
Breaking State-of-the-Art Poisoning Defenses to Federated
Learning: An Optimization-Based Attack Framework

Yuxin Yang
yuxiny22@mails.jlu.edu.cn

College of Computer Science and
Technology, Jilin University
Changchun, Jilin, China

Department of Computer Science,
Illinois Institute of Technology

Chicago, Illinois, USA

Qiang Li
li_qiang@jlu.edu.cn

College of Computer Science and
Technology, Jilin University
Changchun, Jilin, China

Chenfei Nie
niecf21@mails.jlu.edu.cn

College of Computer Science and
Technology, Jilin University
Changchun, Jilin, China

Yuan Hong
yuan.hong@uconn.edu
School of Computing,

University of Connecticut
Storrs, Connecticut, USA

Binghui Wang
bwang70@iit.edu

Department of Computer Science,
Illinois Institute of Technology

Chicago, Illinois, USA

Abstract
Federated Learning (FL) is a novel client-server distributed learn-
ing framework that can protect data privacy. However, recent
works show that FL is vulnerable to poisoning attacks. Many de-
fenses with robust aggregators (AGRs) are proposed to mitigate
the issue, but they are all broken by advanced attacks. Very re-
cently, some renewed robust AGRs are designed, typically with
novel clipping or/and filtering strategies, and they show promis-
ing defense performance against the advanced poisoning attacks.
In this paper, we show that these novel robust AGRs are also
vulnerable to carefully designed poisoning attacks. Specifically,
we observe that breaking these robust AGRs reduces to bypass-
ing the clipping or/and filtering of malicious clients, and propose
an optimization-based attack framework to leverage this obser-
vation. Under the framework, we then design the customized at-
tack against each robust AGR. Extensive experiments on multi-
ple datasets and threat models verify our proposed optimization-
based attack can break the SOTA AGRs. We hence call for novel
defenses against poisoning attacks to FL. Code is available at: https:
//github.com/Yuxin104/BreakSTOAPoisoningDefenses.

CCS Concepts
• Security and privacy→ Distributed systems security.

Keywords
Federated Learning, Poisoning Attacks, Robust Aggregation

Binghui Wang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CIKM ’24, October 21–25, 2024, Boise, ID, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0436-9/24/10
https://doi.org/10.1145/3627673.3679566

ACM Reference Format:
Yuxin Yang, Qiang Li, Chenfei Nie, Yuan Hong, and Binghui Wang. 2024.
Breaking State-of-the-Art Poisoning Defenses to Federated Learning: An
Optimization-Based Attack Framework. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management (CIKM
’24), October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3627673.3679566

1 Introduction
Federated Learning (FL) [19, 23, 33, 43], a novel client-server dis-
tributed learning paradigm, allows participating clients keep and
train their data locally and only share the trained local models (e.g.,
gradients), instead of the raw data, with a center server for aggre-
gation. The aggregated local models forms a shared global model,
which is used by clients for their main task. FL thus has been a great
potential to protect data privacy and is widely applied to medical
[34], financial [20], and other privacy-sensitive applications such as
on-client item ranking [23], content suggestions for on-device key-
boards [6], and next word prediction [22]. However, recent works
show that the invisibility of client data also renders FL vulnerable
to poisoning attacks [2–4, 13, 31, 32, 38, 40, 46], which aim to ma-
nipulate the training phase (and testing phase) of FL to disrupt the
global model behavior or/and degrade the FL performance.

To defend against the poisoning attacks to FL, numerous robust
aggregation algorithms (AGRs) [5, 9, 11, 12, 15, 21, 25, 27, 29, 30, 39,
41, 42, 44] have been proposed, where the key idea is to design a
robust aggregator that aims to filter malicious gradients, i.e., those
largely deviate from others. For instance, the Krum AGR [5] selects
the gradient that is closest to its 𝑛 − 𝑓 − 2 neighboring gradients
measured by Euclidean distance, in order to filter 𝑓 malicious gradi-
ents and 𝑛 is the total number of clients. However, these AGRs are
all broken by an advanced attack [32]. To further address the issue,
some renewed AGRs equipped with an enhanced defense ability are
proposed, which include FLAME [26], MDAM [14], FLDetector [45]
and Centered Clipping (CC) [17] (or its variant Bucketing [18] to
handle non-IID data). These new robust AGRs have shown effective
defense performance against the advanced poisoning attack.

https://github.com/Yuxin104/BreakSTOAPoisoningDefenses
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https://doi.org/10.1145/3627673.3679566
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In this paper, however, we demonstrate that all these SOTAAGRs
are still vulnerable to carefully designed (untargeted and targeted)
poisoning attacks. Specifically, we first scrutinize these AGRs and
find that they adopt either a novel clipping (e.g., in CC) or filtering
(e.g., in MDAM and FLDetector), or the both (e.g., in FLAME) to
remove the effect caused by malicious clients. Breaking these ro-
bust AGRs hence reduces to making malicious clients bypassing
the clipping or/and filtering (See Figure 1). We then formalize this
observation and design an optimization-based attack framework.
To be specific, we first analyze the inherent attack objective and
constraint within different AGRs and threat models. Thenwe instan-
tiate this framework by: 1) adjusting the initial malicious gradients
for targeted poisoning attacks to adhere to the constraint, and 2)
constructing malicious gradients from benign ones for untargeted
poisoning attacks to satisfy this constraint, thereby evading the
filtering and clipping mechanisms. Finally, we propose an efficient
solution to solve the optimization problem1.

We extensively investigate the effectiveness of our attack frame-
work against the SOTA robust AGRs under multiple experimental
settings and datasets. Our empirical evaluations show that our pro-
posed poisoning attacks vigorously disrupt these robust AGRs. We
summarize the main contributions as follows:

• We show SOTA AGRs can still be broken by advanced attacks.
• We propose an optimization-based attack framework that ex-
plores both targeted and untargeted poisoning attacks against
SOTA defenses under diverse scenarios.
• We validate the effectiveness of our attacks on multiple experi-
mental settings and datasets.

2 Preliminaries
Federated Learning (FL): FL links a set of (e.g., 𝑛) clients and a
server to collaboratively and iteratively train a shared global model
over private client data, where the data across clients may be non
independently and identically distributed (non-IID). Specifically,
in a 𝑡-th round, the server selects a subset of clients 𝑆𝑡 ⊂ [𝑛] and
broadcasts the current global model parameters, denoted as w𝑡 ,
to the chosen clients 𝑆𝑡 . Each chosen client 𝑖 ∈ 𝑆𝑡 then calculates
the gradient g𝑡

𝑖
= 𝜕w𝑡 𝐿(𝐷𝑖 ;w𝑡 ) using its local data 𝐷𝑖 and sends

g𝑡
𝑖
to the server. Here 𝐿 is the loss function, e.g., cross-entropy

loss. The server aggregates the collected clients’ gradients using
some aggregation algorithm AGR(g𝑡

𝑖∈[𝑛] ), e.g., dimension-wise
average in the well-known FedAvg [23] where AGR(g𝑡

𝑖∈[𝑛] ) =

1
|𝑆𝑡 |

∑
𝑖∈𝑆𝑡 g𝑡𝑖 . Finally, the server updates the global model for the

next round w𝑡+1 using the aggregator and SGD, e.g., w𝑡+1 = w𝑡 −
𝜂AGR(g𝑡

𝑖∈[𝑛] ) with a learning rate 𝜂, and broadcasts it to a new
subset of randomly chosen clients 𝑆𝑡+1. This process is repeated
until the global model converges or reaches the maximal round.

1We emphasize that our attack framework differs with [32] and extends it in two key
aspects. First, the AGRs under consideration are more recent and robust than those
considered in [32]. That is, all AGRs successfully broken by [32] can be also broken by
our framework, while the opposite is not true. Second, our framework encompasses
both targeted and untargeted attacks on robust AGRs, while [32] only focuses on
untargeted attacks. Note that the generalization on targeted attacks is non-trivial. For
instance, we test that the untargeted poisoning attack based on [32] completely fails to
break FLAME, MDAM, and FLDetector, while our designed targeted poisoning attacks
can be successful (see Table 2, Table 3, and Table 5).

