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Abstract
LetM be a cancellative and commutative (additive)monoid. ThemonoidM is atomic if
every non-invertible element can bewritten as a sumof irreducible elements, which are
also called atoms. Also, M satisfies the ascending chain condition on principal ideals
(ACCP) if every increasing sequence of principal ideals (under inclusion) becomes
constant from one point on. In the first part of this paper, we characterize torsion-free
monoids that satisfy the ACCP as those torsion-free monoids whose submonoids are
all atomic. A submonoid of the nonnegative cone of a totally ordered abelian group
is often called a positive monoid. Every positive monoid is clearly torsion-free. In the
second part of this paper, we study the atomic structure of certain classes of positive
monoids.

Keywords Totally ordered group · Positive monoid · ACCP · Atomic monoid ·
Ordered abelian group

1 Introduction

A cancellative and commutative additive monoid is called atomic if every non-
invertible element can be expressed as a sum of irreducibles, also called atoms.
Motivated by the celebrated paper [1] by Anderson, Anderson, and Zafrullah, the
property of being atomic has received a great deal of attention in the literature during
the last three decades. Although in [1] the authors only considered atomicity in the
context of integral domains, the same notion has been significantly extended to and
explored in a variety of different contexts. Perhaps the first influential generalization is
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Fig. 1 A monoid adaptation of a fragment of the diagram introduced in 1990 by Anderson, Anderson, and
Zafrullah to study factorizations in the context of integral domains

due to Halter-Koch, who generalized in [34] to the context of cancellative and commu-
tative monoids some atomic notions introduced in [1] for integral domains. Although
it goes outside the scope of this paper, it is worth emphasizing that atomicity has also
been studied in non-cancellative and non-commutative algebraic structures, including
commutative rings with nonzero zero-divisors [20, 35], non-commutative monoids [4,
5], and even more general scenarios [14, 15].

Even before the nineties, atomicity was sporadically studied in the context of inte-
gral domains, mainly in connection to the ACCP. A cancellative and commutative
monoid (or an integral domain) satisfies the ascending chain condition on princi-
pal ideals (ACCP) if every increasing sequence of principal ideals (under inclusion)
becomes constant from one point on. The first example of an atomic domain not satis-
fying the ACCPwas constructed by Grams in [33], correcting Cohn’s misled assertion
that being atomic and satisfying the ACCP were equivalent conditions in the context
of integral domains. Zaks later constructed in [39] two more examples of atomic
domains that do not satisfy the ACCP (one of them was suggested by Cohn). Further
examples of atomic domains that do not satisfy the ACCP have been constructed since
then (see, for instance, [6, 30–32, 38]), although none of these examples has a trivial
construction.

A cancellative and commutative monoid M is called hereditarily atomic if every
submonoid of M is atomic. Hereditary atomicity in the context of integral domains
was recently studied by Coykendall, Hasenauer, and the first author in [17]. In this
paper, we use hereditary atomicity to characterize the ACCP property in the context
of reduced torsion-free monoids (a monoid is called reduced if its group of invertible
elements is trivial, while it is called torsion-free if its difference group is torsion-free).
Indeed, the fundamental result we establish in this paper is Theorem 3.1, which states
the following.

Theorem A reduced torsion-free monoid satisfies the ACCP if and only if it is hered-
itarily atomic.

It is unknown to the authors whether the two conditions in the statement of the theorem
are equivalent after dropping the torsion-free condition. To motivate further research
we leave this as an open question at the end of Sect. 3.

In Sect. 4, we exhibit several examples to illustrate the variation of atomic behavior
in the class of positive monoids. A positive monoid is a submonoid of the nonnega-
tive cone of a totally ordered abelian group. Positive monoids form a special class of
torsion-free monoids. In Sect. 4, we consider properties stronger than atomicity, in the
direction of the taxonomic classes of atomicity proposed and investigated byAnderson,
Anderson, and Zafrullah in [1]. The considered properties include the bounded and
the finite factorization properties, which were both introduced in [1] to better under-
stand the atomicity of integral domains in the context of the methodological diagram
illustrated in Fig. 1, where UFM (resp., FFM and BFM) stands for unique factoriza-
tion monoid (resp., finite factorization monoid and bounded factorization monoid).
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Fig. 2 A chain of implications extending to the right the one in Fig. 1 and consisting of properties weaker
than being atomic

In the same section, we also consider properties weaker than atomicity, including the
property of being almost atomic and that of being quasi-atomic, both introduced by
Boynton and Coykendall in [7] to study divisibility in integral domains, as well as the
property of being nearly atomic, recently introduced by Lebowitz-Lockard in [36].
These properties also form a nested diagram of atomic classes: this is illustrated in
Fig. 2, where the non-standard acronym ATM (resp., NAM, AAM, QAM) stands for
atomic monoid (resp., nearly atomic monoid, almost atomic monoid, quasi-atomic
monoid).

Our primary purpose in Sect. 5 is to consider the atomic structure of certain classes
of positive monoids that are often useful to construct needed (counter)examples in
factorization theory: they are monoids of the form {0} ∪ G≥a , where G is a totally
ordered group and a is an element in the nonnegative cone ofG.We call thesemonoids
conductive positive monoids. Examples of commutative rings in factorization theory
based on conductive positive monoids can be found in [1, Example 2.7(a)] and [28,
Theorem 4.4].

