic Query: The proposed
randomized query returns a probability over a batch of inputs with
injected random noises, while the traditional query returns a de-
terministic output (score or hard label) from the target model. This
probability return may provide more information that better guides
the attack. In addition, the randomized queries can be executed in
parallel for query acceleration. See results in Section 5.3.

Imperceptibility with Diffusion Denoiser: The certifiable ad-
versarial examples sampled from Adversarial Distribution are noise-
injected inputs that still might be perceptible when the noise is
large. We can further leverage the recent innovation for image
synthesis, i.e., diffusion model [39], to denoise the adversarial ex-
amples for better imperceptibility. The key idea is to consider the
noise-perturbed adversarial examples as the middle sample in the
forward process of the diffusion model [11, 99]. This is shown to
improve the imperceptibility and the diversity of the adversarial
examples. More technical details are shown in Appendix B and
results in Table 14 in Appendix C.4.

Extension to Certifiable White-Box Attack: Our certifiable
attack can be readily extended to the white-box setting by adapt-
ing/designing a white-box localization method. Specifically, the
Smoothed SSP localization method can directly compute the gra-
dients of the noise-perturbed examples rather than leveraging the
feature extractor, which may significantly improve the certified
accuracy of the certifiable attack. In our experiments, when leverag-
ing the PGD-like white-box attacks as the localization method, the
certified accuracy can be increased to 100% for ResNet and CIFAR10,
compared to the 92.54% certified accuracy in the black-box setting.

Extension to Targeted Certifiable Attack: Our attack design fo-
cuses on the untargeted certifiable attack. It can also be generalized
to the targeted attack setting, where we require the majority of the
noise-perturbed inputs to be certifiably misclassified to a specific
target label. However, we admit it would be more challenging to
find a successful Adversarial Distribution in this scenario.

Attacks under Adaptive Blacklight: The defender might design
an adaptive countermeasure, such as an adaptive blacklight defense,
to mitigate certified attacks. For instance, the defender could at-
tempt to eliminate randomness by assuming the noise distribution
is known. However, this approach presents several challenges: 1)
The defender would need detailed knowledge about the attack’s
design, including the noise distribution, which is often an impracti-
cal assumption. 2) Even if the noise distribution were known, the
sampled adversarial examples would remain random, making it
difficult to accurately estimate the center of the noise distribution.

5 EVALUATIONS

We comprehensively evaluate our certifiable black-box attack in
various experimental settings. Particularly, we would like to study
the following research questions:
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Table 2: Summary of Experiments

Experiments Dataset Model Reference
CIFAR10 VGG16 Table 15
CIFAR10 ResNet110 Table 16
CIFAR10 ResNext29 Table 17
Comparison with CIFAR10 WRN28 Table 18
empirical attacks CIFAR100 VGG16 Table 19
against Blacklight detection CIFAR100 ResNet110 Table 20
CIFAR100 ResNext29 Table 21
CIFAR100 WRN28 Table 22
ImageNet ResNet18 Table 3
CIFAR10 VGG16 Table 23
CIFAR10 ResNet110 Table 24
CIFAR10 ResNext29 Table 25
Comparison with CIFAR10 WRN28 Table 26
empirical attacks against CIFAR100 VGG16 Table 27
RAND pre-processing defense CIFAR100 ResNet110 Table 28
CIFAR100 ResNext29 Table 29
CIFAR100 WRN28 Table 30
ImageNet ResNet18 Table 4
CIFAR10 VGG16 Table 31
CIFAR10 ResNet110 Table 32
CIFAR10 ResNext29 Table 33
Comparison with CIFAR10 WRN28 Table 34
empirical attacks against CIFAR100 VGG16 Table 35
RAND post-processing defense | CIFAR100  ResNet110 Table 36
CIFAR100 ResNext29 Table 37
CIFAR100 WRN28 Table 38
ImageNet ResNet18 Table 5
Comparison with empirical attack | CIFAR10 ResNet110 (£2) Table 6
against adversarial training CIFAR10 ResNet110 (foo)
Ablation: CA vs. CIFAR10 ResNet110 Table 7
different noise variance ImageNet ResNet50
LibriSpeech  ECAPA-TDNN  Table 39
Ablation: CA vs. CIFARLO ResNet110 Table 8
different p ImageNet ResNet50
LibriSpeech  ECAPA-TDNN  Table 40
Ablation: CA vs. different CIFARLO ResNet110 Table 9
Localization/Shifting ImageNet ResNet50
LibriSpeech ECAPA-TDNN  Table 41
Ablation: CA CIFAR10 ResNet110 Table 10
vs. different noise PDF ImageNet ResNet50
Ablation: CA w/ and w/o CIFAR10 ResNet110 Table 14
Diffusion Denoise ImageNet ResNet50
CA vs. Feature Squeezing CIFAR10 ResNet110 Figure 8
CA vs. Adaptive Denoiser CIFAR10 ResNet110 Table 11
CA vs. Rand. Smoothing CIFAR10 ResNet110 Table 13

o ROQ1: How effective is the learnt Adversarial Distribution? Par-
ticularly, how large is the probability of samples from it being
successful adversarial examples?

e RQ2: Can our certifiable attack outperform empirical attacks in
terms of attack effectiveness and query efficiency?

o RQ3: How effective is our attack to break SOTA defenses?

o RQ4: What is the impact of the design components and their
hyperparameters on our attack?

Accordingly, we first assess the empirical attack success possibil-
ity of the Adversarial Distribution in Section 5.2. Then, we evaluate
our certifiable attack on various models with defenses while bench-
marking with empirical black-box attacks in Section 5.3. In Section
5.4, we conduct ablation studies to explore in-depth our certifiable
attack. All sets of experiments are summarized in Table 2 for reference.

5.1 Experimental Setup

Datasets and Models. We use three benchmark datasets for image
classification: CIFAR10/CIFAR100 [48] and ImageNet [72]. CIFAR10
and CIFAR100, both consisting of 60, 000 32x32 color images split
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into 10 and 100 classes, respectively. ImageNet is a large-scale
dataset with 1,000 classes. The training set contains 1,281,167
images and the validation set contains 50, 000 images (resized to
3 X 224 X 224). we use VGG [77], ResNet [37], ResNext [91], and
WRN [97] as the target model. We use a pre-trained ResNet34 on
ImageNet as the feature extractor (in the Smoothed SSP localization).
We also test our attacks on the audio dataset LibriSpeech [47] for the
speaker verification task, and results are shown in Appendix C.5.

Baseline Attacks. We compare our certifiable (hard label-based)
black-box attack with SOTA black-box attacks including 7 hard
label-based black-box attacks: GeoDA [68], HSJ [14], Opt [20],
RayS [15], SignFlip [19], SignOPT [21], and Boundary [7]; and
7 score-based black-box attacks: Bandit [44], NES [43], Parsimo-
nious [59], Sign [1], Square [2], ZOSignSGD [54], Simple attack
[35]. As our method does not constrain the perturbation budget
but minimizing the perturbation, we also compare with two sim-
ilar attacks: SparseEvo [85] and PointWise [74]. We evaluate our
attack with both SSSP localization and binary-search localization.
For optimized-based attacks, we limit the AEs in the valid image
space. For a fair comparison with optimization-based attacks, the
perturbation budget for £,-bounded attacks are set to 0.1 for fe
and 5 for £, on CIFAR10 and CIFAR100, while on ImageNet, they
are £oo = 0.1 and £ = 40. The maximum query limits are 10, 000 for
CIFAR10 and CIFAR100 and 1, 000 for ImageNet. We evaluate 1, 000
randomly selected images for each dataset.

Defenses. We select 4 SOTA defenses against black-box attacks for
evaluation: Blacklight detection [51], Randomized pre-processing
defense (RAND-Pre) [66], Randomized post-processing defense
(RAND-Post) [13], and Adversarial Training based TRADES [98].
Blacklight has recently proposed to mitigate query-based black-box
attacks by utilizing the similarity among queries. It has been shown
to detect 100% adversarial examples generated in multiple attacks.
RAND-Pre and RAND-Post respectively add noise to the inputs
and prediction logits to obfuscate the gradient estimation or local
search. TRADES has demonstrated SOTA robustness performance
against adversarial attacks by training on adversarial examples.

Metrics. We use the below metrics to evaluate all compared attacks.

e Model Accuracy: the model accuracy under attack and defense.

e Number of RPQ (# RPQ): the number of the randomized parallel
query for certifiable attack.

o Number of Query (# Q): the total number of queries for empiri-
cal attack. For our method, it is equal to Monte Carlo Sampling
Number X # RPQ + additional queries for sampling from the
Adversarial Distribution.

o Certified Accuracy @p: the certified accuracy at the ASP Thresh-
old p. It is the percentage of the testing samples that have the
certified ASP at least p, e.g., a 95% certified accuracy with ASP
Threshold p = 90% means the adversary can guarantee to have
90% probability to attack successfully for 95% testing samples.

e {; Perturbation Size (Dist. £): £, distance between the adver-
sarial example x,4, and the clean input x, i.e., ||x,4, — x]|2-

e {, Mean Distance (Mean Dist. £): £, distance between the mean
x" of Adversarial Distribution and clean input x, i.e., ||x’ — x||2.

e Detection Success Rate (Det. Rate): the detection success rate
of Blacklight detection.
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Figure 5: t-SNE visualization of adversarial example sampling
from the adversarial distribution.

o Average # Queries for Detection (# Q to Det.): the average
number of queries before Blacklight detects an AE.

e Detection Coverage (Det. Cov.): the percent of queries in an at-
tack’s query sequence that Blacklight identified as attack queries.

Parameters Settings. There exist many parameters that may affect
the performance of our certifiable attack. For instance, the Monte
Carlo sampling number, the attack success probability p, and the
family of the adversarial distribution and its parameters. If not
specified, we set Monte Carlo sampling number to be 50, p = 10%,
and use Gaussian distribution with variance ¢ = 0.025. We will
also study the impact of these parameters in Section 5.3. All the
parameter details are summarized in Table 12 in Appendix C.1.
Experimental Environment. We implemented a PyTorch library?
including 16 black-box attacks, 4 defenses, 6 datasets, and 9 mod-
els by integrating several open-source libraries?. The experiments
were run on a server with AMD EPYC Genoa 9354 CPUs (32 Core,
3.3GHz), and NVIDIA H100 Hopper GPUs (80GB each).

5.2 Verifying the Adversarial Distribution

We first assess the ASP of the crafted Adversarial Distribution.
Specifically, given an ASP Threshold p and the certified Adver-
sarial Distribution ¢(x’, k), we randomly sample 1,000 examples
Xado ~ ¢(x’, k), and query the model. We visualize the query re-
sults for 4 certified Adversarial Distributions with different p using
2D t-SNE® [84]. We also report the provable lower bound of ASP
Dady and the empirical ASP in Figure 5. It validates that the sampled

AFEs ensure the minimum ASP via the Adversarial Distribution, and
the Adversarial Distribution lies on the decision boundary.

3The codes are available at https://github.com/datasec-lab/CertifiedAttack
“4BlackboxBench, pytorch image classification, Blacklight, SparseEvo, and TRADES
5t-SNE reduces the prediction logits of the random samples to 2-dimension.
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Table 3: Attack performance under Blacklight detection on
ResNet and ImageNet (Clean Accuracy: 67.9%)

Attack Query Pert.  Det. #Q Det.  Model +0 Dist.
Type Type Rate% toDet. Cov.%  Acc. 123
Bandit Score foo 100.0 1.0 64.2 1.9 25 25.42
NES Score feo 100.0 10.3 17.3 7.0 337 8.28
Parsimonious Score foo 100.0 2.0 96.7 3.8 282 25.24
Sign Score foo 100.0 2.0 91.5 0.5 126 25.50
Square Score  fwo 100.0 2.0 66.9 0.0 14 2554
Z0OSignSGD Score foo 100.0 2.0 50.2 12.5 322 8.53
GeoDA Label foo 100.0 1.0 88.9 5.1 151 17.99
HSJ Label feo 100.0 7.3 94.9 35.6 212 9.82
Opt Label foo 99.9 8.4 81.4 61.2 646 0.98
RayS Label foo 100.0 4.4 83.5 4.2 260 29.63
SignFlip Label foo 100.0 8.5 70.3 4.4 148 27.64
SignOPT Label feo 99.9 8.4 69.8 55.9 570 1.32
Bandit Score 7] 100.0 1.0 99.5 1.7 431 9.60
NES Score 2] 100.0 10.2 32.8 61.2 571 0.45
Simple Score 2] 100.0 1.0 99.9 53.6 883 0.88
Square Score o) 100.0 2.0 68.8 0.0 16 26.30
Z0SignSGD Score 2] 100.0 2.0 52.4 65.1 531 0.30
Boundary Label 2] 100.0 7.2 76.3 37.9 60 11.63
GeoDA Label t 100.0 1.0 89.3 3.9 181 19.14
HSJ Label 2] 100.0 7.3 93.4 11.4 255 22.21
Opt Label 2] 100.0 8.5 67.9 41.2 610 16.71
SignOPT Label t 99.9 8.4 62.9 36.7 485 17.54
PointWise Label Opt. | 100.0 1.0 99.8 0.0 920 13.53
SparseEvo Label Opt. | 100.0 1.0 99.9 0.0 1000 7.68
CA (sssp) Label  Opt. 0.0 o0 0.0 14 148 1374
CA (bin search) Label  Opt. 0.0 o0 0.0 0.0 603  33.14

5.3 Attack Performance against SOTA Defenses

In this section, we evaluate our certifiable attack and empirical
attacks against the 4 studied SOTA defenses.

