Distributed Backdoor Attacks on Federated Graph Learning and
Certified Defenses

Yuxin Yang
yuxiny22@mails.jlu.edu.cn
College of Computer Science and
Technology, Jilin University
Changchun, Jilin, China
Department of Computer Science,
Illinois Institute of Technology
Chicago, Illinois, USA

Yuan Hong
yuan.hong@uconn.edu
School of Computing,
University of Connecticut
Storrs, Connecticut, USA

Abstract

Federated graph learning (FedGL) is an emerging federated learning
(FL) framework that extends FL to learn graph data from diverse
sources without accessing the data. FL for non-graph data has
shown to be vulnerable to backdoor attacks, which inject a shared
backdoor trigger into the training data such that the trained back-
doored FL model can predict the testing data containing the trigger
as the attacker desires. However, FedGL against backdoor attacks
is largely unexplored, and no effective defense exists.

In this paper, we aim to address such significant deficiency. First,
we propose an effective, stealthy, and persistent backdoor attack
on FedGL. Our attack uses a subgraph as the trigger and designs
an adaptive trigger generator that can derive the effective trigger
location and shape for each graph. Our attack shows that empirical
defenses are hard to detect/remove our generated triggers. To miti-
gate it, we further develop a certified defense for any backdoored
FedGL model against the trigger with any shape at any location. Our
defense involves carefully dividing a testing graph into multiple
subgraphs and designing a majority vote-based ensemble classi-
fier on these subgraphs. We then derive the deterministic certified
robustness based on the ensemble classifier and prove its tight-
ness. We extensively evaluate our attack and defense on six graph
datasets. Our attack results show our attack can obtain > 90% back-
door accuracy in almost all datasets. Our defense results show, in
certain cases, the certified accuracy for clean testing graphs against
an arbitrary trigger with size 20 can be close to the normal accuracy
under no attack, while there is a moderate gap in other cases. Source

Binghui Wang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690187

Qiang Li
li_giang@jlu.edu.cn
College of Computer Science and
Technology, Jilin University
Changchun, Jilin, China

Jinyuan Jia
jinyuan@psu.edu
College of Information Sciences and
Technology,
The Pennsylvania State University
University Park, Pennsylvania, USA

Binghui Wang
bwang70@iit.edu
Department of Computer Science,
linois Institute of Technology
Chicago, Illinois, USA

code is available at: https://github.com/Yuxin104/Opt-GDBA. The
full report is at: https://arxiv.org/abs/2407.08935.

CCS Concepts

« Security and privacy — Distributed systems security.

Keywords
Federated Graph Learning, Backdoor Attacks, Certified Defenses

ACM Reference Format:

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang. 2024. Dis-
tributed Backdoor Attacks on Federated Graph Learning and Certified De-
fenses. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and
Communications Security (CCS °24), October 14—18, 2024, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.
3690187

1 Introduction

Graph is a pervasive data type consisting of nodes and edges, where
nodes represent entities and edges represent relationships among
entities. Learning on graph data (or graph learning) has gained great
attention in both academia [13, 25, 32, 54, 85] and industry [29,
61, 90, 98] in the past several years. A particular task, i.e., graph
classification, predicting the label of a graph has applications in
a wide variety of domains including healthcare, bioinformatics,
transportation, financial services, to name a few [37, 75, 97].
Despite notable advancements in graph learning, most require
the consolidation of graph data from various sources into a single
machine. With the increasing importance on data privacy [19], this
requirement becomes infeasible. For instance, a third-party service
provider trains a graph learning model for a bunch of financial
institutions to help detect anomalous customers. Each institution
has its own graph dataset of customers, where each graph can be
a customer’s transaction records with other customers, and each
customer also has personal information. Due to the business compe-
tition and rigorous privacy policies, each institution’s customer data
cannot be shared with other institutions or the service provider.

https://doi.org/10.1145/3658644.3690187
https://github.com/Yuxin104/Opt-GDBA
https://arxiv.org/abs/2407.08935
https://doi.org/10.1145/3658644.3690187
https://doi.org/10.1145/3658644.3690187

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Federated Learning (FL) [41], a new distributed learning para-
digm, aims to address the data isolation/privacy issue. Specifically,
FL enables a central server coordinating multiple clients to collabo-
ratively train a machine learning model without the need of sharing
clients’ data. Federated graph learning (FedGL) generalizes graph
learning in the FL setting and has attracted increasing attention
recently [1, 26, 27, 47, 52, 58, 65, 69, 74, 81, 82, 91] with various
successful applications such as disease prediction [47], molecular
classification [27], and recommendation [1, 74]. In FedGL for graph
classification, each client owns a set of graphs, and the server and
the participating clients collaboratively learn a shared graph classi-
fier without accessing the clients’ graphs. The learnt shared graph
classifier is then used by all clients for testing.

However, recent works show that FL for non-graph data (e.g.,
images, videos) is vulnerable to backdoor attacks [2, 20, 21, 51, 67,
79, 95]. In backdoor attacks on FL, a fraction of malicious clients
is controlled by an attacker. The malicious clients inject a back-
door trigger (e.g., a sticker) into part of their training data (e.g.,
images) and flag these backdoored training data with an attacker-
chosen target label (different from their true label). The clients’
backdoored data and clean data are used for FL training, such that
the trained backdoored FL model will predict malicious clients’
testing data with the trigger as the target label, while those without
the trigger still as the true label. While backdoor attacks on FL for
non-graph data is widely studied, those for graph data is underex-
plored. Note that backdoor attacks on FedGL would cause serious
issues for safety/security-critical applications. For instance, Alibaba
and Amazon have deployed and open-sourced their FedGL frame-
work (FederatedScope-GNN [69] and FedML-GNN [14]). When
these FedGL packages are used for disease prediction [47] but back-
doored, the patients’ safety could be jeopardized.

In this paper, we aim to design effective backdoor attacks on
FedGL, as well as effective defense to mitigate the backdoor attack.
Challenges in designing effective backdoors on FedGL: Compar-
ing with non-graph data, designing effective backdoors on graph
data used by FedGL faces unique challenges: 1) Backdoor attacks on
non-graph data (e.g., images) require same input size, while graph
data have varying sizes (in terms of number of nodes and edges); 2)
Backdoor attacks on non-graph data can leverage shared property
(e.g., important pixels in images with the same label are spatially-
close), while graph-data do not have such property: even graphs
have the same label, their locations of crucial nodes can be signifi-
cantly different (see Figure 3); 3) Graph backdoors solely based on
node features (like pixels in images) is not effective enough. Edge
information is equally important and should be considered.

We notice a recent work [84] proposed a random backdoor attack
on FedGL inspired by [79, 94]. Specifically, it uses a subgraph as a
trigger, and each malicious client randomly generates the trigger
shape and randomly picks nodes from local graphs as the location
to inject the trigger. However, our results show this attack attains
unsatisfactory backdoor performance (see Table 1).

Our optimized distributed backdoor attacks on FedGL: We ob-
serve the ineffectiveness of the existing backdoor attack on FedGL
is primarily due to the random nature of the trigger, i.e., it does not
use any graph or client information unique to FedGL. An effective
backdoor attack on FedGL should design the trigger by explicitly
considering the individual graph and client information. To bridge

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

the gap, we propose an optimized DBA on FedGL (termed Opt-
GDBA). As a trigger consists of trigger location, size, and shape,
our Opt-GDBA hence designs an adaptive trigger generator that
adaptively optimizes the location and shape of the subgraph trigger
and learns a local trigger for each graph using the graph and client
information. Specifically, the trigger generator consists of three
modules: 1) the first module obtains nodes’ importance scores by
leveraging both the edge and node feature information in a given in-
put graph; 2) the second module learns the trigger location based on
the nodes’ importance scores. In particular, we design two trigger
location learning schemes, i.e., Definable-Trigger and Customized-
Trigger, where the first scheme predefines the trigger node size and
the second one automatically identifies the important nodes in the
graph as the trigger nodes; 3) given the trigger location, the third
module further learns the trigger shape (i.e., determines the trig-
ger’s node features and edges) via introducing edge/node attention
and local trigger differentiation mechanisms. By incorporating our
adaptive trigger generator into the backdoored FedGL training, the
generated backdoored graphs can be more stealthy and diverse, and
make the backdoor attack much more effective and persistent.
Challenges in designing effective defenses on backdoored FedGL:
Once a backdoored FedGL model is trained, we test empirical de-
fenses, e.g., based on backdoor detection or backdoor removal, are
hard to mitigate the backdoored effect induced by our Opt-GDBA
(see Tables 3 and 4). Moreover, empirical defenses can be often bro-
ken by adaptive attacks [67]. Hence, we focus on certified defenses
with provable guarantees. Particularly, we expect the defense can i)
provably predict the correct label for clean testing graphs injected with
an arbitrary trigger (shape and location) with a bounded size; and
ii) provably predict a non-target label for backdoored testing graphs,
both with probability 100%. However, it is extremely challenging to
design such a certified defense due to: 1) the size of testing graphs
varies; 2) should not rely on a specific model; 3) a trigger can arbitrary
perturb any edges and nodes in a testing graph; and 4) a deterministic
guarantee. Note that certified defenses for non-graph data [63, 71]
require same size inputs, which inherently cannot be applied to
graph data. Existing certified defenses for graph data [5, 64, 94]
are also insufficient: they are either against node feature or edge
perturbation, but not both; their robustness guarantee is for a fixed
input size or specific model, or incorrect with a certain probability.
Our certified defense against backdoored FedGL: We design an
effective majority-voting based certified defense to address all above
limitations. Majority-voting is a generic ensemble method [12], and
different methods develop the respective voter for their own pur-
pose (see more details in Section 7). Our tailored majority-vote
based defense includes three critical steps. First, we carefully divide
a (clean or backdoored) testing graph into multiple subgraphs such
that the graph division is deterministic, and for any pair of sub-
graphs, their nodes and edges are non-overlapped. Second, we build
a majority vote-based ensemble graph classifier for predicting these
subgraphs and each prediction on a subgraph is treated as a vote.
This classifier ensures a bounded number of subgraphs’ predictions
be different after injecting the trigger and the expectations i) and ii)
be satisfied (per Theorems 1 & 3). Third, we derive the deterministic
robustness guarantee of the ensemble classifier against a (bounded
size) trigger with arbitrary edge and node (feature) perturbations.
We also prove that our certified defense is tight.

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses

Empirical and theoretical evaluations: We extensively evalu-
ate our Opt-GDBA attack and certified defense on six benchmark
graph datasets. Our attack results show that: 1) Compared with the
existing work [84], Opt-GDBA has a gain from 30% to 46% on the
backdoor performance, and generates triggers with less number
of nodes or/and edges; 2) The Customized-Trigger scheme is more
stealthy than the Definable-Trigger scheme, indicating it uncovers
more important nodes in the trigger; 3) Our generated backdoored
graphs are persistent and hard to be detected or removed.

