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Data-driven Polytopic Approximation for
n-Dimensional Probabilistic Reachable Set

Pengcheng Wu, Jun Chen, Member, IEEE

Abstract—In this work, we first propose an algorithm to find
a probabilistic reachable set that bounds system states given a
prescribed confidence level. Then, we establish an optimization
framework using mixed integer linear programming, where
the solution identifies a convex polytope that approximates the
probabilistic reachable set. Utilizing this formulation, we have
devised a heuristic algorithm aimed at efficiently determining
its solution without compromising significant accuracy. Through
case studies, we have tested this heuristic algorithm, showcasing
its simultaneous benefits in terms of efficiency, accuracy, near-
optimality, and robustness. The positive outcomes of this research
lay the foundation for potential applications in the real-time, safety-
critical motion planning of dynamic systems under uncertainties.

Index Terms—Probabilistic Reachable Set, Convex Approx-
imation, Uncertain Dynamic System, Mixed Integer Linear
Programming

I. INTRODUCTION

How to guarantee safety plays a pivotal role in achieving
successful operations for autonomous systems under uncer-
tainties [1]–[4]. Reachability analysis is a popular set-based
approach which computes reachable sets to guarantee the
operational safety of uncertain dynamic systems [5]. In previous
literature, many researchers have proposed different algorithms
to leverage system details to compute reachable sets. However,
such algorithms no longer apply when it comes to some
challenges.

For an autonomous system under uncertainties not lim-
ited to bounded ones, it is usually impossible to absolutely
avoid collision and guarantee operation safety. Alternatively,
researchers tried to identify a trajectory for the uncertain
dynamic system following which collision probability is
bounded by an acceptable threshold. One method involves
the evaluation of collision probability for a candidate trajectory
[6], [7]. Nevertheless, a significant challenge in implementing
this method is the absence of a closed-form expression for
evaluating collision probability. Alternatively, another method
involves the computation of a probabilistic reachable set (PRS)
rather than a traditional reachable set [8]. The introduction of
PRS can help convert probabilistic constraint which imposes
an upper bound on collision probability, to a deterministic
constraint of the PRS not intersecting with the candidate
trajectory [9].
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Researchers usually assumed Gaussian uncertainties in
previous literature. However, this may not make sense in real
scenarios [10], [11]. Instead, it is a natural idea to fit the
non-Gaussian uncertainties into Gaussian ones. However, it
is not accurate and may compromise operation safety [12].
Wu et al. applied the Monte Carlo method in the process of
collision-free motion planning [13]. However, a large number
of samples is usually required in pure sampling methods
like Monte Carlo, which is infeasible and computationally
inefficient in practice [14], [15]. Some researchers turned to
employing the moment-based methods to capture non-Gaussian
PRS [12]. However, it is not realistic to assume that the moment
information is known a priori. Such limitations motivate the
study of data-driven reachability analysis, which is dedicated
to approximating reachable sets using data obtained from
experiments or simulations. It combines the advantages of both
sampling-based methods and analytical methods. In this paper,
kernel density estimator (KDE), a data-driven approach, is used
to capture unknown uncertainties not limited to Gaussian ones.
The level set of KDE can be taken as the PRS of the states.

The shape of the probabilistic reachable set is usually
irregular, which is not convenient in practice. For example,
when it comes to collision detection, it is difficult to determine
whether a point lies inside a probabilistic reachable set whose
shape is irregular. Alternatively, researchers tried to find a
convex polytopic approximation of PRS. Compared with an
irregular probabilistic reachable set, it is much easier to
determine the relative position between a point and a convex
polytope. Different methods have been proposed to provide
convex approximation. The bounding box is a popular way
to find a convex approximation of PRS [16]. Hwang et al.
provided a polytopic approximation for reachability analysis
[17]. However, because of lacking quantification, they could
not provide tight and accurate approximations of PRS. Wu et al.
discovered an efficient zonotopic approximation for data-driven
PRS; however, zonotopic approximation is not general when
compared with polytopic approximation [9], [18]. Instead,
Wu et al. also found convex polygons to serve as the ap-
proximation of PRS; however, its applicability is restricted
to 2-dimensional spaces [19]. This study presents a novel
approach where a mixed integer linear programming (MILP)
optimization problem is constructed based on Kernel Density
Estimation (KDE) outcomes. The solution to this problem
determines a convex polytopic approximation for PRS in
n-dimensional space. Additionally, a heuristic algorithm is
devised to effectively tackle the MILP problem.

This paper focuses on offering an accurate and efficient
convex approximation for PRS of uncertain dynamic systems
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in n-dimensional space. The main contributions of this paper
can be outlined as follows:

1) Formulating a MILP optimization problem, we aim to
compute a convex polytopic approximation of the PRS in n-
dimensional space. Unlike conventional methods that directly
utilize data samples, our approach employs grid points weighted
by the results of KDE, rendering it tractable. This strategy
stands in contrast to existing methods like Gaussian fit and
bounding box [18], [20], [21], yielding a convex polytopic
approximation which is more tight and accurate. Consequently,
this enhancement contributes to a planning space that is more
feasible.