5.3.1 Attack Performance under Blacklight Detection [51]. We use
the default setting from [51] with a threshold of 25. The results are
presented in Table 3 and Tables 15-22 in Appendix C. We have the
following key observations: 1) Our certifiable attack consistently
circumvents Blacklight with 0% detection success rate, and 0% de-
tection coverage on all settings. This indicates that none of the
queries from our attack are detected. In contrast, existing black-box
attacks are highly susceptible to Blacklight, with most achieving a
100% detection success rate on various datasets and models. Even
the most resilient attack, as shown in Appendix C, Table 19, attains
an 86.5% detection success rate on the CIFAR100 dataset using the
VGG16 model. 2) With the strong ability to bypass the detection, our
certifiable attack still maintains top attack performance on all the
datasets and models such that the model accuracy can be attacked
to 0% with moderate ¢, perturbation size and few queries. The high
attack accuracy and low detection rate of certifiable attacks stem
from the randomness of Adversarial Distribution and the guarantee
of the attack success probability.

5.3.2  Attack Performance under RAND-Pre [66]. We follow [66]
to inject the Gaussian noise with standard deviation 0.02 to the
query (in the input space). The experimental results are presented
in Table 4 and Tables 23-30 in Appendix C. Based on a compre-
hensive analysis of all results, it is evident that the RAND-Pre
consistently reduces the attack success rate of existing black-box
attacks. Specifically, the defense reduces the average attack success
rate of empirical black-box attacks from 92% to 30% on CIFARI10,
from 95% to 29% on CIFAR100, and from 69% to 25% on ImageNet,
respectively. However, our attack still achieves the average attack
success rate of 93%, 99%, and 99% respectively on the three datasets
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https://github.com/SCLBD/BlackboxBench.git
https://github.com/hysts/pytorch_image_classification
https://github.com/huiying-li/blacklight
https://github.com/SparseEvoAttack/SparseEvoAttack.github.io.git
https://github.com/yaodongyu/TRADES
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Table 4: Attack performance under RAND Pre-processing
Defense on ResNet and ImageNet (Clean Accuracy: 67.0%)

Hanbin Hong, Xinyu Zhang, Binghui Wang, Zhongjie Ba, and Yuan Hong

Table 5: Attack performance under RAND Post-processing
Defense on ResNet and ImageNet (Clean Accuracy: 68.0%)

Query Perturbation

Query Perturbation

Attack Type Type #Query Model Acc. Dist. £ Attack Type Type #Query Model Acc. Dist. £
Bandit Score loo 10 6.7 25.26 Bandit Score leo 17 2.7 25.51
NES Score foo 428 49.8 10.26 NES Score foo 378 18.6 9.53
Parsimonious Score feo 243 62.7 25.12 Parsimonious Score loo 253 47.9 25.46
Sign Score loo 116 40.6 25.20 Sign Score oo 124 8.1 25.81
Square Score oo 27 10.4 24.96 Square Score foo 18 0.8 25.44
Z0OSignSGD Score loo 428 49.4 10.36 Z0SignSGD Score leo 376 214 9.71
GeoDA Label foo 150 40.0 18.08 GeoDA Label foo 143 38.6 17.62
HSJ Label foo 232 58.5 8.76 HSJ Label loo 212 52.7 8.82
Opt Label foo 905 69.4 0.44 Opt Label feo 1000 65.3 0.67
RayS Label foo 235 47.9 28.14 RayS Label loo 243 43.9 28.09
SignFlip Label foo 46 52.8 13.06 SignFlip Label oo 86 47.2 15.44
SignOPT Label oo 394 59.1 0.39 SignOPT Label loo 412 63.6 0.64
Bandit Score t 583 58.2 12.99 Bandit Score t 596 6.0 13.96
NES Score b 341 66.8 0.43 NES Score 1) 344 59.7 0.44
Simple Score t 258 67.2 0.10 Simple Score t 241 58.9 0.10
Square Score b 18 13.6 25.96 Square Score 2] 23 0.4 26.46
Z0OSignSGD Score b 249 67.3 0.28 Z0SignSGD Score 1) 275 61.4 0.29
Boundary Label 123 38 49.2 15.12 Boundary Label b 24 48.0 12.64
GeoDA Label 1) 149 47.4 17.70 GeoDA Label [2) 146 40.6 16.89
HSJ Label 0 225 55.7 14.30 HSJ Label & 238 495 14.59
Opt Label 1) 1000 58.2 12.28 Opt Label [2) 1000 53.9 12.62
SignOPT Label b 406 52.2 15.41 SignOPT Label 23 411 46.3 15.96
PointWise Label  Optimized 942 54.6 16.90 PointWise Label  Optimized 969 55.1 16.01
SparseEvo Label  Optimized 1000 61.7 11.33 SparseEvo Label  Optimized 1000 66.7 9.10
CA (sssp) Label  Optimized 154 1.7 13.98 CA (sssp) Label  Optimized 147 1.4 13.70
CA (bin search) | Label = Optimized 603 0.0 32.16 CA (bin search) | Label = Optimized 603 0.0 32.67

under RAND-Pre. Further, we highlight that, with RAND-Pre ap-
plied across all datasets and models, the average #» perturbation
size and number of queries in our certifiable attack decrease by 4.2%
and 2.1%, respectively. This intriguing observation matches our
findings in Section 5.4.1 where a larger variance leads to smaller ¢,
mean distance and # RPQ in the certifiable attack. This is because
the Gaussian noise injected by the defense (e.g., 1 ~ N(0,0)) is
added to the adversary’s noise (e.g., €2 ~ N(0,u)), leading to a
larger variance v + u and hence further enhancing our attack.

5.3.3  Attack Performance under RAND-Post [13]. We follow [13] to
inject the Gaussian noise with standard deviation 0.2 to the output
logits of each query (applied to both hard label-based and score-
based attacks). The experimental results are presented in Table 5,
and Tables 31-38. Similarly, we find that RAND-Post can strongly de-
grade the average attack success rate of hard label-based empirical
attacks from 84% to 41% on CIFAR10, from 89% to 45% on CIFAR100,
and from 60% to 24% on ImageNet, respectively. On the other hand,
it moderately degrades the average attack success rate of score-
based empirical attacks from 100% to 91% on CIFAR10, from 100%
to 95% on CIFAR100, and from 72% to 62% on ImageNet. The discrep-
ancy between label-based and score-based empirical attacks may
stem from variations in the richness and smoothness of the query in-
formation. The loss value (score), providing a smoother evaluation,
is less susceptible to noise interference and discloses finer-grained
details. In contrast, labels are more likely to be impacted by injected
noise, resulting in more randomized query outcomes. However,
our hard-label certifiable attack shows strong resilience against
RAND-Post, by maintaining the average attack success rate at 93%,
99%, and 99% on CIFAR10, CIFAR100, and ImageNet, respectively.
This advantage over empirical attacks, particularly the label-based

ones, originates from Randomized Parallel Querying—It precisely
assesses query results with a lower bound of the ASP.

5.3.4 Attack Performance under TRADES [98]. We consider both o,
and £, perturbations to generate adversarial examples, and TRADES
respectively uses #» or £ adversarial examples for adversarial train-
ing. We set the perturbation size to be £ = 0.1 and ¢, = 5, following
[98]. We then evaluate all attacks against TRADES. The results on
CIFAR10 are presented in Table 6°. We observe our attack requires
much less query number than the empirical attacks. Also, our at-
tack can achieve 100% attack success rate (with the binary search
localization), but at the cost of a relatively larger perturbation size.

5.4 Ablation Study

In this section, we explore in-depth our certifiable attack—we study
its performance with varying noise variances, ASP thresholds, lo-
calization and shifting methods, and noise PDFs. We mainly show
results on the image datasets and defer results on the audio dataset
to Appendix C, where similar performance can be observed.

5.4.1 Attack Performance on Different Noise Variances. Table 7
shows the performance of our attack with varying noise variances
used in ¢. We have the following key observations: 1) As the vari-
ance increases, the ¢ perturbation size increases, since larger vari-
ance results in larger noise. 2) The £, mean distance tends to de-
crease as the variance increases. This could be because that larger
variance covers a larger decision space, and without moving the
mean far away from the clean input, we can easily find a large
portion of adversarial samples under the distribution with a large

®1t is computationally intensive and time-consuming to train TRADES on CIFAR100
and ImageNet
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Table 6: Attack performance under TRADES Adversarial
Training on ResNet and CIFAR10
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Table 8: Attack performance of our certifiable attack with
varying p under the Gaussian variance ¢ = 0.25

Defense  Attack Query  Pert. #Query Model Acc. Dist.
Type Type 2]

Bandit Score Lo 1601 10.2 4.32

NES Score foo 1474 27.4 2.27
Parsimonious Score foo 630 5.3 4.35

e~ | Sign Score loo 439 4.4 4.37
g é\: Square Score foo 854 5.7 4.39
£8 | zosignSGD Score  fo | 1196 37.0 2.21
£ & | GeoDA Label  feo 1358 41.9 1.99
=& |HY Label  f» 2149 36.5 1.92
53 |opt Label  £o | 1871 73.0 0.19
5 < Ray$S Label loo 721 7.3 4.29
€ 5 | SignFlip Label  £o | 2240 24.4 3.36
<& | signopT Label  fw | 832 63 015
=~ | PointWise Label  Opt. 3460 9.3 438
SparseEvo Label Opt. 8691 9.1 5.10

CA (sssp) Label  Opt. 548 21.2 4.29

CA (bin search) | Label Opt. 412 9.8 6.31

Bandit Score I 860 1.5 2.44

NES Score b 3535 9.5 0.99

o= Simple Score ) 4062 2.1 1.29
) § Square Score £ 991 4.6 2.95
£ 8 | ZOsignSGD Score £ 3505 15.1 0.77
£ & | Boundary Label ) 771 40.7 1.19
T,E g GeoDA Label 2] 1506 14.3 2.85
§ g |Hy Label & 1332 5.1 3.53
5 < Opt Label 1) 2890 41.6 2.39
2 & | SignOPT Label & 1766 33.6 2.76
<3 | PointWise Label Opt | 4845 0.6 5.36
== | SparseEvo Label  Opt. 9697 0.4 6.03
CA (sssp) Label  Opt. 809 20.4 6.06

CA (bin search) | Label Opt. 461 0.0 8.18

Table 7: Attack performance of our certifiable attack with
varying Gaussian noise variances o (p = 90%)

o Dist. , Mean Dist. £, #RPQ  Certified Acc.
= | 0.10 7.39 3.96 18.34 94.17%
E 0.25 12.95 2.34 14.35 91.21%
“ 0.50 19.41 0.43 11.38 90.00%
ks 0.10 41.80 16.78 32.55 99.80%
éﬁ 0.25 87.47 16.78 17.02 99.60%
~ 1 050 | 13547 2.27 8.31 100.00%

variance. 3) As the variance increases, the number of RPQ decreases.
This is because the larger variance usually leads to a larger shifting
step. It takes fewer iterations to move to the decision boundary
when the variance increases. 4) Finally, a larger certified accuracy
means that it is easier to determine the Adversarial Distribution.
The results on CIFAR10 show that it is easier to find a small area of
adversarial examples than a large area of adversarial examples. On
ImageNet, we observe nearly 100% certified accuracy, which means
it is relatively easy to find the adversarial examples on datasets
with a large number of classes (since 999 out of 1,000 classes in
ImageNet are all false classes) or with high feature dimension.