We further test our defense on the backdoored FedGL trained
with our attack. Our defense results show that: 1) In some cases, the
certified main accuracy against a trigger arbitrarily perturbing 20
nodes/edges in total can be close to the accuracy without attack; 2)
The certified backdoor accuracy in all datasets is 0, which indicates
the backdoored testing graphs generated by our Opt-GDBA are
completely broken by our defense.

Contributions: We summarize our main contributions as below:

e We propose Opt-GDBA, an optimized DBA to FedGL, that is
effective, stealthy, and persistent.

o We develop a certified defense applicable for any (backdoored)
FedGL against any graph structure and node feature perturbation.
Moreover, our robustness guarantee is deterministic and tight.

o Our extensive empirical and theoretical evaluations verify the
effectiveness of our proposed attack and defense.

2 Background and Problem Definition

2.1 Federated Graph Learning (FedGL)

We denote G = (V, E,X) as a graph where V is the node set, &
is the edge set, and X € RIVIX4d is the node feature matrix, with
d the number of features and |V| the total number of nodes. We
let A € {0, 1}|ﬂ/\><\’V| be the adjacency matrix with A, , = 1, if
(u,v) € &, and 0, otherwise. A hence contains all edge information
in G. We consider graph classification as the task of interest, where
each graph G has a label y from a label set Y. Graph learning (GL)
takes a graph G as input and learns a graph classifier, denoted as f,
that outputs an estimated graph label, i.e., f : G — Y.

FedGL extends GL in the FL setting. Assume C clients C =
{1,2,---,C} and a server participating in FedGL. Each client i has a
set of labeled training graphs G' = {(G1,y}), - -, (Gligil’ y"'g,-l)}. In
a t-th round, the server randomly selects a subset of clients C; ¢ C
and broadcasts the current global model 6; on the server to C;. A
client i € C; updates its local model 9; = a,gtL(Qi; 0;) using its
training graphs G’ and the shared 6;, and submits 9; to the server.
Here L(G';6") is a loss function used by the client i, e.g., cross-
entropy loss. The server then aggregates the C; clients’ models
{0;} iec, to learn the global model 61 for the next iteration using
some aggregation algorithm. For instance, when using the common
average aggregation [41, 65], 0741 = ﬁzz‘ect 9;. Next, the server
randomly selects a new subset of clients C;4+1 C C and broadcasts
0¢+1 to them. This process is repeated until the global model con-
verges or reaching the maximal iterations. The final global model is
shared with clients for their task, e.g., classify their testing graphs.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

o
g™ . oy
L J (% o—d .
- -
SO D e o,
= = . e N\g" "\
o o o >
N N, W S
) o - o« e T o e
e N ~ N
,.a \._. \.4.’ . \._./ . \. e
5]
-
o
=] —e. —e N, —®
g o > PO e e . o e
g ~O—" O e—¢ o
< o > .
F Ao~ ./ \, "
No—* No—"* ,/.
«—"—e¢ o— e o— " —¢ —*—e

Testing Graphs
o 0
*
o
¢ 3
L e
oy
Y
o ®
o
d
I3
L
I
?
°
°. []
e
:
e
)
2N
L
L]
L]
*
/..
.\) |
. 1
;.

(a) Original Graphs (b) Rand-GCBA (c) Rand-GDBA (d) Opt-GDBA

Figure 1: Comparing the triggers of the backdoor attacks on
FedGL: (b) Rand-GCBA, (c) Rand-GDBA, and (d) our Opt-
GDBA. Opt-GDBA strategically selects critical nodes and
their connected edges in individual graphs, resulting in more
effective local triggers and the combined global trigger.

2.2 Backdoor Attacks on FedGL

In backdoor attacks on FedGL, malicious clients inject a subgraph
trigger (consisting of edges and nodes with features) into part of
their training graphs and set backdoored graphs with a target label.
Depending on how the trigger is designed, a recent work [84]
proposed two attacks: centralized backdoor attack (CBA) inspired
by [94], and distributed backdoor attack (DBA) inspired by [79]. We
denote the two attacks as Rand-GCBA and Rand-GDBA, respectively,
where the prefix “Rand” means malicious clients randomly generate
the shape of the trigger and randomly choose nodes from their clean
graphs as the location to inject the trigger.

Rand-GCBA: All malicious clients use a shared trigger k. In each to-
be-backdoored graph, malicious clients randomly sample a subset
of nodes from the graph as the trigger location and replace the
connections of these nodes with the trigger x. Then each malicious
client i iteratively learns its local backdoored model % as below:

9;_3 = argminaji3 L(Qg U gé, 0), M

where gé = {R(G;, k), yp} is a set of backdoored graphs, R(G;, K)
is function that generates a backdoored graph of G; by attaching the
trigger k, and yp denotes the target label. 0 is the global model. Q’c
contains the remaining clean graphs in G', and |Qé| + |Q(":| =G4
The server will aggregate the local models of chosen malicious
clients and normally trained benign clients. The final backdoored
graph classifier, denoted as fg, is shared with all clients. During
testing, malicious clients will use the same « for their testing graphs,
but the trigger location is randomly chosen.

Rand-GDBA: Each malicious client i has its own local trigger «*
(often sparser/smaller than «), and injects «’ into a fraction of its
training graphs G*, where the trigger location is randomly chosen.
Then each malicious client generates its backdoored graphs gé =
{R(Gj., «'), yg} for training (i.e., minimizing the loss in Equation (1)).
During testing, all malicious clients’ triggers {x’} will be combined
into a single one. The combined trigger, with a random location,
will be injected into testing graphs.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Rand-GDBA is shown to be more effective than Rand-GCBA [84].
Figure 1 shows example shared trigger in Rand-GCBA, local triggers
in Rand-GDBA across clients, and triggers in our attack.

2.3 Threat Model

We aim to understand the robustness of FedGL from both the at-
tacker’s and defender’s perspective. As an attacker, we expect to
design an effective and stealthy DBA to FedGL during training. As
a defender, in contrast, we expect to design an effective certified
defense against the worst-case DBA on a backdoored FedGL model.
Attacker: We assume the attacker manipulates a fraction (say p)
of the total C clients, namely malicious clients.

o Attacker’s knowledge: All malicious clients only know their
own training graphs and the shared global model in the whole
of (backdoored) FedGL training.

o Attacker’s capability: Malicious clients can inject a subgraph
trigger into any location/part of their training graphs during
training. To ensure effectiveness and stealthiness for the attack,
we follow [79, 84] to inject the trigger in every training iteration,
but its size (w.r.t. number of nodes or/and edges) is small.

e Attacker’s objective: Malicious clients aim to learn a back-
doored FedGL model such that: it predicts the backdoored testing
graphs as the target label, while correctly predicting the clean
testing graphs. This implies the model will achieve a high back-
door accuracy as well as a high main task accuracy.

Defender: The defender aims to build a certifiably robust defense,
under which the learnt backdoored FedGL can achieve two goals.

e High certified main task accuracy: provably predict correct la-
bels as many as possible for clean testing graphs against arbitrary
trigger (any shape and location) with a bounded size.

e Low certified backdoor accuracy: provably predict the target
label as few as possible for backdoored testing graphs (that are
generated by our Opt-GDBA).

3 Optimized DBAs on FedGL

Recall the existing DBA to FedGL generates triggers with random
locations and random shape, and obtains unsatisfactory backdoor
performance. We propose an optimized DBA on FedGL (called Opt-
GDBA) to address the limitation. Our Opt-GDBA designs an adap-
tive trigger generator to adaptively optimize the trigger location
and shape by integrating the edge and node feature information in
individual graphs. See Figure 2 for the pipeline of Opt-GDBA.

3.1 Adaptive Trigger Generator

The proposed adaptive trigger generator consists of three modules:
1) node importance score learning, 2) trigger location learning, and
3) trigger shape learning. For simplicity, we use a client i’s graph
G! = (V%, &, X!) with the adjacency matrix A’ for illustration. We
first obtain the nodes’ importance scores using module 1). We next
input the nodes’ scores to module 2) to decide the trigger location
with a predefined or customized trigger size. Finally, module 3)
learns the trigger shape and generates the backdoored graph Gé
for G! together with module 2). Detailed architecture of all the
described networks below are in the full report.

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

Algorithm 1 k-means_gap to learn customized trigger size

Input: Nodes’ scores s!, maximum trigger size Ny
Output: Important nodes V7.
st =5,
2: fork=1,2,...,Kdo
3: C;, pi = k-means (s*)
2
4 Vi=Z5 Sxec - wll
5 forb=1,2,..,Bdo
6: Xj,p = sample(|s*]) in [0,1]
7: Cip, Mi,p = k-means (x;p)
* k 2
8 ka = Zi:IZijECib ijb - ”ib”
9 end for 5
0 Gap(k) = 532, log (Vi) - log(Vi)
11: o = %Z?:l log(Vy,)
1
12: sd(k) = (%Zil(log(VZb) -v)%)2
130 sy = BEsd(k)
14: end for
15: k = min(k) s.t. Gap(k) = Gap(k+1) +s;,, >0
16: Cy, pli= I;—means(s")
17: Vs = {Ci|lmax{Avg (C1),Avg(Ca), -...Avg (Cp)}}
18: if |'Vi, | > msize then
19: Veus = sort(Veys)
20: (Vclus = (Vclus [: msize]
21: end if

—_

1) Node importance score learning. The goal is to measure the
node importance so that the trigger can be placed on the important
nodes. Specifically, we leverage both the edges and node features
in G* to decide the node importance.

First, we define two networks: EdgeView(-) and NodeView(-).
EdgeView(-) characterizes the node importance from the edge view,
and the extracted node importance scores from A’ are denoted by
el € RVl Instead, NodeView(-) characterizes the node impor-
tance from the node feature view, and the extracted node impor-
tance scores from X' are denoted by n’ € RV Formally,

el = EdgeView(Ai), n’ = NodeView(X), (2)
where e and n’ are constrained to have a value range (0, 1).

We then calculate the nodes’ importance scores, denoted by st

as the element-wise product @ of vectors e’ and n' as below:

si=e on’. (3)

2) Trigger location learning. With nodes’ importance scores, we
design two schemes to decide the trigger location in each graph:
Definable-Trigger and Customized-Trigger.

Definable-Trigger: It predefines a trigger node size n;; used by
all backdoored graphs. Specifically, this scheme first ranks s’ in a
descending order and selects the nodes (Vdie f from G’ with the top
ntri values as the trigger location.

Customized-Trigger: One drawback of Definable-Trigger is that
all backdoored graphs use the same trigger size, but the graph size
varies in practice. This would cause V ;e f misses important nodes

ifGlisa large graph but ny; is small, or includes non-important
nodes if G! is a small graph but ng; is large. To address it, we fur-
ther develop the Customized-Trigger scheme, which automatically
learns the best local trigger size of each graph during the FedGL
training. The learnt most important nodes for G are stored in V.