2) An efficient heuristic algorithm is devised to address
the MILP problem. In contrast to the conventional approach,
which seeks a globally optimal solution to the MILP problem
formulated [19], [22], this algorithm can efficiently identify a
near-optimal solution that is robust and accurate.

The remainder of this paper is organized as follows. In Sec-
tion II, we formally formulate the problem under consideration.
Section III presents the formulation of a MILP problem, the
solution to which determines a convex polytopic approximation
of the PRS. In Section IV, we introduce a heuristic algorithm
devised to tackle the MILP problem. Case studies illustrating
the feasibility and efficacy of the proposed heuristic algorithm
are presented in Section V. Finally, Section VI provides a
conclusion to this paper along with a future vision.

Some Notations:
M =

�
1, · · · ,M

 
: the index set of M data samples

N =
�
1, · · · , N

 
: the index set of N grid points in each

dimension
xt 2 Rn: the system state at time step t
ut 2 Rm: the control input at time step t
✓t 2 Rp: the uncertain parameter
wt 2 Rq: the external disturbance
↵: confidence level
No: the number of obstacles
k · k: Euclidean norm
xit: the state of the i-th obstacle at time t
�: the safe separation distance
Xt: the PRS of the system
Xit, i 2 {1, · · · , No}: the PRS of No obstacles

II. PROBLEM STATEMENT

In this section, we examine a discrete-time dynamic sys-
tem under uncertainties and introduce the notion of an n-
dimensional probabilistic reachable set (PRS) of the system
state. Additionally, we outline the objective of this paper.

Consider a discrete-time dynamic system given by the form

xt+1 = f (xt,ut,✓t,wt) , (1)

where xt 2 Rn is the system state at time step t, ut 2 Rm

is the control input at time step t, the uncertain parameter
✓t 2 Rp and the external disturbance wt 2 Rq represent two
random vectors obeying unknown probability distributions and
they are independent and identically distributed across time.
The initial condition x0 may obey an unknown probability
distribution.

Collision avoidance plays a pivotal role in the operations
of the system. It is not possible to figure out a bounded
reachable set for unbounded uncertainties which can guarantee
definite collision avoidance without violating the reachable set
of the system state. Alternatively, we turn to guarantee that the
collision probability is under a prescribed threshold 1�↵, i.e.,

8t, Pr
� No_

i=1

kxt � xitk  �
�
 1� ↵, (2)

where No represents the quantity of obstacles, k · k represents
2-norm, xit represents the i-th obstacle’s state at time t, �
represents the safe separation distance.

The equation in Eq. (2) represents a chance constraint, and
our aim is to transform it into an equivalent deterministic
constraint. Given that xt and xit, , i 2 1, · · · , No are influenced
by unknown uncertainties that could be unbounded, we seek
to establish a Probabilistic Reachable Set (PRS) for each of
them, individually. The formal definition of an n-dimensional
PRS is provided as follows [8].

Definition 1 (Probabilistic Reachable Set). At time t, given a
confidence level ↵, a bounded set Xt ✓ Rn is an n-dimensional
probabilistic reachable set (PRS) of the system state xt 2 Rn

in Eq. (1) if and only if

Pr(xt 2 Xt) � ↵.

With the help of PRS, we can convert Eq. (2) to

8t, Xt \
No[

i=1

Xit = ;.

The shape of the PRS Xt and Xit, i 2 {1, · · · , No} is
usually nonconvex and irregular. In this paper, we are going
to find a convex polytope serving the convex approximation
of the PRS, which satisfies: i) Convexity: The polytope is
convex; ii) Efficiency: The algorithm to find the polytope is
computationally efficient; iii) Accuracy: The probability of the
system state xt in the polytope is close to the confidence level
↵; iv) Optimality: The hypervolume of the polytope is as small
as possible (not too conservative) while ensuring accuracy.

III. MILP FORMULATION

We can use FFT-based KDE to capture an unknown n-variate
probability distribution not limited to Gaussian ones [23]. We
implement the algorithm proposed by [6] to compute a PRS
of the system state in real-time. Please refer to the Online
Appendix for more details of that algorithm.

In this section, we establish an optimization framework using
mixed integer linear programming (MILP), where the solution
determines a convex polytope to approximate the PRS.

A. Weight Assignment

Consider a mesh of Nn grid points
�
(x1i1 , · · · , xnin) 2

Rn : i1, · · · , in 2 N
 

evenly spaced on the space Rn. The
mesh of grid points can be viewed as a map g :

�
(i1, · · · , in) :
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i1, · · · , in 2 N
 

7!
�
(x1i1 , · · · , xnin) 2 Rn : i1, · · · , in 2

N
 

given by

(x1i1 , · · · , xnin) = g(i1, · · · , in), i1, · · · , in 2 N,

where (i1, · · · , in) is the index of a grid point whose coordinate
is (x1i1 , · · · , xnin). Throughout the remainder of this paper,
a coordinate g(i1, · · · , in) is abbreviated as gi1···in .