5.4.2  Attack Performance on Different ASP Thresholds. We study
the relationship between the performance of our attack and the ASP
threshold, and Table 8 shows the results. As p increases, so do the ¢
perturbation size, the £, mean distance, and the number of RPQ. On
one hand, a larger p means it requires more adversarial examples to

p Dist. 4 Mean Dist. £ # RPQ  Certified Acc.
50% 12.65 1.63 9.34 97.17%
o 60% 12.72 1.86 11.09 95.85%
E 70% 12.80 2.05 11.94 94.72%
é 80% 12.87 2.18 12.37 93.17%
© | 90% | 12.95 2.34 14.35 91.21%
95% 13.09 2.65 15.93 90.37%
50% 85.88 9.89 12.85 100.00%
= 60% 86.20 11.30 13.63 100.00%
% 70% 86.45 12.64 14.33 100.00%
& | 80% 87.03 14.64 16.02 100.00%
.—84 90% 87.47 16.78 17.02 99.60%
95% 88.42 19.98 19.81 100.00%

Table 9: Attack performance of our certifiable attack on dif-
ferent localization/refinement algorithms (o = 0.25, p = 90%)

Localization | Refinement | Dist. £, Mean Dist. £» # RPQ  Cert. Acc.
SSSp none 11.46 1.35 2.30 92.54
binary search none 11.29 0.34 9.07 92.54
random geo. 11.80 1.73 67.53 92.54
SSSp geo. 11.20 0.49 3.70 91.54
binary search geo. 11.28 0.27 10.08 92.53

fall into the false classes. When the noise variance is fixed, the mean
of the Adversarial Distribution should be further away from the
decision boundary to allow more adversarial examples to fall into
the false classes. On the other hand, the smaller p results in a larger
shifting distance, which depends on the gap between p and p,q,

(see the Gaussian-case of Theorem 1 in Appendix A.2). With a larger
shifting distance, the required number of RPQ can be fewer. We
also observe that a smaller p results in a higher certified accuracy
on CIFAR10, since a smaller p allows more “failed" adversarial
examples. On ImageNet, the certified accuracy is consistently ~
100%, no matter p’s value. This might still because it is much easier
to find adversarial examples with a much larger number of classes.

5.4.3 Attack Performance on Different Localization/Refinement Al-
gorithms. In this experiment, we compare our proposed Smoothed
SSP and binary-search localization methods with the random lo-
calization baseline; and compare our proposed geometric shifting
method with a no-shifting baseline. Results are shown in Table 9.
We observe that the combination of the localization and refinement
methods yields the smallest perturbation size, i.e., the smallest Dist.
£ and Mean Dist. #;. This demonstrates that they are both effective
in improving the imperceptibility of adversarial examples.

Visualization. We also visualize the adversarial examples x,4,
while crafting the Certifiable Attack for Binary-search Localization
(Figure 6) and SSSP Localization (Figure 7). It shows that when
o = 0.025, both the Binary-search and SSSP-based certifiable attack
can craft imperceptible perturbations. The difference is that the
binary search method starts from a random x” and requires more
# RPQ to update the Adversarial Distribution, while the SSSP can
easily find an initial Adversarial Distributionwith small perturbation
and thus requires fewer # RPQ.
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Final xg4,,

Clean Input

Figure 7: Visualization of successful adversarial examples
crafting by certifiable attack with SSSP localization (SSSP
requires fewer # RPQ)

5.4.4  Attack Performance on Different Noise Distributions. Our at-
tack can use any continuous noise distribution to craft the Ad-
versarial Distribution. Besides the Gaussian noise distribution, in
this experiment, we also evaluate the performance of our certifi-
able attack using other noise distributions including the Cauthy
distribution, Hyperbolic Secant distribution, and general normal dis-
tributions. Note that we adjust the parameters in these distributions
to ensure consistent variances for a fair comparison.

The results are presented in Table 10, and the noise distributions
are plotted in Figure 9 in Appendix. On both datasets, we observe
the £, perturbation size is decreasing while the #» mean distance is
increasing as the PDF of the noise distribution is more centralized.
This result may share a similar nature with results in Table 7—when
the adversarial samples are more widely distributed, they tend to
fall into an adversarial class (the majority of all classes). It is hard
to determine which distribution is better since there is a trade-off
between the perturbation size and the number of RPQ.

5.5 Defending against Our Certifiable Attack

In this subsection, we discuss potential defenses and mitigation
strategies against our attacks.

Noise Detection based Defenses: Our certifiable attack injects
noise into the adversarial examples. Here, we suppose the adversary

is aware of the noise injection and designs a detection method by
training a binary classifier to distinguish the noise-injected inputs
and clean inputs. Specifically, the defender (i.e., model owner) uses
ResNet110 (as powerful as the target model) to train a noise detector
to distinguish the inputs with and without noise. The experimental
results show the noise detection rate can be as high as 99% with the
noise variance o = 0.5, which means this detector can be used as a
strong defense against our certifiable attacks with a larger noise.
However, this defense does not work when the noise scale is smaller
(i.e., 0 = 0.025), where the detection rate is less than 1%. Especially,
the adversary may design a novel method to hide this noise in the
image texture, e.g., using the diffusion model for denoising, which
may circumvent the detection.

White-Box Adaptive Defenses against Our Attack: We assume
the model owner knows the noise distribution used by our attack
and performs a “white-box" defense. Particularly, it applies a de-
noiser to eliminate the injected noise, so that the adversarial exam-
ples can be restored to clean inputs. The denoiser can be deployed
as a pre-processing module and is pre-trained by the model owner.
Specifically, we use a U-Net structure [70] as the denoiser and
denote it as 9. Then, the loss function for the training is

EeN(0,00) 1D (x +€) =x|[2 + [|[f(D(x +€)) = f(x)ll2]  (8)

Taking Gaussian noise as an example (e.g., the model owner
knows the Gaussian variance o = 0.25 used in the certifiable attack),
we train the denoiser to eliminate Gaussian noise with ¢ = 0.25
while evaluating the certifiable attack with Gaussian noise gen-
erated by different . Table 11 shows the results. We can observe
that this defense can significantly degrade the performance of a
certifiable attack. Notably, by choosing the same variance o as
the adversary, the adaptive defense can increase the Mean Dist. £,
significantly. However, the certified accuracy is still near 90%.

6 RELATED WORK

Adversarial Attack. It aims to mislead learnt ML models by per-
turbing testing data with imperceptible perturbations. It can be
divided into white-box attacks [12, 34, 57, 60, 89] and black-box
attacks (2, 5, 7, 7, 8, 14, 16, 16, 20, 27, 28, 35, 42, 43, 52, 63, 64, 76],
per the access that the adversary holds. White-box attacks have
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Table 10: Attack performance of our certifiable attack with different noise distributions

Distribution Density Parameter \/ llel|%/d | Dist. &z MeanDist. & #RPQ Certified Acc.

Gaussian o« el2/al a=0.25 0.25 12.95 2.34 1435 91.21%

o Cauthy #Zaz a=0.01969 0.25 7.82 4.87 32.77 94.12%

Eé Hyperbolic Secant o sech(|z/al) a =0.1592 0.25 12.51 2.43 14.59 91.67%
= b

& | General Normal (b = 1.5) | o e”12/4l a=0.2909,b=15 0.25 12.74 2.37 14.15 91.39%
b

General Normal (b =3.0) | « e~l2/@l a=0.4092,b =3 0.25 13.16 238 14.15 91.25%

Gaussian o e1#/al a=025 0.25 87.47 16.78 17.02 99.60%

2

% Cauthy « o a=0.01969 0.25 46.18 23.94 59.94 99.60%

X Hyperbolic Secant o sech(|z/al) a=0.1592 0.25 85.57 21.29 20.89 99.80%
< b

E | General Normal (b =1.5) | o e~l?/a a=0.2909,b=15 0.25 86.69 19.05 17.58 99.80%
b

General Normal (b = 3.0) « e~l#/al a=0.4092,b=3 0.25 88.51 15.58 14.99 100.00%

Table 11: White-box adaptive defense against our attack (o =
0.25, p = 90%) on CIFAR10

Defense Para. | Dist. 4 Mean Dist. £ # RPQ  Cert. Acc.
oq =0.10 9.99 7.73 34.11 87.51%
oq =0.25 15.40 10.21 29.80 88.31%
oq = 0.50 20.46 8.11 26.52 86.56%

full access to the model parameters, and can leverage the gradient
of the loss function w.r.t. the inputs to guide the adversarial exam-
ple generation. Instead, black-box attacks only know the outputs
(in the form of prediction scores or labels) of a target model via
sending queries. It is widely believed that black-box attack is more
practical in real-world scenarios [6, 14, 64]. Therefore, we focus on
the black-box attacks in this paper.

Black-Box Attack. Existing black-box attack methods can be clas-
sified into three types: gradient estimation based [5, 16, 20, 28, 43,
67,79, 86, 87], surrogate models based [27, 63, 64, 76], or local search
based algorithms [2, 7, 8, 31, 35, 52, 61]. Gradient estimation based
attack is mainly based on zero-order estimation since the true gradi-
ent is unknown [16]. Surrogate model-based methods first perform
white-box attacks on an offline surrogate model to generate adver-
sarial examples, and then use these generated adversarial examples
to test the target model. The attack performance largely depends
on the transferability of such generated adversarial examples. Local
search-based methods craft adversarial examples by searching the
effective perturbation direction, e.g., Boundary Attack [7] traverses
the decision boundary to craft the least imperceptible perturbations.

All existing black-box attacks rely on querying the target model
until finding a successful adversarial example or reaching the max-
imum number of queries. However, none of them can ensure the
success rate of the adversarial examples that have not been queried.
Further, they are shown to be easily detected/removed via adversar-
ial detection and randomized pre/post-processing-based defenses.

Empirical Defense. It defends against adversarial attacks without
guarantees. Empirical defenses against white-box attacks can be
roughly categorized into four classes. Gradient-masking defenses
[26, 65, 90] modify the model inference process to obstacle the
gradient computation. Input-transformation defenses [9, 36, 40, 53,
73, 78] use pre-processing methods to transform the inputs so that
the malicious effects caused by the perturbations can be reduced.
Detection-based defenses [45, 56, 58, 71, 81] identify features that

expect to separate adversarial examples and clean examples, and
train a binary classifier to detect adversarial examples. Another
branch of works [18, 22, 30, 51] detects the adversarial examples
based on the similarity of the queries, demonstrating high detec-
tion accuracy in practice. Among these, Blacklight [51] has shown
supreme detection performance without assumptions on the user
accounts. These three types of defenses show certain effectiveness
when they target specific known attacks, but can be broken by
adaptive attacks [4]. Lastly, adversarial training-based defenses
[57, 75, 82, 83] have achieved the SOTA performance against adap-
tive attacks. The main idea is to augment training data with "ad-
versarial examples", but they are reassigned the correct label. As
to defend against black-box attacks, RAND-Post [13], RAND-Pre
[66], Adversarial Training based TRADES [57], and Blacklight [51]
are the SOTA in each category. Thus, we evaluated our certifiable
attack under these defenses.

Certified Defense. Certified defense [3, 32, 41, 46, 88, 100] was
proposed to guarantee constant classification prediction on a set of
adversarial examples. Recently, randomized smoothing (RS) [24]
has achieved great success in the certified defense since it is the
first method to certify arbitrary classifiers of any scale. Specifically,
RS can guarantee the prediction if the perturbation is bounded
by a distance in fp-norm, i.e., certified radius [24, 41, 80, 96]. RS
adds noise from a distribution (e.g., Gaussian) to the inputs and
uses hypothesis testing to quantify the prediction probability. Then
the bound on the perturbations (usually a £, norm constraint) for
ensuring the consistent prediction is derived. This method is widely
used in certified defense to ensure consistent and correct prediction
under attack. However, in this paper, we propose to use this method
to ensure consistent and wrong prediction on the Adversarial Dis-
tribution, resulting in a reliable and strong certifiable attack.

