
Distributed Backdoor Attacks on Federated Graph Learning and
Certified Defenses

Yuxin Yang

yuxiny22@mails.jlu.edu.cn

College of Computer Science and

Technology, Jilin University

Changchun, Jilin, China

Department of Computer Science,

Illinois Institute of Technology

Chicago, Illinois, USA

Qiang Li

li_qiang@jlu.edu.cn

College of Computer Science and

Technology, Jilin University

Changchun, Jilin, China

Jinyuan Jia

jinyuan@psu.edu

College of Information Sciences and

Technology,

The Pennsylvania State University

University Park, Pennsylvania, USA

Yuan Hong

yuan.hong@uconn.edu

School of Computing,

University of Connecticut

Storrs, Connecticut, USA

Binghui Wang

bwang70@iit.edu

Department of Computer Science,

Illinois Institute of Technology

Chicago, Illinois, USA

Abstract
Federated graph learning (FedGL) is an emerging federated learning

(FL) framework that extends FL to learn graph data from diverse

sources without accessing the data. FL for non-graph data has

shown to be vulnerable to backdoor attacks, which inject a shared

backdoor trigger into the training data such that the trained back-

doored FL model can predict the testing data containing the trigger

as the attacker desires. However, FedGL against backdoor attacks

is largely unexplored, and no effective defense exists.

In this paper, we aim to address such significant deficiency. First,

we propose an effective, stealthy, and persistent backdoor attack

on FedGL. Our attack uses a subgraph as the trigger and designs

an adaptive trigger generator that can derive the effective trigger

location and shape for each graph. Our attack shows that empirical

defenses are hard to detect/remove our generated triggers. To miti-

gate it, we further develop a certified defense for any backdoored

FedGLmodel against the trigger with any shape at any location. Our

defense involves carefully dividing a testing graph into multiple

subgraphs and designing a majority vote-based ensemble classi-

fier on these subgraphs. We then derive the deterministic certified

robustness based on the ensemble classifier and prove its tight-

ness. We extensively evaluate our attack and defense on six graph

datasets. Our attack results show our attack can obtain > 90% back-

door accuracy in almost all datasets. Our defense results show, in

certain cases, the certified accuracy for clean testing graphs against

an arbitrary trigger with size 20 can be close to the normal accuracy

under no attack, while there is a moderate gap in other cases. Source

Binghui Wang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690187

code is available at: https://github.com/Yuxin104/Opt-GDBA. The

full report is at: https://arxiv.org/abs/2407.08935.

CCS Concepts
• Security and privacy → Distributed systems security.

Keywords
Federated Graph Learning, Backdoor Attacks, Certified Defenses

ACM Reference Format:
Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang. 2024. Dis-

tributed Backdoor Attacks on Federated Graph Learning and Certified De-

fenses. In Proceedings of the 2024 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’24), October 14–18, 2024, Salt Lake City, UT,
USA. ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3658644.

3690187

1 Introduction
Graph is a pervasive data type consisting of nodes and edges, where

nodes represent entities and edges represent relationships among

entities. Learning on graph data (or graph learning) has gained great
attention in both academia [13, 25, 32, 54, 85] and industry [29,

61, 90, 98] in the past several years. A particular task, i.e., graph

classification, predicting the label of a graph has applications in

a wide variety of domains including healthcare, bioinformatics,

transportation, financial services, to name a few [37, 75, 97].

Despite notable advancements in graph learning, most require

the consolidation of graph data from various sources into a single

machine. With the increasing importance on data privacy [19], this

requirement becomes infeasible. For instance, a third-party service

provider trains a graph learning model for a bunch of financial

institutions to help detect anomalous customers. Each institution

has its own graph dataset of customers, where each graph can be

a customer’s transaction records with other customers, and each

customer also has personal information. Due to the business compe-

tition and rigorous privacy policies, each institution’s customer data

cannot be shared with other institutions or the service provider.

https://doi.org/10.1145/3658644.3690187
https://github.com/Yuxin104/Opt-GDBA
https://arxiv.org/abs/2407.08935
https://doi.org/10.1145/3658644.3690187
https://doi.org/10.1145/3658644.3690187

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

Federated Learning (FL) [41], a new distributed learning para-

digm, aims to address the data isolation/privacy issue. Specifically,

FL enables a central server coordinating multiple clients to collabo-

ratively train a machine learning model without the need of sharing

clients’ data. Federated graph learning (FedGL) generalizes graph

learning in the FL setting and has attracted increasing attention

recently [1, 26, 27, 47, 52, 58, 65, 69, 74, 81, 82, 91] with various

successful applications such as disease prediction [47], molecular

classification [27], and recommendation [1, 74]. In FedGL for graph

classification, each client owns a set of graphs, and the server and

the participating clients collaboratively learn a shared graph classi-

fier without accessing the clients’ graphs. The learnt shared graph

classifier is then used by all clients for testing.

However, recent works show that FL for non-graph data (e.g.,

images, videos) is vulnerable to backdoor attacks [2, 20, 21, 51, 67,

79, 95]. In backdoor attacks on FL, a fraction of malicious clients

is controlled by an attacker. The malicious clients inject a back-

door trigger (e.g., a sticker) into part of their training data (e.g.,

images) and flag these backdoored training data with an attacker-

chosen target label (different from their true label). The clients’

backdoored data and clean data are used for FL training, such that

the trained backdoored FL model will predict malicious clients’

testing data with the trigger as the target label, while those without

the trigger still as the true label. While backdoor attacks on FL for

non-graph data is widely studied, those for graph data is underex-

plored. Note that backdoor attacks on FedGL would cause serious

issues for safety/security-critical applications. For instance, Alibaba

and Amazon have deployed and open-sourced their FedGL frame-

work (FederatedScope-GNN [69] and FedML-GNN [14]). When

these FedGL packages are used for disease prediction [47] but back-

doored, the patients’ safety could be jeopardized.

In this paper, we aim to design effective backdoor attacks on

FedGL, as well as effective defense to mitigate the backdoor attack.

Challenges in designing effective backdoors on FedGL: Compar-

ing with non-graph data, designing effective backdoors on graph

data used by FedGL faces unique challenges: 1) Backdoor attacks on

non-graph data (e.g., images) require same input size, while graph
data have varying sizes (in terms of number of nodes and edges); 2)

Backdoor attacks on non-graph data can leverage shared property

(e.g., important pixels in images with the same label are spatially-

close), while graph-data do not have such property: even graphs

have the same label, their locations of crucial nodes can be signifi-

cantly different (see Figure 3); 3) Graph backdoors solely based on

node features (like pixels in images) is not effective enough. Edge

information is equally important and should be considered.

We notice a recent work [84] proposed a random backdoor attack

on FedGL inspired by [79, 94]. Specifically, it uses a subgraph as a

trigger, and each malicious client randomly generates the trigger

shape and randomly picks nodes from local graphs as the location

to inject the trigger. However, our results show this attack attains

unsatisfactory backdoor performance (see Table 1).

Our optimized distributed backdoor attacks on FedGL: We ob-

serve the ineffectiveness of the existing backdoor attack on FedGL

is primarily due to the random nature of the trigger, i.e., it does not

use any graph or client information unique to FedGL. An effective

backdoor attack on FedGL should design the trigger by explicitly

considering the individual graph and client information. To bridge

the gap, we propose an optimized DBA on FedGL (termed Opt-

GDBA). As a trigger consists of trigger location, size, and shape,

our Opt-GDBA hence designs an adaptive trigger generator that

adaptively optimizes the location and shape of the subgraph trigger
and learns a local trigger for each graph using the graph and client
information. Specifically, the trigger generator consists of three

modules: 1) the first module obtains nodes’ importance scores by

leveraging both the edge and node feature information in a given in-

put graph; 2) the second module learns the trigger location based on

the nodes’ importance scores. In particular, we design two trigger

location learning schemes, i.e., Definable-Trigger and Customized-

Trigger, where the first scheme predefines the trigger node size and

the second one automatically identifies the important nodes in the

graph as the trigger nodes; 3) given the trigger location, the third

module further learns the trigger shape (i.e., determines the trig-

ger’s node features and edges) via introducing edge/node attention

and local trigger differentiation mechanisms. By incorporating our

adaptive trigger generator into the backdoored FedGL training, the

generated backdoored graphs can be more stealthy and diverse, and

make the backdoor attack much more effective and persistent.

Challenges in designing effective defenses on backdoored FedGL:
Once a backdoored FedGL model is trained, we test empirical de-

fenses, e.g., based on backdoor detection or backdoor removal, are

hard to mitigate the backdoored effect induced by our Opt-GDBA

(see Tables 3 and 4). Moreover, empirical defenses can be often bro-

ken by adaptive attacks [67]. Hence, we focus on certified defenses

with provable guarantees. Particularly, we expect the defense can i)
provably predict the correct label for clean testing graphs injected with
an arbitrary trigger (shape and location) with a bounded size; and
ii) provably predict a non-target label for backdoored testing graphs,
both with probability 100%. However, it is extremely challenging to

design such a certified defense due to: 1) the size of testing graphs
varies; 2) should not rely on a specific model; 3) a trigger can arbitrary
perturb any edges and nodes in a testing graph; and 4) a deterministic
guarantee. Note that certified defenses for non-graph data [63, 71]

require same size inputs, which inherently cannot be applied to

graph data. Existing certified defenses for graph data [5, 64, 94]

are also insufficient: they are either against node feature or edge

perturbation, but not both; their robustness guarantee is for a fixed

input size or specific model, or incorrect with a certain probability.

Our certified defense against backdoored FedGL: We design an

effectivemajority-voting based certified defense to address all above

limitations. Majority-voting is a generic ensemble method [12], and

different methods develop the respective voter for their own pur-

pose (see more details in Section 7). Our tailored majority-vote

based defense includes three critical steps. First, we carefully divide

a (clean or backdoored) testing graph into multiple subgraphs such

that the graph division is deterministic, and for any pair of sub-

graphs, their nodes and edges are non-overlapped. Second, we build

a majority vote-based ensemble graph classifier for predicting these

subgraphs and each prediction on a subgraph is treated as a vote.

This classifier ensures a bounded number of subgraphs’ predictions

be different after injecting the trigger and the expectations i) and ii)

be satisfied (per Theorems 1 & 3). Third, we derive the deterministic

robustness guarantee of the ensemble classifier against a (bounded

size) trigger with arbitrary edge and node (feature) perturbations.

We also prove that our certified defense is tight.

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Empirical and theoretical evaluations: We extensively evalu-

ate our Opt-GDBA attack and certified defense on six benchmark

graph datasets. Our attack results show that: 1) Compared with the

existing work [84], Opt-GDBA has a gain from 30% to 46% on the

backdoor performance, and generates triggers with less number

of nodes or/and edges; 2) The Customized-Trigger scheme is more

stealthy than the Definable-Trigger scheme, indicating it uncovers

more important nodes in the trigger; 3) Our generated backdoored

graphs are persistent and hard to be detected or removed.

We further test our defense on the backdoored FedGL trained

with our attack. Our defense results show that: 1) In some cases, the

certified main accuracy against a trigger arbitrarily perturbing 20

nodes/edges in total can be close to the accuracy without attack; 2)

The certified backdoor accuracy in all datasets is 0, which indicates

the backdoored testing graphs generated by our Opt-GDBA are

completely broken by our defense.

Contributions: We summarize our main contributions as below:

• We propose Opt-GDBA, an optimized DBA to FedGL, that is

effective, stealthy, and persistent.

• We develop a certified defense applicable for any (backdoored)

FedGL against any graph structure and node feature perturbation.

Moreover, our robustness guarantee is deterministic and tight.