SOTA Robust Aggregators for FL: We review four SOTA robust
AGRs FLAME-algorithmfor FL against poisoning attacks. The de-
tailed implementations of these AGRs are shown in Algorithms 1-5.
FLAME [26]. It is a defense against targeted poisoning attacks, par-
ticularly backdoor attacks. FLAME is based on the intuition that
malicious gradients tend to deviate from the benign ones in length
and/or angle. To limit the impact of backdoored models, FLAME
proposes a two-stage solution in each 𝑡-th round. First, it clips
the client gradient with length larger than a clipping threshold
𝑞𝑡 , i.e., g𝑡

𝑖
← 𝑞𝑡

∥g𝑡
𝑖
∥2
g𝑡
𝑖
, if ∥g𝑡

𝑖
∥2 > 𝑞𝑡 ,∀𝑖 . FLAME chooses 𝑞𝑡 as

𝑞𝑡 = MEDIAN(∥g1∥𝑡2, ..., ∥g𝑛 ∥
𝑡
2). Second, it inputs the clipped gra-

dients and utilizes a dynamic clustering technique HDBSCAN [8]
to further filter out gradients with high angular deviations from
the majority gradients. Specifically, HDBSCAN clusters the clients
based on the density of cosine distance distribution on gradient
pairs and dynamically determines the number of clusters. By assum-
ing an upper bounded (< 𝑛/2) number of malicious clients, FLAME
sets the minimum size of the largest cluster to be 𝑛/2 + 1 to ensure
that the resulting cluster only contains benign clients. With the
clipping and filtering, FLAME finally only averages the gradients
of clients in the benign cluster to update the global model.
MDAM [14]. It proposes to use distributed momentum into existing
aggregators (e.g., Krum, Median, TM, MDA) to enhance the ro-
bustness against poisoning attacks, and provably shows that MDA
under distributed momentum (MDAM) obtains the best defense
performance. Specifically, at a 𝑡-th round, each client 𝑖 sends to
the server the momentum m𝑡

𝑖
= 𝛽m𝑡−1

𝑖
+ (1 − 𝛽)g𝑡

𝑖
, instead of the

gradient g𝑡
𝑖
, where the initial momentum ism0

𝑖
= 0 and 𝛽 ∈ [0, 1) is

the momentum coefficient. After the server receives 𝑛 momentums
{m𝑡

𝑖
}, it first decides a set 𝑆𝑡 of 𝑛 − 𝑓 clients with the smallest

diameter, i.e., 𝑆𝑡 ∈ argmin𝑆⊂[𝑛], |𝑆 |=𝑛−𝑓
{
max𝑖, 𝑗∈𝑆




m𝑡
𝑖
−m𝑡

𝑗





2

}
,

where at most 𝑓 clients are assumed malicious; and then updates
the servers’ global model as w𝑡+1 = w𝑡 + 1

𝑛−𝑓
∑
𝑖∈𝑆𝑡 m𝑡

𝑖
.

FLDetector [45]. It aims at detecting and removing malicious clients by
assessing the (in)consistency of clients’ model updates in each round.
Specifically, in a 𝑡-th round, the server predicts a client 𝑖’s model
update 𝑔𝑡

𝑖
using the historical global model updates and the estimated

Hessian 𝐻̂𝑡 , i.e., 𝑔𝑡
𝑖
= 𝑔𝑡−1

𝑖
+ 𝐻̂𝑡 (w𝑡 − w𝑡−1). The suspicious score

𝑠𝑡
𝑖
for client 𝑖 is the client’s average normalized Euclidean distance

in the past 𝑁 iterations, i.e., 𝑠𝑡
𝑖
= 1

𝑁

∑𝑁−1
𝑟=0 𝑑𝑡−𝑟

𝑖
/


𝑑𝑡−𝑟 

1, where 𝑑𝑡 =

[


𝑔𝑡1 − 𝑔𝑡1

2 , 

𝑔𝑡2 − 𝑔𝑡2

2 , ..., 

𝑔𝑡𝑛 − 𝑔𝑡𝑛

2]. Finally, FLDetector utilizes
𝑘-means with Gap statistics [35] on the clients’ suspicious scores to
detect and filter malicious clients.
Centered Clipping (CC) [17]. It is a simple and efficient clipping
based robust AGR which provides a standardized specification for
“robust” robust aggregators. To circumvent poisoning attacks, CC
clips each (benign or malicious) client gradient g𝑡

𝑖
in each round 𝑡 by

g𝑡
𝑖
= g𝑡

𝑖
·min(1, 𝜏

∥g𝑡𝑖 ∥2
), where 𝜏 is a predefined clipping threshold.

Then the global model is updated as w𝑡+1 = w𝑡 + 𝜂/𝑛∑𝑛
𝑖=1 g

𝑡
𝑖
.

Unlike the majority of other AGRs, CC is very scalable and requires
only 𝑂 (𝑛) computation and communication cost per round.
Centered Clipping with Bucketing (CC-B). To further adapt the ro-
bust CC AGR to heterogeneous (non-IID) datasets, [18] proposes a
bucketing scheme to “mix” the data from all clients, which reduces
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the chance of any subset of the client data being consistently ig-
nored. To be specific, in a 𝑡-th round, it first generates a random
permutation 𝜋 of [𝑛], and computes ḡ𝑡

𝑖
= 1

𝑠

∑min(𝑛,𝑖 ·𝑠 )
𝑘=(𝑖−1) ·𝑠+1 g

𝑡
𝜋 (𝑘 )

for 𝑖 = {1, ..., ⌈𝑛/𝑠⌉}, where 𝑠 is the number of buckets. Then
it combines with the CC AGR to update the global model, i.e.,
w𝑡+1 = w𝑡 + CC(ḡ𝑡1, · · · , ḡ

𝑡
⌈𝑛/𝑠 ⌉ ).

Algorithm 1 AGR - FLAME

Input: 𝑛, w0,𝑇 ▷𝑛 is the number of clients, w0 is the initial global model
parameters, and𝑇 is the number of training iterations Output: w𝑇 ▷w𝑇 is
the global parameter after𝑇 iterations
1: for each training iteration 𝑡 in [1,𝑇 ] do
2: for each client 𝑖 in [1, 𝑛] do
3: g𝑡

𝑖
←CLIENTUPDATE(w𝑡−1, 𝐷𝑖 ) ▷ The aggregator sendsw𝑡−1

to Client 𝑖 who trains w𝑡−1 using its data 𝐷𝑖 locally to achieve local
gradient g𝑡

𝑖
and sends g𝑡

𝑖
back to the aggregator

4: end for
5: (𝑐𝑡11, ..., 𝑐𝑡𝑛𝑛 ) ←cos(g𝑡1, ..., g𝑡𝑛 ) ▷ ∀𝑖, 𝑗 ∈ (1, ..., 𝑛) , 𝑐𝑡𝑖 𝑗 is the cosine

distance between g𝑡
𝑖
and g𝑡

𝑗

6: (𝑏𝑡1, ..., 𝑏𝑡𝐿 ) ← HDBSCAN(𝑐𝑡11, ..., 𝑐𝑡𝑛𝑛 ) ▷𝐿 is the number of admit-
ted models, 𝑏𝑡

𝑙
is the index of the 𝑙-th model

7: (𝑒𝑡1 , ..., 𝑒𝑡𝑛 ) ←


(w𝑡−1, (g𝑡1, ..., g𝑡𝑛 ) )




2 ▷𝑒

𝑡
𝑖
is the Euclidean distance

between w𝑡−1 and g𝑡
𝑖
𝑞𝑡 ←MEDIAN (𝑒𝑡1 , ..., 𝑒𝑡𝑛 ) ▷𝑞𝑡 is the adaptive

clipping bound at round 𝑡
8: for each client 𝑙 in [1, 𝐿] do
9: g𝑡

𝑖
← g𝑡

𝑖
·min(1, (𝑞𝑡 /𝑒𝑡

𝑏𝑙
) ) ▷ (𝑞𝑡 /𝑒𝑡

𝑏𝑙
) is the clipping parameter,

and g𝑡
𝑖
is clipped by the adaptive clipping bound

10: end for
11: w𝑡 ← w𝑡−1−𝜂∑𝐿

𝑙=1 g
𝑡
𝑖
/𝐿+𝑁 (0, 𝜎2 ) ▷ Sever aggregates parameters

and adds noise, and then updates the global parameter as w𝑡

12: end for

Algorithm 2 AGR - FLDetector

Input: 𝑛, w0, 𝑁 ,𝑇 ▷ 𝑁 is the number of past iterations, and𝑇 is the
number of training iterations
Output: w𝑇 ▷w𝑇 is the global parameter after𝑇 iterations
1: for each training iteration 𝑡 in [1,𝑇 ] do
2: for each client 𝑖 in [1, 𝑛] do
3: g𝑡

𝑖
←CLIENTUPDATE(w𝑡−1, 𝐷𝑖 )

4: ĝ𝑡
𝑖
← g𝑡−1

𝑖
+ 𝐻̂𝑡 (w𝑡 − w𝑡−1 )

5: end for
6: 𝑑𝑡 ← [



ĝ𝑡1 − g𝑡1



2 ,


ĝ𝑡2 − g𝑡2




2 , ...,



ĝ𝑡𝑛 − g𝑡𝑛



2 ]

7: 𝑠𝑡
𝑖
← 1

𝑁

∑𝑁 −1
𝑟=0 𝑑𝑡−𝑟

𝑖
/


𝑑𝑡−𝑟 

1

8: Determine the number of clusters 𝑘 by Gap statistics.
9: if k>1 then
10: Perform 𝑘-means clustering based on the suspicious scores 𝑠𝑡

𝑖

with 𝑘 ← 2. ▷ The clients in the cluster with smaller average suspicious
score is benign.