Consider M data samples xk = (xk1, · · · , xkn) 2 Rn, k 2
M of a random vector x = (x1, · · · , xn) 2 Rn and a mesh
of Nn grid points g aligning with the axes of a global
coordinate system. Evaluating KDE, it follows that each grid
point gi1···in , i1, · · · , in 2 N has a binned KDE value
f̃i1···in , i1, · · · , in 2 N, respectively. A normalized weight
matrix w = [wi1···in ] can be defined. Its element is

wi1···in =
f̃i1···in

NP
i1,··· ,in=1

f̃i1···in

, i1, · · · , in 2 N. (3)

B. Objective Function

The objective of the MILP optimization problem is to
efficiently find a convex polytope which serves an accurate
approximation of the PRS, through deciding which grid points
should be selected to lie inside the polytope desired. To make
it, we introduce three different kinds of decision variables:

• 2nn continuous variables ak1, · · · , akn 2 R, k 2
{1, · · · , 2n};

• 2nNn binary variables pki1···in 2 {0, 1}, i1, · · · , in 2
N, k 2 {1, · · · , 2n};

• Nn binary variables zi1···in 2 {0, 1}, i1, · · · , in 2 N,
where n is the dimension of space, N is the number of grid
points in each dimension, ak1, · · · , akn are the coefficients of
a hyperplane pk which is the extension of a facet (also called
hyperface) of the convex polytope, pki1···in = 1 if and only if
gi1···in lies on the specified side of the hyperplane pk, and
zi1···in = 1 if and only if gi1···in lies within the polytope.

To get the smallest convex polytope by hypervolume, we
formulate the objective function of the MILP problem as

min
NX

i1,··· ,in=1

zi1···in . (4)

C. Constraints on Continuous Variables

In an n-dimensional space Rn, all the hyperplanes which
do not pass through the origin are
�
a1x1+· · ·+anxn = 1 : a1, · · · , an 2 R^a21+· · ·+a2n 6= 0

 
,

and different tuples of coefficients (a1, · · · , an) determine
different hyperplanes.

Given 2n hyperplanes not passing through the origin in Rn,
we can define a set S determined by these hyperplanes as

S =
�
(x1, · · · , xn) 2 Rn :

2n^

k=1

ak1x1 + · · ·+ aknxn  1
 
,

(5)

which is a convex polyhedron containing the origin. Alterna-
tively, Eq. (5) can be concisely written as

S =
�
x 2 Rn : Ax  1

 
, (6)

where x = (x1, · · · , xn) 2 Rn, 1 = (1, · · · , 1) 2 R2n , and
A =

⇥ a, ··· , a1n
a2n1, ··· , a2nn

⇤
2 R2n⇥n.

The set S given in Eq. (6) must contain the origin, but may
be unbounded. If bounded, S is a convex polytope containing
the origin. The following lemma introduced in [24] gives the
condition under which S must be bounded.

Lemma 1. The convex polyhedron S in Eq. (6) is unbounded
if and only if 9x 2 Rn,x 6= 0 ^Ax � 0.

Next, the following theorem gives the constraints on the
coefficients of the hyperplanes, which suffices to ensure the
convex polyhedron S given in Eq. (6) is bounded.

Theorem 1. Given 2n hyperplanes pk : ak1x1 + · · · +
aknxn = 1, k 2 {1, · · · , 2n} which do not pass through the
origin in Rn, if the coefficients of these hyperplanes satisfy

a11 > 0, a12 > 0, · · · , a1n > 0;

a21 < 0, a22 > 0, · · · , a2n > 0;

...
a2n1 < 0, a2n2 < 0, · · · , a2nn < 0,

(7)

then the convex polyhedron S given in Eq. (6) is bounded,
namely, S is a convex polytope containing the origin.

Proof. See Online Appendix. ⌅

That S in Eq. (6) is bounded doesn’t necessarily mean the
quantity of the hyperfaces (also called facets) of the convex
polytope S is exactly 2n. Indeed, the number of the facets of
S is  2n.

Theorem 1 shows that the convex polytope S determined by
the hyperplanes whose coefficients satisfy Eq. (7) must contain
the origin. The following corollary applies to the scenarios
where an arbitrary point must be contained.

Corollary 1. Given 2n hyperplanes pk : ak1(x1 � x̂1) +
· · ·+akn(xn� x̂n) = 1, k 2 {1, · · · , 2n} not passing through
a point (x̂1, · · · , x̂n) 2 Rn, if these hyperplanes’ coefficients
satisfy Eq. (7), then the convex polyhedron S given by

S =
�
(x1, · · · , xn) 2 Rn :

2n^

k=1

ak1(x1 � x̂1) + · · ·

+ akn(xn � x̂n)  1
 

(8)

is bounded, namely, S is a convex polytope containing the
point (x̂1, · · · , x̂n).

Proof. See Online Appendix. ⌅

In summary, Eq. (7) gives the constraints on 2nn continuous
variables ak1, · · · , akn 2 R, k 2 {1, · · · , 2n}. Given 2n

hyperplanes not passing through a point in Rn, if Eq. (7)
holds, then S in Eq. (8) is a convex polytope containing that
point.
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D. Constraints of Discrete Variables

We denote the index of the grid point which has the greatest
normalized weight by (̂i1, · · · , în) = argmax(w), and its
coordinate by (x̂1, · · · , x̂n) = gî1···̂in . We enforce the grid
point gî1···̂in lies within the convex polytope. In other words,

zî1···̂in = 1. (9)

The purpose of the convex polytope is to provide an
approximation of the PRS. To ensure a confidence level ↵
of the PRS, we enforce that the normalized weights’ sum of
the grid points lying within the polytope exceeds ↵. That is,

NX

i1,··· ,in=1

wi1···inzi1···in � ↵. (10)

Eq. (9) and Eq. (10) are what we establish for zi1···in 2
{0, 1}, i1, · · · , in 2 N.