7 CONCLUSION

Certifiable attack lays a novel direction for adversarial attacks, en-
abling the transition from deterministic to probabilistic adversarial
attacks. Compared with empirical black-box attacks, certifiable at-
tacks share significant benefits including breaking SOTA strong
detection and randomized defense, revealing consistent and severe
robustness vulnerability of models, and guaranteeing the minimum
ASP for numerous unique AEs without verifying via the query.
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A PROOFS
A.1 Proof of Theorem 1

The proof of Theorem 1 is based on the Neyman-Pearson Lemma,
so we first review the Neyman-Pearson Lemma.

LEMMA 1. (Neyman-Pearson Lemma) Let X and Y be random
variables in RY with densities px and py. Let f : RY - {0,1} be a
random or deterministic function. Then:

(DIfS={z¢€ RY : ﬁ;—g; < t} for somet > 0 and P(f(X) =
1) >P(X €8S), thenP(f(Y) =1) 2 P(Y €S);

(2)IfS = {z € RY Zj(—gzz; > t} forsomet > 0 and P(f(X) =
1) <P(X €8), thenP(f(Y)=1) <P(Y €8).

Let x € R be any clean input with label y. Let noise € be drawn
from any continuous distribution ¢ (0, ). Let x’ € R? be any input.
Denote X = x’ +¢,and X5 = x’ + 5 +e¢. Let f : R? — R! be any
deterministic or random function. For each input x, we can consider
two classes: y or # y, so the problem can be considered as a binary

classification problem. Let the lower bound of randomized parallel
query on x’ denoted as Q(x”) = py4,- Define the half set:

AZZ{ZZMST} (9)
¢(zx)

where the auxiliary parameter 7 is picked to suffice:

p(x" +e—06,k) -

P(X € A) = P[ o en) < 7] = pado (10)

Suppose p 4, and the ASP Threshold p satisfy p,q, > p, then
PIf(X) # y] 2 pago = P(X € A) (11)

Using Neyman-Pearson Lemma (considering X5 = X + d as Y in
Neyman-Pearson Lemma, and # y as class 1), we have:

P[f(Xs) # yl 2 P[X; € A] (12)
which is equal to

BLf(Xs) # y] > B[—2T 108 (13)

o(x"+e+8,k)
If P(% < 1) > p, we can guarantee that
Plf(Xs) #yl = p (14)

which means the probability of classifying X5 as adversarial ex-

amples is greater than p. Therefore, the distribution of X can be

guaranteed to have the attack success probability larger than p.
Considering Eq. (10), we have 7 = ®Z1 (p,4,)

where ®~! is the inverse CDF of random variable M,
@ (x"+e,x)
Therefore, substitute 7 in P[% < 7] > p, we have
Dy [CD:l (Padv)] 2p (15)
where @, is the CDF of random variable M The ratios
@(x'+e+d,x)
can be further simplified as
p(x'+e-6,k)  ¢(e-5,x) (16)
o(x +e,x)  olex)
o(x' +¢€x) o(€ k) (a7)

p(x" +€+6,k) - p(e+0d,K)
Now we complete the proof of Theorem 1.
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A.2 Certifiable Attack: Gaussian Noise

COROLLARY 2.1. (Certifiable Adversarial Shifting: Gaussian
Noise) Under the same condition with Theorem 1, and let € be a noise
drawn from Gaussian distribution N (0, o). Then, if the randomized
query on the adversarial input satisfies Eq. (5):

PIf(x"+€) #y] 2 pado = Q') 2 p (18)

Then P[f(x’ + 8 + €) # y] > p is guaranteed for any shifting
vector § when

18112 < o[®™ (pado) = @~ (p)] (19)

where ®~1 denotes the inverse of the standard Gaussian CDF.
2

Proor. The Gaussian distribution is u(x) o e 202, thus

P =) _ (2x5-6%)/(20%)
p(x)

Let 7 := exp((2d>;1(padv)5 - 8%)/(20%)), where <I>;1 denotes
the inverse Gaussian CDF with variance o. Let random variables
X :=x’ + e and X5 := x’ + € + 5. Then we have:

(20)

P(X € A) = P[”(f(—;)‘s) <1 (21)
=Plexp((2X5 - 8%)/(20%))] < (22)
expl (205 (Pado)d — 69)/(20%)] (23)
=P[X < 07 (padv)] (24)
= @ (25)
(26)
Using Neyman-Pearson Lemma, we have:
P[f(Xs) # yl > P[(Xs) € A] (27)
Since
o HX)
]P[X(g € A] = P[m < T] (28)
= Plexp((2X5 +6%)/(20%))] < (29)
expl (205" (pado)d — 6)/(20%)] (30)
=P[2X8 + 6% < (20, (Pag)d - %) (31)
= P[X < @, (pado) — 11911] (32)
)
P <07 (paap) - 1 (53)
o — o
where ®~! denotes the inverse standard Gaussian CDF.
To guarantee that P[f(Xs) # y] > p, we need:
1)
P[Xs € Al = P[%( < O (Pado) — HT”] (34)
zp (35)
(36)

which is equivalent to
11611 < o[ (Pago) = @~ (p)] (37)
This completes the proof of Corollary 2.1.
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A.3 Proof of Theorem 2
If the Condition Eq. (5) is satisfied, we have
Pado Z P (38)

For any direction w, our goal is to find the § in this direction
with maximum ||§||2. When [|8]|2 = 0, we have

q)+ = ®_ (39)
Thus, we have
s [q):l (padv)] = Padv 2 P (40)
Then, we prove that when ||8]|2 increase, we will get &4 [®Z1 (p1q0)]
decrease.
Since ®_ is the CDF of the random variable %, and ¢(x)

decreases when |x| increases, when ||§]|; — oo, we have «p;%i)x) —

0, and @1 (p,g,) — 0.
(e.x)

Since ®, is the CDF of the random variable 4)—, when
@(e+d,x)
18112 = 00, 2L — 00, 50 @, > 0.
Therefore, when ||§]|2 — oo, we have
O+ [P (Pado)] = 0 < p (41)
When ||5]|2 — 0, we have
s [‘:D:l(Padv)] = Pado 2 P (42)

Since ®_ and ®, is continuous function, between 0 and oo, there
must be some § such that @, [®=!(pyg,)] = p.

Now we prove that the binary search algorithm can always find
the 6 solution, then we show how to bound the adversarial attack
certification. We use Monte Carlo method to estimate the p, 4, as
well as the CDFs ®_ and ®,. To bound the empirical CDFs, we
leverage Dvoretzky-Kiefer-Wolfowitz inequality [29].

LEmMMA 2. (Dvoretzky—-Kiefer-Wolfowitz inequality (restate))
Let X1, Xy, ..., Xn bereal-valued independent and identically distributed
random variables with cumulative distribution function F(-), where
n € N.Let F,, denote the associated empirical distribution function
defined by

1 n
Fn(x) =~ > 1x<xp x € R 43)
i=1

The Dvoretzky—Kiefer—Wolfowitz inequality bounds the probabil-
ity that the random function F,, differs from F by more than a given
constant A € R* :

P[sup |Fa(x) — F(x)| > A] < 2¢~ 210 (44)
x€eR

Let the Monte Carlo sampling number Ny,. Each shifting is an
independent certification, and there are a lower-bound estimation
and two CDF estimations in each certification. Suppose the confi-
dence of lower-bound estimation is (1 — «), then the certification
confidence should be at least (1 — ) (1 — 2e’2NmA2)2.

B DENOISING WITH DIFFUSION MODELS

The certifiable adversarial examples sampled from Adversarial Dis-
tribution are noise-injected inputs that still might be perceptible
when the noise is large. We further leverage the recent innovation
for image synthesis, i.e., diffusion model [39], to denoise the ad-
versarial examples for better imperceptibility. The key idea is to
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consider the noise-perturbed adversarial examples as the middle
sample in the forward process of the diffusion model [11, 99]. This
is shown to improve the imperceptibility and the diversity of the
adversarial examples.

Specifically, the closed-form sampling in the forward process at
timestep ¢ in [39] can be written as:

Xt = \/ﬁ_txo +V1-ae (45)

where x9 = x is a clean image, @; is the parameter indicating
the transformation of the image in the forward process, and ¢
is a noise drawn from the standard normal distribution N (0, 1).
The certifiable adversarial examples when adding noise €y can be
expressed as:
Xado = X' +6+ €0 (46)

We can then consider x,4, as the sample x; in Eq. (45) by trans-
forming x4, to Varx,q, and satisfying these conditions: (1) x’+8 =
xo and (2) Varo = V1 — @;. Then, we have a; = 021+1 to bridge
diffusion model and the certifiable attack.

By finding the corresponding time step ¢ and @;, we can leverag
the reverse process R(-) of the diffusion model to denoise x,4,:

% gy = ROR(-R(Vxaa0)) (47)

Note that the reverse denoising process can be plugged into
our attack framework by simply replacing x,4, with x; Jp i all
processes. It will not affect the guarantee since the denoising pro-
cess can be part of the classification model, i.e., constructing a new

target model £’ (x,4,) = fF(R(R(...R(V@rx44)))) given any f.

C ADDITIONAL EXPERIMENTS
C.1 Additional Experimental Settings

Table 12 summarizes all parameter settings.

C.2 More Results of Black-Box Attacks against
SOTA Defenses

C.2.1 More Results on Attacking Blacklight. See Results in Table
15-Table 22.

C.2.2  More Results on Attacking RAND-Pre. See Results in Table
23-Table 30.

C.2.3  More Results on Attacking RAND-Post. See Results in Table
31-Table 38.

C.3 Attacking Other Empirical and Certified
Defenses

C.3.1 Attacking Empirical Feature Squeezing Detection. We also
evaluate the certifiable attack against adversarial detection. Specifi-
cally, we select the Feature Squeezing [94] method, which modifies
the image and detects the adversarial examples according to the
difference of model outputs. To position the performance of the
detection, we compare the certifiable attack with the C&W empir-
ical attack [12]. In this experiment, Gaussian noise was adopted,
and parameters are set as o = 0.25 and p = 90%. We draw the
ROC curve in Figure 8. As the results show, the certifiable attack is
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Table 12: Summary of all parameter settings

Experiments General Random Parallel Query Smoothed Self-supervised Localization Bin-search Localization fi

P [ a Np Tinit Y Nmax Nmax 1 Ny N Ny Q M e es N
Comparison with empirical attack under Blacklight detection 10% 0.025 0.001 50 3/255 3/255 85 10 3/255 50 85 15 0.1 20 0.05 0.01 0.0025 72
Comparison with empirical attack against RAND pre-processing defense 10% 0.025 0.001 50 3/255  3/255 85 10 3/255 50 85 15 0.1 20 005 0.01 00025 72
Comparison with empirical attack against RAND post-processing Defense 10% 0.025 0.001 50 3/255 3/255 85 10 3/255 50 85 15 0.1 20 0.05 0.01 0.0025 72
Comparison with empirical attack against TRADES adversarial training 10% 0.025 0.001 50 3/255  3/255 85 10 3/255 50 85 15 0.1 20 0.05 0.01 00025 72
Certifiable Attack against Feature Squeezing 90% 0.25 0.001 1000 3/255 3/255 85 10 3/255 1000 85 15 0.1 20 0.05 0.01 0.025 72
Certifiable Attack against Randomized Smoothing and Adaptive Denoiser 90% 0.25 0.001 1000 3/255 3/255 85 10 3/255 1000 85 15 0.1 20 005 0.01 0025 72
Ablation study: Certifiable attack vs. different noise variance 90% 0.10 - 0.50 | 0.001 500/1000 3/255 3/255 85 10 3/255 500/1000 | 85 15 0.1 20 005 001 O.1c 72
Ablation study: Certifiable attack vs. different ASP Threshold p 50 - 95% 0.25 0.001 500/1000 3/255 3/255 85 10 3/255 500/1000 | 85 15 0.1 20 0.05 001 0.025 72
Ablation study: Certifiable attack vs. different Localization/Shifting 90% 0.25 0.001 500/1000 3/255 3/255 85 10 3/255 500/1000 | 85 15 0.1 20 0.05 0.01 0025 72
Ablation study: Certifiable attack vs. different noise PDF 90% - 0.001 500/1000 3/255 3/255 85 10 3/255 500/1000 | 85 15 0.1 20 0.05 0.01 - 72
Ablation study: Certifiable attack w/ and w/o Diffusion Denoise 90% 0.25 0.001 500/1000 3/255 3/255 85 10 3/255 500/1000 | 85 15 0.1 20 0.05 0.01 0.025 72

— Gaussian
Cauthy

—— Hyperbolic Secant

—— Gen. Normal (B=1.5)
Gen. Normal (B =3.0)

0.0 0.2 0.4 0.6 0.8

Figure 9: PDF of Different Noise Distributions (o = 0.25)

Table 13: RS-based defense against our attack on CIFAR10.
0 =0.25,p =90%

Defense Para. | Dist. £, | Mean Dist. £, | # RPQ  Cert. Acc.
none 12.95 2.34 14.35 91.21%
ors =0.12 13.93 6.72 23.93 88.40%
ors = 0.25 16.07 11.84 33.93 87.20%
ors = 0.50 15.84 10.12 29.57 90.60%

Table 14: Performance of Certifiable Black-box Attack with
Diffusion Denoise (p = 90%, o = 0.25). Diffusion Denoise can
significantly reduce the perturbation size when the noise
scale is very large.