2 Background

Following usual conventions, we let Z, Q, and R denote the set of integers, rational
numbers, and real numbers, respectively. We let N and N0 denote the set of positive
and nonnegative integers, respectively. In addition, we let P denote the set of primes.
For b, c ∈ Z with b ≤ c, we let �b, c� denote the set of integers between b and
c; that is, �b, c� := {m ∈ Z | b ≤ m ≤ c}. In addition, for S ⊆ R and r ∈ R,
we set S≥r = {s ∈ S | s ≥ r} and S>r = {s ∈ S | s > r}. For q ∈ Q>0,
the relatively prime positive integers n and d such that q = n

d are denoted here by
n(q) and d(q), respectively. Finally, for any r ∈ R, we let Z[r ] denote the subring
{ f (r) | f (x) ∈ Z[x]} of R.

2.1 Atomic notions in monoids

A monoid is a semigroup with an identity element. However, in the context of this
paper we will tacitly assume that monoids are both cancellative and commutative. Let
M be amonoid written additively.We set M• = M \{0}, and we say that M is trivial if
M• is empty. The invertible elements of M form a group, which we denote by U(M),
and M is called reduced if U(M) is the trivial group. The difference group gp(M) of
M is the unique abelian group gp(M) up to isomorphism such that any abelian group
containing an isomorphic image of M also contains an isomorphic image of gp(M).
The rank of M is, by definition, the rank of gp(M) as a Z-module or, equivalently,
the dimension of the vector space Q ⊗Z gp(M). The rank of M is denoted by rankM .
The reduced monoid of M is the quotient M/U(M), which is denoted by Mred. For
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b, c ∈ M , we say that c divides b in M if there exists d ∈ M such that b = c + d; in
this case, we write c |M b (we reserve the standard notation m | n, with no subscripts,
to express that m divides n in the multiplicative monoid Z\{0}). A submonoid M ′ of
M is called a divisor-closed submonoid if every element of M dividing an element
of M ′ in M belongs to M ′. If S is a subset of M , then we let 〈S〉 denote the smallest
submonoid of M containing S, in which case, we say that S is a generating set of
〈S〉. The monoid M is called finitely generated provided that M = 〈S〉 for some finite
subset S of M .

A non-invertible element a ∈ M is called an atom of M if whenever a = b + c for
some b, c ∈ M , either b ∈ U(M) or c ∈ U(M). We letA(M) denote the set consisting
of all the atoms of M . IfA(M) is empty, M is called antimatter. Observe that if M is
a reduced monoid, then A(M) is contained in every generating set of M . An element
of M is called atomic if it is invertible or it can be written as a sum of finitely many
atoms. The monoid M is called atomic if every element of M is atomic. In addition,
the monoid M is called hereditarily atomic provided that every submonoid of M is
atomic. Following [1], we say that M is strongly atomic if for any elements b, c ∈ M ,
there exists an atomic element d ∈ M that is a common divisor of b and c such that
the only common divisors of b − d and c − d are invertible elements. It follows from
the definitions that every strongly atomic monoid is atomic. The converse does not
hold in general and we exhibit a counterexample in Example 4.3 (the first of such
examples seems to be given by Roitman in [38, Example 5.2]). It is well known that
every monoid satisfying the ACCP is strongly atomic (see [1, Theorem 1.3]).

We proceed to introduce some properties that are weaker than that of being atomic.
An element c ∈ M is called quasi-atomic (resp., almost atomic) provided that there
exists an element (resp., an atomic element) b ∈ M such that b+c is atomic. Following
[7], we say that M is quasi-atomic (resp., almost atomic) if every non-invertible
element of M is quasi-atomic (resp., almost atomic). It follows directly from the
definitions that every almost atomic monoid is quasi-atomic. Following [36], we say
that M is nearly atomic if there exists b ∈ M such that for each non-invertible element
c ∈ M , the element b + c is atomic. It follows directly from the definitions that every
atomic monoid is nearly atomic, and one can prove that every nearly atomic monoid
is almost atomic by mimicking the proof of [36, Lemma 5]. Therefore the properties
of being nearly atomic, almost atomic, and quasi-atomic are nested weaker notions of
atomicity.

A subset I of M is called an ideal of M if the set I + M := {b + c | b ∈
I and c ∈ M} ⊆ I or, equivalently, if I + M = I . If I is an ideal of M such that
I = b+M := {b+c | c ∈ M} for some b ∈ M , then I is called principal. Themonoid
M satisfies the ascending chain condition on principal ideals (ACCP) provided that
every ascending chain (bn + M)n∈N of principal ideals of M stabilizes; that is, there
exists n0 ∈ N such that bn + M = bn+1 + M for every n ≥ n0. It is not hard to check
that if M satisfies the ACCP, then M is atomic (see [23, Proposition 1.1.4]). As we
have mentioned in the introduction, the converse of this statement does not hold.

The free commutative monoid on a set S is the commutative monoid whose ele-
ments are formal linear combinations of elements of S. The free commutative monoid
onA(Mred) is denoted by Z(M). Let π : Z(M) → Mred be the unique monoid homo-
morphism fixing every element of A(Mred). If z := a1 · · · a� ∈ Z(M) for some
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a1, . . . , a� ∈ A(Mred), then � is called the length of z and is denoted by |z|. For every
b ∈ M , we set

Z(b) := ZM (b) := π−1(b + U(M)),

and the elements of Z(b) are called factorizations of b. A recent survey on factorization
theory in commutative monoids by Geroldinger and Zhong can be found in [25]. If
|Z(b)| = 1 for every b ∈ M , then M is called a unique factorization monoid (UFM).
Following Zaks [40], we say that M is a half-factorial monoid (HFM) if M is atomic
and any two factorizations of the same element have the same length. On the other
hand, if M is atomic and |Z(b)| < ∞ for every b ∈ M , then M is called a finite
factorization monoid (FFM). It follows directly from the definitions that every UFM
is both an HFM and an FFM. None of the notions of HFM and FFM implies the other,
even in the context of positive monoids (see, for instance, Examples 4.9 and 5.12). In
addition, it follows from [23, Proposition 2.7.8] that every finitely generated monoid
is an FFM. Now, for every b ∈ M , we set

L(b) := LM (b) := {|z| | z ∈ Z(b)}.