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

ntn Definable-Trigger
o
EdgeView
¢ L=

@ o <rank> Vier \

/i
NodeView

OR /
Customized-Tri gger

[T Tv]—-

<k-means & gap> Vi

Clean Graph G'

Trigger Location |

,
R()
E
f \ / iy Graph Classifier
i B
& @ Backboored Graph |
i

J1. A
Tﬁfeyé_ l,l

Logits

- NndeEmb ; Trigger Shape

Adaptive Trigger Generator

Client Model

Figure 2: Pipeline of our proposed Opt-GDBA on FedGL (a client i perspective).

Our main idea is to adopt the Gap statistics [60] based on k-
means clustering!. The algorithm details are shown in Algorithm
1. At a high-level, given the node scores s’, we first use the Gap
statistics to estimate the number of clusters k. Then we employ
k-means to divide the nodes into k clusters based on their scores s’.
Finally, the nodes in the cluster with the largest average score are
treated as the most important nodes V,,,, whose positions are put
the local trigger. Note that, to ensure the stealthiness of the attack,
we require the trigger size not exceed a threshold (e.g., nj,;).

3) Trigger shape learning. Given the location of the local trig-
ger (V ;e for Vi), we learn the trigger shape through two sub-

modules: edge/node attention, and local trigger differentiation. The
former determines the edges and node features in the trigger, which
is inspired by [76], while the latter promotes divergence of differ-
ent local triggers so that the attack effectiveness can be enhanced
when these local triggers are combined for backdoored testing. We
denote Gé = (Vi 8;3, X;;) as an initial backdoored graph with an
empty trigger shape and the corresponding adjacency matrix Ag,

For brevity, we use Vi for illustration.

de

Edge/node attention. \{Ve introduce two attention networks: edge
attention network EdgeAtt(-) that focuses on understanding the
connectivity between nodes V ;e f in the trigger, and node attention
network NodeAtt(-) that aims to improve the flexibility of the trig-
ger by also incorporating node features. We denote the trigger’s

edge attention matrix as E’t eRl Viaer X Vier! , and trigger’s node
feature attention matrix as N’ ; € RV e Ixd Formally,

E},; = = EdgeAtt(AL, V. def) 4)

N;” = NodeAtt(X: ’(Vdef)' (5)

Local trigger differentiation. To further enable distinct malicious
clients to possess personalized and controllable local triggers, we
also propose to incorporate the client index i into the trigger shape
generation. Specifically, we first use an edge embedding function

EdgeEmb(-) to convert the client index i into I, € Rl deflxl defl
and a node embedding function NodeEmb(-) to convert it into
I, € RIVaerx?.

i
matrix E i

We then multiply I, (and I,) with the attention
(and N;) to integrate the unique information of the

1K-mean is a widely-adopted clustering algorithm that is efficient and effective. By
integrating with gap statistics, K-means can also efficiently determine the optimal
number of clusters. We admit there are other more advanced/complicated/effective
clustering algorithms. Note that our purpose is not to pick the best clustering algorithm,
but the one that is suitable to achieve our goal, i.e., learning the local trigger size.

Algorithm 2 Adaptive Trigger Generator

Input: A clean graph G, trigger node size n,; or ny,;
Output: Backdoored graph Gg.

1: s' = Node_score(G’) // Node importance score
2: if Definable-Trigger then

3: (Yéef = rank(s, n;r;) // Trigger location

4 st = Trigger_shape_learning(G’, (V(;E f)

5: else if Customized-Trigger then

6: (YL:us = k-means_gap(s’, msize) // Trigger location
7 Gp = Trigger_shape _ learning(G?, V%,,)

8: end if

client index. The equations can be expressed as follows:

I, = EdgeEmb(i), E. . =E!

tri tri

I, = NodeEmb(i), NI . =NI

tri trl

O L,
(6)

To further discretize the connectivity status between nodes, we
convert the continuous edge attention matrix E; ; to be binary,
ie., E;” =]1(Em > 0.5), where 1(p) is an 1ndlcator function that
returns 1 if p is true, and 0 otherwise.

The trigger location (V’ 1o @S Well as trigger shape E! ir »Nj,; de-

i
Ntrl

—_ i
cides the optimized trigger, which we denote as &' = (V E} .,

The optimized backdoored graph for a graph G’ is then generated
by GE = R(G',%%). Algorithm 2 summarizes the adaptive trigger
generator for generating a backdoored graph.

3.2 FedGL Training with Optimized Backdoor

We now show the entire backdoored FedGL training with the opti-
mized backdoored graphs (algorithm details are in Algorithm 3). It
involves alternatively and iteratively training the (backdoored) lo-
cal model, optimizing the adaptive trigger generator, and updating
the shared global backdoored model.

Training the (backdoored) local model: We denote the op-
timized backdoored graphs in each malicious client i as QB =
{R(G’ ~’) yg}. Then each malicious client i trains its local back-
doored model % via minimizing the loss on both the optimized

backdoored graphs Q}’s and clean graphs Qé
i _ P all i,
0 = arg ming: L(GR U Grs0). (7)

For each benign client j, it updates the local model via minimizing
the loss on all its clean graphs G/ as:

6/ = argming; L(G’;6). ()

)

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 3 Backdoored FedGL training with Opt-GDBA

Input: Total clients C with clean graphs { G’} ;cc, malicious clients C,
training iterations iter, initial global model 6, malicious clients’ initial
generator model {w!}, &

Output: Backdoored global model ;¢

1: for each iteration ¢ in [1,iter] do

2: for each client i € C do
3 if i € C then:
4: Client i divides G* into Q’c and to-be-backdoored G}
5: Gg = Generator(G.; wf) using Algorithm 2
6 9§ =argminL(Q~éU Qé;@,)
gl
7: wf: :argminL(GfS;Oi)
wl
8: else
9: 0§ = argmin L(G*; 6;)
91
10: end if
11: end for
12: Server randomly selects C; clients for aggregation
13: Ory1 = ﬁZiec[i
14: end for

Optimizing the adaptive trigger generator: We denote the pa-
rameters of the trigger generator per malicious client i as ', which
includes the parameters of all networks in Section 3.1. Each mali-
cious client i also optimizes its generator w’ to ensure the generated
backdoored graphs be more effective and diverse. Specifically,

w' = arg min,; L(Q}ig; Gg). 9)
Updating the shared global model: The server averages the

backdoored local models {9;3} and benign local models {6/} of the
selected clients to update the global model 6.

4 Attack Results
4.1 Experimental Setup

Datasets and training/testing sets: We evaluate our attack on
six benchmark real-world graph datasets for graph classification.
Dataset description and statistics and training/testing sets
about the datasets are presented in Table 8 in the full report.
Attack baselines: We compare our Opt-GDBA with Rand-GCBA
and Rand-GDBA (details are in Section 2.2). Their main difference
lies in the way to inject the trigger.

e Rand-GCBA [84]: All malicious clients use a shared trigger with
the same shape but random location. To force the trigger yields
the most effective attack, we assume it be a complete subgraph.

e Rand-GDBA [84]: Each malicious client generates its local trig-
ger. Following [94], each client generates the trigger using the
Erd6s-Rényi (ER) random graph model [18], where the num-
ber of edges e;r; with a trigger node size ns; can be controlled.
These triggers are then attached to random nodes in the to-be-
backdoored graphs. To further enhance this attack, we also main-
tain the diversity of local triggers among malicious clients. To
do so, we store a set of generated local triggers via the ER model,
and assign different triggers to different malicious clients.

For fair comparison, we make sure the total number of edges in
all triggers in Rand-GCBA and Rand-GDBA are same. This can
be realized by forcing p© « ef , = pd % efri, where p€ and p? are

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

the ratio of malicious clients, and ef Vi and e;i .; are the number of

trigger edge in Rand-GCBA and Rand-GDBA, respectively.

e Our Opt-GDBA: Each to-be-backdoored training graph gen-
erates an individual trigger via the proposed adaptive trigger
generator, where the trigger location and shape are learnt. Note
that the trigger node size ny; is predefined in the Definable-
Trigger scheme (same as Rand-GCBA and Rand-GDBA), but is
automatically learnt in the Customized-Trigger scheme.

During testing, the local triggers are combined into a global trig-

ger. For fair comparison, we let all attacks use a complete subgraph
as the global trigger. In our Opt-GDBA, for each testing graph, we
learn the important nodes that determine the trigger location, and
then generate the complete graph based on them. In contrast, the
trigger location of Rand-GCBA and Rand-GDBA in testing graphs
is random. Note that [84] uses a different way to combine local trig-
gers and injects a much larger global trigger in Rand-GDBA. The
discussion and results are shown in Table 10 in the report.
Parameter setting: During FedGL training, we use a total of C = 40
clients (C = 20 on MUTAG due to less data) and evenly distribute
the training graphs in each dataset to the clients. The total number
of iterations is 200 in all datasets, except the larger RDT-M5K that
is 400. In each iteration, the server randomly selects 50% of the total
clients for training. The clients use the de facto Graph Isomorphism
Network (GIN) [86] as the graph classifier. We use its open-source
code (https://github.com/weihua916/powerful-gnns) in our exper-
iments. By default, 50% of malicious clients’ training graphs are
randomly sampled to inject the backdoor trigger, and the target
label is 1. All testing graphs are chosen for backdoored testing.
There are several hyperparameters that can affect all attacks’ per-
formance on FedGL: fraction of malicious clients p and trigger node
size ngrj or a threshold size n;‘ri in Customized-Trigger scheme. We
set p = 20% and nyr; = 4 by default, and set ny; = 5 in all exper-
iments. We will also study the impact of these hyperparameters.
Our Opt-GDBA contains many modules and we will also study the
importance of individual module.
Evaluation metrics: We adopt four metrics for evaluation: the
main task accuracy (MA) and backdoor accuracy (BA) on testing
graphs; the average trigger node size (also use n;) and edge size
(also use e;r;) of all backdoored training graphs. A more effective at-
tack would achieve a higher MA and higher BA, and a more stealthy
attack would have a lower n;,; and e;y; given a close MA/BA.

4.2 Experimental Results

4.2.1 Main results of the compared attacks. Table 1 shows the com-
parison results of the attacks in the default setting (more compre-
hensive comparison and more results are shown in Table 9-
Table 14 in the full report. We have the below key observations:

(1) Main task performance is marginally sacrificed under all
attacks: All attacks achieve a close MA, compared to the MA
without attack (i.e., the differences between them in all cases
are < 3%). This verifies these attacks only slightly affect the
performance of the main task.

(2) Rand-GDBA outperforms Rand-GCBA on attacking FedGL:
Similar to the conclusion of backdoor attacks on image data [79],
distributed backdoors for graph data are also superior to cen-
tralized backdoors on attacking FedGL. Specifically, the BA of

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

Table 1: Results of all the compared attacks in the default setting. The gain is between Opt-GDBA and Rand-GDBA.