Dataset | denoise | Dist. £ Mean Dist. £, # RPQ  Certified Acc.
CIEARLO w/o 12.95 2.34 14.35 91.21%
w/ 9.04 10.38 30.89 91.30%
. w/o 24.32 0.72 5.60 99.8%
magenet w/ 8.48 7.30 12.85 100.00%
1.0
0.8 /’/
&
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Figure 8: ROC Curve of Detection Results by Feature Squeez-
ing on CIFAR10. The ROC score is 0.38 and 0.26 for the C&W
attack and certifiable attack, respectively

less detectable than the C&W attack w.r.t. Feature Squeezing (with
lower ROC scores), possibly because the prediction of empirical
adversarial examples is less robust to image modification (empirical
adversarial examples tend to be some special data points near the
decision boundary). After the modification, it tends to output a
different result. The outputs of certifiable adversarial examples are
more consistent after the modification since their neighbors tend
to be adversarial as well.

C.3.2 Attacking Randomized Smoothing-based Certified Defense.
Randomized smoothing trains the classifier on inputs with Gaussian
noises. We evaluate the certifiable attack on the classifier trained
with the same noise. Specifically, we use the Gaussian noise with
o = 0.12 to 0.50 in the classifier training and ¢ = 0.25 in the
certifiable attack. Table 13 shows that the noise-trained classifier,
especially when the model is trained with the same noise parame-
ter as the adversary, can significantly degrade the performance of
certifiable attacks. Noticeably, the smoothed training increases the
perturbation sizes, especially the Mean Dist. #; significantly, and
doubles the number of RPQ, which means the smoothing training
can obstacle the certifiable attack to find a Adversarial Distribution.
It also reduces the certified accuracy of the certifiable attack sig-
nificantly. However, the certifiable attack can still guarantee that
87.20% of the test samples can be provably misclassified. Without
performing the randomized smoothing certification against the
certifiable attack, we can conclude that the certified accuracy of
randomized smoothing with ¢ = 0.25 will be at most 12.80% since at
least 87.20% of the RandAEs are guaranteed to generate successful
AEs with 90% probability.

C.4 Diffusion Model for Denoising

We implement the diffusion model [39] with the linear schedule.
We train a diffusion model and an UNet with 3 X 32 X 32 dimension
for CIFAR10 and 3 X 64 X 64 dimension for ImageNet and denoise
the certified Adversarial Distributionsamples injected by Gaussian
noise with o = 0.25. The experimental results are shown in Table
14. Although the diffusion denoise increases the number of queries
and Mean Dist. £, the perturbation of AE samples is significantly
reduced due to the denoise. It is worth noting that the AEs generated
by the diffusion model are unique due to the stochastic reverse
process. This difference enables the certifiable attack to generate
diverse AEs while ensuring the ASP guarantee.
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Table 15: Attack performance under Blacklight detection on Table 17: Attack performance under Blacklight detection on
VGG and CIFAR10 (Clean Accuracy: 90.3%) ResNeXt and CIFAR10 (Clean Accuracy: 94.9%)

Query Pert.  Det. #Q Det.  Model Dist. Query Pert.  Det. #Q Det.  Model Dist.
Attack Typey Type Rate% toDet. Cov.% Acc. #Q b Attack Typey Type Rate% toDet. Cov.%  Acc. #Q [
Bandit Score feo 100.0 1.0 69.2 0.0 59 4.77 Bandit Score feo 100.0 1.0 67.3 0.0 27 5.07
NES Score foo 100.0 8.6 21.2 0.0 264 1.33 NES Score foo 100.0 8.5 20.4 0.0 213 1.28
Parsimonious Score loo 100.0 2.0 96.7 0.0 107 4.90 Parsimonious Score foo 100.0 2.0 97.3 0.0 104 5.16
Sign Score teo 100.0 2.0 924 0.0 83 490 Sign Score oo 100.0 2.0 93.6 0.0 75  5.15
Square Score foo 100.0 2.0 75.9 0.0 25 4.90 Square Score foo 100.0 2.0 69.7 0.0 15 5.15
Z0SignSGD Score foo 100.0 2.0 50.6 0.0 267 129 Z0SignSGD Score feo 100.0 2.0 50.6 0.0 222 1.27
GeoDA Label foo 100.0 1.0 89.7 0.2 377  3.08 GeoDA Label fo 100.0 1.0 89.9 10.1 197 2.22
HSJ Label foo 100.0 7.7 92.2 0.0 353 294 HSJ Label feo 100.0 148.1 85.9 0.0 383 2.65
Opt Label foo 100.0 8.6 83.4 37.1 2571 1.04 Opt Label fo 88.4 8.5 78.7 43.3 1644 0.87
Ray$S Label foo 100.0 5.8 78.6 0.0 226  4.82 RayS Label loo 100.0 5.4 81.4 0.0 391 4.77
SignFlip Label foo 100.0 8.7 56.0 0.0 68 391 SignFlip Label feo 100.0 165.8 415 0.0 205 343
SignOPT Label foo 100.0 8.6 89.1 21.0 1112 1.15 SignOPT Label loo 92.7 8.6 92.5 26.0 780  0.92
Bandit Score £ 100.0 1.0 98.9 0.0 121 2.62 Bandit Score 2] 100.0 1.0 98.8 0.0 110 2.81
NES Score 7] 100.0 8.5 32.6 0.0 823  0.53 NES Score 2] 100.0 8.8 32.4 0.0 608  0.48
Simple Score 2] 100.0 1.0 99.8 0.0 779 0.77 Simple Score b 100.0 1.0 99.7 0.0 595 0.71
Square Score o) 100.0 2.0 78.7 0.0 26 4.47 Square Score b 100.0 2.0 74.2 0.0 20 4.69
Z0SignSGD Score 2] 100.0 2.0 53.4 0.3 1631 048 Z0SignSGD Score b 100.0 2.0 53.4 0.6 1376 0.46
Boundary Label I 100.0 7.6 67.4 21.7 315 270 Boundary Label 1) 100.0 161.4 56.2 14.8 186 271
GeoDA Label 2] 100.0 1.0 89.7 0.1 230  2.80 GeoDA Label b 100.0 1.0 90.3 10.2 165 2.13
HSJ Label t 100.0 7.6 90.9 0.0 188 2.49 HSJ Label b 100.0 138.3 83.9 0.0 287  2.16
Opt Label %) 100.0 8.6 65.1 32.6 675  2.39 Opt Label b 88.4 8.6 60.8 37.2 480  1.65
SignOPT Label t 100.0 8.6 77.7 24.7 510 1.89 SignOPT Label 2] 88.4 8.6 87.5 32.7 387  1.17
PointWise Label Opt. | 100.0 1.0 99.5 0.0 764 2.06 PointWise Label Opt. | 97.6 1.0 97.6 2.3 1084 2.01
SparseEvo Label Opt. 95.7 1.0 100.0 0.0 9569  2.40 SparseEvo Label  Opt. 95.0 1.0 100.0 2.6 9506  3.11
CA (sssp) Label ~ Opt. 0.0 o 0.0 6.2 393 375 CA (sssp) Label ~ Opt. 0.0 o0 0.0 83 437 3.95
CA (bin search) Label Opt. 0.0 o 0.0 0.0 473 5.20 CA (bin search) Label Opt. 0.0 0 0.0 107 421 4.09

Table 16: Attack performance under Blacklight detection on
ResNet and CIFAR10 (Clean Accuracy: 92.1%) Table 18: Attack performance under Blacklight detection on

WRN and CIFAR10 (Clean Accuracy: 96.1%)