If M is atomic and |L(b)| < ∞ for every b ∈ M , then M is called a bounded
factorization monoid (BFM). According to [34, Theorem 1], the monoid M is a BFM
if it admits a length function, that is, a function � : M → N0 satisfying the following
two properties:

(i) �(u) = 0 if and only if u ∈ U(M);
(ii) �(b + c) ≥ �(b) + �(c) for all b, c ∈ M .

It follows directly from the definitions that every monoid that is either an HFM or an
FFM is also a BFM. In addition, it is not hard to argue that every BFM must satisfy
the ACCP (see [23, Corollary 1.4.4]). A recent survey on the bounded factorization
and finite factorization properties by Anderson and the first author can be found in
[2]. The monoid M is called a length-factorial monoid (LFM) provided that M is
atomic and also that any two distinct factorizations of the same element have different
lengths. The notion of length-factoriality was introduced by Coykendall and Smith
in [18] under the term ‘other-half-factoriality’. The same notion has been considered
recently by Chapman et al. in [10] and by Geroldinger and Zhong in [24]. It follows
directly from the definitions that every UFM is an LFM. Moreover, observe that the
notion of being an LFM complements the notion of being an HFM in the sense that
a monoid is a UFM if and only if it is both an HFM and an LFM. Finally, it follows
from [8, Proposition 3.1] that every LFM is an FFM.

The classes of monoids we have introduced in this subsection are represented in
the chain of implications illustrated in Fig. 3, which consists of nested classes of
monoids and extends simultaneously the diagrams previously shown in Figs. 1 and 2.
For the sake of consistency, in the diagram shown in Fig. 3, we let the (nonstandard)
acronymSAM(resp.,ATM,NAM,AAM, andQAM) stand for strongly atomicmonoid
(resp., atomicmonoid, nearly atomicmonoid, almost atomicmonoid, and quasi-atomic
monoid).
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Fig. 3 A chain of implications
connecting those in Figs. 1 and 2
through the property of being
strongly atomic

2.2 Totally ordered groups

We proceed to review some basic notions related to totally ordered abelian groups that
we will be using later. A totally ordered abelian group is a pair (G,G+), where G is
an abelian (additive) group and G+ is a subset of G containing 0 and satisfying the
following two conditions:

(1) for all g, h ∈ G+, g + h ∈ G+, and
(2) for each g ∈ G\{0}, exactly one of the conditions g ∈ G+ and −g ∈ G+ holds.

In this case, G+ is called a nonnegative cone of G, and G+ induces a total order on G,
namely, g ≤ h inG whenever h−g ∈ G+. On the other hand, ifG is an abelian group
and ≤ is a total order on G compatible with the operation of G, then {g ∈ G | g ≥ 0}
is a nonnegative cone of G inducing the order≤. We can see that every totally ordered
group is torsion-free.When there seems to be no risk of ambiguity, we will often abuse
notation, writing G instead of the more cumbersome notation (G,G+).

Let G be a totally ordered abelian group. For each g ∈ G set |g| = g if g ∈ G+
and |g| = −g otherwise. For g, h ∈ G, we write g = O(h) if |g| ≤ n|h| for some
n ∈ N, and g ∼ h if both g = O(h) and h = O(g) hold. Also, for any g, h ∈ G
with g = O(h) and g � h, we write g � h or, equivalently, h � g. It is clear that ∼
defines an equivalence relation on G. Let

v : G \ {0} → �G := (G \ {0})/∼

be the quotient map. Setting v(g) � v(h) for any g, h ∈ G\{0} with h = O(g), one
finds that (�G,�) is a well-defined totally ordered set, which is called the value set
of G. One can verify that for all g, h ∈ G such that 0 /∈ {g, h, g + h},

v(g + h) ≥ min{v(g), v(h)},

where the equality holds provided that v(g) �= v(h) or g, h ∈ G+. The elements of�G

are calledArchimedean classes ofG, and the quotient map v is called theArchimedean
valuation on G. The totally ordered group G is called Archimedean if and only if its
value set �G is a singleton.

A positive monoid of a totally ordered group G is a submonoid of G contained in
G+. A monoid M is called a positive monoid if it is isomorphic to a positive monoid
of a totally ordered group G. According to Hölder’s theorem, a totally ordered abelian
group is Archimedean if and only if it is order-isomorphic to a subgroup of the additive
groupR. Thus, additive submonoids ofR≥0 account, up to isomorphism, for all positive
monoids of Archimedean groups. In addition, nontrivial additive submonoids of Q≥0,
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also known as Puiseux monoids, account up to isomorphism for all the rank-one
positive monoids (see [22, Theorem 3.12] and [21, Section 24]). Cofinite submonoids
of the additive monoid N0 are called numerical monoids. Every numerical monoid
is then a Puiseux monoid, and it is well known that a Puiseux monoid is finitely
generated if and only if it is isomorphic to a numerical monoid. The atomic structure
and arithmetic of factorizations of Puiseux monoids have been systematically studied
during the last half-decade (see [22] and references therein).

3 Hereditary atomicity and the ACCP

It turns out that in the class consisting of reduced torsion-free monoids, being hered-
itarily atomic and satisfying the ACCP are equivalent conditions. The condition that
the monoid is reduced is not necessary for one of the implications, namely, that being
hereditarily atomic implies satisfying the ACCP. We will argue this last observation
in Proposition 3.3 at the end of this section.

Theorem 3.1 For a reduced torsion-free monoid M, the following conditions are
equivalent.

(a) M satisfies the ACCP.
(b) M is hereditarily atomic.