• Our extensive empirical and theoretical evaluations verify the

effectiveness of our proposed attack and defense.

2 Background and Problem Definition
2.1 Federated Graph Learning (FedGL)
We denote 𝐺 = (V, E,X) as a graph where V is the node set, E
is the edge set, and X ∈ R |V |×𝑑

is the node feature matrix, with

𝑑 the number of features and |V| the total number of nodes. We

let A ∈ {0, 1} |V |× |V |
be the adjacency matrix with 𝐴𝑢,𝑣 = 1, if

(𝑢, 𝑣) ∈ E, and 0, otherwise. A hence contains all edge information

in𝐺 . We consider graph classification as the task of interest, where

each graph 𝐺 has a label 𝑦 from a label set Y. Graph learning (GL)

takes a graph𝐺 as input and learns a graph classifier, denoted as 𝑓 ,

that outputs an estimated graph label, i.e., 𝑓 : 𝐺 −→ Y.

FedGL extends GL in the FL setting. Assume 𝐶 clients C =

{1, 2, · · · ,𝐶} and a server participating in FedGL. Each client 𝑖 has a

set of labeled training graphsG𝑖 = {(𝐺𝑖
1
, 𝑦𝑖

1
), · · · , (𝐺𝑖| G𝑖 | , 𝑦

𝑖
| G𝑖 |)}. In

a 𝑡-th round, the server randomly selects a subset of clients C𝑡 ⊂ C
and broadcasts the current global model 𝜃𝑡 on the server to C𝑡 . A
client 𝑖 ∈ C𝑡 updates its local model 𝜃𝑖𝑡 = 𝜕𝜃𝑡 𝐿(G𝑖 ;𝜃𝑡) using its

training graphs G𝑖 and the shared 𝜃𝑡 , and submits 𝜃𝑖𝑡 to the server.

Here 𝐿(G𝑖 ;𝜃𝑡) is a loss function used by the client 𝑖 , e.g., cross-

entropy loss. The server then aggregates the C𝑡 clients’ models

{𝜃𝑖𝑡 }𝑖∈C𝑡 to learn the global model 𝜃𝑡+1 for the next iteration using

some aggregation algorithm. For instance, when using the common

average aggregation [41, 65], 𝜃𝑡+1 = 1

| C𝑡 |
∑
𝑖∈C𝑡 𝜃

𝑖
𝑡 . Next, the server

randomly selects a new subset of clients C𝑡+1 ⊂ C and broadcasts

𝜃𝑡+1 to them. This process is repeated until the global model con-

verges or reaching the maximal iterations. The final global model is

shared with clients for their task, e.g., classify their testing graphs.

Figure 1: Comparing the triggers of the backdoor attacks on
FedGL: (b) Rand-GCBA, (c) Rand-GDBA, and (d) our Opt-
GDBA. Opt-GDBA strategically selects critical nodes and
their connected edges in individual graphs, resulting in more
effective local triggers and the combined global trigger.

2.2 Backdoor Attacks on FedGL
In backdoor attacks on FedGL, malicious clients inject a subgraph

trigger (consisting of edges and nodes with features) into part of

their training graphs and set backdoored graphs with a target label.
Depending on how the trigger is designed, a recent work [84]

proposed two attacks: centralized backdoor attack (CBA) inspired

by [94], and distributed backdoor attack (DBA) inspired by [79]. We

denote the two attacks as Rand-GCBA and Rand-GDBA, respectively,
where the prefix “Rand” means malicious clients randomly generate

the shape of the trigger and randomly choose nodes from their clean

graphs as the location to inject the trigger.

Rand-GCBA:All malicious clients use a shared trigger𝜅 . In each to-
be-backdoored graph, malicious clients randomly sample a subset

of nodes from the graph as the trigger location and replace the

connections of these nodes with the trigger 𝜅 . Then each malicious

client 𝑖 iteratively learns its local backdoored model 𝜃𝑖
𝐵
as below:

𝜃𝑖𝐵 = argmin𝜃𝑖
𝐵
𝐿(G𝑖𝐵 ∪ G𝑖𝐶 ;𝜃), (1)

where G𝑖
𝐵
= {𝑅(𝐺𝑖

𝑗
, 𝜅), 𝑦𝐵} is a set of backdoored graphs, 𝑅(𝐺𝑖

𝑗
, 𝜅)

is function that generates a backdoored graph of𝐺𝑖
𝑗
by attaching the

trigger 𝜅 , and 𝑦𝐵 denotes the target label. 𝜃 is the global model. G𝑖
𝐶

contains the remaining clean graphs in G𝑖 , and |G𝑖
𝐵
| + |G𝑖

𝐶
| = |G𝑖 |.

The server will aggregate the local models of chosen malicious

clients and normally trained benign clients. The final backdoored

graph classifier, denoted as 𝑓𝐵 , is shared with all clients. During

testing, malicious clients will use the same𝜅 for their testing graphs,

but the trigger location is randomly chosen.

Rand-GDBA: Each malicious client 𝑖 has its own local trigger 𝜅𝑖

(often sparser/smaller than 𝜅), and injects 𝜅𝑖 into a fraction of its

training graphs G𝑖 , where the trigger location is randomly chosen.

Then each malicious client generates its backdoored graphs G𝑖
𝐵
=

{𝑅(𝐺𝑖
𝑗
, 𝜅𝑖), 𝑦𝐵} for training (i.e., minimizing the loss in Equation (1)).

During testing, all malicious clients’ triggers {𝜅𝑖 } will be combined

into a single one. The combined trigger, with a random location,

will be injected into testing graphs.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

Rand-GDBA is shown to be more effective than Rand-GCBA [84].

Figure 1 shows example shared trigger in Rand-GCBA, local triggers

in Rand-GDBA across clients, and triggers in our attack.

2.3 Threat Model
We aim to understand the robustness of FedGL from both the at-

tacker’s and defender’s perspective. As an attacker, we expect to

design an effective and stealthy DBA to FedGL during training. As

a defender, in contrast, we expect to design an effective certified

defense against the worst-case DBA on a backdoored FedGL model.

Attacker:We assume the attacker manipulates a fraction (say 𝜌)

of the total 𝐶 clients, namely malicious clients.

• Attacker’s knowledge: All malicious clients only know their

own training graphs and the shared global model in the whole

of (backdoored) FedGL training.

• Attacker’s capability:Malicious clients can inject a subgraph

trigger into any location/part of their training graphs during

training. To ensure effectiveness and stealthiness for the attack,

we follow [79, 84] to inject the trigger in every training iteration,

but its size (w.r.t. number of nodes or/and edges) is small.

• Attacker’s objective: Malicious clients aim to learn a back-

doored FedGL model such that: it predicts the backdoored testing

graphs as the target label, while correctly predicting the clean

testing graphs. This implies the model will achieve a high back-
door accuracy as well as a high main task accuracy.

Defender: The defender aims to build a certifiably robust defense,

under which the learnt backdoored FedGL can achieve two goals.

• High certifiedmain task accuracy: provably predict correct la-
bels as many as possible for clean testing graphs against arbitrary

trigger (any shape and location) with a bounded size.

• Low certified backdoor accuracy: provably predict the target

label as few as possible for backdoored testing graphs (that are

generated by our Opt-GDBA).

3 Optimized DBAs on FedGL
Recall the existing DBA to FedGL generates triggers with random
locations and random shape, and obtains unsatisfactory backdoor

performance. We propose an optimized DBA on FedGL (called Opt-

GDBA) to address the limitation. Our Opt-GDBA designs an adap-

tive trigger generator to adaptively optimize the trigger location

and shape by integrating the edge and node feature information in

individual graphs. See Figure 2 for the pipeline of Opt-GDBA.

3.1 Adaptive Trigger Generator
The proposed adaptive trigger generator consists of three modules:

1) node importance score learning, 2) trigger location learning, and
3) trigger shape learning. For simplicity, we use a client 𝑖’s graph

𝐺𝑖 = (V𝑖 , E𝑖 ,X𝑖) with the adjacency matrix A𝑖 for illustration. We

first obtain the nodes’ importance scores using module 1). We next

input the nodes’ scores to module 2) to decide the trigger location

with a predefined or customized trigger size. Finally, module 3)

learns the trigger shape and generates the backdoored graph 𝐺𝑖
𝐵

for 𝐺𝑖 together with module 2). Detailed architecture of all the
described networks below are in the full report.

Algorithm 1 𝑘-means_gap to learn customized trigger size

Input: Nodes’ scores s𝑖 , maximum trigger size 𝑛∗𝑡𝑟𝑖 .
Output: Important nodes V𝑖

𝑐𝑢𝑠 .

1: s𝑖 = s𝑖/

s𝑖

1

2: for 𝑘 = 1, 2, ..., 𝐾 do
3: 𝐶𝑖 , 𝜇𝑖 = 𝑘-means (s𝑖)
4: 𝑉𝑘 =

∑𝑘
𝑖=1

∑
𝑥𝑗 ∈𝐶𝑖

𝑥 𝑗 − 𝜇 𝑗

2
5: for 𝑏 = 1, 2, ..., 𝐵 do
6: 𝑥 𝑗,𝑏 = sample(|s𝑖 |) in [0, 1]
7: 𝐶𝑖,𝑏 , 𝜇𝑖,𝑏 = 𝑘-means (𝑥 𝑗,𝑏)

8: 𝑉 ∗
𝑘𝑏

=
∑𝑘

𝑖=1

∑
𝑥𝑗𝑏 ∈𝐶𝑖𝑏

𝑥 𝑗𝑏 − 𝜇𝑖𝑏

2

9: end for
10: 𝐺𝑎𝑝 (𝑘) = 1

𝐵

∑𝐵
𝑖=1 log (𝑉 ∗

𝑘𝑏
) − log(𝑉𝑘)

11: 𝑣′ = 1

𝐵

∑𝐵
𝑖=1 log(𝑉 ∗

𝑘𝑏
)

12: 𝑠𝑑 (𝑘) = (1

𝐵

∑𝐵
𝑖=1 (log(𝑉 ∗

𝑘𝑏
) − 𝑣′)2)

1

2

13: 𝑠′
𝑘
=

√︃
1+𝐵
𝐵
𝑠𝑑 (𝑘)

14: end for
15:

ˆ𝑘 =𝑚𝑖𝑛 (𝑘) 𝑠.𝑡 . 𝐺𝑎𝑝 (𝑘) −𝐺𝑎𝑝 (𝑘 + 1) + 𝑠′
𝑘+1 ≥ 0

16: 𝐶𝑖 , 𝜇𝑖= ˆ𝑘-means(s𝑖)
17: V𝑖

𝑐𝑢𝑠 = {𝐶𝑖 |max{Avg(𝐶1),Avg(𝐶2), ...,Avg(𝐶 ˆ𝑘
) }}

18: if |V𝑖
𝑐𝑢𝑠 | >𝑚𝑠𝑖𝑧𝑒 then

19: V𝑖
𝑐𝑢𝑠 = sort(V𝑖

𝑐𝑢𝑠)

20: V𝑖
𝑐𝑢𝑠 = V𝑖

𝑐𝑢𝑠 [:𝑚𝑠𝑖𝑧𝑒]
21: end if

1) Node importance score learning. The goal is to measure the

node importance so that the trigger can be placed on the important

nodes. Specifically, we leverage both the edges and node features

in 𝐺𝑖 to decide the node importance.