11: end if
12: g𝑡 ← 0
13: for each client 𝑖 in the benign cluster do
14: g𝑡 ← g𝑡 + g𝑡

𝑖

15: end for
16: w𝑡 ← w𝑡−1 − 𝜂g𝑡 ▷ Server updates the global parameter as w𝑡

17: end for

Algorithm 3 AGR - MDAM

Input: 𝑛, w0, 𝛽 , m0,𝑇 ▷ 𝑛 is the number of clients, w0 is the initial
global model parameters, 𝛽 ∈ [0, 1) is the momentum coefficient of
all the clients, m0 = 0 is the initial momentum of each honest
client, and 𝑇 is the number of training iterations
Output: w𝑇 ▷w𝑇 is the global parameter after 𝑇 iterations
1: for each training iteration 𝑡 in [1,𝑇 ] do
2: for each client 𝑖 in [1, 𝑛] do
3: g𝑡

𝑖
←CLIENTUPDATE(w𝑡−1, 𝐷𝑖 ) ▷ The aggregator

sendsw𝑡−1 to Client 𝑖 who trainsw𝑡−1 using its data 𝐷𝑖 locally
to achieve local gradient g𝑡

𝑖

4: m𝑡
𝑖
← 𝛽m𝑡−1

𝑖
+ (1− 𝛽)g𝑡

𝑖
▷ Each honest client sends to

the server the momentum m𝑡
𝑖

5: end for

6: 𝑆𝑡 ∈ argmin
𝑆⊂[𝑛], |𝑆 |=𝑛−𝑓

{
max
𝑖, 𝑗∈𝑆




m𝑡
𝑖
−m𝑡

𝑗





2

}
▷ Server first

chooses a set 𝑆𝑡 of cardinality 𝑛 − 𝑓 with the smallest diameter
7: w𝑡 ← w𝑡−1 − 𝜂

𝑛−𝑓
∑
𝑖∈𝑆𝑡 m𝑡

𝑖
▷ Server then updates the

global parameter as w𝑡

8: end for

Algorithm 4 AGR - CC

Input: 𝑛, w0, 𝜏 , 𝑇 ▷ 𝜏 is a predefined clipping threshold
Output: w𝑇 ▷w𝑇 is the global parameter after 𝑇 iterations
1: for each training iteration 𝑡 in [1,𝑇 ] do
2: for each client 𝑖 in [1, 𝑛] do
3: g𝑡

𝑖
←CLIENTUPDATE(w𝑡−1, 𝐷𝑖 )

4: g𝑡
𝑖
← g𝑡

𝑖
· min(1, 𝜏

∥g𝑡𝑖 ∥2
) ▷𝜏 is the clipping parameter

5: end for
6: w𝑡 ← w𝑡−1 − 𝜂∑𝑖∈[𝑛] g𝑡𝑖
7: end for

Algorithm 5 AGR - CC-B

Input: 𝑛, w0, 𝜏 , 𝑠 , 𝑇 ▷ 𝜏 is a predefined clipping threshold, and 𝑠 is
the number of buckets
Output: w𝑇 ▷w𝑇 is the global parameter after 𝑇 iterations
1: for each training iteration 𝑡 in [1,𝑇 ] do
2: for each client 𝑖 in [1, 𝑛] do
3: g𝑡

𝑖
←CLIENTUPDATE(w𝑡−1, 𝐷𝑖 )

4: end for
5: Pick random permutation 𝜋 of [𝑛]
6: for each parameter 𝑖 in [1, ⌈𝑛/𝑠⌉] do
7: ḡ𝑡

𝑖
= 1

𝑠

∑min(𝑛,𝑖 ·𝑠 )
𝑘=(𝑖−1) ·𝑠+1 g

𝑡
𝜋 (𝑘 ) ▷ Bucketing mixes the data

from all clients
8: end for
9: ḡ𝑡

𝑖
← ḡ𝑡

𝑖
· min(1, 𝜏

∥ḡ𝑡𝑖 ∥2
) ▷𝜏 is the clipping parameter

10: w𝑡 ← w𝑡−1 − 𝜂∑𝑖∈[𝑛] ḡ𝑡𝑖
11: end for
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Table 1: The knowledge of adversary. Note that there exists
no tailored attack on FLDetector. Our results in Section 5
show our AGR-agnostic attacks are already highly effective.

The SOTA AGRs Adversary’s Knowledge
-our attack AGR tailored Gradients known

FLAME/MDAM ✓ ✓
-targeted ✗ ✓
CC/CC-B ✓ ✗
-untargeted ✗ ✗

FLDetector-targeted ✗ ✗

3 Threat Model
In this section, we discuss the threat model of attacking the SOTA
robust AGRs, i.e., targeted poisoning attacks to FLAME, MDAM,
and FLDetector, and untargeted poisoning attacks to CC and CC-B.
Note here that the targeted attack mainly refers backdoor attacks.
Adversary’s Objective. For targeted poisoning attacks, an adver-
sary aims to optimize the existing malicious gradients obtained by
backdoor poisoning to evade filtering or/and clipping of the robust
AGR (e.g., FLAME, MDAM, and FLDetector), so that the resulting
global model can achieve a high level on both the main task accu-
racy and backdoor accuracy. For untargeted poisoning attacks, the
adversary’s goal is to craft malicious gradients based on benign
gradients to disrupt the server’s robust aggregation (e.g., via CC and
CC with Bucketing), consequently diminishing the overall main
task accuracy of the global model.
Adversary’s Capability.We assume the total number of malicious
clients is 𝑓 < 𝑛/2. All malicious clients can collude with each other
and have indexes within [𝑓 ], i.e., from 1 to 𝑓 , without loss of gener-
ality. For untargeted poisoning attacks, a malicious client can care-
fully modify its normally trained gradient to be amalicious one such
that it can fool the robust AGR. For targeted backdoor attacks, we
assume the adversary uses the strong model replacement attack [2],
where it aims to replace the true global modelw𝑡+1 = w𝑡+𝜂𝑛

∑𝑛
𝑖=1 g

𝑡
𝑖

with any model x by poisoning the gradients g𝑡
𝑖∈[ 𝑓 ] . In our scenario,

we extend the model replacement attack from 1 to 𝑓 malicious
clients. Specifically, the 𝑓 poisoned client gradients, denoted as
g𝑝
𝑖∈[ 𝑓 ]

2 to differentiate with the benign gradients g𝑗∈[ 𝑓 +1,𝑛] , has

the relationship:
∑𝑓

𝑖=1 g
𝑝

𝑖
= 𝑛

𝜂 (x −w
𝑡 ) −∑𝑛

𝑗=𝑓 +1 g𝑗 . As the global
model converges, each local model may be close enough to the
global model such that the benign gradients start to cancel out, i.e.,∑𝑛

𝑗=𝑓 +1 g𝑗 = 0 [2]. Hence, we have
∑𝑓

𝑖=1 g
𝑝

𝑖
≈ 𝑛

𝜂 (x − w𝑡 ). Then
an adversary can simply solve for the poisoned gradients of the
malicious clients as: g𝑝

𝑖
≈ 𝑛

𝑓 𝜂
(x −w𝑡 ),∀𝑖 ∈ [𝑓 ] .

Adversary’s Knowledge.We consider two dimensions: knowledge
of the AGR aggregator and knowledge of the gradients shared by
benign clients (see Table 1). According to whether the adversary
knows the AGR aggregator, we classify the malicious attacks into
AGR-tailored andAGR-agnostic. Similarly, we also divide the attacks
into gradients-known and gradients-unknown based on whether the
adversary is aware of the benign clients’ gradients. Note that the
adversary performing the gradients-unknown attack can utilize the
clean data of the malicious clients to obtain benign gradients.
2For notation simplicity, we will omit the round 𝑡 in the gradients g𝑡

𝑖
.