We enforce zi1···in = 1 if and only if gi1···in lies within the
convex polytope. That is,

zi1···in = 1 =)
2n^

k=1

ak1(x1i1 � x̂1) + · · · (11)

+ akn(xnin � x̂n)  1, i1, · · · , in 2 N,

zi1···in = 0 =)
2n_

k=1

ak1(x1i1 � x̂1) + · · · (12)

+ akn(xnin � x̂n) > 1, i1, · · · , in 2 N.

Next, a new type of binary variables pki1···in 2
{0, 1}, i1, · · · , in 2 N, k 2 {1, · · · , 2n} is introduced to
transform the logical constraints to algebraic constraints. We
enforce pki1···in = 1 if and only if gi1···in lies on the same side
as the point (x̂1, · · · , x̂n) of the hyperplane pk. That is,

pki1···in = 1 =) ak1(x1i1 � x̂1) + · · ·+ akn(xnin � x̂n)  1,

i1, · · · , in 2 N, k 2 {1, · · · , 2n},

pki1···in = 0 =) ak1(x1i1 � x̂1) + · · ·+ akn(xnin � x̂n) > 1,

i1, · · · , in 2 N, k 2 {1, · · · , 2n}.

Further, the constraints above can be reformulated as algebraic
constraints using big-M method [25], which are

ak1(x1i1 � x̂1) + · · ·+ akn(xnin � x̂n)� 1  (13)
Mbig(1� pki1···in), i1, · · · , in 2 N, k 2 {1, · · · , 2n},

� ak1(x1i1 � x̂1)� · · ·� akn(xnin � x̂n) + 1 < (14)
Mbigp

k
i1···in , i1, · · · , in 2 N, k 2 {1, · · · , 2n},

where Mbig is a constant which is large enough.

The logical connection between pki1···in and zi1···in is

zi1···in = 1 =)
2nX

k=1

pki1···in = 2n, i1, · · · , in 2 N,

zi1···in = 0 =)
2nX

k=1

pki1···in  (2n � 1), i1, · · · , in 2 N,

and these constraints can be further reformulated as the
following algebraic constraints

2nX

k=1

pki1···in � 2nzi1···in , i1, · · · , in 2 N, (15)

2nX

k=1

pki1···in  (2n � 1) + zi1···in , i1, · · · , in 2 N. (16)

E. Formulation of MILP Optimization Problem

We have established the objective function

min
NP

i1,··· ,in=1
zi1···in in Eq. (4), and introduced the following

three types of decision variables. Collecting the formulated
constraints Eq. (7), Eq. (9), Eq. (10), Eq. (13), Eq. (14),
Eq. (15), Eq. (16), we formulate the problem proposed in
Section II as an MILP problem Eq. (17) on Page 5.

To determine the convex polytope S as defined in Eq. (8),
we need to figure out the coefficients ak1, · · · , akn 2 R, k 2
{1, · · · , 2n}. They can be found through solving the above
MILP problem.
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min
NX

i1,··· ,in=1

zi1···in

s.t. a11 > 0, a12 > 0, · · · , a1n > 0,

a21 < 0, a22 > 0, · · · , a2n > 0,

...
a2n1 < 0, a2n2 < 0, · · · , a2nn < 0;

ak1(x1i1 � x̂1) + · · ·+ akn(xnin � x̂n)� 1 
Mbig(1� pki1···in), i1, · · · , in 2 N, k 2 {1, · · · , 2n};

� ak1(x1i1 � x̂1)� · · ·� akn(xnin � x̂n) + 1 <

Mbigp
k
i1···in , i1, · · · , in 2 N, k 2 {1, · · · , 2n};

2nX

k=1

pki1···in � 2nzi1···in , i1, · · · , in 2 N;

2nX

k=1

pki1···in  (2n � 1) + zi1···in , i1, · · · , in 2 N;

zî1···̂in = 1;

NX

i1,··· ,in=1

wi1···inzi1···in � ↵;

ak1, · · · , akn 2 R, k 2 {1, · · · , 2n};

pki1···in 2 {0, 1}, i1, · · · , in 2 N, k 2 {1, · · · , 2n};

zi1···in 2 {0, 1}, i1, · · · , in 2 N.
(17)

F. Convex Approximation through Transformation

The constraints Eq. (7) on the coefficients of the hyperplanes
of a convex polytope enforce that different hyperplanes are
located at different orthants (also called hyperoctants) of a
coordinate system. Therefore, the convex polytope which is
determined by the solution to the MILP problem Eq. (17) is
dependent on the selection of the coordinate system. Instead
of the original global coordinate system, we hope to establish
a new global coordinate system, especially one that aligns
with the principal axes of the original data samples, to help
determine the convex polytope of desired.