First, we define two networks: EdgeView(·) and NodeView(·).
EdgeView(·) characterizes the node importance from the edge view,

and the extracted node importance scores from A𝑖 are denoted by

e𝑖 ∈ R |V𝑖 |
. Instead, NodeView(·) characterizes the node impor-

tance from the node feature view, and the extracted node impor-

tance scores from X𝑖 are denoted by n𝑖 ∈ R |V𝑖 |
. Formally,

e𝑖 = EdgeView(A𝑖), n𝑖 = NodeView(X𝑖), (2)

where e𝑖 and n𝑖 are constrained to have a value range (0, 1).
We then calculate the nodes’ importance scores, denoted by s𝑖 ,

as the element-wise product ⊙ of vectors e𝑖 and n𝑖 as below:

s𝑖 = e𝑖 ⊙ n𝑖 . (3)

2) Trigger location learning. With nodes’ importance scores, we

design two schemes to decide the trigger location in each graph:

Definable-Trigger and Customized-Trigger.
Definable-Trigger: It predefines a trigger node size 𝑛𝑡𝑟𝑖 used by

all backdoored graphs. Specifically, this scheme first ranks s𝑖 in a

descending order and selects the nodes V𝑖
𝑑𝑒 𝑓

from 𝐺𝑖 with the top

𝑛𝑡𝑟𝑖 values as the trigger location.

Customized-Trigger: One drawback of Definable-Trigger is that

all backdoored graphs use the same trigger size, but the graph size

varies in practice. This would cause V𝑖
𝑑𝑒 𝑓

misses important nodes

if 𝐺𝑖 is a large graph but 𝑛𝑡𝑟𝑖 is small, or includes non-important

nodes if 𝐺𝑖 is a small graph but 𝑛𝑡𝑟𝑖 is large. To address it, we fur-

ther develop the Customized-Trigger scheme, which automatically

learns the best local trigger size of each graph during the FedGL

training. The learnt most important nodes for𝐺𝑖 are stored inV𝑖
𝑐𝑢𝑠 .

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 2: Pipeline of our proposed Opt-GDBA on FedGL (a client 𝑖 perspective).

Our main idea is to adopt the Gap statistics [60] based on 𝑘-

means clustering
1
. The algorithm details are shown in Algorithm

1. At a high-level, given the node scores s𝑖 , we first use the Gap
statistics to estimate the number of clusters

ˆ𝑘 . Then we employ

𝑘-means to divide the nodes into
ˆ𝑘 clusters based on their scores s𝑖 .

Finally, the nodes in the cluster with the largest average score are

treated as the most important nodes V𝑖
𝑐𝑢𝑠 , whose positions are put

the local trigger. Note that, to ensure the stealthiness of the attack,
we require the trigger size not exceed a threshold (e.g., 𝑛∗

𝑡𝑟𝑖
).

3) Trigger shape learning. Given the location of the local trig-

ger (V𝑖
𝑑𝑒 𝑓

or V𝑖
𝑐𝑢𝑠), we learn the trigger shape through two sub-

modules: edge/node attention, and local trigger differentiation. The
former determines the edges and node features in the trigger, which

is inspired by [76], while the latter promotes divergence of differ-

ent local triggers so that the attack effectiveness can be enhanced

when these local triggers are combined for backdoored testing. We

denote 𝐺𝑖
𝐵
= (V𝑖 , E𝑖

𝐵
,X𝑖
𝐵
) as an initial backdoored graph with an

empty trigger shape and the corresponding adjacency matrix A𝑖
𝐵
.

For brevity, we use V𝑖
𝑑𝑒 𝑓

for illustration.

Edge/node attention. We introduce two attention networks: edge
attention network EdgeAtt(·) that focuses on understanding the

connectivity between nodesV𝑖
𝑑𝑒 𝑓

in the trigger, and node attention
network NodeAtt(·) that aims to improve the flexibility of the trig-

ger by also incorporating node features. We denote the trigger’s

edge attention matrix as E𝑖
𝑡𝑟𝑖

∈ R |V
𝑖
𝑑𝑒𝑓

|× |V𝑖
𝑑𝑒𝑓

|
, and trigger’s node

feature attention matrix as N𝑖
𝑡𝑟𝑖

∈ R |V
𝑖
𝑑𝑒𝑓

|×𝑑
. Formally,

E𝑖𝑡𝑟𝑖 = EdgeAtt(A𝑖𝐵,V
𝑖
def

); (4)

N𝑖𝑡𝑟𝑖 = NodeAtt(X𝑖𝐵,V
𝑖
def

). (5)

Local trigger differentiation. To further enable distinct malicious

clients to possess personalized and controllable local triggers, we

also propose to incorporate the client index 𝑖 into the trigger shape

generation. Specifically, we first use an edge embedding function

EdgeEmb(·) to convert the client index 𝑖 into I𝑒 ∈ R |V
𝑖
𝑑𝑒𝑓

|× |V𝑖
𝑑𝑒𝑓

|

and a node embedding function NodeEmb(·) to convert it into

I𝑛 ∈ R |V
𝑖
𝑑𝑒𝑓

|×𝑑
. We then multiply I𝑒 (and I𝑛) with the attention

matrix E𝑖
𝑡𝑟𝑖

(and N𝑖
𝑡𝑟𝑖

) to integrate the unique information of the

1
K-mean is a widely-adopted clustering algorithm that is efficient and effective. By

integrating with gap statistics, K-means can also efficiently determine the optimal

number of clusters. We admit there are other more advanced/complicated/effective

clustering algorithms. Note that our purpose is not to pick the best clustering algorithm,

but the one that is suitable to achieve our goal, i.e., learning the local trigger size.

Algorithm 2 Adaptive Trigger Generator

Input: A clean graph𝐺𝑖
, trigger node size 𝑛𝑡𝑟𝑖 or 𝑛

∗
𝑡𝑟𝑖

.

Output: Backdoored graph 𝐺̃𝑖
𝐵
.

1: s𝑖 = Node_score(𝐺𝑖
) // Node importance score

2: if Definable-Trigger then
3: V𝑖

𝑑𝑒𝑓
= rank(s𝑖 , 𝑛𝑡𝑟𝑖) // Trigger location

4: 𝐺̃𝑖
𝐵
= Trigger_shape_learning(𝐺𝑖

, V𝑖
𝑑𝑒𝑓

)

5: else if Customized-Trigger then
6: V𝑖

𝑐𝑢𝑠 = 𝑘-means_gap(s𝑖 ,𝑚𝑠𝑖𝑧𝑒) // Trigger location
7: 𝐺̃𝑖

𝐵
= Trigger_shape_learning(𝐺𝑖

, V𝑖
𝑐𝑢𝑠)

8: end if

client index. The equations can be expressed as follows:

I𝑒 = EdgeEmb(𝑖), E𝑖𝑡𝑟𝑖 = E𝑖𝑡𝑟𝑖 ⊙ I𝑒 ,

I𝑛 = NodeEmb(𝑖), N𝑖𝑡𝑟𝑖 = N𝑖𝑡𝑟𝑖 ⊙ I𝑛 .
(6)

To further discretize the connectivity status between nodes, we

convert the continuous edge attention matrix E𝑖
𝑡𝑟𝑖

to be binary,

i.e., E𝑖
𝑡𝑟𝑖

= 1(E𝑖
𝑡𝑟𝑖

≥ 0.5), where 1(𝑝) is an indicator function that

returns 1 if 𝑝 is true, and 0 otherwise.

The trigger locationV𝑖
def

as well as trigger shape E𝑖
𝑡𝑟𝑖

,N𝑖
𝑡𝑟𝑖

de-

cides the optimized trigger, whichwe denote as 𝜅̃𝑖 = (V𝑖
def

, E𝑖
𝑡𝑟𝑖

,N𝑖
𝑡𝑟𝑖

).
The optimized backdoored graph for a graph 𝐺𝑖 is then generated

by 𝐺̃𝑖
𝐵
= 𝑅(𝐺𝑖 , 𝜅̃𝑖). Algorithm 2 summarizes the adaptive trigger

generator for generating a backdoored graph.

3.2 FedGL Training with Optimized Backdoor
We now show the entire backdoored FedGL training with the opti-

mized backdoored graphs (algorithm details are in Algorithm 3). It

involves alternatively and iteratively training the (backdoored) lo-

cal model, optimizing the adaptive trigger generator, and updating

the shared global backdoored model.

Training the (backdoored) local model: We denote the op-

timized backdoored graphs in each malicious client 𝑖 as ˜G𝑖
𝐵

=

{𝑅(𝐺𝑖
𝑗
, 𝜅̃𝑖
𝑗
), 𝑦𝐵}. Then each malicious client 𝑖 trains its local back-

doored model 𝜃𝑖
𝐵
via minimizing the loss on both the optimized

backdoored graphs
˜G𝑖
𝐵
and clean graphs G𝑖

𝐶
:

𝜃𝑖𝐵 = argmin𝜃𝑖
𝐵
𝐿(˜G𝑖𝐵 ∪ G𝑖𝐶 ;𝜃) . (7)

For each benign client 𝑗 , it updates the local model via minimizing

the loss on all its clean graphs G 𝑗
as:

𝜃 𝑗 = argmin𝜃 𝑗 𝐿(˜G 𝑗
;𝜃) . (8)

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

Algorithm 3 Backdoored FedGL training with Opt-GDBA

Input: Total clients C with clean graphs {G𝑖 }𝑖∈C , malicious clients
˜C,

training iterations 𝑖𝑡𝑒𝑟 , initial global model 𝜃1, malicious clients’ initial

generator model {𝜔𝑖
1
}
𝑖∈ ˜C .

Output: Backdoored global model 𝜃𝑖𝑡𝑒𝑟 .

1: for each iteration 𝑡 in [1,iter] do
2: for each client 𝑖 ∈ C do
3: if 𝑖 ∈ ˜C then:
4: Client 𝑖 divides G𝑖

into G𝑖
𝐶
and to-be-backdoored G𝑖

𝑜

5:
˜G𝑖
𝐵
= Generator(G𝑖

𝑜 ;𝜔
𝑖
𝑡) using Algorithm 2

6: 𝜃𝑖𝑡 = argmin

𝜃𝑖
𝐿 (˜G𝑖

𝐵
∪ G𝑖

𝐶
;𝜃𝑡)

7: 𝜔𝑖
𝑡 = argmin

𝜔𝑖

𝐿 (˜G𝑖
𝐵
;𝜃𝑖𝑡)

8: else
9: 𝜃𝑖𝑡 = argmin

𝜃𝑖
𝐿 (G𝑖

;𝜃𝑡)

10: end if
11: end for
12: Server randomly selects C𝑡 clients for aggregation
13: 𝜃𝑡+1 = 1

|C𝑡 |
∑

𝑖∈C𝑡 𝜃
𝑖
𝑡

14: end for

Optimizing the adaptive trigger generator:We denote the pa-

rameters of the trigger generator per malicious client 𝑖 as𝜔𝑖 , which

includes the parameters of all networks in Section 3.1. Each mali-

cious client 𝑖 also optimizes its generator𝜔𝑖 to ensure the generated

backdoored graphs be more effective and diverse. Specifically,

𝜔𝑖 = argmin𝜔𝑖 𝐿(˜G𝑖𝐵 ;𝜃
𝑖
𝐵) . (9)

Updating the shared global model: The server averages the

backdoored local models {𝜃𝑖
𝐵
} and benign local models {𝜃 𝑗 } of the

selected clients to update the global model 𝜃 .

4 Attack Results
4.1 Experimental Setup
Datasets and training/testing sets: We evaluate our attack on

six benchmark real-world graph datasets for graph classification.

Dataset description and statistics and training/testing sets
about the datasets are presented in Table 8 in the full report.
Attack baselines:We compare our Opt-GDBA with Rand-GCBA

and Rand-GDBA (details are in Section 2.2). Their main difference

lies in the way to inject the trigger.