Attack Query Pert.  Det. #Q Det.  Model 4Q Dist.
Type Type Rate% toDet. Cov.% Acc. o) Query Pert.  Det. #Q Det.  Model Dist.
_ Attack #Q
Bandit Score foo 100.0 1.0 67.9 0.0 32 4.90 Type Type Rate% toDet. Cov.%  Acc. 123
NES Score [ 100.0 8.5 20.7 0.0 256 1.36 Bandit Score feo 100.0 1.0 67.4 0.0 47 5.09
Parsimonious Score foo 100.0 2.0 96.3 0.0 83 5.01 NES Score foo 100.0 8.7 20.7 0.0 295 1.44
Sign Score loo 100.0 2.0 922 0.0 94 499 Parsimonious Score oo 100.0 2.0 97.6 0.2 140 522
Square Score loo 100.0 2.0 71.6 0.0 17 4.99 Sign Score foo 100.0 2.0 94.6 0.0 130 5.21
Z0SignSGD Score  fwo 100.0 2.0 50.6 0.0 248 130 Square Score  {wo 100.0 2.0 74.5 0.0 21 521
GeoDA Label feo 100.0 1.0 89.6 9.8 215 2.84 Z0SignSGD Score feo 100.0 2.0 50.6 0.2 300 1.42
HSJ Label fo 100.0 361.1 85.2 0.5 683 3.17 GeoDA Label foo 100.0 1.0 89.6 0.1 323 2.83
Opt Label foo 89.0 9.0 85.3 50.5 2290 0.86 HSJ Label feo 100.0 7.3 91.9 0.0 280  2.69
RayS Label loo 100.0 5.8 78.9 0.0 251  4.82 Opt Label foo 97.0 11.3 81.1 35.0 2179 1.15
SignFlip Label foo 99.5 246.8 56.3 0.5 389 422 Ray$S Label fo 100.0 4.9 81.5 0.0 309  4.87
SignOPT Label foo 92.5 8.4 88.4 31.0 1270  1.08 SignFlip Label feo 100.0 8.3 53.0 0.0 72 3.75
Bandit Score t 100.0 1.0 98.7 0.0 109 2.65 SignOPT Label fo 88.4 8.5 89.4 28.0 843 0.97
NES Score 2] 100.0 8.1 32.5 0.0 762 0.53 Bandit Score 2] 100.0 1.0 98.8 0.0 136 271
Simple Score t 100.0 1.0 99.7 0.0 703 0.78 NES Score b 100.0 8.2 32.5 0.0 863  0.57
Square Score o) 100.0 2.0 74.2 0.0 21 4.55 Simple Score b 100.0 1.0 99.8 0.0 813  0.83
Z0SignSGD Score £ 100.0 2.0 533 0.0 1340 045 Square Score b 100.0 2.0 73.2 0.0 20 4.75
Boundary Label 7] 100.0 341.4 71.5 35.4 438  2.38 Z0SignSGD Score 2] 100.0 2.0 53.3 2.3 1803  0.54
GeoDA Label 2] 100.0 1.0 89.7 8.3 274 2.65 Boundary Label b 100.0 7.3 62.2 16.7 376 2.85
HSJ Label 7] 100.0 358.4 82.1 0.4 497 275 GeoDA Label 2] 100.0 1.0 89.6 0.0 186 2.63
Opt Label 2] 90.1 9.9 64.4 40.0 660  2.34 HSJ Label b 100.0 7.4 91.0 0.0 185 2.27
SignOPT Label t 88.1 8.5 75.6 35.3 414 1.67 Opt Label t 97.3 10.7 66.3 35.1 678  2.14
PointWise Label  Opt. 91.3 1.0 99.6 8.0 888 1.92 SignOPT Label b 91.7 8.5 80.3 33.0 470 1.57
SparseEvo Label  Opt. 87.9 1.0 100.0 8.8 8796 2.57 PointWise Label  Opt. 99.9 1.0 99.5 0.1 800 1.96
CA (sssp) Label  Opt. 0.0 o 0.0 83 437 3.95 SparseEvo Label Opt. | 97.7 1.0 100.0 0.2 9772  2.83
CA (bin search) Label Opt. 0.0 o0 0.0 10.7 421 4.09 CA (sssp) Label  Opt. 0.0 ) 0.0 6.8 417 37
CA (bin search) Label Opt. 0.0 oo 0.0 0.0 461  5.05
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Table 19: Attack performance under Blacklight detection on Table 21: Attack performance under Blacklight detection on
VGG and CIFAR100 (Clean Accuracy: 68.6%) ResNeXt and CIFAR100 (Clean Accuracy: 80.0%)
Query Pert.  Det. #Q Det.  Model Dist. Query Pert.  Det. #Q Det.  Model Dist.
Attack Typey Type Rate% toDet. Cov.%  Acc. *Q b Attack Typey Type Rate% toDet. Cov.%  Acc. #Q [
Bandit Score feo 100.0 1.0 61.5 0.0 22 3.66 Bandit Score feo 100.0 1.0 62.3 0.0 13 4.28
NES Score [ 100.0 8.6 21.6 0.0 178 0.80 NES Score teo 100.0 8.6 21.6 0.0 145  0.87
Parsimonious Score loo 100.0 2.0 94.0 0.0 73 3.70 Parsimonious Score foo 100.0 2.0 95.5 0.0 73 4.32
Sign Score feo 100.0 2.0 84.6 0.0 44 3.68 Sign Score feo 100.0 2.0 87.7 0.0 47 4.30
Square Score foo 100.0 2.0 64.7 0.0 9 3.68 Square Score foo 100.0 2.0 63.7 0.0 7 4.30
Z0SignSGD Score foo 100.0 2.0 50.7 0.1 184  0.79 Z0SignSGD Score feo 100.0 2.0 50.7 0.0 158  0.89
GeoDA Label foo 100.0 1.0 89.8 0.0 154 2.07 GeoDA Label fo 100.0 1.0 90.1 0.1 136 1.91
HSJ Label foo 100.0 7.2 91.9 0.0 232 2.16 HSJ Label feo 100.0 73 92.0 0.0 226 1.96
Opt Label foo 100.0 8.6 74.7 20.8 1463 0.97 Opt Label fo 99.0 8.6 73.5 32.1 1158  0.84
Ray$S Label foo 100.0 6.6 71.7 0.0 120 4.40 RayS Label loo 100.0 6.5 75.2 0.0 175  4.44
SignFlip Label foo 100.0 8.7 44.9 0.0 30 2.88 SignFlip Label feo 100.0 8.8 42.2 0.0 27 2.52
SignOPT Label foo 100.0 8.5 92.3 23.0 699  0.84 SignOPT Label loo 98.8 8.5 92.7 14.0 616  0.79
Bandit Score £ 100.0 1.0 97.9 0.0 73 1.35 Bandit Score 2] 100.0 1.0 98.0 0.0 69 1.62
NES Score 7] 100.0 8.7 32.4 0.0 553 031 NES Score 2] 100.0 8.7 31.7 0.0 420 0.33
Simple Score 2] 100.0 1.0 99.4 0.0 507  0.44 Simple Score b 100.0 1.0 99.5 0.0 409  0.48
Square Score o) 100.0 2.0 64.0 0.0 6 3.35 Square Score b 100.0 2.0 65.8 0.0 8 3.92
Z0SignSGD Score 2] 100.0 2.0 53.6 0.4 1137 0.29 Z0SignSGD Score b 100.0 2.0 53.5 0.0 1029  0.33
Boundary Label I 100.0 7.3 54.0 6.3 100 2.49 Boundary Label 1) 100.0 7.3 51.1 5.7 53 226
GeoDA Label 2] 100.0 1.0 90.2 0.0 125 1.95 GeoDA Label b 100.0 1.0 90.6 0.1 120 1.84
HSJ Label t 100.0 7.3 91.4 0.0 147 174 HSJ Label b 100.0 7.3 91.7 0.0 146 1.53
Opt Label %) 100.0 8.6 63.3 19.8 563 151 Opt Label b 99.0 8.6 62.1 21.7 537  1.46
SignOPT Label t 99.4 8.5 88.7 14.4 446  1.13 SignOPT Label 2] 98.9 8.6 89.5 16.5 432 1.07
PointWise Label  Opt. | 100.0 1.0 98.9 0.0 300 142 PointWise Label  Opt. | 100.0 1.0 99.4 0.0 766 1.80
SparseEvo Label Opt. 86.5 1.0 100.0 0.0 8647 1.88 SparseEvo Label  Opt. 93.8 1.0 100 0.0 9376  2.53
CA (sssp) Label ~ Opt. 0.0 o 0.0 1.7 187  2.34 CA (sssp) Label ~ Opt. 0.0 o0 0.0 21 174 231
CA (bin search) Label Opt. 0.0 o 0.0 0.0 457 270 CA (bin search) Label Opt. 0.0 0 0.0 0.0 459 261
Table 20: Attack performance under Blacklight detection on Table 22: Attack performance under Blacklight detection on
ResNet and CIFAR100 (Clean Accuracy: 66.8%) WRN and CIFAR100 (Clean Accuracy: 79.4%)
Attack Query Pert.  Det. #Q Det.  Model 40 Dist. Attack Query Pert.  Det. #Q Det.  Model #0 Dist.
Type Type Rate% toDet. Cov.%  Acc. b Type Type Rate% toDet. Cov.%  Acc. 123
Bandit Score [ 100.0 1.0 62.5 0.0 10 3.56 Bandit Score feo 100.0 1.0 62.1 0.0 13 4.25
NES Score foo 100.0 8.5 21.3 0.0 141 0.72 NES Score feo 100.0 8.8 21.7 0.0 151 0.87
Parsimonious Score  fwo 100.0 2.0 93.5 0.0 49 361 Parsimonious Score  {wo 100.0 2.0 95.2 0.0 75 429
Sign Score feo 100.0 2.0 82.4 0.0 31 3.59 Sign Score feo 100.0 2.0 87.2 0.0 54 4.26
Square Score  fwo 100.0 2.0 66.2 0.0 8 3.58 Square Score  {wo 100.0 2.0 65.1 0.0 10 426
Z0SignSGD Score foo 100.0 2.0 50.7 0.0 148  0.70 Z0SignSGD Score feo 100.0 2.0 50.6 0.0 159  0.87
GeoDA Label loo 100.0 1.0 89.5 0.0 152 2.21 GeoDA Label foo 100.0 1.0 90.0 0.0 139 193
HSJ Label foo 100.0 7.3 91.8 0.0 214 223 HSJ Label feo 100.0 7.3 91.9 0.0 185 1.89
Opt Label foo 100.0 8.5 75.1 25.8 1442 0.96 Opt Label foo 100.0 8.6 73.8 24.1 1269  0.93
Ray$S Label foo 100.0 6.6 70.3 0.0 109 4.02 Ray$S Label fo 100.0 6.0 74.1 0.0 165  4.20
SignFlip Label foo 100.0 8.7 49.0 0.0 39 3.28 SignFlip Label feo 100.0 8.7 43.1 0.0 29 2.70
SignOPT Label foo 100.0 8.5 89.5 17.0 749 0.88 SignOPT Label fo 100.0 8.6 92.9 19.0 624 0.75
Bandit Score o) 100.0 1.0 97.8 0.0 63 1.25 Bandit Score to 100.0 1.0 97.7 0.0 70 1.54
NES Score t 100.0 8.7 32.5 0.0 404 0.27 NES Score b 100.0 8.9 31.8 0.0 442 0.32
Simple Score o) 100.0 1.0 99.5 0.0 371 0.39 Simple Score b 100.0 1.0 99.4 0.0 437 048
Square Score [2) 100.0 2.0 64.4 0.0 6 3.26 Square Score b 100.0 2.0 65.2 0.0 7 3.88
Z0SignSGD Score 7] 100.0 2.0 53.5 0.1 747  0.23 Z0SignSGD Score 2] 100.0 2.0 53.6 0.5 964  0.31
Boundary Label 2] 100.0 7.3 56.4 9.1 105 2.67 Boundary Label b 100.0 7.2 52.0 4.8 81 2.46
GeoDA Label 7] 100.0 1.0 89.9 0.0 130 2.02 GeoDA Label 7] 100.0 1.0 90.4 0.0 120 1.86
HSJ Label 2] 100.0 7.3 91.2 0.0 151 1.81 HSJ Label b 100.0 7.3 91.5 0.0 143 1.55
Opt Label t 100.0 8.5 63.2 21.6 567  1.58 Opt Label t 100.0 8.6 65.2 22.2 586  1.35
SignOPT Label 2] 100.0 8.5 85.8 17.3 472 1.20 SignOPT Label b 99.9 8.5 89.0 16.7 456 1.04
PointWise Label Opt. | 100.0 1.0 99.2 0.0 468  1.52 PointWise Label Opt. | 100.0 1.0 99.1 0.0 469 157
SparseEvo Label Opt. | 90.9 1.0 100.0 00 9088 218 SparseEvo Label Opt. | 914 1.0 100.0 0.0 9145 216
CA (sssp) Label  Opt. 0.0 o0 0.0 1.4 191 239 CA (sssp) Label  Opt. 0.0 ) 0.0 1.6 218 256
CA (bin search) Label Opt. 0.0 oo 0.0 0.0 458  3.05 CA (bin search) Label Opt. 0.0 oo 0.0 0.0 458  2.65
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Table 23: Attack performance under RAND Pre-processing Table 25: Attack performance under RAND Pre-processing
Defense on VGG and CIFAR10 (Clean Accuracy: 87.7%) Defense on ResNeXt and CIFAR10 (Clean Accuracy: 89.6%)
Attack %1;;?/ Pertr}l}r,l;tlon #Query Model Acc. Dist. £ Attack %};;ly Pert}x}r]l;ztlon # Query Model Acc. Dist. £
Bandit Score loo 116 36.1 4.68 Bandit Score leo 54 259 4.81
NES Score loo 612 50.7 1.69 NES Score oo 446 48.2 1.61
Parsimonious Score feo 565 63.7 4.79 Parsimonious Score loo 537 68.1 4.88
Sign Score loo 257 55.3 4.75 Sign Score oo 454 63.8 4.75
Square Score oo 91 329 4.80 Square Score foo 90 24.2 491
Z0OSignSGD Score loo 644 49.9 1.72 Z0SignSGD Score leo 487 49.4 1.64
GeoDA Label foo 324 58.1 2.58 GeoDA Label foo 197 58.9 2.43
HSJ Label foo 591 59.7 2.26 HSJ Label loo 363 59.3 2.30
Opt Label foo 957 87.3 0.25 Opt Label feo 771 89.8 0.30
RayS Label oo 251 60.1 4.60 RayS Label loo 305 65.3 4.60
SignFlip Label foo 365 51.1 3.31 SignFlip Label oo 334 54.0 2.91
SignOPT Label oo 1411 82.0 0.30 SignOPT Label loo 895 84.9 0.33
Bandit Score t 773 76.5 3.36 Bandit Score t 407 75.1 3.03
NES Score ) 1875 72.2 0.75 NES Score [2) 1611 74.6 0.70
Simple Score 1) 1693 89.3 0.14 Simple Score 1) 1692 90.2 0.14
Square Score t 100 33.9 4.33 Square Score 2] 123 34.0 4.41
Z0OSignSGD Score b 2840 78.3 0.63 Z0SignSGD Score I 2582 80.9 0.59
Boundary Label 123 43 54.4 2.46 Boundary Label t> 18 52.9 2.50
GeoDA Label t 299 62.0 2.35 GeoDA Label t 146 58.9 2.32
HSJ Label 0 735 56.5 3.20 HSJ Label & 593 57.7 2.86
Opt Label ) 807 69.4 1.92 Opt Label [2) 694 76.1 1.58
SignOPT Label 123 586 50.9 2.76 SignOPT Label b 337 67.1 1.91
PointWise Label  Optimized 2813 83.0 2.02 PointWise Label  Optimized 4516 84.5 2.18
SparseEvo Label  Optimized 9492 80.8 1.62 SparseEvo Label  Optimized 9632 87.4 1.85
CA (sssp) Label  Optimized 359 5.7 3.53 CA (sssp) Label  Optimized 259 9.8 2.77
CA (bin search) | Label = Optimized 473 0.0 4.94 CA (bin search) | Label  Optimized 416 10.6 2.75
Table 24: Attack performance under RAND Pre-processing Table 26: Attack performance under RAND Pre-processing
Defense on ResNet and CIFAR10 (Clean Accuracy 92.3%) Defense on WRN and CIFAR10 (Clean Accuracy: 92.6%)