Datasets Customized-Trigger (n;,; = 5) Opt-GDBA Rand-GDBA Rand-GCBA

(MA without attack) (MA / BA) Neri e | nuri | (MA / BA) erri | (MA/BA) erri | (MA/BA) e
BITCOIN (MA=0.73) || 0.72/0.99 (10.36) 429 420 | 4 | 0.72/0.99(70.36) 3.08 | 0.71/0.63 4 | 0.72/057
MUTAG (MA=0.74) 0.72/0.95 (70.43) 3.51 2.31 4 0.71/0.85 (10.33) 3.41 0.71/0.52 4 0.73/0.48
PROTEINS (MA=0.73) || 0.72/0.90 (10.39) 3.75 256 | 4 | 0.72/0.90(10.39) 2.07 | 0.70/051 4 | 0.71/0.33
DD (MA=0.73) 0.72/ 0.86 (1T0.46) 3.19 1.57 4 0.72/0.78 (10.38) 2.97 0.72 / 0.40 4 0.72/0.33
COLLAB (MA=0.75) 0.73/0.86 (10.32) 468 451 | 4 | 073/0.84(10.30) 334 | 073/054 4 | 0.71/0.37
RDT-M5K (MA=0.53) 0.52/0.90 (1T0.33) 4.51 3.59 4 0.52/0.89 (10.32) 3.27 0.52/0.57 4 0.52/0.40

(a) Original Graphs

E
Co E
o E

BITCOIN MUTAG PROTEINS DD COLLAB RDT-MSK

Figure 3: Examples of original clean graphs on the six datasets and their corresponding backdoored ones by our Opt-GDBA.

A R
%
1) 1o
i g M

o

1.0 1.0 1.0 1.0 1.0

100010) . R— J ——" /
— | os 08
| -

0.8{7 o 08 08

PR K 11 | —— = < |* zmae < |eemm——- =a| P [——
3 e S 06 // 306 306 B 0.6{ ! & 0.6
2050 .|l |3 //" = = 2

=

< < < <oafl .— %
<04 o4 <04 // <04 o4
0.5 e | 0.2{ = oo awamnn | 0.2{(% ovcoma - owamsn | 0.2 oweomm - owamen | 0.2 {] e oweomm - awaomsn | 0.2 1) oeomm e wecnakes
ool TR |Timm Towawm| o |Taeas Timam| o]Times Timam] o [Teen Tiwmen] [Teean T
“Pol 02 03 ol 0.2 03 o1l 0.2 03 o1l 02 03 o1 02 03 01 02 03
P p p P P
BITCOIN MUTAG PROTEINS DD COLLAB RDT-M5K
Figure 4: MA/BA vs. p on all compared attacks in all datasets.
10— 1.0 1.0 1.0 1.0
1.00 v — v - | ——%
et o L — 0.8f 0.8{ - 0.8
07 i — B Y — 06 Sos|l 06
3050 20— 2 2 2| 2 —= T
< 0. < < <
g <04 <04 —— <04
0-25) Es 02 b= 021z B 02 £ E >
S E3 S S E = . e E
0.00 i 0.0 0.0 = T 00 T 005 >
Ntri Ntr Ntri Ntri Ntri Ntri
BITCOIN MUTAG PROTEINS DD COLLAB RDT-M5K

Figure 5: MA/BA vs. nsri (n},. = 5) on all compared attacks in all datasets.

tri

Table 2: Comparing the two trigger location learning schemes in our Opt-GDBA w.r.t. the average trigger edge size ¢;,;.

Datasets BITCOIN MUTAG PROTEINS DD COLLAB RDT-M5K
P VS. erri 10% 20% 30% | 10% 20% 30% | 10% 20% 30% | 10% 20% 30% | 10% 20% 30% | 10% 20% 30%

Definable-Trigger 495 509 535 | 583 588 563 | 356 336 344 | 542 504 522 | 585 572 599 | 539 545 559
Customized-Trigger 3.88 420 435 | 352 231 232 | 268 256 254 | 164 157 179 | 450 451 4.72 | 342 359 3.86

Rand-GDBA is higher than that of Rand-GCBA, with a gain of (3) Our Opt-GDBA outperforms Rand-GDBA in terms of both
4% to 18%. This implies the diverse local triggers indeed can attack effectiveness and stealthiness: Both our Opt-GDBA
promote the backdoor attack. This observation hence implies with Definable-Trigger and Customized-Trigger schemes yield
the importance of using distributed backdoors. impressive attack results, with BA exceeding 85% and 90% in

almost all cases, respectively. Under a same trigger node size

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

nsri (Definable-Trigger) or a smaller learnt n;,; (Customized-
Trigger), the BA of Opt-GDBA consistently and significantly
surpasses that of Rand-GDBA. Particularly, the gain is from 30%
to 46%. In addition, the average number of injected edges of Opt-
GDBA is less than that of Rand-GDBA, showing Opt-GDBA
is a more stealthy attack than Rand-GDBA. These findings
underscore that the graph-dependent triggers learnt by our
trigger generator are not only better memorized during the
FedGL training, but also uncover important locations in the
clean graphs. Figure 3 shows example triggers generated by
Opt-GDBA on the six datasets. We can see most of the triggers
are attached to the important/central nodes in the raw graphs.

4.2.2 Impact of hyperparameters on our Opt-GDBA. In this set of
experiments, we will study in-depth the impact of the important
hyperparameters on our Opt-GDBA.
Impact of the fraction p of malicious clients: Figure 4 shows the
MA/BA results vs. p = 10%, 20%, 30%. We can see MA is stable w.r.t.
different p, and BA (slightly) increases with a larger p. For instance,
on MUTAG, when p is from 10% to 30%, the BA of Rand-GCBA,
Rand-GDBA, and our Opt-GDBA can be increased from 41% to 56%,
from 43% to 67% and from 84% to 97% with the Definable-Trigger,
respectively. This shows MA is marginally affected, but the attack
becomes stronger with more malicious clients.
Impact of the trigger size n;;: Figure 5 shows the MA/BA results
vs. ngri (=3,4,5). We can see a larger trigger size corresponds to
a larger BA, which implies a stronger attack. This is because the
trigger can be injected to a larger region of the clean graph. Still,
the MA is the very stable in terms of different trigger sizes.
Impact of the trigger location learning scheme: Our Opt-GDBA
uses two schemes to decide the trigger location: Customized-Trigger
automatically learns it, while Definable-Trigger predefines it. Ta-
ble 2 shows the comparison results. We can see the trigger out-
putted by Customized-Trigger has an average number of edges < 5
in all cases. In contrast, Definable-Trigger yields X 5 edges in most
cases. Note that the MA and BA of the two schemes are close. This
hence reflects the Customized-Trigger scheme can further locate
the “more important” region in a graph to attach the trigger.
Global trigger vs. local triggers: From Table 1, we know the MA
performance is marginally affected by the backdoor attacks with
respect to different trigger sizes. Recall that, during testing, we use
the combined local triggers to form a global trigger (a complete sub-
graph), which is injected into all testing graphs. In this experiment,
we also explore the BA performance of our Opt-GDBA where each
client uses the local triggers generated by its own trigger generator.
Specifically, we use p = 20% and the total number of malicious
clients is 20% * 50% * 40 = 4. Figure 6 compares the BA produced
by the global trigger vs. local triggers per malicious client with
Definable-Trigger Opt-GDBA with n;; = 4. For instance, “Local
triggers 1” means the local triggers are generated via malicious
client 1’s trigger generator on the corresponding testing graphs.
We observe that though the backdoored FedGL training does
not involve the global trigger, the BA achieved by the global trigger
is even larger than that by the local triggers. One possible reason
could be that the federated training might memorize the combined
effect of local triggers. This phenomenon further reinforces the
FedGL framework is more vulnerable to distributed backdoors.

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

4.2.3 Persistence and stealthiness of the triggers. In this experiment,
we explore the persistence and stealthiness of the backdoor triggers
generated by our Opt-GDBA.

(Persistence) Finetuning the backdoored FedGL model with
clean graphs cannot remove the backdoor effect: A straight-
forward strategy to mitigate the backdoor effect is to finetune the
FedGL model only with clean graphs. To simulate this, we extend
the FedGL training with an extra 200 iterations (e.g., from 200 to
400) which only involves training with clean graphs. Table 4 shows
the results. We can see the BA with finetuning is close to that with-
out finetuing in all p and when the trigger node size is not large
(i.e., ngri = 3,4). This shows the backdoor effect is persistent.
(Stealthiness) Similarity between the backdoored graphs and
clean graphs is large: We further quantitatively compare the struc-
ture similarity between the generated backdoored graphs and the
clean graphs, where we use the metrics NetSim and DeltaCon pro-
posed in [73]. Table 3 shows the similarity results over all training
graphs. We observe the backdoored graphs and their clean counter-
parts are structurally close (except BITCOIN where one possible
reason could be the BITCOIN graph is very sparse).

The above results imply that empirical defenses based on fine-
tuning and structure similarity test are hard to detect or remove
the backdoor trigger. Also, empirical defenses are always broken by
advanced/adaptive attacks [94]. Hence, it is necessary to develop
certified defenses for backdoored FedGL. More details see Section 5.

4.2.4 Ablation study. In this experiment, we examine the contribu-
tion of each module in our trigger generator. The modules include
Trigger-Location (based on the Edge-View module), Trigger-Shape,
Customized-Trigger, and Definable-Trigger. For simplicity, we test
on BITCOIN, and the other datasets show similar observations. The
results are summarized in Table 5 with p = 20%, and ns; = 4 in
Definable-Trigger and n},; = 5 in Customized-Trigger.

(a) The whole generator as a reference. (b) We exclude only
the Edge-View sub-module in Trigger-Location, indicating that
trigger locations in graphs are computed solely based on the rank
of the node features. (c) We remove Trigger-Location and decide
the trigger location in each graph randomly. Compared with (a), the
significant BA reductions of 16% for Customized-Trigger, and 15%
and 18% for Definable-Trigger in (b) and (c) demonstrate that the
Trigger-Location module excels at selecting important nodes in the
graphs. (d) We remove Trigger-Shape and use the ER model [18]
to decide the trigger shape. The reductions of 27% and 22% in
BA underscore the superior effectiveness of our Trigger-Shape
module in learning trigger shapes. (€) We remove both the Trigger-
Shape and Trigger-Location modules, resorting to a random method
for trigger location selection and an ER model for trigger shape
determination. The substantial 36% reduction in BA proves the
strong competition of our method for backdoor attacks on FedGL.