• Rand-GCBA [84]:All malicious clients use a shared trigger with

the same shape but random location. To force the trigger yields

the most effective attack, we assume it be a complete subgraph.
• Rand-GDBA [84]: Each malicious client generates its local trig-

ger. Following [94], each client generates the trigger using the

Erdős-Rényi (ER) random graph model [18], where the num-

ber of edges 𝑒𝑡𝑟𝑖 with a trigger node size 𝑛𝑡𝑟𝑖 can be controlled.

These triggers are then attached to random nodes in the to-be-

backdoored graphs. To further enhance this attack, we also main-

tain the diversity of local triggers among malicious clients. To

do so, we store a set of generated local triggers via the ER model,

and assign different triggers to different malicious clients.

For fair comparison, we make sure the total number of edges in

all triggers in Rand-GCBA and Rand-GDBA are same. This can

be realized by forcing 𝜌𝑐 ∗ 𝑒𝑐
𝑡𝑟𝑖

= 𝜌𝑑 ∗ 𝑒𝑑
𝑡𝑟𝑖

, where 𝜌𝑐 and 𝜌𝑑 are

the ratio of malicious clients, and 𝑒𝑐
𝑡𝑟𝑖

and 𝑒𝑑
𝑡𝑟𝑖

are the number of

trigger edge in Rand-GCBA and Rand-GDBA, respectively.

• Our Opt-GDBA: Each to-be-backdoored training graph gen-

erates an individual trigger via the proposed adaptive trigger

generator, where the trigger location and shape are learnt. Note

that the trigger node size 𝑛𝑡𝑟𝑖 is predefined in the Definable-

Trigger scheme (same as Rand-GCBA and Rand-GDBA), but is

automatically learnt in the Customized-Trigger scheme.

During testing, the local triggers are combined into a global trig-

ger. For fair comparison, we let all attacks use a complete subgraph

as the global trigger. In our Opt-GDBA, for each testing graph, we

learn the important nodes that determine the trigger location, and

then generate the complete graph based on them. In contrast, the

trigger location of Rand-GCBA and Rand-GDBA in testing graphs

is random. Note that [84] uses a different way to combine local trig-
gers and injects a much larger global trigger in Rand-GDBA. The
discussion and results are shown in Table 10 in the report.
Parameter setting:During FedGL training, we use a total of𝐶 = 40

clients (𝐶 = 20 on MUTAG due to less data) and evenly distribute

the training graphs in each dataset to the clients. The total number

of iterations is 200 in all datasets, except the larger RDT-M5K that

is 400. In each iteration, the server randomly selects 50% of the total

clients for training. The clients use the de facto Graph Isomorphism

Network (GIN) [86] as the graph classifier. We use its open-source

code (https://github.com/weihua916/powerful-gnns) in our exper-

iments. By default, 50% of malicious clients’ training graphs are

randomly sampled to inject the backdoor trigger, and the target

label is 1. All testing graphs are chosen for backdoored testing.

There are several hyperparameters that can affect all attacks’ per-

formance on FedGL: fraction of malicious clients 𝜌 and trigger node

size 𝑛𝑡𝑟𝑖 or a threshold size 𝑛
∗
𝑡𝑟𝑖

in Customized-Trigger scheme. We

set 𝜌 = 20% and 𝑛𝑡𝑟𝑖 = 4 by default, and set 𝑛∗
𝑡𝑟𝑖

= 5 in all exper-

iments. We will also study the impact of these hyperparameters.

Our Opt-GDBA contains many modules and we will also study the

importance of individual module.

Evaluation metrics: We adopt four metrics for evaluation: the

main task accuracy (MA) and backdoor accuracy (BA) on testing

graphs; the average trigger node size (also use 𝑛𝑡𝑟𝑖) and edge size

(also use 𝑒𝑡𝑟𝑖) of all backdoored training graphs. A more effective at-

tack would achieve a higher MA and higher BA, and a more stealthy

attack would have a lower 𝑛𝑡𝑟𝑖 and 𝑒𝑡𝑟𝑖 given a close MA/BA.

4.2 Experimental Results
4.2.1 Main results of the compared attacks. Table 1 shows the com-

parison results of the attacks in the default setting (more compre-
hensive comparison and more results are shown in Table 9-
Table 14 in the full report. We have the below key observations:

(1) Main task performance is marginally sacrificed under all
attacks: All attacks achieve a close MA, compared to the MA

without attack (i.e., the differences between them in all cases

are ≤ 3%). This verifies these attacks only slightly affect the

performance of the main task.

(2) Rand-GDBAoutperformsRand-GCBAon attacking FedGL:
Similar to the conclusion of backdoor attacks on image data [79],

distributed backdoors for graph data are also superior to cen-

tralized backdoors on attacking FedGL. Specifically, the BA of

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: Results of all the compared attacks in the default setting. The gain is between Opt-GDBA and Rand-GDBA.

Datasets Customized-Trigger (𝑛∗
𝑡𝑟𝑖

= 5) Opt-GDBA Rand-GDBA Rand-GCBA
(MA without attack) (MA / BA) 𝑛𝑡𝑟𝑖 𝑒𝑡𝑟𝑖 𝑛𝑡𝑟𝑖 (MA / BA) 𝑒𝑡𝑟𝑖 (MA / BA) 𝑒𝑡𝑟𝑖 (MA / BA) 𝑒𝑡𝑟𝑖

BITCOIN (MA=0.73) 0.72 / 0.99 (↑0.36) 4.29 4.20 4 0.72 / 0.99 (↑0.36) 3.08 0.71 / 0.63 4 0.72 / 0.57 6

MUTAG (MA=0.74) 0.72 / 0.95 (↑0.43) 3.51 2.31 4 0.71 / 0.85 (↑0.33) 3.41 0.71 / 0.52 4 0.73 / 0.48 6

PROTEINS (MA=0.73) 0.72 / 0.90 (↑0.39) 3.75 2.56 4 0.72 / 0.90 (↑0.39) 2.07 0.70 / 0.51 4 0.71 / 0.33 6

DD (MA=0.73) 0.72 / 0.86 (↑0.46) 3.19 1.57 4 0.72 / 0.78 (↑0.38) 2.97 0.72 / 0.40 4 0.72 / 0.33 6

COLLAB (MA=0.75) 0.73 / 0.86 (↑0.32) 4.68 4.51 4 0.73 / 0.84 (↑0.30) 3.34 0.73 / 0.54 4 0.71 / 0.37 6

RDT-M5K (MA=0.53) 0.52 / 0.90 (↑0.33) 4.51 3.59 4 0.52 / 0.89 (↑0.32) 3.27 0.52 / 0.57 4 0.52 / 0.40 6

Figure 3: Examples of original clean graphs on the six datasets and their corresponding backdoored ones by our Opt-GDBA.

Figure 4: MA/BA vs. 𝜌 on all compared attacks in all datasets.

Figure 5: MA/BA vs. 𝑛𝑡𝑟𝑖 (𝑛∗𝑡𝑟𝑖 = 5) on all compared attacks in all datasets.

Table 2: Comparing the two trigger location learning schemes in our Opt-GDBA w.r.t. the average trigger edge size 𝑒𝑡𝑟𝑖 .

Datasets BITCOIN MUTAG PROTEINS DD COLLAB RDT-M5K

𝜌 vs. 𝑒𝑡𝑟𝑖 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30% 10% 20% 30%

Definable-Trigger 4.95 5.09 5.35 5.83 5.88 5.63 3.56 3.36 3.44 5.42 5.04 5.22 5.85 5.72 5.99 5.39 5.45 5.59

Customized-Trigger 3.88 4.20 4.35 3.52 2.31 2.32 2.68 2.56 2.54 1.64 1.57 1.79 4.50 4.51 4.72 3.42 3.59 3.86

Rand-GDBA is higher than that of Rand-GCBA, with a gain of

4% to 18%. This implies the diverse local triggers indeed can

promote the backdoor attack. This observation hence implies

the importance of using distributed backdoors.

(3) OurOpt-GDBAoutperformsRand-GDBA in terms of both
attack effectiveness and stealthiness: Both our Opt-GDBA

with Definable-Trigger and Customized-Trigger schemes yield

impressive attack results, with BA exceeding 85% and 90% in

almost all cases, respectively. Under a same trigger node size

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

𝑛𝑡𝑟𝑖 (Definable-Trigger) or a smaller learnt 𝑛𝑡𝑟𝑖 (Customized-

Trigger), the BA of Opt-GDBA consistently and significantly

surpasses that of Rand-GDBA. Particularly, the gain is from 30%

to 46%. In addition, the average number of injected edges of Opt-

GDBA is less than that of Rand-GDBA, showing Opt-GDBA

is a more stealthy attack than Rand-GDBA. These findings

underscore that the graph-dependent triggers learnt by our

trigger generator are not only better memorized during the

FedGL training, but also uncover important locations in the

clean graphs. Figure 3 shows example triggers generated by

Opt-GDBA on the six datasets. We can see most of the triggers

are attached to the important/central nodes in the raw graphs.

4.2.2 Impact of hyperparameters on our Opt-GDBA. In this set of

experiments, we will study in-depth the impact of the important

hyperparameters on our Opt-GDBA.

Impact of the fraction 𝜌 ofmalicious clients: Figure 4 shows the
MA/BA results vs. 𝜌 = 10%, 20%, 30%. We can see MA is stable w.r.t.

different 𝜌 , and BA (slightly) increases with a larger 𝜌 . For instance,

on MUTAG, when 𝜌 is from 10% to 30%, the BA of Rand-GCBA,

Rand-GDBA, and our Opt-GDBA can be increased from 41% to 56%,

from 43% to 67% and from 84% to 97% with the Definable-Trigger,

respectively. This shows MA is marginally affected, but the attack

becomes stronger with more malicious clients.

Impact of the trigger size 𝑛𝑡𝑟𝑖 : Figure 5 shows the MA/BA results

vs. 𝑛𝑡𝑟𝑖 (=3,4,5). We can see a larger trigger size corresponds to

a larger BA, which implies a stronger attack. This is because the

trigger can be injected to a larger region of the clean graph. Still,

the MA is the very stable in terms of different trigger sizes.

Impact of the trigger location learning scheme:OurOpt-GDBA
uses two schemes to decide the trigger location: Customized-Trigger

automatically learns it, while Definable-Trigger predefines it. Ta-

ble 2 shows the comparison results. We can see the trigger out-

putted by Customized-Trigger has an average number of edges < 5

in all cases. In contrast, Definable-Trigger yields ⪆ 5 edges in most

cases. Note that the MA and BA of the two schemes are close. This

hence reflects the Customized-Trigger scheme can further locate

the “more important” region in a graph to attach the trigger.

Global trigger vs. local triggers: From Table 1, we know the MA

performance is marginally affected by the backdoor attacks with

respect to different trigger sizes. Recall that, during testing, we use

the combined local triggers to form a global trigger (a complete sub-

graph), which is injected into all testing graphs. In this experiment,

we also explore the BA performance of our Opt-GDBA where each

client uses the local triggers generated by its own trigger generator.

Specifically, we use 𝜌 = 20% and the total number of malicious

clients is 20% ∗ 50% ∗ 40 = 4. Figure 6 compares the BA produced

by the global trigger vs. local triggers per malicious client with

Definable-Trigger Opt-GDBA with 𝑛𝑡𝑟𝑖 = 4. For instance, “Local

triggers 1” means the local triggers are generated via malicious

client 1’s trigger generator on the corresponding testing graphs.

We observe that though the backdoored FedGL training does

not involve the global trigger, the BA achieved by the global trigger

is even larger than that by the local triggers. One possible reason

could be that the federated training might memorize the combined

effect of local triggers. This phenomenon further reinforces the

FedGL framework is more vulnerable to distributed backdoors.