Proof (a) ⇒ (b): Since M is a reduced monoid, the fact that M satisfies the ACCP
immediately implies that every submonoid of M satisfies the ACCP. Now the impli-
cation follows from the fact that every monoid satisfying the ACCP is atomic.

(b) ⇒ (a): Let G be the difference group of M . Since M is torsion-free, G is a
torsion-free abelian group. Then it follows from [26, Theorem 3.2] that G can be
turned into a totally ordered group (G,≤) in such a way that M is a submonoid of the
nonnegative cone G+ of G. Because G is totally ordered, it follows from the Hahn
embedding theorem that G can be embedded as an ordered group into the totally
ordered group F(�G, R) consisting of all functions from �G to R that vanish outside
a well-ordered set, where �G is the value set of G. In particular, G+ is a submonoid
of F(�G, R)+. Since F(�G, R) is a divisible group, after replacing G by F(�G, R),
we can assume that G is a totally ordered divisible abelian group and, in particular, g
and g/n are in the same Archimedean class of G for all g ∈ G and n ∈ N.

Suppose, by way of contradiction, that M does not satisfy the ACCP. Then there is
a sequence of principal ideals (qn + M)n∈N0 such that an+1 := qn − qn+1 ∈ M• for
every n ∈ N0. We split the rest of the proof into two cases.

Case 1: There exists an Archimedean class of G containing infinitely many terms
of the sequence (an)n∈N. In this case, there is a subsequence (bn)n∈N of (an)n∈N
whose terms are in the same Archimedean class of G. Now set q ′

n := q0 − ∑n
i=1 bi

for each n ∈ N. The fact that (qn + M)n∈N is a non-stabilizing ascending chain of
principal ideals ofM implies that (q ′

n+M)n∈N is also a non-stabilizing ascending chain
of principal ideals of M . Therefore, after replacing (qn + M)n∈N by (q ′

n + M)n∈N
if necessary, we can assume that all the terms of the sequence (an)n∈N belong to
the same Archimedean class of G. Because M is hereditarily atomic, its submonoid
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N := 〈an, qn | n ∈ N〉 is atomic. Now for each n ∈ N0 the equality qn = qn+1 +an+1
ensures that qn /∈ A(N ). This, along with the fact that q0 = q1 + a1 ∈ N , implies that
q0 ∈ 〈an | n ∈ N〉. Hence an ∼ q0 for every n ∈ N.

Now observe that, for any k ∈ N, the term ak cannot be a lower bound of the set
{an | n > k} as, otherwise, we could take n ∈ N such that nak > q0 to obtain that
∑k+n

i=1 ai >
∑k+n

i=k+1 ai ≥ nak > q0, which is not possible. Therefore, after replacing
(an)n∈N by a suitable subsequence and redefining (qn)n∈N as we did in the previous
paragraph, we can assume that (an)n∈N is a strictly decreasing sequence. In the same
vein, we observe that for any k ∈ N, there must exist � ∈ N>k such that ak − a� ∼ q0
as otherwise (i.e., ak − ak+i � q0 for every i ∈ N), we could take n ∈ N such that
q0 < nak to obtain that q0 − ∑k+n

i=k ai < −ak + ∑k+n
i=k+1(ak − ai ) < 0, which is

not possible. Thus, after replacing (an)n∈N by a suitable subsequence and redefining
(qn)n∈N accordingly, we can assume that an − an+1 ∼ q0 for every n ∈ N. Set
sn := ∑n

i=1 ai for each n ∈ N.
Our current goal is to construct a sequence (a′

n)n∈N with its terms in M such that,
for every n ∈ N, the following conditions hold:

(1) q0 /∈ 〈a′
1, . . . , a

′
n〉,

(2) q0 ∼ a′
i for every i ∈ �1, n�, and

(3) s′
n := ∑n

i=1 a
′
i divides sm in M for some m ∈ N.

We proceed inductively. Since q0 = O(a1), the set G+ ∩ { q0
n − a1 | n ∈ N

}
is finite.

Now the fact that the sequence (an)n∈N is strictly decreasing ensures the existence of
i ∈ N such that ai /∈ { q0

n −a1 | n ∈ N
}
, whence q0 /∈ 〈a1 +ai 〉. Setting a′

1 := a1 +ai ,
we can see that conditions (1)–(3) above hold for n = 1. Now suppose that we have
already found a′

1, . . . , a
′
n ∈ M such that conditions (1)–(3) hold. Fix m ∈ N such

that s′
n divides sm in M . Set Q := q0 − 〈a′

1, . . . , a
′
n〉. From the fact that q0 ∼ a′

i for
every i ∈ �1, n�, one can infer that the set G+ ∩ Q is finite. Also, q = O(am+1)

for each q ∈ G+ ∩ Q. Therefore the set G+ ∩ { q
n − am+1 | q ∈ Q and n ∈ N

}
is

also finite. As (an)n∈N is strictly decreasing, there is a j ∈ N with j > m + 1 such
that a j /∈ { q

n − am+1 | q ∈ Q and n ∈ N
}
. Thus, Q is disjoint from 〈am+1 + a j 〉.

So after setting a′
n+1 = am+1 + a j , we see that q0 /∈ 〈a′

1, . . . , a
′
n+1〉 and also that

q0 ∼ am+1+a j ∼ a′
n+1. In addition, observe that s

′
n+1 := ∑n+1

i=1 a′
i = s′

n +am+1+a j

divides sm + am+1 + a j in M , which implies that s′
n+1 divides s j in M . Hence we can

assume the existence of a sequence (a′
n)n∈N satisfying conditions (1)–(3) above.