4 Optimization-Based Poisoning Attacks to
SOTA Robust AGRs in FL

Recall that SOTA defenses against untargeted and targeted poison-
ing attacks all design robust AGRs that involve clipping or/and
filtering malicious gradients based on their statistic differences
with benign gradients. Hence, the main insight of our attack frame-
work is to carefully create malicious gradients {g𝑐

𝑖
}𝑖∈[ 𝑓 ] to evade

these operations in SOTA AGRs. Formally, we introduce a general
optimization formula as follows:

𝛾 = argmax
𝛾,𝑖∈ [𝑓 ], 𝑗 ∈ [𝑓 +1,𝑛]

𝑑𝑖𝑠𝑡 (g𝑐𝑖 , g𝑗 ),

𝑠 .𝑡 . 𝑑𝑖𝑠𝑡 (g𝑐𝑖 , g𝑗 ) ≤ 𝑡ℎ, ∀𝑖 ∈ [ 𝑓 ], 𝑗 ∈ [ 𝑓 + 1, 𝑛],

g𝑐𝑖 = F(g𝑝
𝑖
, g𝑏 , 𝛾 ), ∀𝑖 ∈ [ 𝑓 ] .

(1)

At a high-level, our objective function aims to create the mali-
cious gradients {g𝑐

𝑖
}𝑖∈[ 𝑓 ] (For ease of description, we also use g𝑐

𝑖
to indicate malicious momentum m𝑐

𝑖
) such that their maximum

distance from the benign gradients {g𝑗 } 𝑗∈[ 𝑓 +1,𝑛] is within a prede-
fined/calculated threshold 𝑡ℎ used by the filtering or/and clipping
operation in SOTA AGRs. Note that directly computing {g𝑐

𝑖
}𝑖∈[ 𝑓 ]

is challenging. To address it, we observe malicious gradients can be
built (characterized by a function F ) from known poisoned gradi-
ents g𝑝

𝑖
and a reference benign gradient g𝑏 , which are coupled with

a scaling hyperparameter 𝛾 . Hence, the final optimization problem
of learning {g𝑐

𝑖
}𝑖∈[ 𝑓 ] can be reduced to learning the 𝛾 .

Next, we investigate the vulnerabilities of the SOTA robust AGRs
and then instantiate our attack framework in Equation (1) by de-
signing optimization-based attacks against these AGRs one-by-one.

4.1 Targeted Poisoning Attacks to FLAME,
MDAM, and FLDetector

AGR-Tailored Attack to FLAME. As stated in Section 2, FLAME
first limits the gradients with large length to not exceed a clipping
threshold 𝑞𝑡 in each 𝑡-th round. To attack this clipping, we deploy
projected gradient descent (PGD) with the adversary periodically
projecting their client gradients on a small ball centered around
the global model w𝑡 . To be specific, the malicious client calculates
𝑞𝑡 so that the malicious gradients g𝑝

𝑖∈[ 𝑓 ] respect the constraint

∥g𝑝
𝑖
∥2 ≤

��𝑞𝑡 − ∥w𝑡 ∥2
�� ,∀𝑖 ∈ [𝑓 ], i.e., malicious gradients distribute

over a ball with w𝑡 as the center and
��𝑞𝑡 − ∥w𝑡 ∥2

�� as the radius.
Additionally, FLAME uses pairwise cosine distances to measure

the angular differences between all pairs of model gradients, and
applies the HDBSCAN clustering algorithm to further filter the ma-
licious gradients with large angular deviations. Hence, a successful
attack also requires crafting the malicious gradients (denoted as
g𝑐
𝑖∈[ 𝑓 ] ) to evade the filtering. Here, we propose to rotate g𝑝

𝑖∈[ 𝑓 ]
to be the corresponding g𝑐

𝑖∈[ 𝑓 ] (with a reference benign gradient

g𝑏 ), so that its maximum cosine distance with all benign gradients
is not greater than the maximum cosine distance among benign
gradients. Formally, we can express the optimization problem as:

𝛾 = argmax
𝛾,𝑖∈ [𝑓 ], 𝑗 ∈ [𝑓 +1,𝑛]

𝑐𝑜𝑠 (g𝑐𝑖 , g𝑗 ),

𝑠 .𝑡 . 𝑐𝑜𝑠 (g𝑐𝑖 , g𝑗 ) ≤ max
𝑘,𝑗 ∈ [𝑓 +1,𝑛]

𝑐𝑜𝑠 (g𝑘 , g𝑗 ),

g𝑐𝑖 = ∥g𝑝
𝑖
∥2/∥g𝑢𝑖 ∥2 · g𝑢𝑖 ; g𝑢𝑖 = g𝑝

𝑖
+ 𝛾 (g𝑏 − g𝑝

𝑖
) .

(2)
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Figure 1: Illustration of the SOTA robust aggregation algorithms (a)-(c) in FL, our AGR-tailored attacks (d)-(f) and AGR-agnostic attacks (g)-(h)
on them. (a) FLAME: it defends against the malicious gradients via clipping and filtering gradients that with high length and angular deviations,
respectively. (b) MDAM: it chooses a subset of 𝑛 − 𝑓 momentums with the smallest diameter for aggregation, i.e., filter out a bounded number of
𝑓 malicious gradients. (c) CC: it corrects malicious gradients via a centered clipping with a parameter 𝜏 . (d) Our attack to FLAME: we project the
length-deviating malicious gradients and rotate the angle-deviating malicious gradients to evade FLAME. (e) Our attack to MDAM: we optimize
the original malicious momentums to new ones such that MDAM selects (part of) the new malicious ones into the subset for aggregation. (f)
Our attack to CC: we construct malicious gradients from any benign one to avoid the center clipping. (g) Our AGR-agnostic targeted poisoning
attack (on FLAME, MDAM, and FLDetector): we adjust malicious gradients to approach benign gradients, based on the Euclidean distance
metric, to evade SOTA defenses. (h) Our AGR-agnostic untargeted poisoning attack (to CC): we generate malicious gradients of length ATK-𝜏 by
leveraging any of benign gradients to evade clipping for agnostic parameters.

where we set the reference g𝑏 as averaging certain benign gra-
dients. Specifically, if the benign clients’ gradients are known to
the adversary (i.e., gradients-known), it can average benign clients’
benign gradients, i.e., g𝑏 = Avg(g{𝑖∈[ 𝑓 +1,𝑛] } ). On the other hand,
when the benign clients’ gradients are unknown (i.e., gradients-
unknown), the adversary can average the “benign” gradients ob-
tained by malicious clients on their clean data (i.e., without poi-
soning), i.e., g𝑏 = Avg(g{𝑖∈[1,𝑓 ] } ). 𝛾 is the scaling hyperparameter
that we aim to learn and g𝑝

𝑖∈[ 𝑓 ] are defined in Section 3.
AGR-Tailored Attack to MDAM.MDAM chooses a set of 𝑛 − 𝑓

momentums with the smallest diameter aiming to filter out the
possible 𝑓 malicious clients. To break this robust ARG, we need to
force it to choose our tailored malicious momentums and mix them
with benign ones during training. Here, we would like to replace
(any) 𝑓 benign clients’ momentums that would have been chosen
by MDAM with 𝑓 identical tailored malicious momentums. To be
specific, we learn to optimize the malicious momentums m𝑝

𝑖∈[ 𝑓 ]
to linearly approach a benign m𝑏 until there exists a malicious
momentum fromm𝑐

𝑖∈[ 𝑓 ] whose largest distance with respect to the
benign momentums in any chosen benign set 𝑆 ⊂ [𝑓 + 1, 𝑛] with
|𝑆 | = 𝑛 − 2𝑓 is less than the maximum distance between any two
benign momentums. The optimization problem is defined as:

𝛾 = argmax
𝛾,𝑖∈ [𝑓 ], 𝑗 ∈𝑆⊂ [𝑓 +1,𝑛],|𝑆 |=𝑛−2𝑓



m𝑐
𝑖 − m𝑗




2 , (3)

𝑠.𝑡 .


m𝑐

𝑖 − m𝑗




2 ≤ max

𝑘,𝑗 ∈ [𝑓 +1,𝑛]



m𝑘 − m𝑗




2 ,m

𝑐
𝑖 = m𝑝

𝑖
+ 𝛾 (m𝑏 − m𝑝

𝑖
) .

where m𝑏 is the average of certain benign momentum. Similarly,

for gradients-known and -unknown,we setm𝑏 = Avg(m{𝑖∈[ 𝑓 +1,𝑛] } )
and m𝑏 = Avg(m{𝑖∈[1,𝑓 ] } ), respectively. m

𝑝

𝑖∈[ 𝑓 ] are momentum of

malicious gradients defined as m𝑝

𝑖
= 𝛽m𝑝

𝑖
+ (1 − 𝛽)g𝑝

𝑖
,∀𝑖 ∈ [𝑓 ].