4.2.3 Persistence and stealthiness of the triggers. In this experiment,

we explore the persistence and stealthiness of the backdoor triggers

generated by our Opt-GDBA.

(Persistence) Finetuning the backdoored FedGL model with
clean graphs cannot remove the backdoor effect: A straight-

forward strategy to mitigate the backdoor effect is to finetune the

FedGL model only with clean graphs. To simulate this, we extend

the FedGL training with an extra 200 iterations (e.g., from 200 to

400) which only involves training with clean graphs. Table 4 shows

the results. We can see the BA with finetuning is close to that with-

out finetuing in all 𝜌 and when the trigger node size is not large

(i.e., 𝑛𝑡𝑟𝑖 = 3, 4). This shows the backdoor effect is persistent.

(Stealthiness) Similarity between the backdoored graphs and
clean graphs is large:We further quantitatively compare the struc-

ture similarity between the generated backdoored graphs and the

clean graphs, where we use the metrics NetSim and DeltaCon pro-

posed in [73]. Table 3 shows the similarity results over all training

graphs. We observe the backdoored graphs and their clean counter-

parts are structurally close (except BITCOIN where one possible

reason could be the BITCOIN graph is very sparse).

The above results imply that empirical defenses based on fine-

tuning and structure similarity test are hard to detect or remove

the backdoor trigger. Also, empirical defenses are always broken by

advanced/adaptive attacks [94]. Hence, it is necessary to develop

certified defenses for backdoored FedGL. More details see Section 5.

4.2.4 Ablation study. In this experiment, we examine the contribu-

tion of each module in our trigger generator. The modules include

Trigger-Location (based on the Edge-View module), Trigger-Shape,

Customized-Trigger, and Definable-Trigger. For simplicity, we test

on BITCOIN, and the other datasets show similar observations. The

results are summarized in Table 5 with 𝜌 = 20%, and 𝑛𝑡𝑟𝑖 = 4 in

Definable-Trigger and 𝑛∗
𝑡𝑟𝑖

= 5 in Customized-Trigger.

(a) The whole generator as a reference. (b) We exclude only

the Edge-View sub-module in Trigger-Location, indicating that

trigger locations in graphs are computed solely based on the rank

of the node features. (c)We remove Trigger-Location and decide

the trigger location in each graph randomly. Compared with (a), the
significant BA reductions of 16% for Customized-Trigger, and 15%

and 18% for Definable-Trigger in (b) and (c) demonstrate that the

Trigger-Location module excels at selecting important nodes in the

graphs. (d)We remove Trigger-Shape and use the ER model [18]

to decide the trigger shape. The reductions of 27% and 22% in

BA underscore the superior effectiveness of our Trigger-Shape

module in learning trigger shapes. (e) We remove both the Trigger-

Shape and Trigger-Location modules, resorting to a randommethod

for trigger location selection and an ER model for trigger shape

determination. The substantial 36% reduction in BA proves the

strong competition of our method for backdoor attacks on FedGL.

5 Certified Defense for FedGL
In this section, we design certified defenses for (backdoored) FedGL.

Suppose we have learnt a backdoored FedGL for graph classification.

We aim to build a certifiably robust defense mechanism such that

the graph classifier: 1) provably predicts the correct label for clean

testing graphs injected with arbitrary trigger with a bounded size;

and 2) provably predicts a non-target label for backdoored testing

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 6: Comparing the backdoor performance with global trigger vs. local triggers generated by malicious clients.

Table 3: Structure similarity between the generated backdoored graphs by our Opt-GDBA and the clean graphs.

Datasets BITCOIN MUTAG PROTEINS DD COLLAB RDT-M5K

𝑛𝑡𝑟𝑖 (𝑛∗𝑡𝑟𝑖) 3 4 5 5
∗

3 4 5 5
∗

3 4 5 5
∗

3 4 5 5
∗

3 4 5 5
∗

3 4 5 5
∗

NetSim (↑) 0.73 0.55 0.52 0.54 0.99 0.90 0.82 0.87 0.93 0.88 0.80 0.86 1.00 0.99 0.99 0.99 1.00 0.99 0.99 0.99 0.99 0.98 0.97 0.98

DeltaCon (↑) 0.80 0.65 0.63 0.64 0.96 0.93 0.89 0.92 0.95 0.94 0.89 0.91 1.00 0.99 0.99 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.98 0.98

Table 4: Finetuning the backdoored FedGL model by extend-
ing the training on clean graphs.

Datasets 𝜌 10% 20% 30%

𝑛𝑡𝑟𝑖 3 4 5 3 4 5 3 4 5

BITCOIN BA 0.97 0.99 0.98 0.99 0.99 0.99 0.99 1.00 0.95

BA-FT 0.95 0.97 0.96 0.94 0.95 0.96 0.96 0.95 0.73

MUTAG BA 0.83 0.84 0.82 0.87 0.85 0.86 0.95 0.97 0.94

BA-FT 0.82 0.82 0.81 0.85 0.84 0.84 0.92 0.92 0.65

PROTEINS BA 0.82 0.91 0.88 0.87 0.92 0.90 0.94 0.94 0.96

BA-FT 0.77 0.90 0.82 0.87 0.89 0.76 0.94 0.92 0.65

DD BA 0.78 0.77 0.80 0.76 0.78 0.87 0.83 0.80 0.92

BA-FT 0.70 0.74 0.76 0.72 0.76 0.84 0.75 0.73 0.61

COLLAB BA 0.80 0.80 0.82 0.81 0.84 0.85 0.85 0.90 0.91

BA-FT 0.79 0.77 0.80 0.79 0.81 0.80 0.82 0.85 0.77

RDT-M5K BA 0.88 0.90 0.85 0.87 0.89 0.90 0.90 0.89 0.92

BA-FT 0.87 0.85 0.72 0.85 0.94 0.75 0.88 0.86 0.60

Table 5: Impact of different modules in our adaptive trig-
ger generator on the (MA/BA) performance on Bitcoin. T-L:
Trigger-Location; T-S: Trigger-Shape; E-V: Edge-View; Cus-T:
Customized-Trigger; Def-T: Definable-Trigger.

Models T-L T-S T-L w/o E-V Cus-T Def-T

(a) ✓ ✓ 0.72 / 0.99 0.72 / 0.99
(b) ✓ ✓ 0.72 / 0.83 0.72 / 0.84

(c) ✓ - 0.71 / 0.81

(d) ✓ 0.72 / 0.72 0.72 / 0.77

(e) - 0.71 / 0.63

graphs. This has the implication that benign clients’ performance

are provably kept, while the malicious clients’ backdoored effect

are provably removed during testing.

Figure 7: Overview of our proposed certified defense.

Our defense includes three key steps: 1) dividing a (clean or

backdoored) testing graph into multiple subgraphs; 2) building a

majority vote-based ensemble graph classifier on the subgraphs;

and 3) deriving the robustness guarantees of the ensemble graph

classifier against arbitrary trigger. Figure 7 overviews our defense.

5.1 Graph Division into Subgraphs
Recall that a backdoor attack can arbitrarily perturb the edges E
and node features X in a graph𝐺 = (V, E,X) as the trigger can be

put in any location with any shape. To defend against this attack,

our main idea is to design a deterministic function ℎ2 to divide 𝐺

into different subgraphs, such that each edge and node (feature) in

𝐺 is deterministically mapped into only one subgraph.

Hash function as the mapping:We use the cryptographic hash

function (e.g., MD5) as our mapping function. It takes input as a

bit string and outputs an integer (e.g., 128-bit long with the integer

2
We emphasize that the function should be independent of the graph structure and

node features. Otherwise, an attacker may possibly “reverse engineer” the function to

find the relation between the output and input.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

range [0, 2128 − 1]). Here, we propose to use node indexes and

stringify them as the input to the hash function. For instance, for a

node 𝑣 , we denote its string as str(𝑣). Given the str(𝑣) of every node
𝑣 ∈ V , we propose mapping the nodes and edges using the hash

function ℎ and dividing a graph 𝐺 into multiple (e.g., 𝑇) subgraphs.

Node feature and edge division: First, we divide node features
into 𝑇 groups using the hash function ℎ. Specifically, we compute

the hash value

(
ℎ[str(𝑢)]mod𝑇 + 1

)
for every node 𝑢 ∈ V , where

mod is the modulo function. We use V𝑡
to denote the set of nodes

whose group index is 𝑡 , i.e., V𝑡 = {𝑢 ∈ V | ℎ[str(𝑢)] = 𝑡}, 𝑡 =

1, 2, · · ·𝑇 . Correspondingly, we use X𝑡 ∈ R |V |×𝑑
to denote the

node features in the 𝑡th group. With such grouping, we observe

that nodes not in the 𝑡th group do not have features in X𝑡 . To
mitigate this, we simply set features of these nodes to be zeros. I.e.,

X𝑡𝑣 = X𝑣 , if 𝑣 ∈ V𝑡
; and X𝑡𝑣 = 0, otherwise.

Next, we divide edges into 𝑇 groups. Specifically, we compute

ℎ[str(𝑢) + str(𝑣)]mod𝑇 + 1 for every edge (𝑢, 𝑣) ∈ E, 𝑢 ≤ 𝑣 , where

“+” means the string concatenation. We then let ℎ[str(𝑣) + str(𝑢)] =
ℎ[str(𝑢) + str(𝑣)]. This is to ensure an undirected edge has a same

hash value. We use E𝑡 to denote the set of edges whose group index
is 𝑡 , i.e., E𝑡 = {(𝑢, 𝑣) ∈ E | ℎ[str(𝑢) + str(𝑣)] = 𝑡}.

Then, we construct 𝑇 subgraphs, i.e., 𝐺𝑡 = (V, E𝑡 ,X𝑡) with
𝑡 = 1, 2, · · · ,𝑇 , for a graph 𝐺 . Notice the node features and edges

are non-overlapped between different subgraphs. That is, X𝑖 ∩X𝑗 =
∅, E𝑖 ∩ E 𝑗 = ∅,∀𝑖, 𝑗 ∈ {1, 2, · · · ,𝑇 }, 𝑖 ≠ 𝑗 . This is a requirement

to enable deriving our robustness guarantee. Note also that the

subgraph does not need to be connected, as a graph classifier can

still predict a label for a graph with disconnected components.

5.2 Majority Vote-based Ensemble Classifier
Let the backdoored graph classifier be 𝑓𝐵 . Given a clean testing

graph 𝐺 (with true label 𝑦), we construct 𝑇 subgraphs {𝐺𝑡 } using
our graph division strategy and introduce a majority vote-based

ensemble graph classifier 𝑔𝐵 to classify these 𝑇 subgraphs. Specif-

ically, we denote by 𝑇𝑙 the number of subgraphs classified as the

label 𝑙 by 𝑓𝐵 , i.e., 𝑇𝑙 =
∑𝑇
𝑡=11(𝑓𝐵 (𝐺𝑡) = 𝑙). Then, we define 𝑔𝐵 as:

𝑔𝐵 (𝐺) = argmax𝑙∈Y 𝑇𝑙 , (10)

which returns a smaller index when ties exist. Let 𝑦 = 𝑔𝐵 (𝐺) by as-

suming the ensemble classifier accurately predicts the clean graph.

Similarly, for a backdoored testing graph 𝐺𝐵 (with the target

label 𝑦𝐵), we construct 𝑇 subgraphs {𝐺𝑡
𝐵
} using the graph division

strategy and denote by 𝑇𝑙𝐵 the number of subgraphs classified as

the label 𝑙𝐵 by 𝑓𝐵 , i.e., 𝑇𝑙𝐵 =
∑𝑇
𝑡=11(𝑓𝐵 (𝐺𝑡𝐵) = 𝑙𝐵). Then, we have:

𝑔𝐵 (𝐺𝐵) = argmax𝑙𝐵 ∈Y 𝑇𝑙𝐵 . (11)

Likewise, we let 𝑦𝐵 = 𝑔𝐵 (𝐺𝐵) by assuming the backdoored testing

graph successfully triggers the backdoor.