Query Perturbation Query Perturbation

Attack Type Type #Query Model Acc. Dist. £, Attack Type Type #Query Model Acc. Dist. £,
Bandit Score oo 52 27.2 4.88 Bandit Score loo 55 28.0 4.92
NES Score foo 605 49.9 1.84 NES Score loo 600 51.6 1.78
Parsimonious Score loo 254 50.1 4.97 Parsimonious Score loo 695 71.4 5.04
Sign Score feo 394 58.3 4.85 Sign Score loo 627 70.6 4.82
Square Score foo 32 214 4.95 Square Score oo 142 28.6 5.00
Z0SignSGD Score feo 674 51.4 1.86 Z0SignSGD Score loo 642 52.3 1.80
GeoDA Label leo 265 62.8 2.53 GeoDA Label loo 202 60.1 2.54
HSJ Label foo 641 64.6 2.12 HSJ Label loo 468 61.4 2.30
Opt Label foo 655 88.2 0.18 Opt Label loo 1009 90.5 0.24
RayS Label loo 306 62.9 4.75 RayS Label Lo 454 69.2 4.62
SignFlip Label oo 902 56.5 3.33 SignFlip Label foo 280 52.4 3.04
SignOPT Label foo 1086 85.6 0.24 SignOPT Label loo 1145 86.4 0.28
Bandit Score £ 747 76.0 3.45 Bandit Score t 616 77.1 3.22
NES Score 0 1808 71.2 0.77 NES Score [ 2074 77.0 0.82
Simple Score £ 2139 90.4 0.15 Simple Score £ 1639 92.0 0.15
Square Score t 44 24.2 4.49 Square Score [ 62 30.9 4.57
Z0SignSGD Score to 2822 77.6 0.64 Z0SignSGD Score t 2982 82.0 0.68
Boundary Label t 46 60.1 2.25 Boundary Label t 36 56.1 2.53
GeoDA Label t 333 66.7 2.14 GeoDA Label £ 191 60.9 2.35
HSJ Label b 1163 56.7 3.45 HSJ Label t 627 57.2 2.97
Opt Label 1) 724 72.8 1.93 Opt Label [ 759 73.5 1.69
SignOPT Label 1) 442 59.1 2.47 SignOPT Label [2) 527 60.5 2.34
PointWise Label  Optimized 3804 86.5 2.02 PointWise Label  Optimized 3721 87.2 1.90
SparseEvo Label  Optimized 8709 87.3 1.78 SparseEvo Label  Optimized 9730 89.7 1.7
CA (sssp) Label  Optimized 406 8.1 3.80 CA (sssp) Label  Optimized 401 6.1 3.63
CA (bin search) | Label = Optimized 417 10.8 3.89 CA (bin search) | Label  Optimized 461 0.0 4.80
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Table 27: Attack performance under RAND Pre-processing Table 29: Attack performance under RAND Pre-processing
Defense on VGG and CIFAR100 (Clean Accuracy: 61.4%) Defense on ResNeXt and CIFAR100 (Clean Accuracy: 65.0%)
Attack %1;;?/ Pertr}l}r,l;tlon #Query Model Acc. Dist. £ Attack %};;ly Pert}x}r]l;ztlon # Query Model Acc. Dist. £
Bandit Score loo 9 8.8 3.28 Bandit Score leo 20 9.2 3.43
NES Score loo 326 34.4 0.91 NES Score oo 311 35.3 0.95
Parsimonious Score feo 218 37.1 3.26 Parsimonious Score loo 359 40.7 3.54
Sign Score loo 138 32.5 3.26 Sign Score oo 309 38.2 3.44
Square Score oo 25 9.0 3.31 Square Score foo 14 8.1 3.45
Z0SignSGD Score loo 376 329 0.93 Z0SignSGD Score leo 348 33.2 0.97
GeoDA Label foo 139 40.5 2.36 GeoDA Label loo 152 48.6 2.06
HSJ Label foo 301 43.7 2.12 HSJ Label loo 184 51.3 1.94
Opt Label oo 908 66.1 0.38 Opt Label loo 951 73.9 0.44
RayS Label oo 127 46.4 4.03 RayS Label loo 203 56.7 4.23
SignFlip Label foo 194 43.9 2.64 SignFlip Label oo 132 49.3 2.32
SignOPT Label oo 997 60.3 0.46 SignOPT Label loo 798 71.8 0.45
Bandit Score t 187 43.9 1.43 Bandit Score t 188 45.7 1.49
NES Score b 1215 48.5 0.39 NES Score [ 1117 54.3 0.41
Simple Score [2) 1335 60.4 0.09 Simple Score 1) 1607 65.1 0.09
Square Score t 37 10.0 2.99 Square Score 2] 31 13.9 3.19
Z0OSignSGD Score b 1804 54.8 0.33 Z0SignSGD Score I 1964 58.3 0.35
Boundary Label 123 26 41.0 2.48 Boundary Label t> 17 49.7 2.21
GeoDA Label t 150 435 2.20 GeoDA Label t 118 52.3 2.00
HSJ Label 0 278 463 2.41 HSJ Label & 301 51.9 2.19
Opt Label ) 765 56.5 1.44 Opt Label [2) 741 65.1 1.35
SignOPT Label 123 390 51.1 1.93 SignOPT Label b 399 56.7 1.76
PointWise Label  Optimized 956 51.3 1.07 PointWise Label  Optimized 1884 55.9 1.20
SparseEvo Label  Optimized 8793 53.2 0.95 SparseEvo Label  Optimized 9364 61.2 1.03
CA (sssp) Label  Optimized 168 0.9 2.25 CA (sssp) Label  Optimized 159 1.4 2.21
CA (bin search) | Label = Optimized 457 0.0 2.52 CA (bin search) | Label  Optimized 459 0.0 2.43
Table 28: Attack performance under RAND Pre-processing Table 30: Attack performance under RAND Pre-processing
Defense on ResNet and CIFAR100 (Clean Accuracy: 62.4%) Defense on WRN and CIFAR100 (Clean Accuracy: 65.5%)

Query Perturbation Query Perturbation

Attack Type Type #Query Model Acc. Dist. £, Attack Type Type #Query Model Acc. Dist. £,
Bandit Score oo 13 10.2 3.36 Bandit Score loo 12 11.1 3.52
NES Score foo 279 36.4 0.92 NES Score loo 334 36.9 0.98
Parsimonious Score loo 85 31.5 3.39 Parsimonious Score loo 282 43.2 3.60
Sign Score feo 221 33.1 3.33 Sign Score loo 144 43.9 3.51
Square Score foo 12 9.7 3.48 Square Score oo 21 11.9 3.57
Z0SignSGD Score feo 330 34.9 0.94 Z0SignSGD Score loo 383 36.9 0.99
GeoDA Label leo 220 40.5 2.34 GeoDA Label loo 136 52.1 2.21
HSJ Label foo 472 43.6 2.17 HSJ Label loo 312 52.1 2.09
Opt Label foo 907 62.7 0.32 Opt Label loo 866 74.4 0.37
RayS Label loo 119 44.0 3.97 RayS Label Lo 212 56.1 4.07
SignFlip Label oo 383 40.0 2.93 SignFlip Label foo 146 50.0 2.47
SignOPT Label foo 912 57.9 0.43 SignOPT Label loo 929 69.6 0.39
Bandit Score £ 291 47.8 1.47 Bandit Score t 175 50.2 1.53
NES Score 0 964 51.0 0.36 NES Score [ 1131 55.3 0.41
Simple Score £ 1152 62.8 0.09 Simple Score £ 1268 65.2 0.09
Square Score t 6 10.0 3.05 Square Score [ 20 13.1 3.19
Z0SignSGD Score to 1514 55.2 0.30 Z0SignSGD Score t 1702 57.2 0.34
Boundary Label t 16 37.7 2.52 Boundary Label t 19 48.1 2.49
GeoDA Label t 256 44.3 2.14 GeoDA Label £ 171 50.7 2.17
HSJ Label b 381 43.8 2.56 HSJ Label t 250 50.3 2.34
Opt Label 1) 806 54.5 1.46 Opt Label [ 753 65.7 1.39
SignOPT Label 1) 452 46.0 1.96 SignOPT Label [2) 395 56.0 1.81
PointWise Label  Optimized 2051 52.4 1.21 PointWise Label  Optimized 1617 55.1 1.07
SparseEvo Label  Optimized 9043 56.3 1.12 SparseEvo Label  Optimized 9157 59.1 0.85
CA (sssp) Label  Optimized 167 1.6 2.27 CA (sssp) Label  Optimized 180 1.2 237
CA (bin search) | Label = Optimized 459 0.0 2.81 CA (bin search) | Label  Optimized 457 0.0 2.49
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Table 31: Attack performance under RAND Post-processing Table 33: Attack performance under RAND Post-processing
Defense on VGG and CIFAR10 (Clean Accuracy: 90.5%) Defense on ResNeXt and CIFAR10 (Clean Accuracy: 94.8%)
Attack %1;;?/ Pertr}l}r,l;tlon #Query Model Acc. Dist. £ Attack %};;ly Pert}x}r]l;ztlon # Query Model Acc. Dist. £
Bandit Score loo 192 10.9 4.83 Bandit Score leo 141 4.7 5.08
NES Score loo 364 0.0 1.43 NES Score oo 237 0.0 1.32
Parsimonious Score feo 215 8.8 4.90 Parsimonious Score loo 221 2.1 5.15
Sign Score loo 134 1.2 4.88 Sign Score oo 133 0.0 5.14
Square Score oo 37 0.4 4.89 Square Score foo 23 0.4 5.14
Z0SignSGD Score loo 389 0.1 1.40 Z0SignSGD Score leo 249 0.0 1.31
GeoDA Label foo 371 52.9 2.69 GeoDA Label foo 282 53.1 2.52
HSJ Label foo 518 53.7 2.43 HSJ Label loo 417 57.4 2.41
Opt Label oo 970 78.0 0.31 Opt Label loo 683 81.6 0.36
RayS Label oo 235 45.0 4.77 RayS Label loo 484 52.5 4.72
SignFlip Label foo 76 17.2 3.91 SignFlip Label feo 287 28.1 3.35
SignOPT Label oo 1177 34.2 1.13 SignOPT Label loo 760 45.3 0.91
Bandit Score t 999 25.6 3.78 Bandit Score t 574 14.2 3.69
NES Score b 1137 0.1 0.59 NES Score [ 694 0.0 0.50
Simple Score t 3138 67.1 0.21 Simple Score t 4075 61.7 0.29
Square Score t 41 0.2 4.47 Square Score 2] 22 0.0 4.68
Z0OSignSGD Score b 1955 1.6 0.53 Z0SignSGD Score I 1459 0.6 0.47
Boundary Label 123 57 52.3 2.14 Boundary Label t> 20 51.1 2.36
GeoDA Label t 545 52.7 2.69 GeoDA Label t 206 54.5 2.48
HSJ Label 0 234 45.4 2.90 HSJ Label & 414 48.6 2.84
Opt Label ) 641 53.3 2.02 Opt Label [2) 542 61.2 1.70
SignOPT Label 2 504 34.8 2.00 SignOPT Label [ 357 44.2 1.50
PointWise Label  Optimized 1290 89.8 2.02 PointWise Label  Optimized 2519 94.6 2.05
SparseEvo Label  Optimized 9425 38.3 2.27 SparseEvo Label  Optimized 9537 78.4 2.85
CA (sssp) Label  Optimized 400 5.7 3.75 CA (sssp) Label  Optimized 276 9.3 2.92
CA (bin search) | Label = Optimized 473 0.0 5.19 CA (bin search) | Label  Optimized 434 10.0 3.05
Table 32: Attack performance under RAND Post-processing Table 34: Attack performance under RAND Post-processing
Defense on ResNet and CIFAR10 (Clean Accuracy: 92.0%) Defense on WRN and CIFAR10 (Clean Accuracy: 96.1%)
Attack %};;rg Pert’?}r,l;itlon #Query Model Acc. Dist. £» Attack %‘;;12, Pert;;l;tlon #Query Model Acc. Dist. £,
Bandit Score loo 153 10.3 4.93 Bandit Score oo 157 6.2 5.12
NES Score leo 277 0.0 1.39 NES Score loo 464 0.2 1.59
Parsimonious Score oo 104 0.2 5.01 Parsimonious Score loo 390 21.1 5.22
Sign Score oo 144 0.7 4.98 Sign Score feo 330 12.4 5.02
Square Score oo 18 0.0 4.99 Square Score oo 36 0.5 5.21
Z0SignSGD Score foo 274 0.0 1.35 Z0SignSGD Score loo 464 0.4 1.56
GeoDA Label foo 380 60.2 2.71 GeoDA Label foo 186 56.9 2.58
HSJ Label oo 792 60.7 2.21 HSJ Label oo 364 56.0 2.37
Opt Label foo 658 84.9 0.21 Opt Label foo 1022 84.8 0.31
RayS Label loo 252 46.8 479 RayS Label loo 334 51.5 4.81
SignFlip Label boo 442 17.0 4.26 SignFlip Label foo 164 22.8 3.72
SignOPT Label too 1095 42.0 1.00 SignOPT Label foo 968 39.2 0.98
Bandit Score £ 673 20.7 3.76 Bandit Score ) 727 17.5 3.81
NES Score I 840 0.0 0.54 NES Score %) 1328 1.6 0.68
Simple Score & 5021 64.4 0.30 Simple Score 2 2536 74.7 0.21
Square Score t 19 0.0 4.55 Square Score 2 26 0.4 4.75
Z0SignSGD Score 0 1443 0.1 0.47 Z0SignSGD Score t 2143 5.5 0.60
Boundary Label 0 85 64.4 1.68 Boundary Label %) 35 54.0 2.35
GeoDA Label & 545 57.6 2.54 GeoDA Label & 267 58.3 2.53
HSJ Label £ 558 485 3.32 HSJ Label 12} 360 48.8 2.82
Opt Label 123 593 59.4 1.98 Opt Label 2 620 59.7 1.89
SignOPT Label & 397 413 1.90 SignOPT Label b 476 43.4 1.65
PointWise Label  unrestricted 1735 91.1 1.90 PointWise Label ~ Optimized 1727 95.8 1.89
SparseEvo Label  unrestricted 8665 63.2 2.41 SparseEvo Label  Optimized 9720 59.9 2.67
CA(sssp) Label  unrestricted 425 9.1 3.90 CA (sssp) Label ~ Optimized 399 7.3 3.65
CA(bin search) | Label unrestricted 421 10.7 4.09 CA (bin search) | Label  Optimized 460 0.0 4.94