Theorem 2. Consider a random vector x = (x1, · · · , xn) 2
Rn following an unknown n-variate probability distribution
with M data samples xk = (xk1, xk2, · · · , xkn) 2 Rn, k 2 M
extracted from this distribution. Let e1, · · · , en 2 Rn denote
n unit vectors indicating the direction of the principal axes
of these M data samples. Define u = (u1, · · · , un) 2 Rn

as a new random vector obtained through a special affine
transformation of x, which is

u = T (x) = x̄+A(x� x̄), x 2 Rn, (18)

where A = [e1, · · · , en]�1 is an orthogonal matrix and

x̄ = (x̄1, · · · , x̄n) = 1
M

MP
k=1

xk = 1
M

MP
k=1

(xk1, · · · , xkn) is

a fixed point under T . Then we determine a convex polytopic
approximation

T�1(S) =
�
T�1(u) 2 Rn : u 2 S

 
(19)

of PRS for the random vector x, which depends on its principal
axes. Here S, as defined in Eq. (8), is a convex polytope
determined by the solution to a MILP optimization problem
Eq. (17) formulated for the random vector u.

Proof. See Online Appendix. ⌅

IV. SOLUTION METHOD

In this section, we develop an algorithm of Heuristic MILP
which can efficiently find a near-optimal solution to the
formulated MILP optimization problem.

Throughout the rest of this paper, we refer to the way of
solving the MILP problem Eq. (17) through the algorithm of
cutting planes and branching, which is a standard solver of
MILP problems, as Optimal MILP algorithm [22]. The optimal
solution found in this way determines an optimal convex
polytopic approximation of the PRS. However, Optimal MILP
algorithm is often intractable. Instead, we develop Algorithm 1,
Heuristic MILP algorithm, which can efficiently find a near-
optimal solution of ak1, · · · , akn, k 2 {1, · · · , 2n}, instead
of an optimal solution found by Optimal MILP algorithm.
This near-optimal solution determines a near-optimal convex
polytopic approximation of the PRS.

Algorithm 1 conducts weighted sampling to choose some
grid points g0

u as representatives from the entire set of grid
points gu. Then, we can formulate a revised MILP problem
using g0

u. Subsequently, the Optimal MILP can be utilized to
solve the revised MILP problem with g0

u. The optimal solution
obtained from this new MILP problem utilizing g0

u serves
as an approximation to the optimal solution of the original
MILP problem using gu. This trade-off between efficiency
and optimality arises due to the reduction in the size of g0

u

compared to gu, leading to a decrease in the number of
constraints and decision variables in the new MILP problem,
thus significantly reducing computational time.

In Algorithm 1, we denote Ns as the count of g0
u. In lines

1 through 6, we employ the AES algorithm, given in [26]
to select Ns g0

u from Nn gu without replacement randomly,
based on their normalized weights w. Subsequently, from
lines 7 through 9, we re-normalize the original weights w0

of g0
u to ŵ0, ensuring their sum equals one. This step of re-

normalization plays a pivotal role to ensure the solution derived
from Algorithm 1 is accurate.

V. MAIN RESULTS

In this section, we undertake case studies to compare
the efficacy of Heuristic MILP algorithm with three other
algorithms: Optimal MILP, Gaussian fit [9], and the bounding
box method for PRS approximation [16]. Each algorithm
aims to provide a convex set for approximating the PRS. The
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Algorithm 1 Heuristic MILP Algorithm
1: function RESAMP(gu, w, Ns)
2: ui1···in = random(0, 1)

3: ki1···in = ui1···in
1

wi1···in

4: Pick up first Ns grids from gu in descending order of
ki1···in as g0

u

5: Pick up Ns grids’ weights from w as w0

6: return w0, g0
u

7: function RENORM(w0, Ns)
8: ŵ0 = ones(Ns) · (1� sum(w0))/Ns +w0

9: return ŵ0

10: function GUROBI(↵, gu, g0
u, ŵ0)

11: î1, · · · , în = argmax(ŵ0)
12: (x̂1, · · · , x̂n) = gu î1···̂in
13: Establish Eq. (17) on g0

u weighted by ŵ0

at confidence level ↵
14: Use Gurobi to solve Eq. (17) for ak1, · · · , akn,

k 2 {1, · · · , 2n}
15: return x̂1, · · · , x̂n, ak1, · · · , akn, k 2 {1, · · · , 2n}

16: function HEURISTICPOLYTOPE(↵, xk, Ns)
17: Get n orthonormal vectors e1, · · · , en

representing the orientation of M data samples xk

18: Get Nn grid points gx aligning with e1, · · · , en
19: A = [e1, · · · , en]�1

20: x̄ = 1
M

MP
k=1

xk

21: Get a new random vector u = T (x) =
x̄+A(x� x̄), x 2 Rn

22: Get Nn grid points gu = T � gx aligning with the
axes of the coordinate system

23: Evaluate KDE f̃u on gu and get the normalized
weight matrix w

24: g0
u, w0 = RESAMP(gu, w, Ns)

25: ŵ0 = RENORM(w0, Ns)
26: x̂1, · · · , x̂n, ak1, · · · , akn, k 2 {1, · · · , 2n} =

GUROBI(↵, gu, g0
u, ŵ0)

27: Determine the heuristic polytope S for u by the
solution x̂1, · · · , x̂n, ak1, · · · , akn, k 2 {1, · · · , 2n}

28: Determine the heuristic polytope T�1(S) for x
29: return T�1(S)

30: HEURISTICPOLYTOPE(↵, xk, Ns)

experiments were conducted using Python 3.9 on an Intel(R)
Core(TM) i9-12900KF processor running at 3187 Mhz, with
16 physical cores and 24 logical processors, on a desktop
equipped with 64GB of RAM.