5.3 Certified Robustness Guarantees
With our graph division strategy and ensemble classifier, we can

derive the robustness guarantee for clean graphs against backdoor

trigger and backdoored graphs. Proofs are in the full report.

5.3.1 Certified robustness w.r.t. clean graph. Assume we have a

backdoored graph 𝐺̃ generated from the clean graph 𝐺 . We use

𝐺̃1, 𝐺̃2, · · · , 𝐺̃𝑇 to denote the 𝑇 subgraphs from 𝐺̃ via the graph

division strategy. Moreover, we denote by 𝑇𝑙 =
∑𝑇
𝑡=1 1(𝑓𝐵 (𝐺̃𝑡) =

𝑙),∀𝑙 ∈ Y, and 𝑔𝐵 (𝐺̃) = argmax𝑙∈Y 𝑇𝑙 . We aim to ensure 𝑔𝐵 (𝐺) =
𝑔𝐵 (𝐺̃) when the perturbation size induced by the backdoor trigger

is bounded by a threshold (call certified perturbation size), where
the perturbation size is defined as the sum of the perturbed number

of nodes (whose features can be arbitrarily modified) and edges

w.r.t. 𝐺 . Formally, we state the theorem below:

Theorem 1 (Certified perturbation size w.r.t. clean graph).

Given a backdoored graph classifier 𝑓𝐵 and our ensemble graph clas-
sifier 𝑔𝐵 . Given a clean testing graph 𝐺 with a label 𝑦 and its 𝑇
subgraphs {𝐺𝑡 }𝑇

𝑡=1
produced by our graph division strategy. Suppose

𝑇𝑦 and 𝑇𝑧 are the largest and second largest frequency outputted by
𝑓𝐵 on predicting {𝐺𝑡 }𝑇

𝑡=1
. Let𝑚 be the perturbation size induced by

an arbitrary backdoor trigger and the respective backdoored graph is
𝐺̃ . Then 𝑔𝐵 (𝐺) = 𝑔𝐵 (𝐺̃) = 𝑦, when𝑚 satisfies:

𝑚 ≤ 𝑚∗ = ⌊
𝑇𝑦 −𝑇𝑧 + 1(𝑦 < 𝑧) − 1

2

⌋ . (12)

We have below remarks of the theoretical result from Theorem 1:

• It can be applied for any backdoored FedGL model.

• It holds for any backdoored attack with a trigger that arbitrarily

perturbs𝑚∗
edges and nodes.

• It does not restrict the trigger to be connected.

• The robustness guarantee is true with a probability 100%.

Next, we further show our certified robustness guarantee is tight.

Theorem 2 (Tightness of𝑚∗
). For any𝑚 satisfying𝑚 > 𝑚∗,

there exists a base classifier 𝑓 ′
𝐵
≠ 𝑓𝐵 that will make 𝑔𝐵 misclassify 𝐺̃ .

That being said, it is impossible to derive a larger certified perturbation
size than𝑚∗ in Theorem 1, without using extra information on 𝑓𝐵 .

5.3.2 Certified robustness w.r.t. backdoored graphs. For a back-

doored graph 𝐺𝐵 , we consider its robustness against our defense

strategy. We have the below theorem.

Theorem 3 (Certified (non-)backdoored graph). Let 𝑓𝐵 and
𝑔𝐵 be defined as Theorem 1. Given a backdoored testing graph𝐺𝐵 with
a target label 𝑦𝐵 and its𝑇 subgraphs {𝐺𝑡

𝐵
}𝑇
𝑡=1

produced by our graph
division. Let 𝑇𝑦𝐵 and 𝑇𝑧𝐵 be the largest and second largest frequency
outputted by 𝑓𝐵 on predicting {𝐺𝑡

𝐵
}𝑇
𝑡=1

. Then if 𝑇𝑦𝐵 > 𝑇𝑧𝐵 − 1(𝑦𝐵 <

𝑧𝐵), 𝐺𝐵 is a certified backdoored graph for our defense, otherwise it
is a certified non-backdoored graph.

A certified backdoored graph means it provably evades our de-

fense, while a certified non-backdoored graph means our defense

provably predicts it as a non-target label.

6 Certified Defense Results
6.1 Experimental Setup
Parameter setup: We first train the backdoored FedGL model un-

der our Opt-DGBA (with a specified 𝜌 , 𝑛𝑡𝑟𝑖 in Definable-Trigger

or 𝑛∗
𝑡𝑟𝑖

in Customized-Trigger). The trained backdoored graph clas-

sifier 𝑓𝐵 is then for both normal testing (i.e., on cleaning testing

graphs) and backdoor testing (i.e., on the backdoored testing graphs

generated by our Opt-GBA). Here, we only select successfully back-

doored testing graphs for evaluation. Unless otherwise specified,

we use 𝜌 = 20%, 𝑛𝑡𝑟𝑖 = 4, or 𝑛∗
𝑡𝑟𝑖

= 5.

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Figure 8: Certified MA vs.𝑇 . 100 testing graphs are randomly sampled (and all testing graphs in MUTAG) for evaluation. Normal
MA (under no attack and defense) is also reported for reference.

Figure 9: Certified MA vs. 𝑇 , where we finetune the backdoored FedGL model with augmented subgraphs that are generated
from the benign clients’ training graphs.

To apply our defense, for each (clean/backdoored) testing graph,

we use our graph division strategy to divide it into 𝑇 subgraphs

and majority vote-based ensemble classifier 𝑔𝐵 to predict these

subgraphs. The key hyperparameter in our defense is the number

of subgraphs 𝑇 . By default we set 𝑇 = 30. We also test its impact

on the defense performance.

Evaluation metrics:We use the certified accuracy [5, 55, 64] on

the testing graphs for evaluation.

• Certified MA at perturbation size𝑚: the fraction of the clean

testing graphs that are provably classified as the true label against

an arbitrary trigger whose size is𝑚.

• Certified BA: the fraction of the backdoored testing graphs that

are provably classified as the target label against our defense.

6.2 Experimental Results
6.2.1 Results on certified MA. In this experiment we show the

results on certifiedMA against the backdoored FedGLmodel trained

under our Opt-GDBA. More results are shown in the full report.
Certified MA vs. 𝑇 : Figure 8 shows the certified MA at perturba-

tion size𝑚 vs. different 𝑇 , where we test on all 63 testing graphs

in MUTAG and randomly sampled 100 testing graphs in the other

datasets. For reference, we also report the normal MA without our

defense. In general, we observe our defense is provably more ro-

bust (i.e., larger certified MA with larger certified perturbation size)

when 𝑇 is larger. For instance, on BITCOIN, when 𝑇 = 30, 50, certi-

fied MA are 44% and 58% with𝑚 = 13, and the maximum certified

perturbation size are𝑚∗ = 13 and 23, respectively. The reason is

our majority vote-based ensemble classifier could tolerate more

perturbed subgraphs when 𝑇 increases. As an arbitrary node/edge

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

Figure 10: Certified MA vs. ratio 𝜌 of malicious clients (𝑇 = 30, 𝑛𝑡𝑟𝑖 = 4)

Figure 11: Certified MA vs. trigger node size 𝑛𝑡𝑟𝑖 (𝑇 = 30, 𝜌 = 20%).

perturbation induced by the trigger can affect at most one clean

subgraph’s prediction, a larger𝑇 implies being robust to a larger𝑚.

Though effective, we still see a large gap between certified MA

and normal MA on datasets such as MUATG and PROTEINS. This

is due to the number of accurately predicted subgraphs (i.e, 𝑇𝑦 in

Equation (12)) after graph division is not large enough on these

datasets. We note that the backdoored FedGL training only uses the

whole training graph. To enhance the certified MA, we propose to

finetune the backdoored FedGL model with extra subgraphs created

from benign clients’ training graphs. Specifically, in each benign

client, we use 𝑇 = {10, 20, ..., 50} to generate a set of subgraphs

for each training graph and pick one subgraph from each 𝑇 . These

subgraphs have the same label as the raw graph. Figure 9 shows the

results. We observe the finetuned model with clean subgraphs yield

a significantly higher certified MA on the relatively sparser/smaller

datasets (e.g., BITCOIN, MUTAG, and PROTEINS). This implies the

finetuned model learns a correct mapping between the subgraphs

and the true label, and hence improves the accuracy of subgraphs

created from the testing graphs. In contrast, we see a drop of cer-

tified MA on relatively denser/larger datasets (e.g., DD, COLLAB,

and RDT-M5K). This is possibly because the finetuned model is

hard to associate both the large dense graphs and their generated

much smaller and sparser subgraphs with the true label.

The above results suggest that, in practice, to enhance the cer-

tified MA of a backdoored FedGL model, we could augment the

training graphs with their subgraphs on small/sparse datasets, but

may not on large/denser datasets.

Certified MA vs. 𝜌: In this experiment, we assess the defense

performance on Opt-GDBA attacked FedGL models with varying 𝜌

of malicious clients. Figure 10 shows the results with 𝑇 = 30 and

𝑛𝑡𝑟𝑖 = 4. We observe the certifiedMA and certified perturbation size

are similar with different 𝜌’s (except a slight drop when 𝜌 = 30%).

This is primarily because the Opt-GDBA’s MA and BA are relatively

stable across different 𝜌 , as shown in Table 1. This ensures the

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 6: Certified BA and MA of backdoored graphs under
our defense (in all 𝑇 , 𝜌 , and 𝑛𝑡𝑟𝑖).

Datasets BITCOIN MUTAG PROTEINS DD COLLAB RDT

Certified BA 0 0 0 0 0 0

MA 1.00 1.00 1.00 1.00 0.96 0.92

number of correctly predicted subgraphs via our ensemble classifier

is also close in different 𝜌’s, and so do the certified MA and certified

perturbation size.

CertifiedMA vs.𝑛𝑡𝑟𝑖 : This experiment explores the defense perfor-

mancewith varying trigger node sizes used byOpt-GDBA. Figure 11

shows the results. Similarly, our defense achieves similar certified

MA in general, with large 𝑛𝑡𝑟𝑖 slightly reduces the certified MA.

6.2.2 Results on certified BA. In this experiment, we evaluate the

robustness of the backdoored testing graphs generated by our Opt-

GDBA under our defense. Table 6 shows the results of certified

BA. We observe the certified BA is 0 in all 𝑇 , 𝜌 , and 𝑛𝑡𝑟𝑖 . Recall

our graph division strategy ensures the divided subgraphs have

non-overlapping edges and node features. The above results can

be attributed to two aspects: the trigger in the backdoored testing

graph is separated into: 1) a few subgraphs that are still classified

as the target label, but the other majority subgraphs are mostly

classified as a non-target label (actually the true label in most cases);

or 2) a large number of the subgraphs that makes it difficult to form

any effective trigger in the subgraphs. In either case, the number

of successful backdoored subgraphs is a minority. Hence, with the

majority voting, all the backdoored testing graphs are misclassified

as a non-target label. The results imply the backdoored testing

graphs generated by our Opt-GDBA are completely broken by our

graph division + ensemble classifier based defense.

We also calculateMAon the generated backdoored graphs (which

have correct predictions without backdoor) under our defense. We

obtain ≥ 92% MA in all datasets, where 4 datasets are 100%. This
means our defense does not/marginally affect clean labels, so the
FedGL’s utility is still maintained. This is because the proposed

defense is mainly designed to affect the backdoored effect in the

backdoored subgraphs, but not affect the utility of clean subgraphs.