5 Certified Defense for FedGL

In this section, we design certified defenses for (backdoored) FedGL.
Suppose we have learnt a backdoored FedGL for graph classification.
We aim to build a certifiably robust defense mechanism such that
the graph classifier: 1) provably predicts the correct label for clean
testing graphs injected with arbitrary trigger with a bounded size;
and 2) provably predicts a non-target label for backdoored testing

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

10 _10 -
< < <
=) =) (=)
508 | (>
g gos H A g
3 3) A \ 3
9 9] \ 7 | W o
20.6 o \ N N \ / "d 5]
< < \7,/‘v \ / N < |
= . : =
8 1 —=— Local triggers 1 g 0.6 R(‘ & . —=— Local triggers 1 8 0.6 4 —=— Local triggers 1
S04 i Local triggers 2 [Local triggers 2 | Local triggers 2
5 —— Local triggers 3 5 —— Local triggers 3 5 “/ —— Local triggers 3
© Local triggers 4 © Local triggers 4 © / Local triggers 4
@ —— Global trigger] b —— Global trigger @ | —— Global trigger
0.2 0.4 - 0.4 -
50 100 150 200 50 100 150 200 50 100 150 200
Iterations Iterations Iterations
BITCOIN PROTEINS
1.0 1.0 1.0
< < <
3))
0.8 0.8 >
e o ©0.8
3 3 3
So6 So6 g
< < <
= = =
8 —=— Local triggers 1 S —=— Local triggers 1 206 —=— Local triggers 1
T 0.4 Local triggers 2 T 0.4 Local triggers 2 Eol Local triggers 2
S —— Local triggers 3 e | —— Local triggers 3 5 —— Local triggers 3
© Local triggers 4 © Local triggers 4 © Local triggers 4
@ —v— Global trigger @ —v— Global trigger @ —— Global trigger
0.2 0.2 0.4
50 100 150 200 50 100 150 200 100 200 300 400
Iterations Iterations Iterations
DD COLLAB RDT-M5K

Figure 6: Comparing the backdoor performance with global trigger vs. local triggers generated by malicious clients.

Table 3: Structure similarity between the generated backdoored graphs by our Opt-GDBA and the clean graphs.

BITCOIN

MUTAG
3 4 5

513 4 5

Datasets

neri(ng,;) 5 | 3 4

PROTEINS

5

DD
513 4 5

COLLAB
513 4 5

RDT-M5K
513 4 5 5

NetSim (1) || 073 0.55 052 054] 099 090 082 087|093 088 080 0.86] 100 099 099 099100 0.99 099 099099 098 097 0.98
DeltaCon (1) H 0.80 0.65 063 0.64 096 093 089 092|095 094 089 091 ‘ 1.00 099 099 1.00 ‘ 1.00 099 099 0.99 ‘ 0.99 099 098 0.98
Table 4: Finetuning the backdoored FedGL model by extend- E g = i 2,
ing the training on clean graphs. = o ‘,8 % o %o oile 8 5 d80% \
= g =
0% ;«C." 0o°¢ kof mé
Datasets P 10% 20% 30% 5 = s
. = >
BITCOIN :X ‘ 0?97 0:9 0598 ‘ 0399 0:9 0599 0399 1‘:)0 0595 o 4 i . X
I I I I I I I J I =. 0 ¢ =@ @ e ¢ oo
BA-FT | 095 097 096 | 094 095 096 | 096 095 0.73 foié ¢ on M P 00°8
MUTAG BA | 083 084 082|087 085 086|095 097 094 Backdowred Graph O @ ° e :oe (
BA-FT | 0.82 082 081|085 084 084|092 092 0.65 A
PROTEINS || BA [082 091 088|087 092 090|094 094 0.96 Ensemble Classifier 95
BA-FT [077 090 082|087 089 076 | 094 092 0.65
DD BA |078 077 080|076 078 087 | 0.83 0.80 092 Figure 7: Overview of our proposed certified defense.
BA-FT | 070 074 076 | 072 076 084 | 0.75 073 0.61
COLLAB BA | 080 080 082|081 084 085|085 090 091 Our defense includes three key steps: 1) dividing a (clean or
BAFT | 0.79 077 080 | 079 081 080082 085 077 backdoored) testing graph into multiple subgraphs; 2) building a
RDT-M5K || BA [088 090 085|087 089 090|090 089 092 ’
BA-FT | 087 0.85 072|085 094 075|088 086 0.60 majority vote-based ensemble graph classifier on the subgraphs;

Table 5: Impact of different modules in our adaptive trig-
ger generator on the (MA/BA) performance on Bitcoin. T-L:
Trigger-Location; T-S: Trigger-Shape; E-V: Edge-View; Cus-T:
Customized-Trigger; Def-T: Definable-Trigger.

Models || TL TS | TLw/oEV | CusT Def-T
@) oo/ 0.72/0.99 0.72/0.99
(b) v v 0.72/0.83 0.72/0.84
(c) v - 0.71/0.81
(@ v 072/072 0.72/0.77
(e) - 0.71/0.63

graphs. This has the implication that benign clients’ performance
are provably kept, while the malicious clients’ backdoored effect
are provably removed during testing.

and 3) deriving the robustness guarantees of the ensemble graph
classifier against arbitrary trigger. Figure 7 overviews our defense.

5.1 Graph Division into Subgraphs

Recall that a backdoor attack can arbitrarily perturb the edges &
and node features X in a graph G = (V, &, X) as the trigger can be
put in any location with any shape. To defend against this attack,
our main idea is to design a deterministic function h? to divide G
into different subgraphs, such that each edge and node (feature) in
G is deterministically mapped into only one subgraph.

Hash function as the mapping: We use the cryptographic hash
function (e.g., MD5) as our mapping function. It takes input as a
bit string and outputs an integer (e.g., 128-bit long with the integer

2We emphasize that the function should be independent of the graph structure and
node features. Otherwise, an attacker may possibly “reverse engineer” the function to
find the relation between the output and input.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

range [0,2128 — 1]). Here, we propose to use node indexes and
stringify them as the input to the hash function. For instance, for a
node v, we denote its string as str(v). Given the str(v) of every node
v € V, we propose mapping the nodes and edges using the hash
function h and dividing a graph G into multiple (e.g., T) subgraphs.
Node feature and edge division: First, we divide node features
into T groups using the hash function h. Specifically, we compute
the hash value (h[str(u)] mod T + 1) for every node u € V, where
mod is the modulo function. We use V? to denote the set of nodes
whose group index is t, i.e, VI = {u € V | h[str(u)] = t}, t =
1,2,---T. Correspondingly, we use X! e RIVIXd 14 denote the
node features in the tth group. With such grouping, we observe
that nodes not in the tth group do not have features in X’. To
mitigate this, we simply set features of these nodes to be zeros. Le.,
ij =X,, ifv € V¥;and Xf) = 0, otherwise.

Next, we divide edges into T groups. Specifically, we compute
h[str(u) +str(v)] mod T +1 for every edge (u,v) € E,u < v, where
“+” means the string concatenation. We then let h[str(v) +str(u)] =
h[str(u) + str(v)]. This is to ensure an undirected edge has a same
hash value. We use & to denote the set of edges whose group index
is t,ie., & = {(u,0) € & | h[str(u) +str(v)] = t}.

Then, we construct T subgraphs, i.e., G!' = (V,&! XY with
t=1,2,---,T, for a graph G. Notice the node features and edges
are non-overlapped between different subgraphs. That is, X’ N X/ =
0,8 n& =0,Vi,j e {1,2,---,T},i # j. This is a requirement
to enable deriving our robustness guarantee. Note also that the
subgraph does not need to be connected, as a graph classifier can
still predict a label for a graph with disconnected components.

5.2 Majority Vote-based Ensemble Classifier

Let the backdoored graph classifier be fg. Given a clean testing
graph G (with true label y), we construct T subgraphs {G’} using
our graph division strategy and introduce a majority vote-based
ensemble graph classifier gp to classify these T subgraphs. Specif-
ically, we denote by T; the number of subgraphs classified as the
label I by fp,ie., T = ZtT:lIL(fB(Gt) =[). Then, we define gp as:

gB(G) = argmax;. y T}, (10)
which returns a smaller index when ties exist. Let y = gg(G) by as-
suming the ensemble classifier accurately predicts the clean graph.

Similarly, for a backdoored testing graph Gp (with the target
label yp), we construct T subgraphs {Gg} using the graph division
strategy and denote by T, the number of subgraphs classified as
the label Ig by f5, i.e., T}, = Zthl]l(fB(Gg) = Ig). Then, we have:

98(Gp) = argmax;, c y Ty, (11)

Likewise, we let yg = gp(Gp) by assuming the backdoored testing
graph successfully triggers the backdoor.

5.3 Certified Robustness Guarantees

With our graph division strategy and ensemble classifier, we can
derive the robustness guarantee for clean graphs against backdoor
trigger and backdoored graphs. Proofs are in the full report.

5.3.1 Certified robustness w.r.t. clean graph. Assume we have a
backdoored graph G generated from the clean graph G. We use
G',G?,---,GT to denote the T subgraphs from G via the graph

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

division strategy. Moreover, we denote by T; = Zthl 1(f3(Gh) =
),Vl € Y, and gg(G) = arg max; y T;. We aim to ensure gg(G) =
gg(G) when the perturbation size induced by the backdoor trigger
is bounded by a threshold (call certified perturbation size), where
the perturbation size is defined as the sum of the perturbed number
of nodes (whose features can be arbitrarily modified) and edges
w.r.t. G. Formally, we state the theorem below:

THEOREM 1 (CERTIFIED PERTURBATION SIZE W.R.T. CLEAN GRAPH).
Given a backdoored graph classifier fg and our ensemble graph clas-
sifier gg. Given a clean testing graph G with a label y and its T
subgraphs {G* }thl produced by our graph division strategy. Suppose
Ty and T, are the largest and second largest frequency outputted by
fB on predicting {Gt}thl. Let m be the perturbation size induced by
an arbitrary backdoor trigger and the respective backdoored graph is
G. Then g(G) = gB(G) =y, when m satisfies:
Ty-T,+1(y<z)-1

m<m =| 5 1. (12)

We have below remarks of the theoretical result from Theorem 1:

e It can be applied for any backdoored FedGL model.

e It holds for any backdoored attack with a trigger that arbitrarily
perturbs m™ edges and nodes.

o It does not restrict the trigger to be connected.

e The robustness guarantee is true with a probability 100%.

Next, we further show our certified robustness guarantee is tight.

THEOREM 2 (TIGHTNESS OF m*). For any m satisfying m > m*,
there exists a base classifier ff # fp that will make gg misclassify G.
That being said, it is impossible to derive a larger certified perturbation
size than m* in Theorem 1, without using extra information on fg.

5.3.2 Certified robustness w.r.t. backdoored graphs. For a back-
doored graph Gp, we consider its robustness against our defense
strategy. We have the below theorem.

THEOREM 3 (CERTIFIED (NON-)BACKDOORED GRAPH). Let fg and
gB be defined as Theorem 1. Given a backdoored testing graph Gp with
a target label yg and its T subgraphs {Gé}{zl produced by our graph
division. Let Ty and T, be the largest and second largest frequency
outputted by fg on predicting {G}ts}tT:r Then if Tyy > Ty — L(yp <
zB), Gp is a certified backdoored graph for our defense, otherwise it
is a certified non-backdoored graph.

A certified backdoored graph means it provably evades our de-
fense, while a certified non-backdoored graph means our defense
provably predicts it as a non-target label.

6 Certified Defense Results

6.1 Experimental Setup

Parameter setup: We first train the backdoored FedGL model un-
der our Opt-DGBA (with a specified p, ns,; in Definable-Trigger
or nj,; in Customized-Trigger). The trained backdoored graph clas-
sifier fp is then for both normal testing (i.e., on cleaning testing
graphs) and backdoor testing (i.e., on the backdoored testing graphs
generated by our Opt-GBA). Here, we only select successfully back-
doored testing graphs for evaluation. Unless otherwise specified,

*

we use p = 20%, ngri = 4, or ni,; = 5.