A. Case Settings

We consider Astrobee, a free-flyer robot with six degrees of
freedom operating on the International Space Station, subject to
uncertainties [27]. Its state is x = (p,v, q,!) 2 R13, input is

u = (F ,M) 2 R6, and dynamics are ṗ = v, mv̇ = F , q̇ =
1
2⌦(!)q, J!̇ = M�S(!)J! where J = diag ([Jx, Jy, Jz]).
We discretize the dynamics with �t = 1 s such that xk+1 =
xk+fk(xk,uk,✓k)�t+wk where wk ⇠ N (0,⌃w) are i.i.d.
disturbances. The mass and inertia are unknown with known
bounds m 2 [7.1, 7.3], Ji 2 [0.065, 0.075], |wki|  10�4 for
i = 1, · · · , 13, and |wki|  5⇥ 10�4 for i = 4, 5, 6. We will
show the projection p 2 R3 of x at k = 20 s later.

In addition, a common constant 104 is taken for the parameter
Mbig for big-M . The dataset comprises M = 1000 samples.
The baseline setup encompasses a confidence level of ↵ =
95%, with Optimal MILP utilizing Nn = 103 grid points and
Heuristic MILP using Ns = 200 grid points. In the subsequent
figures and tables, the baseline configuration is denoted by the
symbol ”*”.

B. Impact of Different Numbers of Grid Points
In this part, we undertake a performance evaluation of

various algorithms across different grid point configurations.
Optimal MILP employs Nn grid points, while Heuristic MILP
utilizes Ns. The variations in the quantity of grid points are
represented by the ratios Nn/Ns, specifically 83/150, 103/200,
and 123/250. All other parameters remain unchanged from the
baseline configuration.

The results are displayed in Fig. 1a, Fig. 1b, Fig. 1c, and
Table I. The outcomes yielded by various algorithms exhibit
disparities. Notably, there can be a substantial distinction
between the convex polytopes derived from Optimal MILP and
those from Heuristic MILP, particularly noticeable when the
quantity of grid points is limited, as illustrated in Fig. 1a. This
divergence arises due to Heuristic MILP typically achieving
a near-optimal solution, whereas Optimal MILP ensures an
optimal one. A smaller gap means a more accurate ratio.
The volume of the polytope obtained by Optimal MILP or
Heuristic MILP is usually much smaller than bounding box
or Gaussian fit, and yet the ratio of the polytope of Optimal
MILP or Heuristic MILP owns better accuracy.For example,
when Nn/Ns = 103/200, the gap 0.8% of Optimal MILP or
0.9% of Heuristic MILP is smaller than 3.2% of bounding
box. This supports that Optimal MILP or Heuristic MILP
enjoys accuracy. For each algorithm, as the quantity of grid
points increases from 83/150 to 123/250, the performance in
terms of ratio and volume improves. For example, the gap 0.4%
(resp. 0.7%) of Optimal MILP (resp. Heuristic MILP) is smaller
than 3.8% (resp. 4.6%) of Optimal MILP (resp. Heuristic
MILP). The number of grid points greater than 123 does
not make significant difference in terms of ratio and volume.
However, with Optimal MILP, the increase in computational
time is notable due to the augmented quantity of constraints and
decision variables resulting from the expanding grid point count,
escalating from 1.90 s to 2077 s. Consequently, the pursuit of
optimality with Optimal MILP is accompanied by a sacrifice in
computational efficiency. Conversely, the computational time
for Heuristic MILP exhibits a gradual increase, from 0.08 s
to 1.21 s, while the resulting polytope closely resembles that
obtained by Optimal MILP. These findings indicate that despite
the compromise in optimality, Heuristic MILP ensures near-
optimal solutions alongside accuracy and efficiency. Compared
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(a) # grid points = 83/150 (b) # grid points = 103/200 * (c) # grid points = 123/250

(d) confidence level = 90% (e) confidence level = 95% * (f) confidence level = 99%

Fig. 1. Impact of different quantities of grid points Nn/Ns and different confidence levels ↵

TABLE I
IMPACT OF OF DIFFERENT QUANTITIES OF GRID POINTS Nn / Ns AND DIFFERENT CONFIDENCE LEVELS ↵

Algorithm Impact of # Grid Points Nn/Ns Impact of Different Confidence Levels ↵

# Grid Points Ratio/Gap Volume (m3) Time (s) Confidence Level Ratio/Gap Volume (m3) Time (s)

Optimal MILP

83/150

91.2%/3.8% 1.41 1.90

90%

89.5%/5.5% 1.03 93.2
Heuristic MILP 90.4%/4.6% 1.31 0.08 90.0%/5.0% 1.08 0.74
Gaussian Fit 95.1%/0.1% 1.38 0.02 90.1%/4.9% 0.99 0.02
Bounding Box 87.9%/7.1% 1.18 0.01 90.9%/4.1% 1.51 0.01