7 Related Work
Backdoor attacks on centralized learning for non-graph data
and defenses: Extensive works have shown centralized machine

learning models for non-graph data, such as image [10, 11, 22, 36, 40,

53, 59, 62, 72, 89], text [9, 15, 45, 48, 87], audio [17, 23, 50, 56], and

video [83, 96], are vulnerable to backdoor attacks. A backdoored

model produces attacker-desired behaviors when the same trigger is

injected into testing data. Gu et al. [22] proposed the first backdoor

attack, called BadNet, on image classifiers. The attack injects a

trigger (e.g., a sticker with yellow square) into “STOP” sign from

the U.S. stop signs database and changes their labels to the “SPEED”

sign. The trained backdoored image classifier then predicts a “STOP”

sign with the same sticker trigger to be the “SPEED” sign.

Many empirical defenses [10, 16, 24, 38–40, 44, 66, 68] have been

proposed tomitigate backdoor attacks. For instance,Wang et al. [66]

proposed Neural Cleanse to detect and reverse engineer the trigger.

However, all these defenses are broken by adaptive attacks [71].

These two works [63, 71] proposed provable defenses against back-

door attacks in the image domain. However, they are shown to have

insufficient effectiveness against backdoor attacks. In addition, they

cannot be applied to inputs with different sizes.

Backdoor attacks on federated learning for non-graph data
and defenses: Backdoor attacks on FL are categorized as central-

ized backdoor attack (CBA) [4, 21, 67, 95], where all malicious clients

use a shared trigger, and distributed backdoor attack (DBA) [79],

where each malicious client uses its own defined trigger. For in-

stance, Bagdasaryan et al. [2] designed the first CBA via model

replacement. Inspired by the distributed learning property of FL,

Xie et al. [79] designed the first DBA which is shown to be more

persistent and stealthy than CBAs on FL.

Many empirical defenses [7, 42, 43, 49, 57, 93] have been pro-

posed, and can be performed in the FL stage of pre-aggregation [42,

49], in-aggregation [43, 57, 93], and post-aggregation [7]. How-

ever, they can only defend against known attack techniques, and

an adversary aware of the existence of these defenses can break

them [67]. Existing certified defenses [6, 8, 78, 80] for FL can only

tolerate a very small number of malicious clients and/or incur a

large computation/communication cost for clients.

Backdoor attacks on centralized graph learning and defenses:
Unlike non-graph data that can be represented via Cartesian coor-

dinates and have fixed input size, graphs cannot do so and different

graphs often have varying sizes, making the trigger hard to be

defined. To address this, two recent works [76, 94] propose to use

subgraph as a trigger. Zhang et al. [94] use a random subgraph as

the trigger shape, which is generated by random graph genera-

tion models (such as the Erdős-Rényi [18], Small World [70], and

Preferential Attachment [3]), and pick random nodes as the trigger

location. Instead of using a random trigger shape, Xi et al. [76] de-

signed a trigger generator to learn to generate the trigger shape for

each graph using its edge and node feature information. However,

the trigger randomly chooses nodes as the trigger location.

Zhang et al. [94] proposed a certified defense for a backdoored

graph classifier by extending randomized ablation [35] for image

classifiers. Specifically, they built a randomized subgraph sampling

based defense mechanism to ensure the backdoored graph classifier

provably predicts the same label for a testing graph if the injected

trigger has a size less than a threshold. However, their defense is

limited to edge perturbation and their robustness guarantee could

be incorrect with a certain probability.

Backdoor attacks on federated graph learning: Xu et al. [84]

is the only work studying backdoor attacks on FedFL. It is inspired

by [79, 94] with random subgraph as a trigger. We showed their

backdoor performance is not good enough with a smaller trigger.

Majority-voting based ensemble for certified defenses: The
key insight of this type of defense is to ensure only a bounded

number of corrupted votes/predictions (each prediction is treated

as a vote) are changed with a bounded adversarial perturbation.

This idea has been used in certified defenses against adversarial

patch attacks [33, 77], data poisoning attacks [30, 31, 34], and oth-

ers [28, 46, 92]. The key difference among these methods is that they

create problem-dependent voters for the majority vote. A closely

relevant work to ours is [88], but they have two key differences.

First, the studied problem is different. [88] proposes a majority-

voting strategy for GL to defend against evasion attacks, while ours

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang

for FedGL to defend against distributed backdoor attacks. Second,

the graph division strategy is different. [88] divides a graph into

overlapped subgraphs, which facilitates deriving the robustness

guarantee against graph perturbation or node (feature) perturba-
tion, but not both. Instead, our method can concurrently defend

against both graph and node (feature) perturbations.

8 Conclusion
We study the robustness of FedGL from both the attacker’s and

defender’s perspective. We first design an effective, stealthy, and

persistent DBA on FedGL. Instead of using a random (centralized or

distributed) trigger that is injected into random position in a graph,

our attack develops a trigger generator that adaptively learns the

important trigger location and shape per backdoored graph. Our

attack results show existing empirical defenses based on backdoor

detection or removal are ineffective. Then, we further develop a cer-

tified defense for backdoored FedGL model based on graph division

and majority vote-based ensemble. We derive the certified robust-

ness as well as its tightness w.r.t. clean graphs against arbitrary

trigger and backdoored graphs generated by our attack.

Acknowledgments
We thank all anonymous reviewers for the constructive comments.

Li is partially supported by the National Natural Science Foundation

of China under Grant No. 62072208, Key Research and Development

Projects of Jilin Province under Grant No. 20240302090GX. Hong is

partially supported by the National Science Foundation under grant

Nos. CNS-2302689, CNS-2308730, CNS-2319277 and CMMI-2326341.

Wang is partially supported by the National Science Foundation

under grant Nos. ECCS-2216926, CNS-2241713, CNS-2331302 and

CNS-2339686. Any opinions, findings and conclusions or recom-

mendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the funding agencies.

References
[1] Jinheon Baek, Wonyong Jeong, Jiongdao Jin, Jaehong Yoon, and Sung Ju Hwang.

2023. Personalized subgraph federated learning. In ICML.
[2] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly

Shmatikov. 2020. How to backdoor federated learning. In AISTATS.
[3] Albert-László Barabási and Réka Albert. 1999. Emergence of scaling in random

networks. science (1999).
[4] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo.

2019. Analyzing federated learning through an adversarial lens. In ICML.
[5] Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Günnemann. 2020.

Efficient robustness certificates for discrete data: Sparsity-aware randomized

smoothing for graphs, images and more. In ICML.
[6] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2021. Provably secure

federated learning against malicious clients. In AAAI, Vol. 35. 6885–6893.
[7] Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhenqiang Gong. 2023. Fedrecover:

Recovering from poisoning attacks in federated learning using historical infor-

mation. In IEEE Symposium on Security and Privacy (SP).
[8] Xiaoyu Cao, Zaixi Zhang, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. Flcert:

Provably secure federated learning against poisoning attacks. IEEE Transactions
on Information Forensics and Security 17 (2022), 3691–3705.

[9] Kangjie Chen, Yuxian Meng, Xiaofei Sun, Shangwei Guo, Tianwei Zhang, Jiwei

Li, and Chun Fan. 2022. BadPre: Task-agnostic Backdoor Attacks to Pre-trained

NLP Foundation Models. In ICLR.
[10] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted

backdoor attacks on deep learning systems using data poisoning. arXiv (2017).

[11] Joseph Clements and Yingjie Lao. 2018. Hardware trojan attacks on neural

networks. arXiv preprint arXiv:1806.05768 (2018).
[12] Thomas G Dietterich. 2000. Ensemble methods in machine learning. In Interna-

tional workshop on multiple classifier systems. Springer, 1–15.

[13] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent,

Yoshua Bengio, and Xavier Bresson. 2023. Benchmarking Graph Neural Networks.

Journal of Machine Learning Research 24, 43 (2023), 1–48.

[14] FedML supports several out-of-the-box deep learning algorithms for various data

types, such as tabular, text, image, graphs, and Internet of Things (IoT) data. [n. d.].

https://aws.amazon.com/blogs/machine-learning/part-2-federated-learning-

on-aws-with-fedml-health-analytics-without-sharing-sensitive-data/.

[15] Leilei Gan, Jiwei Li, Tianwei Zhang, Xiaoya Li, Yuxian Meng, Fei Wu, Yi Yang,

Shangwei Guo, and Chun Fan. 2022. Triggerless Backdoor Attack for NLP Tasks

with Clean Labels. In ACL-HLT.
[16] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C Ranasinghe,

and Surya Nepal. 2019. Strip: A defence against trojan attacks on deep neural

networks. In ACSAC.
[17] Yunjie Ge, Qian Wang, Jiayuan Yu, Chao Shen, and Qi Li. 2023. Data Poisoning

and Backdoor Attacks on Audio Intelligence Systems. IEEE Communications
Magazine (2023).

[18] Edgar N Gilbert. 1959. Random graphs. The Annals of Mathematical Statistics 30,
4 (1959), 1141–1144.

[19] Michelle Goddard. 2017. The EU General Data Protection Regulation (GDPR):

European regulation that has a global impact. International Journal of Market
Research 59, 6 (2017), 703–705.

[20] Xueluan Gong, Yanjiao Chen, Jianshuo Dong, and Qian Wang. 2022. ATTEQ-NN:

Attention-based QoE-aware Evasive Backdoor Attacks.. In NDSS.
[21] Xueluan Gong, Yanjiao Chen, Qian Wang, and Weihan Kong. 2022. Backdoor

attacks and defenses in federated learning: State-of-the-art, taxonomy, and future

directions. IEEE Wireless Communications (2022).
[22] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying

vulnerabilities in the machine learning model supply chain. In Proc. of Machine
Learning and Computer Security Workshop.

[23] Hanqing Guo, Xun Chen, Junfeng Guo, Li Xiao, and Qiben Yan. 2023. MAS-

TERKEY: Practical Backdoor Attack Against Speaker Verification Systems. In

Annual International Conference on Mobile Computing and Networking. 1–15.
[24] Wenbo Guo, Lun Wang, Xinyu Xing, Min Du, and Dawn Song. 2019. Tabor:

A highly accurate approach to inspecting and restoring trojan backdoors in ai

systems. arXiv preprint arXiv:1908.01763 (2019).
[25] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NIPS.
[26] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao

Sun, Lifang He, Liangwei Yang, Philip S Yu, Yu Rong, et al. 2021. Fedgraphnn:

A federated learning system and benchmark for graph neural networks. arXiv
(2021).

[27] Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and

SalmanAvestimehr. 2022. Spreadgnn: Decentralizedmulti-task federated learning

for graph neural networks on molecular data. In AAAI.
[28] Hanbin Hong, Binghui Wang, and Yuan Hong. 2022. Unicr: Universally approxi-

mated certified robustness via randomized smoothing. In ECCV.
[29] How AWS uses graph neural networks to meet customer needs . [n. d.].

https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-

meet-customer-needs/.