Finally, let (rn)n∈N be the sequence defined as follows: take r0 = q0 and take
rn = q0 − s′

n for every n ∈ N. Because rn = q0 − s′
n = q0 − s′

n+1 + (s′
n+1 − s′

n) =
rn+1+a′

n+1, we see that (rn +M)n∈N is a non-stabilizing ascending chain of principal
ideals of M . Now consider the submonoid N ′ := 〈a′

n, rn | n ∈ N〉 of M . Since
M is hereditarily atomic, N ′ is atomic. In addition, the fact that (rn + M)n∈N is a
non-stabilizing ascending chain of principal ideals implies that A(N ′) ⊆ {a′

n | n ∈
N}. This, along with the fact that q0 = r1 + a′

1 ∈ N ′, guarantees the existence of
c1, . . . , cn ∈ N0 such that q0 = ∑n

i=1 cia
′
i . However, this contradicts that q0 /∈

〈a′
1, . . . , a

′
n〉.

Case 2: Each Archimedean class of G contains only finitely many terms of the
sequence (an)n∈N. Then there exists a subsequence (bn)n∈N of (an)n∈N such that each
Archimedean class of G contains at most one term of (bn)n∈N and, after replacing
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410 F. Gotti, J. Vulakh

(qn)n∈N by (q0 − ∑n
i=1 bi )n∈N, one can assume that each Archimedean class of F

contains at most one term of the sequence (an)n∈N.
Because q0 >

∑n
i=1 ai for every n ∈ N, we see that an = O(q0) for every n ∈ N.

On the other hand, the fact that (qn + M)n∈N is a non-stabilizing ascending chain of
principal ideals, together with the fact that 〈an, qn | n ∈ N〉 is an atomic monoid,
guarantees that q0 ∈ 〈an | n ∈ N〉, which in turns implies that q0 ∼ ak1 for some
k1 ∈ N. Observe that ak1 � an for any n > k1. Now suppose that we have found
k1, . . . , km ∈ N with k1 < · · · < km such that q0 ∼ ak1 � · · · � akm � an for all
n > km . Then set q ′

0 := q0 − ∑m
i=1 aki and, for each n ∈ N, set a′

n := ∑n
i=1 akm+i

and q ′
n = q ′

0 − a′
n . Observe that (q ′

n + M)n∈N is a non-stabilizing ascending chain
of principal ideals of M . Proceeding as we did before, we find that q ′

0 ∼ akm+ j for
some j ∈ N. Since q ′

0 >
∑n

i=1 akm+i for all n ∈ N, it follows that akm+ j � an for
every n > km + j . Then after setting km+1 := km + j , we obtain q0 ∼ ak1 � · · · �
akm+1 � an for all n > km+1. Hence, after replacing (qn)n∈N by (q0 − ∑n

i=1 aki )n∈N,
one can assume that q0 ∼ a1 and also that an � an+1 for every n ∈ N. Now fix
any � ∈ N. Since q� = q�+1 + a�+1, we see that a�+1 = O(q�). On the other hand,
the atomicity of 〈an, qn | n ≥ � + 1〉 ensures that q� ∈ 〈an | n ≥ � + 1〉, and so
a�+1 � a�+n for every n ≥ 2 guarantees that q� ∼ a�+1.

Finally, write q0 = ∑k
i=1 ciai for some c1, . . . , ck ∈ N0. Note that c1 ≥ 1 because

q0 ∼ a1 � an for every n ≥ 2. Since a1 � a2, the fact that (c1−1)a1+∑k
i=2 ciai =

q0 − a1 = q1 ∼ a2 implies that c1 = 1. Set j := max{i ∈ �1, k� | ci = 1}, and
observe that j < k as q0 − ∑k

i=1 ai = qk �= 0. As a j+1 � an for every n ≥ j + 2,

the fact that
∑k

i= j+1 ciai = q0 − ∑ j
i=1 ai = q j ∼ a j+1 guarantees the inequality

c j+1 ≥ 1. Finally, since a j+1 � a j+2, the fact that (c j+1 − 1)a j+1 +∑k
i= j+2 ciai =

q0 − ∑ j+1
i=1 ai = q j+1 ∼ a j+2 implies that c j+1 = 1. However, this contradicts the

maximality of j . ��
With notation as in Theorem 3.1, the condition that the monoid is reduced is not

superfluous. This is illustrated in the following example.

Example 3.2 The additive abelian group Z
2 trivially satisfies the ACCP as a monoid.

To see that Z
2 is not hereditarily atomic, let M be the nonnegative cone of Z

2 with
respect to the lexicographical order with priority in the second coordinate. It is clear
that M is a submonoid of Z

2, and it is not hard to verify that A(M) = {(1, 0)}. Thus,
M is not atomic, and so Z

2 is not a hereditarily atomic monoid.

On the other hand, the condition of being reduced is not needed for the other
implication of Theorem 3.1, as the following proposition shows.

Proposition 3.31 If a torsion-free monoid is hereditarily atomic, then it satisfies the
ACCP.

Proof Let M be a hereditarily atomic torsion-free monoid and assume, towards a
contradiction, that M does not satisfy the ACCP. Let (bn + M)n∈N be an ascending
chain of principal ideals of M that does not stabilize. Set cn := bn − bn+1 for every

1 Proposition 3.3 was kindly observed by Ben Li, who also suggested the given proof.
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n ∈ N. After replacing (bn + M)n∈N by a suitable subsequence, we can assume that
cn /∈ U(M) for any n ∈ N. Now consider the submonoid M ′ := 〈bn, cn | n ∈ N〉
of M . Since M is a hereditarily atomic torsion-free monoid, so is M ′. Observe that
(bn +M ′)n∈N is an ascending chain of principal ideals of M ′, which does not stabilize
in M ′ because (bn + M)n∈N does not stabilize in M . Thus, M ′ does not satisfy the
ACCP and, therefore M ′ is not reduced by virtue of Theorem 3.1. As a result, some
element in the defining generating set of M ′ must be invertible. Since cn /∈ U(M ′)
for any n ∈ N, there exists m ∈ N such that bm ∈ U(M ′) ⊆ U(M). This implies that
bn + M = M for every n ≥ m, which contradicts that the chain of principal ideals
(bn + M)n∈N does not stabilize in M . ��

According to Proposition 3.3, when a torsion-free monoid is atomic but does not
satisfy the ACCP, then it contains a submonoid that is not atomic. As the following
example illustrates, sometimes we can identify such submonoids.