AGR-Agnostic Attacks (to FLAME, MDAM, and FLDetector).
It is challenging to design tailored attacks on FLDetector, due to it uses
the history information in each round that is not easy to incorporate
into the attack optimization. To relax it, we propose an AGR-agnostic
attack formulation; and if the AGR-agnostic attack is already effective,
then AGR-tailored attack can performance better. Specifically, in this
setting, the adversary does not know which AGR the defense uses.
To design effective AGR-agnostic attacks, we need to uncover the
shared property in the existing robust AGRs. Particularly, we note
that, though with different techniques, existing robust AGRs mainly
perform statistical analysis on client models and identify malicious
clients as those largely deviate from others based on some similarity
metric such as Euclidean distance and cosine similarity. Based on
this intuition, we hence propose to adjust the malicious gradients
to be close to the benign ones such that these malicious gradients
can be selected by (any) robust AGRs. W.l.o.g, we use Euclidean
distance as the similarity metric and extend Equation (3) to a more
general case. Specifically, we optimize g𝑝

𝑖∈[ 𝑓 ] to approach g𝑏 so
that its maximum distance with respect to any benign gradient is
upper bounded by the maximum distance between any two benign
gradients. Formally, the equation can be expressed as follows:

𝛾 = argmax
𝛾,𝑖∈ [𝑓 ], 𝑗 ∈ [𝑓 +1,𝑛]



g𝑐𝑖 − g𝑗



2 ,

𝑠 .𝑡 .


g𝑐𝑖 − g𝑗




2 ≤ max

𝑘,𝑗 ∈ [𝑓 +1,𝑛]



g𝑘 − g𝑗



2 , g

𝑐
𝑖 = g𝑝

𝑖
+ 𝛾 (g𝑏 − g𝑝

𝑖
) .

(4)
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4.2 Untargeted Poisoning Attacks to CC and CC
with Bucketing

AGR-Tailored Attack to CC. CC clips each client gradient g𝑖 by
g𝑖 min(1, 𝜏

∥g𝑖 ∥2
) to reduce the negative effect caused by malicious

gradients with a large length. However, we observe that clipping
is ineffective if we can always maintain 𝜏

∥g𝑖 ∥2
≥ 1, i.e., ∥g𝑖 ∥2 ≤ 𝜏 .

Under this, we can create the malicious gradients g𝑐
𝑖∈[ 𝑓 ] such that:

𝛾 = argmax
𝛾,𝑖∈[ 𝑓 ]



g𝑐𝑖 

2 ,
𝑠 .𝑡 .



g𝑐𝑖 

2 ≤ 𝜏, g𝑐𝑖 = g𝑏 + 𝛾g𝑝
𝑖
, g𝑝

𝑖
= −sign(g𝑏 ) .

(5)

There are many ways to set malicious gradients g𝑝
𝑖∈[ 𝑓 ] . Motivated

by [32], one simple yet effective way is setting g𝑝
𝑖∈[ 𝑓 ] as the inverse

sign of the reference benign gradient g𝑏 , which can be a randomly
chosen benign gradient.
AGR-Tailored Attack to CC-B. Our attack on CC with bucketing
is similar to that on CC. As seen in Section 2, bucketing is a post-
processing step on client gradients mainly mitigating the non-IID
data across clients. In principle, a successful attack on CCwill render
the bucketing aggregation ineffective as well. Here, we directly
craft malicious gradients using Equation (5) and then perform CC
aggregation with bucketing on the crafted malicious gradients.
AGR-Agnostic Attack (to CC and CC-B). 𝜏 is the only hyperpa-
rameter in CC. In this attack setting, 𝜏 is unknown to the adversary.
To differentiate between 𝜏 used in CC and that in the attack, we
name it as CC-𝜏 and ATK-𝜏 , respectively. In practice, the used CC-
𝜏 ’s often have a format of 10𝑥 . Hence the adversary can exploit
these potential values as ATK-𝜏 to execute the attack in Equation (5).
Note that there is no such limitation and our experimental results
in Section 5 show a larger value of ATK-𝜏 always ensures the attack
to be effective, whatever the true CC-𝜏 is.

4.3 Solving for The Scaling Hyperparameter 𝛾
Both the targeted and untargeted poisoning attacks to FL involve
optimizing the scaling hyperparameter𝛾 . For the untargeted attacks,
the malicious gradients g𝑐

𝑖∈[ 𝑓 ] are obtained by maximizing 𝛾 to

render the attack g𝑐
𝑖∈[ 𝑓 ] = g𝑏 +𝛾g𝑝

𝑖∈[ 𝑓 ] be effective. For the targeted
attacks, in contrast, an adversary generates g𝑐

𝑖∈[ 𝑓 ] by exploring
the minimum 𝛾 to maintain the attack effectiveness, e.g., g𝑐

𝑖∈[ 𝑓 ] =

g𝑝
𝑖∈[ 𝑓 ] +𝛾 (g

𝑏 − g𝑝
𝑖∈[ 𝑓 ] ). Algorithm 6 shows the details of solving 𝛾

in the two scenarios. Specifically, we start with a small (or large)
𝛾 for untargeted (or targeted) attacks and increase (or decrease)
𝛾 with a step size step until O returns “True”, where O takes as
input the union of the malicious and benign gradients, i.e., g𝑖∈[𝑛] =
g𝑐
𝑖∈[ 𝑓 ] ∪ g{𝑖∈[ 𝑓 +1,𝑛] } , and 𝛾 , and outputs “True” if the obtained
g𝑐
𝑖∈[ 𝑓 ] in Equations (2)-(5) satisfies the adversarial objective. We
halve the step size for each 𝛾 update to make the search finer.
Complexity and Convergence Analysis. Algorithm 6 iteratively
optimizes 𝛾 to satisfy the condition O(g𝑖∈[𝑛] , 𝛾) == True. In each
iteration, it verifies the adversarial objective in Equations (2)-(5),
e.g., computes the pairwise gradient/momentum distance among
benign clients, and that betweenmalicious clients and benign clients
and checks whether the inequality satisfies. The complexity per

Algorithm 6 Learning the Scaling Hyperparameter 𝛾
Input: 𝛾𝑖𝑛𝑖𝑡 , 𝜀, O, g𝑖∈ [𝑛]
Output: 𝛾𝑠𝑢𝑐𝑐
1: step← 𝛾𝑖𝑛𝑖𝑡 /2, 𝛾 ← 𝛾𝑖𝑛𝑖𝑡

2: while |𝛾𝑠𝑢𝑐𝑐 − 𝛾 | > 𝜀 do
3: if O(g𝑖∈ [𝑛] , 𝛾 ) == True then
4: 𝛾𝑠𝑢𝑐𝑐 ← 𝛾

5: if attacking FLAME, MDAM, or FLDetector then
6: 𝛾 ← (𝛾−step/2)
7: else
8: 𝛾 ← (𝛾+step/2)
9: end if
10: else
11: if attacking FLAME, MDAM, or FLDetector then
12: 𝛾 ← (𝛾+step/2)
13: else
14: 𝛾 ← (𝛾−step/2)
15: end if
16: end if
17: step=step/2
18: end while

iteration is O((𝑛2 − 𝑓 2) ∗ #model parameters), where 𝑛 and 𝑓 are
the total number of clients and malicious clients, respectively. On
the other hand, Algorithm 6 guarantees to converge and stops
when step ≤ 𝜀. Note that step is initialized as 𝛾𝑖𝑛𝑖𝑡/2 and halved
in each iteration. So the convergence iteration𝑚 is obtained when
𝛾𝑖𝑛𝑖𝑡/2𝑚+1 ≤ 𝜀, which means𝑚 = log2 (𝛾𝑖𝑛𝑖𝑡/𝜀) − 1.

5 Experiments
In this section, we evaluate our attack framework on the SOTA
robust AGRs. We first set up the experiments and then show the
attack results on each robust AGR.

5.1 Experimental Setup
Datasets and Architectures. Following existing works [14, 17,
28, 40, 45], we use three benchmark image datasets, i.e., FMNIST,
CIFAR10, and FEMNIST [7], where the first two datasets are IID
distributed, while the third one is non-IID distributed. FMNIST
has 60K training images and 10K testing images from 10 classes
with image size 28x28. CIFAR10 has 50K training images and 10K
testing images. FEMNIST includes 3,383 clients, 62 classes, and a
total of 805,263 grayscale images. For FL training, we selected 1,000
out of the 3,383 clients. For FMNIST and FEMNIST, we consider a
convolutional neural network (CNN) with 2 convolutional (Conv)
layers followed by 2 fully-connected (FC) layers. While for CIFAR10,
we use a CNN with 3 Conv layers and 3 FC layers on the targeted
attack, and a ResNet-20 [16] on the untargeted attack. We follow
FLAME, MDAM, FLDetector, CC(-B) to set the number of total
clients and fraction of clients selected in each round. For instance,
the total number of clients in CC is 50, and all clients are selected
for training. We set the backdoor classes to 4 and 7 for targeted
poisoning attacks, and use the cross entropy loss for federated
training. We set the learning rate for server’s global aggregation as
1.0 and client training as 0.1 and total number of rounds is 200.
Parameter Setting. We set the ratio of malicious clients 𝑓 /𝑛 to be
{2%, 5%, 10%, 20%} for FLAME, CC, and CC-B, and {5%, 10%, 20%,
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Table 2: Results of our attack and the SOTA DBA against FLAME under various threat models. Our attacks show an BA
improvement ranging from 31% to 94% over the SOTA DBA with comparable or better MA under the same settings.