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses

1.0 1.0

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

1.0
- T=10
T=20
0.8 0.8 0.8 = T=30
- T=40
g ‘z(‘z(___________________ - T=50
506 o, e s S o s s el el | B 0.6 0.6 — = Normal MA
A SEEERNEE g
£o4 ; i £o04 £ 0.4] cemeeere e e g
o i i i . o o t y P \
0.2 i i 4 ! 0.2 0.2 1 i 1 i
i y i |) i i i b i :
0.0 . : . L 0.0 . : : \ 0.0 : : : L
0 2 4 6 8 10121416 18 2022 24 26 0 2 4 6 8 10121416 18 20 22 24 0 2 4 6 8 10121416 18 2022 24 26
Perturbation Size: m Perturbation Size: m Perturbation Size: m
BITCOIN MUTAG PROTEINS
1.0 1.0 1.0
- T=10
T=20
0.8 0.8 0.8 = ;jg
g ——————————————————— g ___________________ -~ T=50 ; - T=50
o 0.6 = = Normal MA ey 0.6 = = Normal MA ey 0.6 = = Normal MA
2 ——— ettty et 2 P T T T R N e e S S B B B S S S
£o4 4 + 3 i £o4 : i i \ Eoaf T
$ i i i |8 : . i R i i
0.2 i i i : 0.2 i i H \ 0.2 i] : L
| ; ! \ ! i i : i : i |
0.0 ; . : i 0.0 L - i ! 0.0 - - [L
0 2 4 6 8 1012141618 20222426 0 2 4 6 8 1012141618 20222426 "0 2 4 6 81012141618 20222426
Perturbation Size: m Perturbation Size: m Perturbation Size: m
DD COLLAB RDT-M5K

Figure 8: Certified MA vs. T. 100 testing graphs are randomly sampled (and all testing graphs in MUTAG) for evaluation. Normal
MA (under no attack and defense) is also reported for reference.

1.0 1.0

1.0
- T=10
T=20
0.8 0.8 :""’"'m‘“““““'“' 0.8 - Eig
§ ‘z(Y ", '_t‘«_\\-— T=50 <Z(___________________ —~ 150
5 0.6 5 0.6 . %Y== Normal MA 506 o e v e e v — = Normal MA
2 2 S YN 3 T IEEIITTI TS
& E B . - = Y L. s ~
£0.4 £0.4 Ny s Xy N £0.4 . g 1
9 Y 1 f H @ . ' ~
o o M 1 4 1 © i : K \
L L s
0.2 0.2 i i H \ 0.2 ! 3 1 .
: i : V]S ' : ! \
i i — = Normal MA i 3 \ \ 00 B | \ H
0.0 0 2 4 6 8 10121416 18 20 22 24 26 0.0 0 2 4 6 8 10121416 18 2022 24 26 0 2 4 6 8 10121416 18 2022 24
Perturbation Size: m Perturbation Size: m Perturbation Size: m
COIN MUTA(
1.0 1.0 1.0

- T=10
0.8 0.8 0.8
< < <
206 206 nomaima [Z 0.6
8 8 1 8
g 5 DT, \ 5
£o4 To4 L o4
o o N " | 3 o
X % ~ L
0.2 - 02] . \ \ 02| * _
. N \ . . .
{ 2 - ! ; \ X A \
00755 4 6 8 1012141618202224 °° 0 3 4 6 8 101214 16 18 20 22 24 26

Perturbation Size: m
DD

Perturbation Size: m
COLLAB

X -
0 2 4 6 8 1012141618 20222426
Perturbation Size: m
RDT-M5K

Figure 9: Certified MA vs. T, where we finetune the backdoored FedGL model with augmented subgraphs that are generated

from the benign clients’ training graphs.

To apply our defense, for each (clean/backdoored) testing graph,
we use our graph division strategy to divide it into T subgraphs
and majority vote-based ensemble classifier g to predict these
subgraphs. The key hyperparameter in our defense is the number
of subgraphs T. By default we set T = 30. We also test its impact
on the defense performance.

Evaluation metrics: We use the certified accuracy [5, 55, 64] on
the testing graphs for evaluation.

e Certified MA at perturbation size m: the fraction of the clean
testing graphs that are provably classified as the true label against
an arbitrary trigger whose size is m.

e Certified BA: the fraction of the backdoored testing graphs that
are provably classified as the target label against our defense.

6.2 Experimental Results

6.2.1 Results on certified MA. In this experiment we show the
results on certified MA against the backdoored FedGL model trained
under our Opt-GDBA. More results are shown in the full report.
Certified MA vs. T: Figure 8 shows the certified MA at perturba-
tion size m vs. different T, where we test on all 63 testing graphs
in MUTAG and randomly sampled 100 testing graphs in the other
datasets. For reference, we also report the normal MA without our
defense. In general, we observe our defense is provably more ro-
bust (i.e., larger certified MA with larger certified perturbation size)
when T is larger. For instance, on BITCOIN, when T = 30, 50, certi-
fied MA are 44% and 58% with m = 13, and the maximum certified
perturbation size are m* = 13 and 23, respectively. The reason is
our majority vote-based ensemble classifier could tolerate more
perturbed subgraphs when T increases. As an arbitrary node/edge

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

1.0 1.0 1.0
- p=10% - p=10%
p=20% p=20%
0.8 0.8 - p=30% 0.8 = p=30%
g SO SO FED S — S S| g Customized-Trigger g ~e = Customized-Trigger
506 R 506 506
] S|] o
= W\ & & .
E 0.4 i} E 0.4 E 0.4 RN
o - pm10% 3\ o o L%
0.2{ - p=20% 4 0.2 0.2 4
=e p=30%) v
—e- Customized-Trigger " \ ‘\ 1
0.0 0 2 4 6 8 100 12 14 0.0 0 2 4 8 100 12 14 0.0 0 2 4 6 8 100 12 14
Perturbation Size: m Perturbation Size: m Perturbation Size: m
BITCOIN MUTAG PROTEINS
1.0 1.0 1.0
- p=10% - p=10% - p=10%
p=20% p=20% p=20%
0.8 =~ p=30% 0.8 = p=30% 0.8 =r p=30%
; ~e= Customized-Trigger g == Customized-Trigger ; ~e= Customized-Trigger
5 0.6 5 0.6 5 0.6
2 2 2
b= = &
£0.4 £0.4 t
(7] (7] ()
o]]
0.2 0.2
0.0 0.0 0 2 4 8 10 12

Perturbation Size: m

Perturbation Size: m
COLLAB RDT-M5K

Perturbation Size: m

Figure 10: Certified MA vs. ratio p of malicious clients (T = 30, n;; = 4)

=
o

1.0 1.0
- ny=3
0.8 0.8 0.8
< S iy S S SR S Y < <
= R = =
3 0.6 oy 3 0.6 3 0.6{ &
[k\ (7] QL -
£04 i £04 £o4
8" 18 8"
- ny=3 1
0.2 =t i 0.2 0.2
—- c:;tamlzea-Tr\gger '.‘
0.0 0 2 4 6 8 100 12 14 0.0 0 2 4 8 100 12 14 0.0 0 2 4 6 8 100 12 14
Perturbation Size: m Perturbation Size: m Perturbation Size: m
B OIN MUTAG PROT!
1.0 1.0 1.0
- =3 -- =3 - ny=3
nen=4 Ney=4 Ne=4
0.8 = =5 0.8 e N5 0.8 =er ny=5
< ~e = Customized-Trigger < —e~ Customized-Trigger < —e = Customized-Trigger
= = =
350 3 0.6 3 0.6
to. to04 £
(7] (7] ()
o o]
0.2
0.0

Perturbation Size: m

Perturbation Size: m

8 10 12 14

Perturbation Size: m
COLLAB RDT-M5K

Figure 11: Certified MA vs. trigger node size n;,; (T = 30, p = 20%).

perturbation induced by the trigger can affect at most one clean

subgraph’s prediction, a larger T implies being robust to a larger m.

Though effective, we still see a large gap between certified MA
and normal MA on datasets such as MUATG and PROTEINS. This
is due to the number of accurately predicted subgraphs (i.e, Ty in
Equation (12)) after graph division is not large enough on these
datasets. We note that the backdoored FedGL training only uses the
whole training graph. To enhance the certified MA, we propose to
finetune the backdoored FedGL model with extra subgraphs created
from benign clients’ training graphs. Specifically, in each benign
client, we use T = {10, 20, ...,50} to generate a set of subgraphs
for each training graph and pick one subgraph from each T. These
subgraphs have the same label as the raw graph. Figure 9 shows the
results. We observe the finetuned model with clean subgraphs yield
a significantly higher certified MA on the relatively sparser/smaller
datasets (e.g., BITCOIN, MUTAG, and PROTEINS). This implies the
finetuned model learns a correct mapping between the subgraphs

and the true label, and hence improves the accuracy of subgraphs
created from the testing graphs. In contrast, we see a drop of cer-
tified MA on relatively denser/larger datasets (e.g., DD, COLLAB,
and RDT-M5K). This is possibly because the finetuned model is
hard to associate both the large dense graphs and their generated
much smaller and sparser subgraphs with the true label.

The above results suggest that, in practice, to enhance the cer-
tified MA of a backdoored FedGL model, we could augment the
training graphs with their subgraphs on small/sparse datasets, but
may not on large/denser datasets.

Certified MA vs. p: In this experiment, we assess the defense
performance on Opt-GDBA attacked FedGL models with varying p
of malicious clients. Figure 10 shows the results with T = 30 and
ngri = 4. We observe the certified MA and certified perturbation size
are similar with different p’s (except a slight drop when p = 30%).
This is primarily because the Opt-GDBA’s MA and BA are relatively
stable across different p, as shown in Table 1. This ensures the

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses

Table 6: Certified BA and MA of backdoored graphs under
our defense (in all T, p, and ny;).

Datasets ||BITCOIN MUTAG PROTEINS DD COLLAB RDT
Certified BA‘ ‘ 0 0 0 0 0 0

MA 1.00 1.00 1.00 1.00 096 0.92

number of correctly predicted subgraphs via our ensemble classifier
is also close in different p’s, and so do the certified MA and certified
perturbation size.

Certified MA vs. n;,;: This experiment explores the defense perfor-
mance with varying trigger node sizes used by Opt-GDBA. Figure 11
shows the results. Similarly, our defense achieves similar certified
MA in general, with large n;y; slightly reduces the certified MA.