Optimal MILP

103/200*

95.8%/0.8% 1.35 167.2

95%*

95.8%/0.8% 1.35 167.2
Heuristic MILP 95.9%/0.9% 1.36 0.60 95.9%/0.9% 1.36 0.60
Gaussian Fit 95.1%/0.1% 1.38 0.02 95.1%/0.1% 1.38 0.02
Bounding Box 98.2%/3.2% 2.40 0.01 98.2%/3.2% 2.40 0.01

Optimal MILP

123/250

95.4%/0.4% 1.27 2077

99%

98.7%/3.7% 1.99 377.4
Heuristic MILP 95.7%/0.7% 1.33 1.21 98.9%/3.9% 2.07 0.56
Gaussian Fit 95.1%/0.1% 1.38 0.02 99.1%/4.1% 2.42 0.02
Bounding Box 97.5%/2.5% 2.14 0.01 99.5%/4.5% 3.67 0.01

with Gaussian Fit and Bounding Box algorithms, Heuristic
MILP can obtain results which are near-optimal, tighter, and
accurate. Although it runs slower than Gaussian Fit and
Bounding Box, the expense in terms of computational time
is acceptable while greatly improving performance in near-
optimality, tightness, and accuracy. Thus, Heuristic MILP
surpasses the other three algorithms by effectively balancing
computational efficiency and accuracy.

The polytope obtained by MILP Optimal is optimal in
the sense that it has a minimum volume without violating
constraints. However, this does not mean the volume of MILP
Heuristic must be greater than MILP Optimal. For example,
when grid points are 83/150, the volume obtained by Heuristic
MILP algorithm (e.g. 1.31m3) is indeed less than that of

MILP Optimal (e.g. 1.41m3). The polytope derived from
Heuristic MILP serves as the optimal solution to a novel MILP
problem utilizing the Ns representative grid points. Given the
disparate grid configurations between the original and new
MILP problems, there exists a possibility that the hypervolume
of the polytope generated by Heuristic MILP is smaller than
that of Optimal MILP.

C. Impact of Different Confidence Levels

In this part, we conduct a performance evaluation of different
algorithms across three distinct confidence levels: ↵ = 90%,
95%, and 99%. All other parameters remain unchanged from
the baseline configuration.
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As depicted in Fig. 1 and Table I, when the confidence level
is constant, both Optimal MILP and Heuristic MILP yield
tighter polytopes compared to the results of the bounding box
and Gaussian fit. Moreover, the ratios achieved by Optimal
MILP or Heuristic MILP are more accurate. For instance, at
↵ = 95%, the volume is 1.35m3 for the polytope derived
from Optimal MILP, or 1.36m3 for the polytope obtained
from Heuristic MILP, which are both smaller than the volume
of 1.38m3 for the ellipsoid from Gaussian fit and 2.40m3 for
the bounding box. Additionally, the disparity between the ratio
(95.8%) and the confidence level (95%) for Optimal MILP
or 95.9% for Heuristic MILP) is notably narrower than the
difference between ↵ = 95% and 98.2% for the bounding box.
Therefore, both Optimal MILP and Heuristic MILP outperform
bounding box and Gaussian fit from the aspects of accuracy
and optimality (or near-optimality), as they generate polytopes
that offer a convex approximation for the PRS.

As the confidence level rises, the volume of the polytope
derived from Optimal MILP or Heuristic MILP also grows, with
computational time exhibiting slight fluctuations. Maintaining
a constant confidence level, the volume of the polytope of
Heuristic MILP closely aligns with that of Optimal MILP.
However, Heuristic MILP significantly beats Optimal MILP in
the sense that Heuristic MILP is more computationally efficient.
For instance, at a confidence level of 95%, the computational
time is 0.60 s for Heuristic MILP, considerably shorter than
the 167.2 s required by Optimal MILP, while the volumes are
1.35m3 and 1.36m3 respectively, with ratios of 95.8% and
95.9%. Thus, Heuristic MILP offers computational efficiency
without sacrificing accuracy.

D. Polytopic Approximation versus Convex Hull
We also compared the method proposed in this paper with

the method of Convex Hull. The parameters are: the number
of grid points Nn/Ns = 103/200, and the confidence level ↵
= 95%.

Our proposed algorithm of Heuristic MILP beats the method
of convex hull in terms of convenience while still enjoying
accuracy and computational efficiency. For instance, Table II
shows that the polytope obtained by Heuristic MILP is better
than convex hull in the sense that the ratio / volume of Heuristic
MILP 95.9% / 1.36m3 is more tight and accurate than that of
convex hull 96.0% / 1.43m3. In addition, although Heuristic
MILP 0.02 s runs a little bit slower than convex hull 0.01 s, it
is still very computationally efficient. Also, as illustrated in
Fig. 2, the number of facets (also called hyperfaces) of the
convex hull is undetermined and a convex hull usually has
too many facets leading to too many constraints, which is not
convenient for the operations in practice. In contrast, Heuristic
MILP can overcome this limitation. In n-dimensional space,
the number of facets of the polytope obtained by Heuristic
MILP is always 2n.