[30] Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. 2021. Intrinsic certified

robustness of bagging against data poisoning attacks. In AAAI.
[31] Jinyuan Jia, Yupei Liu, Xiaoyu Cao, and Neil Zhenqiang Gong. 2022. Certified

robustness of nearest neighbors against data poisoning and backdoor attacks. In

AAAI.
[32] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[33] Alexander Levine and Soheil Feizi. 2020. (De) Randomized smoothing for certifi-

able defense against patch attacks. In NeurIPS.
[34] Alexander Levine and Soheil Feizi. 2020. Deep Partition Aggregation: Provable

Defenses against General Poisoning Attacks. In ICLR.
[35] Alexander Levine and Soheil Feizi. 2020. Robustness certificates for sparse

adversarial attacks by randomized ablation. In AAAI.
[36] Wenshuo Li, Jincheng Yu, Xuefei Ning, Pengjun Wang, Qi Wei, Yu Wang, and

Huazhong Yang. 2018. Hu-fu: Hardware and software collaborative attack frame-

work against neural networks. In ISVLSI. IEEE.
[37] Wenlong Liao, Birgitte Bak-Jensen, Jayakrishnan Radhakrishna Pillai, Yuelong

Wang, and Yusen Wang. 2021. A review of graph neural networks and their

applications in power systems. Journal of Modern Power Systems and Clean Energy
(2021).

[38] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2018. Fine-pruning: De-

fending against backdooring attacks on deep neural networks. In RAID.
[39] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and

Xiangyu Zhang. 2019. ABS: Scanning neural networks for back-doors by artificial

brain stimulation. In SIGSAC.
[40] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, WeihangWang,

and Xiangyu Zhang. 2018. Trojaning attack on neural networks. In NDSS.
[41] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-

works from decentralized data. In Artificial intelligence and statistics.

https://aws.amazon.com/blogs/machine-learning/part-2-federated-learning-on-aws-with-fedml-health-analytics-without-sharing-sensitive-data/
https://aws.amazon.com/blogs/machine-learning/part-2-federated-learning-on-aws-with-fedml-health-analytics-without-sharing-sensitive-data/
https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-meet-customer-needs/
https://www.amazon.science/blog/how-aws-uses-graph-neural-networks-to-meet-customer-needs/

Distributed Backdoor Attacks on Federated Graph Learning and Certified Defenses CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[42] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering,

Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza

Zeitouni, et al. 2022. FLAME: Taming Backdoors in Federated Learning. In 31st
USENIX Security Symposium.

[43] Mustafa Safa Ozdayi, Murat Kantarcioglu, and Yulia R Gel. 2021. Defending

against backdoors in federated learning with robust learning rate. In AAAICon-
ference on Artificial Intelligence. 9268–9276.

[44] Soumyadeep Pal, Ren Wang, Yuguang Yao, and Sijia Liu. 2023. Towards Under-

standing How Self-training Tolerates Data Backdoor Poisoning. arXiv preprint
arXiv:2301.08751 (2023).

[45] Xudong Pan, Mi Zhang, Beina Sheng, Jiaming Zhu, and Min Yang. 2022. Hidden

trigger backdoor attack on {NLP} models via linguistic style manipulation. In

31st USENIX Security Symposium (USENIX Security 22).
[46] Hengzhi Pei, Jinyuan Jia, Wenbo Guo, Bo Li, and Dawn Song. 2023. Textguard:

Provable defense against backdoor attacks on text classification. In NDSS.
[47] Liang Peng, Nan Wang, Nicha Dvornek, Xiaofeng Zhu, and Xiaoxiao Li. 2022.

Fedni: Federated graph learning with network inpainting for population-based

disease prediction. IEEE Transactions on Medical Imaging (2022).

[48] Fanchao Qi, Mukai Li, Yangyi Chen, Zhengyan Zhang, Zhiyuan Liu, Yasheng

Wang, and Maosong Sun. 2021. Hidden Killer: Invisible Textual Backdoor Attacks

with Syntactic Trigger. In ACL.
[49] Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza Sadeghi.

2022. Deepsight: Mitigating backdoor attacks in federated learning through deep

model inspection. arXiv preprint arXiv:2201.00763 (2022).
[50] Nirupam Roy, Haitham Hassanieh, and Romit Roy Choudhury. 2017. Backdoor:

Making microphones hear inaudible sounds. In Annual International Conference
on Mobile Systems, Applications, and Services.

[51] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. 2020. Hidden

trigger backdoor attacks. In AAAI.
[52] Sina Sajadmanesh and Daniel Gatica-Perez. 2021. Locally private graph neural

networks. In CCS.
[53] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang. 2022.

Dynamic Backdoor Attacks Against Machine Learning Models. In EuroSP.
[54] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele

Monfardini. 2008. The graph neural network model. IEEE transactions on neural
networks 20, 1 (2008), 61–80.

[55] Yan Scholten, Jan Schuchardt, Simon Geisler, Aleksandar Bojchevski, and Stephan

Günnemann. 2022. Randomized message-interception smoothing: Gray-box

certificates for graph neural networks. NeurIPS (2022).
[56] Cong Shi, Tianfang Zhang, Zhuohang Li, Huy Phan, Tianming Zhao, Yan Wang,

Jian Liu, Bo Yuan, and Yingying Chen. 2022. Audio-domain position-independent

backdoor attack via unnoticeable triggers. In Proceedings of the 28th Annual
International Conference on Mobile Computing And Networking.

[57] Ziteng Sun, Peter Kairouz, Ananda Theertha Suresh, and H Brendan McMahan.

2019. Can you really backdoor federated learning? arXiv (2019).

[58] Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang.

2023. Federated learning on non-iid graphs via structural knowledge sharing. In

AAAI.
[59] Guanhong Tao, Zhenting Wang, Shiwei Feng, Guangyu Shen, Shiqing Ma, and

Xiangyu Zhang. 2023. Distribution preserving backdoor attack in self-supervised

learning. In 2024 IEEE Symposium on Security and Privacy (SP).
[60] Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Estimating the

number of clusters in a data set via the gap statistic. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) (2001).

[61] Traffic prediction with advanced Graph Neural Networks. [n. d.].

https://deepmind.google/discover/blog/traffic-prediction-with-advanced-

graph-neural-networks/.

[62] Brandon Tran, Jerry Li, and Aleksander Madry. 2018. Spectral signatures in

backdoor attacks. In NeurIPS.
[63] Binghui Wang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2020. On

Certifying Robustness against Backdoor Attacks via Randomized Smoothing. In

CVPR Workshop.
[64] BinghuiWang, Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. 2021. Certified

robustness of graph neural networks against adversarial structural perturbation.

In KDD.
[65] Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. 2022. Graphfl: A

federated learning framework for semi-supervised node classification on graphs.

In IEEE International Conference on Data Mining.
[66] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao

Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying andmitigating backdoor

attacks in neural networks. In IEEE S&P.
[67] HongyiWang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh

Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. 2020. Attack

of the tails: Yes, you really can backdoor federated learning. In NeurIPS.
[68] Ren Wang, Gaoyuan Zhang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong, and Meng

Wang. 2020. Practical detection of trojan neural networks: Data-limited and

data-free cases. In ECCV. 222–238.
[69] Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding, and

Jingren Zhou. 2022. Federatedscope-gnn: Towards a unified, comprehensive and

efficient package for federated graph learning. In KDD.
[70] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-

world’networks. nature (1998).
[71] Maurice Weber, Xiaojun Xu, Bojan Karlaš, Ce Zhang, and Bo Li. 2023. Rab:

Provable robustness against backdoor attacks. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE, 1311–1328.

[72] Emily Wenger, Josephine Passananti, Arjun Nitin Bhagoji, Yuanshun Yao, Haitao

Zheng, and Ben Y Zhao. 2021. Backdoor attacks against deep learning systems

in the physical world. In CVPR.
[73] Peter Wills and François G Meyer. 2020. Metrics for graph comparison: a practi-

tioner’s guide. Plos one 15, 2 (2020), e0228728.
[74] Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Tao Qi, Yongfeng Huang, and Xing

Xie. 2022. A federated graph neural network framework for privacy-preserving

personalization. Nature Communications 13, 1 (2022), 3091.
[75] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems (2020), 4–24.

[76] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In

USENIX Security.
[77] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal. 2021.

{PatchGuard}: A provably robust defense against adversarial patches via small

receptive fields and masking. In USENIX Security.
[78] Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. 2021. Crfl: Certifiably robust

federated learning against backdoor attacks. In ICML.
[79] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2019. Dba: Distributed backdoor

attacks against federated learning. In ICLR.
[80] Chulin Xie, Yunhui Long, Pin-Yu Chen, Qinbin Li, Sanmi Koyejo, and Bo Li.

2023. Unraveling the Connections between Privacy and Certified Robustness in

Federated Learning Against Poisoning Attacks. In CCS.
[81] Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification

over non-iid graphs. In NeurIPS, Vol. 34.
[82] Han Xie, Li Xiong, and Carl Yang. 2023. Federated node classification over graphs

with latent link-type heterogeneity. In ACM Web Conference.
[83] Shangyu Xie, Yan Yan, and Yuan Hong. 2023. Stealthy 3D Poisoning Attack on

Video Recognition Models. IEEE Trans. Dependable Secur. Comput. 20, 2 (2023),
1730–1743. https://doi.org/10.1109/TDSC.2022.3163397

[84] Jing Xu, Rui Wang, Stefanos Koffas, Kaitai Liang, and Stjepan Picek. 2022. More

is better (mostly): On the backdoor attacks in federated graph neural networks.

In ACSAC. 684–698.
[85] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful

are Graph Neural Networks?. In ICLR.
[86] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful

are graph neural networks?. In ICLR.
[87] Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho Lee, Doowon Kim, and

Yuan Hong. 2024. An LLM-Assisted Easy-to-Trigger Backdoor Attack on Code

Completion Models: Injecting Disguised Vulnerabilities against Strong Detection.

In 33rd USENIX Security Symposium (USENIX Security 24).
[88] Han Yang, Binghui Wang, Jinyuan Jia, et al. 2024. GNNCert: Deterministic

Certification of Graph Neural Networks against Adversarial Perturbations. In

The Twelfth International Conference on Learning Representations.
[89] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. 2019. Latent Backdoor

Attacks on Deep Neural Networks. In CCS.
[90] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale

recommender systems. In KDD.
[91] Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. 2021. Subgraph

federated learning with missing neighbor generation. NeurIPS (2021).
[92] Xinyu Zhang, Hanbin Hong, Yuan Hong, Peng Huang, Binghui Wang, Zhongjie

Ba, and Kui Ren. 2024. Text-crs: A generalized certified robustness framework

against textual adversarial attacks. In IEEE SP.
[93] Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, andNeil ZhenqiangGong. 2022. FLDetector:

Defending federated learning against model poisoning attacks via detecting

malicious clients. In KDD.
[94] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. 2021. Back-

door attacks to graph neural networks. In SACMAT.
[95] Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael Ma-

honey, Prateek Mittal, Ramchandran Kannan, and Joseph Gonzalez. 2022. Neuro-

toxin: Durable backdoors in federated learning. In ICML.
[96] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-

Gang Jiang. 2020. Clean-label backdoor attacks on video recognition models. In

CVPR. 14443–14452.
[97] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:

A review of methods and applications. AI Open 1 (2020), 57–81.

[98] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and

Jingren Zhou. 2019. AliGraph: a comprehensive graph neural network platform.

Proceedings of the VLDB Endowment 12, 12 (2019).

https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
https://deepmind.google/discover/blog/traffic-prediction-with-advanced-graph-neural-networks/
https://doi.org/10.1109/TDSC.2022.3163397

	Abstract
	1 Introduction
	2 Background and Problem Definition
	2.1 Federated Graph Learning (FedGL)
	2.2 Backdoor Attacks on FedGL
	2.3 Threat Model

	3 Optimized DBAs on FedGL
	3.1 Adaptive Trigger Generator
	3.2 FedGL Training with Optimized Backdoor

	4 Attack Results
	4.1 Experimental Setup
	4.2 Experimental Results

	5 Certified Defense for FedGL
	5.1 Graph Division into Subgraphs
	5.2 Majority Vote-based Ensemble Classifier
	5.3 Certified Robustness Guarantees

	6 Certified Defense Results
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	References