6.2.2 Results on certified BA. In this experiment, we evaluate the
robustness of the backdoored testing graphs generated by our Opt-
GDBA under our defense. Table 6 shows the results of certified
BA. We observe the certified BA is 0 in all T, p, and ny;. Recall
our graph division strategy ensures the divided subgraphs have
non-overlapping edges and node features. The above results can
be attributed to two aspects: the trigger in the backdoored testing
graph is separated into: 1) a few subgraphs that are still classified
as the target label, but the other majority subgraphs are mostly
classified as a non-target label (actually the true label in most cases);
or 2) a large number of the subgraphs that makes it difficult to form
any effective trigger in the subgraphs. In either case, the number
of successful backdoored subgraphs is a minority. Hence, with the
majority voting, all the backdoored testing graphs are misclassified
as a non-target label. The results imply the backdoored testing
graphs generated by our Opt-GDBA are completely broken by our
graph division + ensemble classifier based defense.

We also calculate MA on the generated backdoored graphs (which
have correct predictions without backdoor) under our defense. We
obtain > 92% MA in all datasets, where 4 datasets are 100%. This
means our defense does not/marginally affect clean labels, so the
FedGL’s utility is still maintained. This is because the proposed
defense is mainly designed to affect the backdoored effect in the
backdoored subgraphs, but not affect the utility of clean subgraphs.

7 Related Work

Backdoor attacks on centralized learning for non-graph data
and defenses: Extensive works have shown centralized machine
learning models for non-graph data, such as image [10, 11, 22, 36, 40,
53, 59, 62, 72, 89], text [9, 15, 45, 48, 87], audio [17, 23, 50, 56], and
video [83, 96], are vulnerable to backdoor attacks. A backdoored
model produces attacker-desired behaviors when the same trigger is
injected into testing data. Gu et al. [22] proposed the first backdoor
attack, called BadNet, on image classifiers. The attack injects a
trigger (e.g., a sticker with yellow square) into “STOP” sign from
the U.S. stop signs database and changes their labels to the “SPEED”
sign. The trained backdoored image classifier then predicts a “STOP”
sign with the same sticker trigger to be the “SPEED” sign.

Many empirical defenses [10, 16, 24, 38-40, 44, 66, 68] have been
proposed to mitigate backdoor attacks. For instance, Wang et al. [66]
proposed Neural Cleanse to detect and reverse engineer the trigger.
However, all these defenses are broken by adaptive attacks [71].

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

These two works [63, 71] proposed provable defenses against back-
door attacks in the image domain. However, they are shown to have
insufficient effectiveness against backdoor attacks. In addition, they
cannot be applied to inputs with different sizes.

Backdoor attacks on federated learning for non-graph data
and defenses: Backdoor attacks on FL are categorized as central-
ized backdoor attack (CBA) [4, 21, 67, 95], where all malicious clients
use a shared trigger, and distributed backdoor attack (DBA) [79],
where each malicious client uses its own defined trigger. For in-
stance, Bagdasaryan et al. [2] designed the first CBA via model
replacement. Inspired by the distributed learning property of FL,
Xie et al. [79] designed the first DBA which is shown to be more
persistent and stealthy than CBAs on FL.

Many empirical defenses [7, 42, 43, 49, 57, 93] have been pro-

posed, and can be performed in the FL stage of pre-aggregation [42,
49], in-aggregation [43, 57, 93], and post-aggregation [7]. How-
ever, they can only defend against known attack techniques, and
an adversary aware of the existence of these defenses can break
them [67]. Existing certified defenses [6, 8, 78, 80] for FL can only
tolerate a very small number of malicious clients and/or incur a
large computation/communication cost for clients.
Backdoor attacks on centralized graph learning and defenses:
Unlike non-graph data that can be represented via Cartesian coor-
dinates and have fixed input size, graphs cannot do so and different
graphs often have varying sizes, making the trigger hard to be
defined. To address this, two recent works [76, 94] propose to use
subgraph as a trigger. Zhang et al. [94] use a random subgraph as
the trigger shape, which is generated by random graph genera-
tion models (such as the Erdés-Rényi [18], Small World [70], and
Preferential Attachment [3]), and pick random nodes as the trigger
location. Instead of using a random trigger shape, Xi et al. [76] de-
signed a trigger generator to learn to generate the trigger shape for
each graph using its edge and node feature information. However,
the trigger randomly chooses nodes as the trigger location.

Zhang et al. [94] proposed a certified defense for a backdoored
graph classifier by extending randomized ablation [35] for image
classifiers. Specifically, they built a randomized subgraph sampling
based defense mechanism to ensure the backdoored graph classifier
provably predicts the same label for a testing graph if the injected
trigger has a size less than a threshold. However, their defense is
limited to edge perturbation and their robustness guarantee could
be incorrect with a certain probability.

Backdoor attacks on federated graph learning: Xu et al. [84]
is the only work studying backdoor attacks on FedFL. It is inspired
by [79, 94] with random subgraph as a trigger. We showed their
backdoor performance is not good enough with a smaller trigger.

Majority-voting based ensemble for certified defenses: The
key insight of this type of defense is to ensure only a bounded
number of corrupted votes/predictions (each prediction is treated
as a vote) are changed with a bounded adversarial perturbation.
This idea has been used in certified defenses against adversarial
patch attacks [33, 77], data poisoning attacks [30, 31, 34], and oth-
ers [28, 46, 92]. The key difference among these methods is that they
create problem-dependent voters for the majority vote. A closely
relevant work to ours is [88], but they have two key differences.
First, the studied problem is different. [88] proposes a majority-
voting strategy for GL to defend against evasion attacks, while ours

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

for FedGL to defend against distributed backdoor attacks. Second,
the graph division strategy is different. [88] divides a graph into
overlapped subgraphs, which facilitates deriving the robustness
guarantee against graph perturbation or node (feature) perturba-
tion, but not both. Instead, our method can concurrently defend
against both graph and node (feature) perturbations.

8 Conclusion

We study the robustness of FedGL from both the attacker’s and
defender’s perspective. We first design an effective, stealthy, and
persistent DBA on FedGL. Instead of using a random (centralized or
distributed) trigger that is injected into random position in a graph,
our attack develops a trigger generator that adaptively learns the
important trigger location and shape per backdoored graph. Our
attack results show existing empirical defenses based on backdoor
detection or removal are ineffective. Then, we further develop a cer-
tified defense for backdoored FedGL model based on graph division
and majority vote-based ensemble. We derive the certified robust-
ness as well as its tightness w.r.t. clean graphs against arbitrary
trigger and backdoored graphs generated by our attack.

Acknowledgments

We thank all anonymous reviewers for the constructive comments.
Li is partially supported by the National Natural Science Foundation
of China under Grant No. 62072208, Key Research and Development
Projects of Jilin Province under Grant No. 20240302090GX. Hong is
partially supported by the National Science Foundation under grant
Nos. CNS-2302689, CNS-2308730, CNS-2319277 and CMMI-2326341.
Wang is partially supported by the National Science Foundation
under grant Nos. ECCS-2216926, CNS-2241713, CNS-2331302 and
CNS-2339686. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the funding agencies.

References

[1] Jinheon Baek, Wonyong Jeong, Jiongdao Jin, Jachong Yoon, and Sung Ju Hwang.
2023. Personalized subgraph federated learning. In ICML.

[2] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How to backdoor federated learning. In AISTATS.

[3] Albert-Laszl6 Barabasi and Réka Albert. 1999. Emergence of scaling in random
networks. science (1999).

[4] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.
2019. Analyzing federated learning through an adversarial lens. In ICML.

[5] Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Giinnemann. 2020.
Efficient robustness certificates for discrete data: Sparsity-aware randomized
smoothing for graphs, images and more. In ICML.

[6] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Provably secure
federated learning against malicious clients. In AAAI Vol. 35. 6885-6893.

[7] Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhenqiang Gong. 2023. Fedrecover:
Recovering from poisoning attacks in federated learning using historical infor-
mation. In IEEE Symposium on Security and Privacy (SP).

[8] Xiaoyu Cao, Zaixi Zhang, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. Flcert:

Provably secure federated learning against poisoning attacks. IEEE Transactions

on Information Forensics and Security 17 (2022), 3691-3705.

Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo, Tianwei Zhang, Jiwei

Li, and Chun Fan. 2022. BadPre: Task-agnostic Backdoor Attacks to Pre-trained

NLP Foundation Models. In ICLR.

[10] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted

backdoor attacks on deep learning systems using data poisoning. arXiv (2017).

[11] Joseph Clements and Yingjie Lao. 2018. Hardware trojan attacks on neural

networks. arXiv preprint arXiv:1806.05768 (2018).
[12] Thomas G Dietterich. 2000. Ensemble methods in machine learning. In Interna-
tional workshop on multiple classifier systems. Springer, 1-15.

[9

[13

[14

[15

=
&

(17

[18

[19

[20

[21

~
£,

[23

[24]

[25

[26]

~
=

[28

[29]

[30

[31

@
5,

[33

(34

[35

[36

[37

@
&,

[39

[40

[41

Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. 2023. Benchmarking Graph Neural Networks.
Journal of Machine Learning Research 24, 43 (2023), 1-48.

FedML supports several out-of-the-box deep learning algorithms for various data
types, such as tabular, text, image, graphs, and Internet of Things (IoT) data. [n. d.].
https://aws.amazon.com/blogs/machine-learning/part-2-federated-learning-
on-aws-with-fedml-health-analytics-without-sharing-sensitive-data/.

Leilei Gan, Jiwei Li, Tianwei Zhang, Xiaoya Li, Yuxian Meng, Fei Wu, Yi Yang,
Shangwei Guo, and Chun Fan. 2022. Triggerless Backdoor Attack for NLP Tasks
with Clean Labels. In ACL-HLT.

Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe,
and Surya Nepal. 2019. Strip: A defence against trojan attacks on deep neural
networks. In ACSAC.

Yunjie Ge, Qian Wang, Jiayuan Yu, Chao Shen, and Qi Li. 2023. Data Poisoning
and Backdoor Attacks on Audio Intelligence Systems. IEEE Communications
Magazine (2023).

Edgar N Gilbert. 1959. Random graphs. The Annals of Mathematical Statistics 30,
4(1959), 1141-1144.

Michelle Goddard. 2017. The EU General Data Protection Regulation (GDPR):
European regulation that has a global impact. International Journal of Market
Research 59, 6 (2017), 703-705.

Xueluan Gong, Yanjiao Chen, Jianshuo Dong, and Qian Wang. 2022. ATTEQ-NN:
Attention-based QoE-aware Evasive Backdoor Attacks.. In NDSS.

Xueluan Gong, Yanjiao Chen, Qian Wang, and Weihan Kong. 2022. Backdoor
attacks and defenses in federated learning: State-of-the-art, taxonomy, and future
directions. IEEE Wireless Communications (2022).

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. In Proc. of Machine
Learning and Computer Security Workshop.

Hanqing Guo, Xun Chen, Junfeng Guo, Li Xiao, and Qiben Yan. 2023. MAS-
TERKEY: Practical Backdoor Attack Against Speaker Verification Systems. In
Annual International Conference on Mobile Computing and Networking. 1-15.
Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. 2019. Tabor:
A highly accurate approach to inspecting and restoring trojan backdoors in ai
systems. arXiv preprint arXiv:1908.01763 (2019).

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS.

Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao
Sun, Lifang He, Liangwei Yang, Philip S Yu, Yu Rong, et al. 2021. Fedgraphnn:
A federated learning system and benchmark for graph neural networks. arXiv
(2021).

Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and
Salman Avestimehr. 2022. Spreadgnn: Decentralized multi-task federated learning
for graph neural networks on molecular data. In AAAL

Hanbin Hong, Binghui Wang, and Yuan Hong. 2022. Unicr: Universally approxi-
mated certified robustness via randomized smoothing. In ECCV.

How AWS uses graph neural networks to meet customer needs . [n.d.].
https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-
meet-customer-needs/.

Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. 2021. Intrinsic certified
robustness of bagging against data poisoning attacks. In AAAL

Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang Gong. 2022. Certified
robustness of nearest neighbors against data poisoning and backdoor attacks. In
AAAL

Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Alexander Levine and Soheil Feizi. 2020. (De) Randomized smoothing for certifi-
able defense against patch attacks. In NeurIPS.

Alexander Levine and Soheil Feizi. 2020. Deep Partition Aggregation: Provable
Defenses against General Poisoning Attacks. In ICLR.

Alexander Levine and Soheil Feizi. 2020. Robustness certificates for sparse
adversarial attacks by randomized ablation. In AAAL

Wenshuo Li, Jincheng Yu, Xuefei Ning, Pengjun Wang, Qi Wei, Yu Wang, and
Huazhong Yang. 2018. Hu-fu: Hardware and software collaborative attack frame-
work against neural networks. In ISVLSI. IEEE.

Wenlong Liao, Birgitte Bak-Jensen, Jayakrishnan Radhakrishna Pillai, Yuelong
Wang, and Yusen Wang. 2021. A review of graph neural networks and their
applications in power systems. Journal of Modern Power Systems and Clean Energy
(2021).

Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning: De-
fending against backdooring attacks on deep neural networks. In RAID.

Yinggqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiging Ma, Yousra Aafer, and
Xiangyu Zhang. 2019. ABS: Scanning neural networks for back-doors by artificial
brain stimulation. In SIGSAC.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang,
and Xiangyu Zhang. 2018. Trojaning attack on neural networks. In NDSS.
Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics.

https://aws.amazon.com/blogs/machine-learning/part-2-federated-learning-on-aws-with-fedml-health-analytics-without-sharing-sensitive-data/
https://aws.amazon.com/blogs/machine-learning/part-2-federated-learning-on-aws-with-fedml-health-analytics-without-sharing-sensitive-data/
https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-meet-customer-needs/
https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-meet-customer-needs/

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses

[42]

[43

[44

[45]

[46

[47]

[48

[49]

[50

(51

[52]

[53

[54

[55

[56]

[57

[58]

(59

[60

[61]

[62

[63]

(64

[65

[66]

[67

[68]

[69]

Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Mollering,
Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza
Zeitouni, et al. 2022. FLAME: Taming Backdoors in Federated Learning. In 31st
USENIX Security Symposium.

Mustafa Safa Ozdayi, Murat Kantarcioglu, and Yulia R Gel. 2021. Defending
against backdoors in federated learning with robust learning rate. In AAAICon-
ference on Artificial Intelligence. 9268-9276.

Soumyadeep Pal, Ren Wang, Yuguang Yao, and Sijia Liu. 2023. Towards Under-
standing How Self-training Tolerates Data Backdoor Poisoning. arXiv preprint
arXiv:2301.08751 (2023).

Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. 2022. Hidden
trigger backdoor attack on {NLP} models via linguistic style manipulation. In
31st USENIX Security Symposium (USENIX Security 22).

Hengzhi Pei, Jinyuan Jia, Wenbo Guo, Bo Li, and Dawn Song. 2023. Textguard:
Provable defense against backdoor attacks on text classification. In NDSS.
Liang Peng, Nan Wang, Nicha Dvornek, Xiaofeng Zhu, and Xiaoxiao Li. 2022.
Fedni: Federated graph learning with network inpainting for population-based
disease prediction. IEEE Transactions on Medical Imaging (2022).

Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng
Wang, and Maosong Sun. 2021. Hidden Killer: Invisible Textual Backdoor Attacks
with Syntactic Trigger. In ACL.

Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza Sadeghi.
2022. Deepsight: Mitigating backdoor attacks in federated learning through deep
model inspection. arXiv preprint arXiv:2201.00763 (2022).

Nirupam Roy, Haitham Hassanieh, and Romit Roy Choudhury. 2017. Backdoor:
Making microphones hear inaudible sounds. In Annual International Conference
on Mobile Systems, Applications, and Services.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. 2020. Hidden
trigger backdoor attacks. In AAAL

Sina Sajadmanesh and Daniel Gatica-Perez. 2021. Locally private graph neural
networks. In CCS.

Ahmed Salem, Rui Wen, Michael Backes, Shiging Ma, and Yang Zhang. 2022.
Dynamic Backdoor Attacks Against Machine Learning Models. In EuroSP.
Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61-80.

Yan Scholten, Jan Schuchardt, Simon Geisler, Aleksandar Bojchevski, and Stephan
Giinnemann. 2022. Randomized message-interception smoothing: Gray-box
certificates for graph neural networks. NeurIPS (2022).

Cong Shi, Tianfang Zhang, Zhuohang Li, Huy Phan, Tianming Zhao, Yan Wang,
Jian Liu, Bo Yuan, and Yingying Chen. 2022. Audio-domain position-independent
backdoor attack via unnoticeable triggers. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking.

Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan.
2019. Can you really backdoor federated learning? arXiv (2019).

Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang.
2023. Federated learning on non-iid graphs via structural knowledge sharing. In
AAAL

Guanhong Tao, Zhenting Wang, Shiwei Feng, Guangyu Shen, Shiging Ma, and
Xiangyu Zhang. 2023. Distribution preserving backdoor attack in self-supervised
learning. In 2024 IEEE Symposium on Security and Privacy (SP).

Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Estimating the
number of clusters in a data set via the gap statistic. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) (2001).

Traffic prediction with advanced Graph Neural Networks. [n.d.].
https://deepmind.google/discover/blog/traffic- prediction-with-advanced-
graph-neural-networks/.

Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral signatures in
backdoor attacks. In NeurIPS.

Binghui Wang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhengiang Gong. 2020. On
Certifying Robustness against Backdoor Attacks via Randomized Smoothing. In
CVPR Workshop.

Binghui Wang, Jinyuan Jia, Xiaoyu Cao, and Neil Zhengiang Gong. 2021. Certified
robustness of graph neural networks against adversarial structural perturbation.
In KDD.

Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. 2022. Graphfl: A
federated learning framework for semi-supervised node classification on graphs.
In IEEE International Conference on Data Mining.

Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks. In IEEE S&P.

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh
Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. 2020. Attack
of the tails: Yes, you really can backdoor federated learning. In NeurIPS.

Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng
Wang. 2020. Practical detection of trojan neural networks: Data-limited and
data-free cases. In ECCV. 222-238.

Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding, and
Jingren Zhou. 2022. Federatedscope-gnn: Towards a unified, comprehensive and

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

efficient package for federated graph learning. In KDD.

Duncan] Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature (1998).

Maurice Weber, Xiaojun Xu, Bojan Karlas, Ce Zhang, and Bo Li. 2023. Rab:
Provable robustness against backdoor attacks. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 1311-1328.

Emily Wenger, Josephine Passananti, Arjun Nitin Bhagoji, Yuanshun Yao, Haitao
Zheng, and Ben Y Zhao. 2021. Backdoor attacks against deep learning systems
in the physical world. In CVPR.

Peter Wills and Francois G Meyer. 2020. Metrics for graph comparison: a practi-
tioner’s guide. Plos one 15, 2 (2020), e0228728.

Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Tao Qi, Yongfeng Huang, and Xing
Xie. 2022. A federated graph neural network framework for privacy-preserving
personalization. Nature Communications 13, 1 (2022), 3091.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems (2020), 4-24.

Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In
USENIX Security.

Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal. 2021.
{PatchGuard}: A provably robust defense against adversarial patches via small
receptive fields and masking. In USENIX Security.

Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. 2021. Crfl: Certifiably robust
federated learning against backdoor attacks. In ICML.

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019. Dba: Distributed backdoor
attacks against federated learning. In ICLR.

Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li, Sanmi Koyejo, and Bo Li.
2023. Unraveling the Connections between Privacy and Certified Robustness in
Federated Learning Against Poisoning Attacks. In CCS.

Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification
over non-iid graphs. In NeurIPS, Vol. 34.

Han Xie, Li Xiong, and Carl Yang. 2023. Federated node classification over graphs
with latent link-type heterogeneity. In ACM Web Conference.

Shangyu Xie, Yan Yan, and Yuan Hong. 2023. Stealthy 3D Poisoning Attack on
Video Recognition Models. IEEE Trans. Dependable Secur. Comput. 20, 2 (2023),
1730-1743. https://doi.org/10.1109/TDSC.2022.3163397

Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek. 2022. More
is better (mostly): On the backdoor attacks in federated graph neural networks.
In ACSAC. 684-698.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In ICLR.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful
are graph neural networks?. In ICLR.

Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho Lee, Doowon Kim, and
Yuan Hong. 2024. An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code
Completion Models: Injecting Disguised Vulnerabilities against Strong Detection.
In 33rd USENIX Security Symposium (USENIX Security 24).

Han Yang, Binghui Wang, Jinyuan Jia, et al. 2024. GNNCert: Deterministic
Certification of Graph Neural Networks against Adversarial Perturbations. In
The Twelfth International Conference on Learning Representations.

Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent Backdoor
Attacks on Deep Neural Networks. In CCS.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD.

Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. 2021. Subgraph
federated learning with missing neighbor generation. NeurIPS (2021).

Xinyu Zhang, Hanbin Hong, Yuan Hong, Peng Huang, Binghui Wang, Zhongjie
Ba, and Kui Ren. 2024. Text-crs: A generalized certified robustness framework
against textual adversarial attacks. In IEEE SP.

Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. FLDetector:
Defending federated learning against model poisoning attacks via detecting
malicious clients. In KDD.

Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhengiang Gong. 2021. Back-
door attacks to graph neural networks. In SACMAT.

Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael Ma-
honey, Prateek Mittal, Ramchandran Kannan, and Joseph Gonzalez. 2022. Neuro-
toxin: Durable backdoors in federated learning. In ICML.

Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-
Gang Jiang. 2020. Clean-label backdoor attacks on video recognition models. In
CVPR. 14443-14452.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57-81.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and
Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network platform.
Proceedings of the VLDB Endowment 12, 12 (2019).

https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
https://doi.org/10.1109/TDSC.2022.3163397

	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Federated Graph Learning (FedGL)
	2.2 Backdoor Attacks on FedGL
	2.3 Threat Model

	3 Optimized DBAs on FedGL
	3.1 Adaptive Trigger Generator
	3.2 FedGL Training with Optimized Backdoor

	4 Attack Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Certified Defense for FedGL
	5.1 Graph Division into Subgraphs
	5.2 Majority Vote-based Ensemble Classifier
	5.3 Certified Robustness Guarantees

	6 Certified Defense Results
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	References