Gradients known Gradients unknown
Dataset No attack 𝑓 /𝑛 DBA AGR AGR AGR AGR

(MA) (%) (MA / BA) tailored agnostic tailored agnostic
2 0.85 / 0.02 0.93 / 0.61 0.91 / 0.53 0.90 / 0.57 0.90 / 0.43

FMNIST 0.92 5 0.88 / 0.01 0.91 / 0.84 0.90 / 0.71 0.91 / 0.77 0.89 / 0.66
10 0.85 / 0.01 0.92 / 0.95 0.92 / 0.83 0.92 / 0.90 0.92 / 0.77
20 0.86 / 0.19 0.92 / 0.96 0.90 / 0.84 0.92 / 0.93 0.92 / 0.74
2 0.70 / 0.03 0.72 / 0.65 0.71 / 0.60 0.69 / 0.53 0.70 / 0.48

CIFAR10 0.71 5 0.70 / 0.13 0.70 / 0.75 0.72 / 0.74 0.70 / 0.74 0.72 / 0.50
10 0.67 / 0.18 0.72 / 0.79 0.70 / 0.78 0.67 / 0.79 0.68 / 0.54
20 0.69 / 0.27 0.72 / 0.79 0.72 / 0.79 0.72 / 0.80 0.72 / 0.63
2 0.90 / 0.20 0.91 / 0.64 0.91 / 0.58 0.92 / 0.60 0.91 / 0.51

FEMNIST 0.94 5 0.89 / 0.19 0.90 / 0.89 0.92 / 0.82 0.90 / 0.82 0.90 / 0.74
10 0.90 / 0.31 0.91 / 0.92 0.90 / 0.83 0.91 / 0.86 0.92 / 0.82
20 0.91 / 0.43 0.91 / 0.93 0.92 / 0.91 0.92 / 0.92 0.91 / 0.86

Table 3: Results of our attack and DBA against MDAM under various threat models with the momentum coefficient 𝛽 = 0.9.
Our attacks significantly outperforms DBA under the same setting. For instance, when 𝑓 /𝑛 ≥ 20%, our attacks show an BA
improvement ranging from 6% to 98% over the SOTA DBA with comparable MA.

Gradients known Gradients unknown
Dataset No attack 𝑓 /𝑛 DBA AGR AGR AGR AGR

(MA) (%) (MA / BA) tailored agnostic tailored agnostic
5 0.93 / 0.01 0.93 / 0.01 0.93 / 0.01 0.92 / 0.01 0.92 / 0.01

FMNIST 0.93 10 0.93 / 0.01 0.93 / 0.01 0.92 / 0.01 0.93 / 0.01 0.93 / 0.01
20 0.93 / 0.01 0.93 / 0.99 0.92 / 0.61 0.92 / 0.68 0.93 / 0.45
30 0.93 / 0.01 0.93 / 1.00 0.92 / 0.74 0.91 / 0.99 0.92 / 0.67
5 0.73 / 0.03 0.73 / 0.14 0.73 / 0.11 0.73 / 0.11 0.73 / 0.08

CIFAR10 0.73 10 0.73 / 0.03 0.73 / 0.67 0.73 / 0.56 0.73 / 0.46 0.72 / 0.43
20 0.73 / 0.05 0.72 / 0.81 0.73 / 0.81 0.74 / 0.78 0.73 / 0.80
30 0.73 / 0.47 0.73 / 0.92 0.72 / 0.89 0.73 / 0.91 0.72 / 0.88
5 0.96 / 0.24 0.96 / 0.30 0.96 / 0.27 0.96 / 0.29 0.96 / 0.24

FEMNIST 0.96 10 0.95 / 0.43 0.96 / 0.83 0.96 / 0.64 0.95 / 0.44 0.95 / 0.47
20 0.96 / 0.68 0.96 / 0.89 0.96 / 0.88 0.96 / 0.74 0.95 / 0.78
30 0.94 / 0.76 0.95 / 0.96 0.95 / 0.95 0.94 / 0.87 0.95 / 0.85

30%} for MDAM and FLDetector, consider their different defense
performance. In each malicious client, we set the data poisoning
rate as 50%, meaning 50% of the client data are poisoned. In MDAM,
we consider momentum coefficients 𝛽 = {0, 0.6, 0.9, 0.99}, where
𝛽 = 0 means we do not use the momentum and it reduces to the
standard MDA. In CC and CC-B, both the defense CC-𝜏 and attack
ATK-𝜏 are set within {0.1,1,10,100,1000}. We also investigate the
effect of Bucketing and set the number of buckets 𝑠 in {0,2,5,10},
where 𝑠 = 0 means we do not use buckets.
Evaluation Metric. For targeted backdoor poisoning attacks, we
use both main task accuracy (MA) and backdoor accuracy (BA)
as the evaluation metrics. An attack obtaining a larger MA and a
larger BA indicates it is more effective. For untargeted poisoning
attacks, we aim to reduce the main task accuracy. Hence, a smaller
MA indicates better attack effectiveness.

5.2 Results of Our Attacks on FLAME, MDAM,
and FLDetector

Comparing with a SOTA Targeted Attack.We choose the SOTA
Distributed Backdoor Attack (DBA) to FL [40] as a baseline targeted
poisoning attack for comparison. DBA decomposes a global trigger

into several local triggers and embeds these local triggers separately
into the training data of different malicious clients. Compared with
the classic centralized backdoor that injects the global trigger, DBA
is shown to be more persistent, stealthy, and effective (more details
about DBA can be referred to [40]). To better show the attack effec-
tiveness, our attack just uses the centralized backdoor, where we
set the global trigger size to be the same as that in DBA. Following
DBA, we use the rectangle pattern as the global trigger and DBA
separates the global trigger into four local triggers. We also show
the DBA performance with different number of local triggers and
the results are very close (see Table 6).
Results on Attacking FLAME. The experimental results on differ-
ent threat models are shown in Table 2. we have the following key
observations: 1) DBA is ineffective against FLAME, while our attack
is effective. DBA obtains BAs that are low. This shows FLAME can
defend against DBA, which is also verified in [26]. In contrast, our
attack achieves very high BAs, validating that it can break FLAME
and our optimization-based attack is promising. 2) Our attack can
better maintain the FL performance than DBA. Our attack obtains
identical or better MAs than DBA and has closer MAs to those un-
der no attack. This implies our attack does not affect the main task
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Table 4: Results of attacking CC on IID FMNIST and CIFAR10, and attacking CC-B on non-IID FEMNIST with CC-𝜏 = 10. Our
attacks significantly outperform AGR-agnostic LIE and AGR-tailored Fang, especially when 𝑓 /𝑛 is large and dataset is non-IID.

Gradients known Gradients unknown
Dataset No attack 𝑓 /𝑛 LIE AGR-tailored AGR-agnostic (ATK-𝜏 ) AGR-tailored AGR-agnostic (ATK-𝜏 )

(MA) (%) Fang Ours 0.1 1 10 100 1000 Fang Ours 0.1 1 10 100 1000
2 0.84 0.76 0.74 0.84 0.82 0.74 0.75 0.76 0.76 0.75 0.84 0.83 0.75 0.74 0.74

FMNIST 0.84 5 0.84 0.76 0.72 0.84 0.82 0.72 0.73 0.72 0.77 0.69 0.84 0.81 0.69 0.71 0.70
10 0.84 0.65 0.58 0.84 0.78 0.58 0.59 0.65 0.69 0.62 0.84 0.77 0.62 0.67 0.48
20 0.84 0.49 0.40 0.83 0.76 0.40 0.11 0.10 0.51 0.47 0.83 0.76 0.47 0.15 0.09
2 0.66 0.66 0.64 0.65 0.65 0.64 0.10 0.11 0.69 0.60 0.65 0.65 0.60 0.12 0.10

CIFAR10 0.66 5 0.60 0.66 0.45 0.65 0.63 0.45 0.32 0.19 0.66 0.48 0.65 0.65 0.48 0.47 0.21
10 0.49 0.65 0.11 0.65 0.64 0.11 0.08 0.09 0.66 0.14 0.62 0.64 0.14 0.11 0.10
20 0.43 0.21 0.11 0.61 0.60 0.11 0.09 0.13 0.25 0.10 0.62 0.57 0.10 0.09 0.11
2 0.92 0.89 0.83 0.92 0.91 0.83 0.11 0.11 0.90 0.87 0.92 0.90 0.87 0.12 0.09

FEMNIST 0.92 5 0.89 0.80 0.10 0.92 0.90 0.10 0.09 0.11 0.88 0.09 0.92 0.89 0.09 0.12 0.09
10 0.79 0.65 0.09 0.92 0.88 0.09 0.10 0.09 0.80 0.12 0.92 0.87 0.12 0.09 0.11
20 0.57 0.32 0.09 0.91 0.86 0.09 0.07 0.12 0.52 0.13 0.92 0.79 0.13 0.11 0.09

Figure 2: Suspicious scores per client and per FL round computed by FLDetector under our AGR-agnostic and gradient-unknown
attack. Here, clients 0 − 4 are malicious and the remaining ones are benign, and 𝑡 is the FL training round. We observe the
suspicious scores are similar in all clients and FL rounds, hence making k-means clustering hard to detect the malicious scores.