E. Robustness of Heuristic MILP Algorithm
We’ve demonstrated that Heuristic MILP algorithm is

computationally efficient at the expense of optimality compared
to the Optimal MILP algorithm when approximating the convex

Fig. 2. Polytopic approximation versus convex hull of PRS

TABLE II
POLYTOPIC APPROXIMATION VERSUS CONVEX HULL OF PRS

Algorithm Case 3D *

Ratio / Gap Volume (m3) Time (s)

Optimal ILP 95.8% / 0.8% 1.35 167.2
Heuristic ILP 95.9% / 0.9% 1.36 0.60
Gaussian Fit 95.1% / 0.1% 1.38 0.02
Bounding Box 98.2% / 3.2% 2.40 0.01
Convex Hull 96.0% / 1.0% 1.43 0.01

PRS. However, differences can exist between the convex
polytopes obtained by these two algorithms. Furthermore, even
with identical data samples and parameters, the randomness
inherent in weighted sampling during the implementation of
Heuristic MILP can result in distinct convex polytopes each
time it is applied.

The Jaccard distance defined in [6] is evaluated between
the convex polytope of Heuristic MILP and of Optimal
MILP, with respect to the increasing quantity of grid points
taken by Heuristic MILP Ns and Optimal MILP Nn. All
the parameters, except for Ns and Nn, remain consistent
with its respective baseline. Given a constant number of
grid points used by Heuristic MILP and Optimal MILP, we
implement Optimal MILP once to obtain an optimal convex
polytope which is constant, and implement Heuristic MILP
20 times to find 20 near-optimal convex polytopes which may
differ across different times. Then, we compute the Jaccard
distance between the optimal polytope and every near-optimal
polytope to quantify the differences. Also, we figure out the
computational time of implementing Heuristic MILP every
time. The above procedure is repeated for different Nn as well
as Ns, respectively.

The results are depicted in Fig. 3. On one hand, Fig. 3a
illustrates that when Ns and Nn are too small, various Jaccard
distances exhibit significant fluctuations around the average
value, indicating poor robustness of Heuristic MILP in terms
of space under such circumstances. As the ratio Nn/Ns

increases from 83/150 to 143/300, the average Jaccard distance
decreases from 0.230 to 0.055 respectively. This suggests that
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(a) space robustness

(b) time robustness

Fig. 3. Robustness analysis of Heuristic MILP algorithm

with increasing Nn/Ns, the near-optimal polytope obtained
by Heuristic MILP more closely approximates the optimal
polytope acquired by Optimal MILP. Additionally, the variance
in Jaccard distances also diminishes with the rise in Nn/Ns,
indicating improved robustness of Heuristic MILP in terms of
space. On the other hand, Fig. 3b demonstrates that as Nn/Ns

increases, the running time of Heuristic MILP gradually
increases from 0.08 s to 3.91 s. Conversely, during the same
period, the computational time for Optimal MILP dramatically
escalates from 1.90 s to 26 000 s. This further underscores the
superiority of Heuristic MILP over Optimal MILP in terms of
computational time. Moreover, as Nn/Ns grows, the variation
in computational time of Heuristic MILP increases but not
significantly. Hence, Heuristic MILP offers time robustness
and efficiency. Overall, the robustness of Heuristic MILP is
achieved at the expense of heightened computational effort. An
appropriate parameter of the quantity of grid points utilized by
Heuristic MILP is expected to be tuned to ensure robustness
in both space and time. By doing so, Heuristic MILP can be
near-optimal, accurate, efficient, and robust simultaneously.

VI. CONCLUSION

In this paper, we initially define a MILP optimization
problem aimed at determining an n-dimensional convex
polytopic approximation of the PRS. Subsequently, we in-
troduce a heuristic algorithm designed to effectively address
the formulated MILP problem. Numerical experiments are
conducted to evaluate the performance of the Heuristic MILP
algorithm in comparison to other algorithms concerning convex
PRS approximations. The numerical findings demonstrate the
superiority of the proposed Heuristic MILP algorithm, as
it achieves computational efficiency without compromising
accuracy. Additionally, robustness analysis indicates that the

Heuristic MILP algorithm efficiently identifies near-optimal
solutions while it is accurate and robust. These advantages of
our proposed heuristic algorithm pave the way for potential
applications in the real-time, safety-critical motion planning of
dynamic systems under uncertainties.

However, the approach proposed in this paper does not
provide assurance in handling non-stationary uncertainties that
may evolve over time. Another limitation of our work arises in
environments where obstacles are densely distributed; in such
scenarios, data samples from different obstacles may become
intertwined. As a result, our current approach fails to distinguish
between them, thereby hindering the ability to derive polytopic
approximations of PRS for individual obstacles. Addressing
these limitations will be a focus of our future work. In addition,
we just focused on the systems whose state is fully measurable.
We will extend to consider the systems whose state is not fully
measurable in the future.
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