Example 3.4 (1) Let (pn)n≥0 be the strictly increasing sequence whose underlying set
is P \ {2}. Now consider the Puiseux monoid

M :=
〈 1

2n pn
| n ∈ N0

〉
.

The monoid M is often called the Grams monoid as it is the main ingredient in
Grams’ construction of the first atomic domain that does not satisfy the ACCP,
namely, the localization of the monoid algebra Q[M] at the multiplicative subset
{ f ∈ Q[M] | f (0) �= 0} (see [33, Theorem 1.3] for more details). One can readily
show that the monoid M is atomic with A(M) = { 1

2n pn
| n ∈ N0

}
. However,

M does not satisfy the ACCP because the sequence ( 1
2n + M)n≥0 is an ascending

chain of principal ideals of M that does not stabilize. Since M is torsion-free,
in light of Proposition 3.3 there is a submonoid of M that is not atomic. Indeed,〈 1
2n | n ∈ N0

〉
is one of the non-atomic submonoids of M .

(2) Take q ∈ Q ∩ (0, 1) such that q−1 /∈ N, and consider the Puiseux monoid Mq :=
〈qn | n ∈ N0〉. It follows from [29, Theorem 6.2] thatMq is an atomicmonoidwith
A(Mq) = {qn | n ∈ N0}. On the other hand, observe that n(q)qn = n(q)qn+1 +
(d(q) − n(q))qn+1 for every n ∈ N0, which implies that (n(q)qn + Mq)n≥0 is
an ascending chain of principal ideals of Mq that does not stabilize. Hence Mq

does not satisfy the ACCP and, by virtue of Proposition 3.3, it must contain a
submonoid that is not atomic. Let us explicitly find a non-atomic submonoid of
Mq . Since Mqk := 〈qkn | n ∈ N0〉 is a submonoid of Mq for every k ∈ N, after
replacing Mq by Mqk for some k sufficiently large, we can further assume that

q ≤ 1
2 . In particular, d(q) − n(q) ≥ 2. We claim that the submonoid

M := 〈
n(q)qn, (d(q) − n(q))qn | n ∈ N0

〉

of Mq is not atomic. It is enough to argue that n(q) cannot be written as a sum
of atoms in M . We first observe that the inclusion A(M) ⊆ {n(q)qn, (d(q) −
n(q))qn | n ∈ N0} holds. Since n(q)qn = n(q)qn+1 + (d(q) − n(q))qn+1 for
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every n ∈ N0, we see that n(q)qn /∈ A(M) for any n ∈ N0. In particular, n(q) is
not an atom of M . Suppose, by way of contradiction, that ZM (n(q)) is nonempty,
and write

n(q) =
�∑

i=0

ci (d(q) − n(q))qi

for some c0, . . . , c� ∈ N0.Henced(q)�n(q) = ∑�
i=0 ci (d(q)−n(q))n(q)id(q)�−i ,

fromwhichwe obtain that d(q)−n(q) | d(q)�n(q). Since d(q)−n(q) is relatively
prime with both n(q) and d(q), it follows that d(q) − n(q) = 1. However, this
contradicts the inequality d(q) − n(q) ≥ 2.

Although we could not answer the question of whether the torsion-free condition
is superfluous in Proposition 3.3, we are inclined to believe that this is the case.

Conjecture 3.5 Every hereditarily atomic monoid satisfies the ACCP.

4 Atomicity in positive monoids through examples

Let us begin by considering positive monoids whose sets of nonzero elements are
not in a neighborhood of 0. In terms of atomicity, this condition is quite strong for a
positive monoid of the additive group of an Archimedean field: indeed, if M is such a
monoid and 0 is not a limit point of M• in the order topology, then M is a BFM [27,
Proposition 4.5]. The same result can be easily extended to any positive monoid.

Proposition 4.1 Let M be a positive monoid of an Archimedean ordered group G. If
0 is not a limit point of M• in G, then M is a BFM.

Proof By virtue of Hölder’s theorem, we can identify G with an additive subgroup
of R, in which case, M is an additive submonoid of R. Hence it follows from [27,
Proposition 4.5] that M is a BFM. ��

When M is a positive monoid of a totally ordered group that is not necessarily
Archimedean, the fact that 0 is not a limit point of M• is not a strong condition from
the factorization-theoretical point of view. The following examples shed some light
upon this observation.

Example 4.2 Consider the abelian group G := Q × Q with the lexicographical order
with priority in the first component; that is, (x, y) ≤ (x ′, y′) in G provided that either
x < x ′ or x = x ′ and y ≤ y′. Observe that G+ = ({0} × Q≥0) ∪ (Q>0 × Q).