Table 5: Results of our AGR-agnostic and gradient-unknown
targeted poisoning attack against FLDetector. The “No attack
(MA)" are 0.93, 0.73, and 0.96 on the FMNIST, CIFAR10, and
FEMNIST datasets, respectively. Note that FLDetector is cus-
tomized for defending against the centralized BA.

Dataset
𝑓 /𝑛 (%) 5 10 20 30

MA / BA MA / BA MA / BA MA / BA
FMNIST 0.93 / 0.86 0.92 / 0.99 0.93 / 1.00 0.93 / 0.99
CIFAR10 0.75 / 0.25 0.74 / 0.72 0.75 / 0.84 0.74 / 0.89
FEMNIST 0.90 / 0.48 0.90 / 0.63 0.90 / 0.73 0.90 / 0.90

performance. 3) In general, our attack has better performance under a
strong threat model than that under a weak threat model. Specifically,
comparing AGR-tailored vs. AGR-agnostic and gradients-known vs.
gradients-unknown, all the BAs obtained by our attack are larger,
while with similar MAs. 4) Defending against attacks on non-IID
datasets is more challenging than on IID datasets. We notice that
the BAs on the non-IID FEMNIST are much larger than those on
the IID FMNIST and CIFAR10. This is because the client models
can be more diverse when trained on non-IID data, thus making
it more difficult to differentiate between benign models and mali-
cious models via similarity metrics. 5) More malicious clients yield

better attack performance. Our attack can obtain larger BAs, with
an increasing number of malicious clients. This is obvious, since
more malicious clients have a larger space to perform the attack.
We notice that 5%-10% colluding malicious clients are sufficient to
obtain a promising attack performance.
Results on Attacking MDAM. The results are in Table 3 where
the momentum coefficient 𝛽 = 0.9, as suggested in [14]. We have
similar observations as those on attacking FLMAE. For instance,
our attack achieves larger MAs and BAs than DBA, showing our
attack is more effective than DBA. MDAM can completely defend
against DBA on IID datasets when the fraction of malicious clients
is small. Also, defending against attacks on non-IID dataset is more
challenging. Similarly, all these results show that our optimization-
based attack can evade the filtering strategy in MDAM.
Results on Attacking FLDetector. Table 5 shows the results of
our (AGR-agnostic and gradient-unknown) attack on FLDetector.
The results reveal FLDetector almost fails to defend against our
attack under the least adversary knowledge. To understand the
underlying reason, we show in Figure 2 the computed suspicious
scores by FLDetector for each client and in each FL round. We
observe the suspicious scores are similar across all (malicious and
benign) clients and FL rounds. Hence, it is challenging to use 𝑘-
means to detect malicious clients based on these suspicious scores.
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Table 6: DBA results on FLAME and MDAM (𝛽 = 0.9) with
different number of local triggers. Here, we choose 𝑓 /𝑛 = 10%
on FMNIST for simplicity.

#local triggers 2 3 4
(MA / BA) (MA / BA) (MA / BA)

FLAME 0.86 / 0.02 0.86 / 0.02 0.85 / 0.01
MDAM 0.93 / 0.01 0.93 / 0.00 0.93 / 0.01

5.3 Results of Our Attacks to CC and CC-B
Comparing with SOTA Untargeted Attacks. We choose two
SOTA untargeted poisoning attack methods, namely LIE [3] (AGR-
agnostic) and Fang [13] (AGR-tailored), for comparison. Roughly
speaking, LIE computes the average 𝜇 and standard deviation 𝛿 of
the benign gradients, and computes a coefficient 𝑧 based on the total
number of benign and malicious clients, and finally computes the
malicious update as 𝜇 + 𝑧𝛿 . Fang calculates the average 𝜇 of benign
gradients and introduces a perturbation g𝑝 = −sign(𝜇). Ultimately,
it computes a malicious update as g𝑐 = 𝜇 +𝛾g𝑝 . The attack initiates
a relatively large 𝛾 and iteratively halves it until 𝛾 yields promising
attack performance. Note that, unlike targeted poisoning attacks,
our goal in this attack setting is to achieve as small MAs as possible.
Results onAttacking CC.As stated in Section 4.2, CC has the only
important parameter 𝜏 . An AGR-tailored attack implies ATK-𝜏 set
by the adversary equals to the true CC-𝜏 , while an AGR-agnostic
attack means ATK-𝜏 and CC-𝜏 are different. Table 4 shows our
attack results on IID FMNIST and CIFAR10 where we set CC-𝜏=10
and try different ATK-𝜏 ’s. We observe that: 1) Our attack, even in
the gradients-unknown setting, is more effective than LIE and Fang
with known gradients; 2) Our attack obtains small MAs when the
adversary knows the true CC-𝜏 ; 3) By setting ATK-𝜏 to be a larger
value, e.g., 1000, our attack is always effective. This is because a
larger ATK-𝜏 can always make the adversary easier to satisfy the
adversary objective in Equation 5. Such results guide the adversary
to set a relatively large 𝜏 in practice.
Results on Attacking CC with Bucketing. Since the bucketing
strategy is mainly to address the heterogeneous data issue across
clients, we only evaluate our attack against CC-B on the non-IID
FEMNIST. As shown in Table 4, our attack can significantly reduce
the MAs especially when ATK-𝜏 is larger. This suggests our attack
on non-IID datasets can also evade the aggregation of CC-B.

6 Related Work
Poisoning Attacks to FL. Poisoning attacks can be classified as
targeted and untargeted attacks based on the adversary’s goal. Tar-
geted poisoning attacks to FL [2, 31, 38, 40, 46] aim to misclassify
the targeted inputs as the attacker desires, while maintaining the
performance on clients’ clean inputs. For instance, backdoor attacks
[2, 38, 40] are a subset of targeted attacks, where an adversary (e.g.,
malicious clients) injects a backdoor into the target inputs and tam-
pers with their labels as the adversary desired label during training.
During testing, the trained backdoored global model misclassifies
any test input with the backdoor as the desired attack label, while
correctly classifying the clean testing inputs. In contrast, untar-
geted poisoning attacks [3, 4, 13, 32] aim to minimize the accuracy
of the global model on test inputs, which can be implemented by

data poisoning [36] or model poisoning [4, 13, 32]. For instance,
[32] proposes an untargeted poisoning attack framework to mount
optimal model poisoning attacks. Different from the existing at-
tacks, we propose an attack framework that unifies both targeted
and untargeted attacks to FL.
Defenses against Poisoning Attacks to FL. Existing (empirical)
defenses focus on designing robust aggregators (AGRs) and they can
be roughly classified as two categories: the ones that limit the attack
effectiveness via clipping malicious gradients [2, 17, 24, 26, 27, 44];
and the ones that weaken the contributions of malicious models by
detecting and filtering them [1, 5, 14, 25, 30, 41]. Well-known AGRs
include (Multi-) Krum [5], Bulyan [15], Trimmed-Mean (TM) [41,
44], Median [41, 44], Minimum Diameter Averaging (MDA) [29],
Adaptive Federated Averaging (AFA) [25], and FLTrust [9]. How-
ever, all these defenses are broken by the optimization-based adap-
tive (untargeted poisoning) attack proposed by [32].

To mitigate this attack, SOTA poisoning defenses incorporating
novel robust AGRs have been proposed, where the representa-
tives are CC [17], MDAM [14], FLAME [26], and FLDetector [45]3.
For instance, CC clips malicious gradients by a tunable thresh-
old 𝜏 (hyper-parameter), while FLAME sets the clipping threshold
through computing the median value of the Euclidean distance
between the global model and local models. In contrast, MDAM
chooses a subset of 𝑛 − 𝑓 clients (where 𝑓 is the total number of
malicious clients) with the smallest diameter to filter out the mali-
cious gradients. Similar to MDAM, FLDetector utilizes historical
information to predict gradient updates and identifies malicious
clients by assessing discrepancies from the actual values.