CCS *24, October 14-18, 2024, Salt Lake City, UT, USA Hanbin Hong, Xinyu Zhang, Binghui Wang, Zhongjie Ba, and Yuan Hong

Table 35: Attack performance under RAND Post-processing Table 37: Attack performance under RAND Post-processing
Defense on VGG and CIFAR100 (Clean Accuracy: 68.5%) Defense on ResNeXt and CIFAR100 (Clean Accuracy: 79.5%)
Attack %1;;?/ Pertr}l}r,l;tlon #Query Model Acc. Dist. £ Attack %};;ly Pert}x}r]l;ztlon # Query Model Acc. Dist. £
Bandit Score loo 35 1.0 3.67 Bandit Score leo 46 1.3 4.28
NES Score loo 190 0.2 0.83 NES Score oo 165 0.0 0.92
Parsimonious Score feo 103 2.0 3.71 Parsimonious Score loo 117 0.5 4.33
Sign Score loo 72 0.7 3.66 Sign Score oo 124 0.1 4.29
Square Score oo 8 0.1 3.66 Square Score foo 8 0.1 432
Z0SignSGD Score loo 203 0.1 0.82 Z0SignSGD Score leo 179 0.0 0.93
GeoDA Label foo 177 35.6 2.31 GeoDA Label foo 147 40.7 2.04
HSJ Label foo 235 36.7 2.19 HSJ Label loo 201 41.4 1.91
Opt Label oo 756 53.3 0.48 Opt Label loo 744 64.2 0.52
RayS Label oo 116 32.2 4.14 RayS Label loo 179 45.7 4.32
SignFlip Label foo 40 14.4 2.89 SignFlip Label oo 98 29.2 2.47
SignOPT Label oo 724 29.4 0.93 SignOPT Label loo 844 43.8 0.86
Bandit Score t 139 2.3 1.86 Bandit Score t 163 3.1 2.03
NES Score b 650 0.1 0.33 NES Score [ 461 0.0 0.34
Simple Score t 2570 34.7 0.18 Simple Score t 3805 45.2 0.23
Square Score t 6 0.1 3.35 Square Score 2] 10 0.0 3.90
Z0OSignSGD Score b 1225 0.5 0.30 Z0SignSGD Score I 1054 0.0 0.33
Boundary Label 123 40 28.8 231 Boundary Label t> 20 36.6 2.15
GeoDA Label t 205 36.3 2.31 GeoDA Label t 143 443 2.02
HSJ Label 0 169 32.8 2.11 HSJ Label & 256 40.6 2.13
Opt Label ) 581 37.7 1.54 Opt Label [2) 590 49.5 1.39
SignOPT Label 123 409 27.1 1.32 SignOPT Label b 371 38.0 1.56
PointWise Label  Optimized 494 67.5 1.38 PointWise Label  Optimized 1811 78.7 1.75
SparseEvo Label  Optimized 8502 21.1 1.75 SparseEvo Label  Optimized 9476 62.6 2.20
CA (sssp) Label  Optimized 186 1.8 235 CA (sssp) Label  Optimized 179 2.0 2.33
CA (bin search) | Label = Optimized 582 0.0 2.67 CA (bin search) | Label  Optimized 458 0.0 2.60
Table 36: Attack performance under RAND Post-processing Table 38: Attack performance under RAND Post-processing
Defense on ResNet and CIFAR100 (Clean Accuracy: 67.5%) Defense on WRN and CIFAR100 (Clean Accuracy: 79.4%)

Query Perturbation Query Perturbation

Attack Type Type #Query Model Acc. Dist. £, Attack Type Type #Query Model Acc. Dist. £,
Bandit Score oo 46 1.0 3.57 Bandit Score loo 35 1.8 4.26
NES Score foo 152 0.0 0.75 NES Score loo 170 0.0 0.89
Parsimonious Score loo 56 0.0 3.63 Parsimonious Score loo 134 1.1 4.26
Sign Score feo 39 0.0 3.57 Sign Score loo 81 0.6 4.24
Square Score foo 7 0.0 3.61 Square Score oo 10 0.0 4.23
Z0SignSGD Score feo 159 0.0 0.72 Z0SignSGD Score loo 178 0.1 0.89
GeoDA Label leo 245 38.7 2.49 GeoDA Label loo 146 40.9 2.22
HSJ Label foo 407 38.2 2.28 HSJ Label loo 224 423 2.03
Opt Label foo 762 51.6 0.47 Opt Label loo 738 62.1 0.46
RayS Label loo 99 32.7 4.03 RayS Label Lo 168 41.9 4.22
SignFlip Label oo 47 17.5 3.25 SignFlip Label foo 50 24.1 2.70
SignOPT Label foo 839 28.2 0.97 SignOPT Label loo 761 36.2 0.89
Bandit Score £ 211 3.2 1.86 Bandit Score t 172 3.6 2.10
NES Score 0 431 0.0 0.28 NES Score [ 523 0.1 0.34
Simple Score £ 3593 36.0 0.20 Simple Score £ 2954 37.9 0.21
Square Score t 6 0.0 3.28 Square Score [ 15 0.0 3.89
Z0SignSGD Score to 791 0.0 0.24 Z0SignSGD Score t 1009 0.7 0.32
Boundary Label t 56 34.2 2.35 Boundary Label t 25 35.6 2.34
GeoDA Label t 387 35.6 2.38 GeoDA Label £ 179 42.8 2.21
HSJ Label o) 197 33.2 2.40 HSJ Label t 214 38.0 2.18
Opt Label 1) 633 40.2 1.60 Opt Label [ 597 46.7 1.41
SignOPT Label 1) 413 27.0 1.53 SignOPT Label [2) 397 35.0 1.37
PointWise Label  Optimized 922 65.7 1.41 PointWise Label  Optimized 1145 77.1 1.50
SparseEvo Label  Optimized 9028 41.0 2.02 SparseEvo Label  Optimized 9145 49.3 1.94
CA (sssp) Label  Optimized 187 1.8 2.36 CA (sssp) Label  Optimized 210 1.6 253
CA (bin search) | Label = Optimized 458 0.0 3.04 CA (bin search) | Label  Optimized 457 0.0 2.65
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C.5 Experiments on Audio Classification task

Dataset. The speaker verification task focuses on determining if
a given voice sample belongs to a specific individual or ascribed
identity [10]. The process for this task entails comparing two voice
samples using a speaker verification model and making a decision.
We utilize the large-scale multi-speaker corpus LibriSpeech (“train-
clean-100” set), which comprises over 100 hours of read English
voices from 251 speakers encompassing various accents, occupa-
tions, and age groups. Within this corpus, each speaker has multiple
voice samples spanning from several seconds to tens of seconds,
sampled at a rate of 16kHz.

Model and Setting. For the speaker verification task, we use two
SOTA speaker verification models: ECAPA-TDNN [25] pre-trained
by Speechbrain [69] as the target model for the model owner and
the X-vector model [33] pre-trained by Speechbrain [69] as the
feature extractor. In the experiments, we utilize the pre-trained
SOTA model, which is trained on the VoxCeleb dataset [62] and
VoxCeleb2 dataset [23], to perform the task of verifying if two voice
samples are from the same speaker. We evaluate the performance
of the model on 500 pairs of voice samples randomly selected from
the LibriSpeech “train-clean-100” set. Each sample pair consists of
two voice samples from a single speaker.

Table 39: Performance of certifiable attack with Gaussian
Noise on Audio Dataset. (p = 90%)

o Dist. £ Mean Dist. £, #RPQ  Certified Acc.
0.05 18.35 12.67 5.42 100.00%
0.1 26.71 12.70 3.72 100.00%
0.15 35.82 12.63 3.12 100.00%
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Table 40: Performance of certifiable attack with Gaussian
noise ¢ = 0.25 on LibriSpeech

P Dist. 4 Mean Dist. £, #RPQ  Certified Acc.
50% 26.64 12.55 5.31 100.00%
60% 26.65 12.57 5.08 100.00%
70% 26.66 12.60 4.87 100.00%
80% 26.68 12.63 4.49 100.00%
90% 26.71 12.70 3.72 100.00%
95% 26.74 12.78 3.05 100.00%

Table 41: Attack performance of different localiza-
tion/refinement algorithms on LibriSpeec (¢ = 0.25, p = 90%).

Localization | Shifting | Dist. 4 Mean Dist. o #RPQ  Cert. Acc.
random none 165.56 164.59 1.00 100.00%
random geo. 159.21 157.53 73.88 100.00%

SSSP none 26.72 12.74 1.32 100.00%
SSSp geo. 26.71 12.70 3.72 100.00%




	Abstract
	1 Introduction
	1.1 Certifiable Attacks vs. Empirical Attacks
	1.2 Randomization for Certifiable Attacks

	2 Problem Definition
	3 Attack Overview
	4 Certifiable Black-box Attack
	4.1 Adversarial Distribution Localization
	4.2 Adversarial Distribution Refinement
	4.3 Discussions on Our Attack

	5 Evaluations
	5.1 Experimental Setup
	5.2 Verifying the Adversarial Distribution
	5.3 Attack Performance against SOTA Defenses
	5.4 Ablation Study
	5.5 Defending against Our Certifiable Attack

	6 Related Work
	7 Conclusion
	References
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Certifiable Attack: Gaussian Noise
	A.3 Proof of Theorem 2

	B Denoising with Diffusion Models
	C Additional Experiments
	C.1 Additional Experimental Settings
	C.2 More Results of Black-Box Attacks against SOTA Defenses
	C.3 Attacking Other Empirical and Certified Defenses
	C.4 Diffusion Model for Denoising
	C.5 Experiments on Audio Classification task