(1) A positive monoid of G that is antimatter. The monoid M := {(0, 0)}∪ (Q>0 ×Q)

of G is a positive monoid of G, and (0, 0) is not a limit point of M• with respect
to the order topology of G. In addition, for each b ∈ M•, the element 1

2b also
belongs to M•. As a consequence, M is antimatter. Our conclusion here implies
that M is not Archimedean as, otherwise, the fact that (0, 0) is not a limit point of
M• would imply that M is a BFM and, therefore, atomic.
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(2) A positive monoid of G that is neither antimatter nor atomic. Now consider the
positive monoid M := G+ ∩ (Z × Z) = ({0} × N0) ∪ (N × Z) of G. As in
the previous example, (0, 0) is not a limit point of M• with respect to the order
topology of G. Since a := (0, 1) is the minimum nonzero element of M , it must
be an atom. On the other hand, each nonzero element of M is divisible by a and,
therefore, A(M) = {a}. However, 〈a〉 = {0} × N0 is a proper submonoid of M ,
which implies that M is not atomic.

We proceed to construct an atomic positive monoid that is not strongly atomic.

Example 4.3 Fix q ∈ Q such that q ∈ (0, 1) and q−1 /∈ N, and then set Mq := 〈qn |
n ∈ N0〉. As mentioned in Example 3.4(2), the monoid Mq is atomic with A(Mq) =
{qn | n ∈ N0}. Take distinct irrational numbers α, β ∈ R>0 with 1 < α < β such
that the set {1, α, β} is linearly independent over Q. Now set S := {s ∈ Mq | s < α}.
As 1 < α, the inclusion A(Mq) ⊆ S holds. Observe that S is a countable set. Let
ϕ : S → P be an injective function. Now consider the monoid

Mα,β =
〈

s,
α − s

ϕ(s)
,
β − s

ϕ(s)

∣
∣
∣
∣ s ∈ S

〉

.

Because sup S = α and α < β, we see that Mα,β is a positive monoid of R. Note
that α, β ∈ Mα,β and also that Mq is a submonoid of Mα,β . Using the fact that the set
{1, α, β} is linearly independent overQ, we can verify that no element of S is divisible
by either α−s

ϕ(s) or β−s
ϕ(s) in Mα,β for any s ∈ S. From this, we can deduce that every

atom of Mq is also an atom of Mα,β ; that is, {qn | n ∈ N0} ⊆ A(Mα,β). Therefore
A(Mα,β) ∩ S = {qn | n ∈ N0}. Once again we can use that {1, α, β} is linearly
independent over Q to argue that α−s

ϕ(s) and
β−s
ϕ(s) are atoms of Mα,β for every s ∈ S. As

a result,

A(Mα,β) = {
qn | n ∈ N0

}⋃ {
α − s

ϕ(s)
,
β − s

ϕ(s)

∣
∣
∣
∣ s ∈ S

}

.

It is clear now that every element of Mα,β can be expressed as a sum of atoms, which
means that Mα,β is an atomic monoid.

Let us proceed to argue that Mα,β is not strongly atomic. To do so, suppose that
d ∈ M is a common divisor ofα andβ inMα,β . It follows from the linear independence
of {1, α, β} that β−s

ϕ(s) �Mα,β α for any s ∈ S. Similarly, α−s
ϕ(s) �Mα,β β for any s ∈ S.

Therefore d ∈ Mq , and so the inequality d < α ensures that d ∈ S. Now, after taking
k ∈ N sufficiently large so that d + qk ∈ S, we see that

α − d = ϕ(d + qk)
α−(d+qk)

ϕ(d+qk)
+qk and β − d = ϕ(d+qk)

β − (d + qk)

ϕ(d + qk)
+ qk,

which implies that qk is a nonzero common divisor of both α − d and β − d in Mα,β .
Therefore there is no common divisor d of α and β in Mα,β such that the only common
divisor of α − d and β − d is 0. Hence Mα,β is not strongly atomic.
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Now we consider the monoid M := Mα,β × N0. Observe that M is a positive
monoid of the abelian group G := R × Z endowed with the lexicographical order
with priority in the first component. Also, we note that (0, 0) is not a limit point of
M• with respect to the order topology of G. It is routine to check that the direct
product of two atomic monoids is also an atomic monoid. As a consequence, M is
atomic. Since M has a divisor-closed submonoid that is isomorphic to Mα,β , namely
Mα,β × {0}, we conclude that M is not strongly atomic.

Observe that the atomic positive monoid M that is not strongly atomic in Exam-
ple 4.3 has rank 4, while the monoid Mα,β in the same example is a rank-3 atomic
monoid that is not strongly atomic. As of now, we still do not know of any atomic
monoid of rank at most 2 that is not strongly atomic. The purpose of the next ques-
tion is to motivate further research in this direction. Recall that a positive monoid has
rank-1 if and only if it is a Puiseux monoid up to isomorphism.

Question 4.4 Canwe construct an atomic Puiseux monoid that is not strongly atomic?

Now we exhibit a positive monoid that is strongly atomic but does not satisfy the
ACCP.

Example 4.5 As in the previous example, for q ∈ Q∩(0, 1)with q−1 /∈ N, consider the
Puiseux monoid Mq := 〈qn | n ∈ N0〉whose set of atoms isA(Mq) = {qn | n ∈ N0}.
Indeed, it follows from [32, Example 3.8] and [32, Proposition 3.10(2)] that Mq is a
strongly atomic monoid. Now observe that d(q)qn = (d(q) − n(q))qn + d(q)qn+1

for every n ∈ N, which implies that
(
d(q)qn + Mq

)
n≥0 is an ascending chain of

principal ideals of Mq that does not stabilize. As a result, Mq does not satisfy the
ACCP. Following the lines of the last paragraph of Example 4.3, we can verify that
M := Mq ×N0 is a positive monoid of the totally ordered abelian group Q×Z (under
the lexicographical order with priority in the first component) such that M is strongly
atomic, M does not satisfy the ACCP, and (0, 0) is not a limit point of M• with respect
to the order topology of Q × Z.