In the paper, we design an optimization-based attack framework
to break all these SOTA poisoning defenses.

7 Conclusion
We study poisoning attacks to federated learning and aim to break
state-of-the-art poisoning defenses that use robust robust aggrega-
tors. Particularly, we propose an optimization-based attack frame-
work, under which we design customized attacks by uncovering
the vulnerabilities of these robust aggregators. Our attacks are ex-
tensively evaluated on various threat models and datasets. The
experimental results validate our attacks can break all these robust
aggregators and deliver significantly stronger attack performance
that the SOTA attacks. Potential future works include designing
effective (provable) defenses and generalizing the proposed attack
framework on federated learning for, e.g., graph data [37].
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H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[8] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. 2013. Density-based
clustering based on hierarchical density estimates. In Advances in Knowledge
Discovery and Data Mining: 17th Pacific-Asia Conference, PAKDD 2013, Gold Coast,
Australia, April 14-17, 2013, Proceedings, Part II 17. Springer, 160–172.

[9] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. 2021. Fltrust:
Byzantine-robust federated learning via trust bootstrapping. In NDSS.

[10] Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhenqiang Gong. 2023. Fedrecover:
Recovering from poisoning attacks in federated learning using historical infor-
mation. In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 1366–1383.

[11] Lingjiao Chen, Hongyi Wang, Zachary Charles, and Dimitris Papailiopoulos.
2018. Draco: Byzantine-resilient distributed training via redundant gradients. In
International Conference on Machine Learning.

[12] Yudong Chen, Lili Su, and Jiaming Xu. 2017. Distributed statistical machine
learning in adversarial settings: Byzantine gradient descent. Proceedings of the
ACM on Measurement and Analysis of Computing Systems 1, 2 (2017), 1–25.

[13] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2020. Local
model poisoning attacks to byzantine-robust federated learning. In Proceedings
of the 29th USENIX Conference on Security Symposium. 1623–1640.

[14] Sadegh Farhadkhani, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, and John
Stephan. 2022. Byzantine machine learning made easy by resilient averaging of
momentums. In International Conference on Machine Learning. PMLR, 6246–6283.

[15] Rachid Guerraoui, Sébastien Rouault, et al. 2018. The hidden vulnerability of dis-
tributed learning in byzantium. In International Conference on Machine Learning.
PMLR, 3521–3530.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[17] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. 2021. Learning from his-
tory for byzantine robust optimization. In International Conference on Machine
Learning. PMLR, 5311–5319.

[18] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. 2022. Byzantine-robust
learning on heterogeneous datasets via bucketing. In International Conference on
Learning Representations.

[19] Ang Li, Jingwei Sun, Binghui Wang, Lin Duan, Sicheng Li, Yiran Chen, and Hai
Li. 2020. Lotteryfl: Personalized and communication-efficient federated learning
with lottery ticket hypothesis on non-iid datasets. arXiv (2020).

[20] Denghao Li, Jianzong Wang, Lingwei Kong, Shijing Si, Zhangcheng Huang,
ChenyuHuang, and Jing Xiao. 2022. ANearest Neighbor Under-sampling Strategy
for Vertical Federated Learning in Financial Domain. In Proceedings of the 2022
ACM Workshop on Information Hiding and Multimedia Security. 123–128.

[21] Liping Li, Wei Xu, Tianyi Chen, Georgios B Giannakis, and Qing Ling. 2019.
RSA: Byzantine-robust stochastic aggregation methods for distributed learning
from heterogeneous datasets. In Proceedings of the AAAI Conference on Artificial
Intelligence.

[22] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50–60.

[23] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial Intelligence and Statistics.

[24] Mark Huasong Meng, Sin G Teo, Guangdong Bai, Kailong Wang, and Jin Song
Dong. 2023. Enhancing Federated Learning Robustness Using Data-Agnostic
Model Pruning. In Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, 441–453.

[25] Luis Muñoz-González, Kenneth T Co, and Emil C Lupu. 2019. Byzantine-robust
federated machine learning through adaptive model averaging. arXiv preprint
arXiv:1909.05125 (2019).

[26] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering,
Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza
Zeitouni, et al. 2022. FLAME: Taming Backdoors in Federated Learning. In 31st
USENIX Security Symposium.

[27] Thien Duc Nguyen, Phillip Rieger, Hossein Yalame, Helen Möllering, Hossein
Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Ahmad-Reza
Sadeghi, Thomas Schneider, et al. 2021. Flguard: Secure and private federated
learning. arXiv preprint arXiv:2101.02281 (2021).

[28] Mustafa Safa Ozdayi, Murat Kantarcioglu, and Yulia R Gel. 2021. Defending
against backdoors in federated learning with robust learning rate. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 35. 9268–9276.

[29] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. 2022. Robust aggregation
for federated learning. IEEE Transactions on Signal Processing 70 (2022), 1142–
1154.

[30] Phillip Rieger, Thien Duc Nguyen, Markus Miettinen, and Ahmad-Reza Sadeghi.
[n. d.]. DeepSight: Mitigating Backdoor Attacks in Federated Learning Through
Deep Model Inspection. In 29th Annual Network and Distributed System Security
Symposium, NDSS 2022.

[31] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. 2020. Hid-
den trigger backdoor attacks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 34. 11957–11965.

[32] Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the byzantine:
Optimizing model poisoning attacks and defenses for federated learning. In
NDSS.

[33] Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin, and Spyridon
Bakas. 2019. Multi-institutional deep learning modeling without sharing patient
data: A feasibility study on brain tumor segmentation. In Brainlesion: Glioma,
Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop,
BrainLes 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September
16, 2018, Revised Selected Papers, Part I 4. Springer, 92–104.

[34] Md Fahimuzzman Sohan and Anas Basalamah. 2023. A Systematic Review on
Federated Learning in Medical Image Analysis. IEEE Access (2023).

[35] Robert Tibshirani, Guenther Walther, and Trevor Hastie. 2001. Estimating the
number of clusters in a data set via the gap statistic. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 63, 2 (2001), 411–423.

[36] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020. Data
poisoning attacks against federated learning systems. In ESORICS 2020. 480–501.

[37] Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. 2022. Graphfl: A
federated learning framework for semi-supervised node classification on graphs.
In IEEE International Conference on Data Mining.

[38] HongyiWang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma, Saurabh
Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris Papailiopoulos. 2020. Attack
of the tails: Yes, you really can backdoor federated learning. Advances in Neural
Information Processing Systems 33 (2020), 16070–16084.

[39] Zhaoxian Wu, Qing Ling, Tianyi Chen, and Georgios B Giannakis. 2020. Feder-
ated variance-reduced stochastic gradient descent with robustness to byzantine
attacks. IEEE Transactions on Signal Processing (2020).

[40] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. Dba: Distributed back-
door attacks against federated learning. In International conference on learning
representations.

[41] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. 2018. Generalized byzantine-
tolerant sgd. arXiv preprint arXiv:1802.10116 (2018).

[42] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Zeno: Distributed stochastic
gradient descent with suspicion-based fault-tolerance. In International Conference
on Machine Learning. PMLR, 6893–6901.

[43] Yuxin Yang, Qiang Li, Jinyuan Jia, Yuan Hong, and Binghui Wang. 2024. Dis-
tributed Backdoor Attacks on Federated Graph Learning and Certified Defenses.
In Proceedings of the 2024 ACM SIGSAC Conference on Computer and Communica-
tions Security.

[44] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.
Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national Conference on Machine Learning. PMLR, 5650–5659.

[45] Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, andNeil ZhenqiangGong. 2022. FLDetector:
Defending federated learning against model poisoning attacks via detecting
malicious clients. In Proceedings of the 28th ACMSIGKDDConference on Knowledge
Discovery and Data Mining. 2545–2555.

[46] Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael Ma-
honey, Prateek Mittal, Ramchandran Kannan, and Joseph Gonzalez. 2022. Neuro-
toxin: Durable backdoors in federated learning. In International Conference on
Machine Learning. PMLR, 26429–26446.


	Abstract
	1 Introduction
	2 Preliminaries
	3 Threat Model
	4 Optimization-Based Poisoning Attacks to SOTA Robust AGRs in FL
	4.1 Targeted Poisoning Attacks to FLAME, MDAM, and FLDetector
	4.2 Untargeted Poisoning Attacks to CC and CC with Bucketing
	4.3 Solving for The Scaling Hyperparameter 

	5 Experiments
	5.1 Experimental Setup
	5.2 Results of Our Attacks on FLAME, MDAM, and FLDetector
	5.3 Results of Our Attacks to CC and CC-B

	6 Related Work
	7 Conclusion
	References