Besides the monoids exhibited in Examples 4.3 and 4.5, other atomic positive
monoids that do not satisfy the ACCP have appeared in recent literature as ingredients
to construct monoid algebras with certain factorization properties. For instance, see
[16, Proposition 5.1], [30, Proposition 4.1], and [32, Section 3].

Lastly, we provide an example of a positive monoid that satisfies the ACCP but is
not a BFM.

Example 4.6 Consider the Puiseux monoid M0 := 〈 1
p | p ∈ P

〉
of Q. It is known

that M0 satisfies the ACCP (see [2, Example 3.3]). On the other hand, one can easily
check thatA(M0) = { 1

p | p ∈ P
}
. This implies that P ⊆ LM0(1) and, therefore, M0 is

not aBFM. Proceeding as in the previous two examples, we can see thatM := M0×N0
is a positive monoid of the totally ordered group Q × Z (under the lexicographical
order with priority in the first component) such that (0, 0) is not a limit point of M•
with respect to the order topology. Finally, from the fact that M0 satisfies the ACCP
but is not a BFM, we can deduce that M satisfies the ACCP but is not a BFM.
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Here is an example of a positive monoid that is a BFM but not an FFM.

Example 4.7 Consider the positive monoid M := {0} ∪ R≥1. Since (R,+) is an
Archimedean ordered group and 0 is not a limit point of M•, it follows from Propo-
sition 4.1 that M is a BFM. One can readily see that A(M) = [1, 2). For each n ∈ N

with n ≥ 3, we can observe that the formal decomposition 3 = ( 3
2 − 1

n

) + ( 3
2 + 1

n

)

yields a factorization of 3 in M . Hence |Z(3)| = ∞, and so M is not an FFM.

Before providing an example of a positive monoid that is an FFM but not a UFM,
we identify a class of positive monoids that are FFMs. We say that a positive monoid
is increasing if it can be generated by an increasing sequence. It is clear that if M
is an increasing monoid, then there is a neighborhood of 0 (with respect to the order
topology) that is disjoint from M•. Increasing positive monoids of the additive group
of an ordered field are FFMs (see [27, Theorem 5.6]). The same statement holds for
any increasing positive monoid.

Theorem 4.8 Each increasing positive monoid of a totally ordered group is an FFM.

Proof The proof of [27, Theorem 5.6] can be mimicked as it does not use the multi-
plicative structure of the ordered field. ��

For the sake of completeness,weprovide some simple examples of positivemonoids
that are FFMs but not UFMs.

Example 4.9 (1) Every numerical monoid is increasing and so an FFM. Thus, every
numerical monoid different from N0 is an FFM that is not a UFM.

(2) Take q ∈ Q>1 such that q /∈ N, and consider the Puiseux monoid Mq := 〈qn |
n ∈ N0〉 (the class of Puiseux monoids similarly defined but parameterized by
q ∈ Q ∩ (0, 1) with q−1 /∈ N was already considered in Example 3.4(2) and in
Examples 4.3 and 4.5). It is clear that Mq is an increasing positive monoid, so Mq

is an FFM. It follows from [29, Theorem 6.2] thatA(Mq) = {qn | n ∈ N0}. Since
n(q) = n(q) · 1 = d(q) · q, we see that Mq is not even an HFM.

5 Conductive positive monoids

As mentioned in the introduction, monoids similar to the one in Example 4.7 have
been considered in the literature before, mainly to construct examples of commutative
monoid algebras satisfying certain desired properties. With Example 4.7 in mind, we
make the following more general definition.

Definition 5.1 Let G be a totally ordered group G, and take a nonzero a ∈ G+. Then
we call Ma := {0} ∪ G≥a the positive monoid of G conducted by a or simply a
conductive positive monoid.

A version of conductive positive monoids was considered in [4] and a special class
of them was more recently considered in [3]. Throughout this section, we restrict our
attention to the atomicity of conductive positive monoids.
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5.1 Bounded factorization conductive positive monoids

It immediately follows from Proposition 4.1 that when G is Archimedean, Ma is a
BFM for each nonzero a ∈ G+. However, when G is not Archimedean, Ma may not
be even atomic for some nonzero a ∈ G+. In the next proposition, for any nontrivial
totally ordered group G, we provide conditions equivalent to that of Ma being atomic.
First, let us take a look at the following motivating example.

Example 5.2 Consider the totally ordered group G = Z × Z with the lexicographical
order with priority in the first component, in which case, G+ = ({0}×N0)∪ (N×Z).
Observe that G \ {0} consists of two Archimedean classes, whose intersections with
G+ are C1 := {0} × N and C2 := N × Z. Fix a nonzero a ∈ G+. If a ∈ C1, then
v(a) � min�G and Ma is not atomic (cf. Proposition 5.3): indeed, 〈[a, 2a)〉• ⊂ C1
and Ma = 〈[a, 2a)〉 ∪ C2. If a ∈ C2, then v(a) = min�G and Ma is a BFM (cf.
Proposition 5.3): indeed, in this case, the restriction of the function Ma → N0 given
by (m, n) �→ m is clearly a length function of Ma (see [2, Proposition 3.1]).

With Example 5.2 in mind, we can characterize the conductive positive monoids
that are atomic in several ways.

Proposition 5.3 Let G be a nontrivial totally ordered group, and fix a nonzero a ∈ G+.
Then A(Ma) = [a, 2a), and the following conditions are equivalent.

(a) Ma is a BFM.
(b) Ma satisfies the ACCP.
(c) Ma is strongly atomic.
(d) Ma is atomic.
(e) Ma is nearly atomic.
(f) Ma is almost atomic.
(g) Ma is quasi-atomic.
(h) M•

a ⊂ v(a).
(i) v(a) = min�G.

Proof For each x ∈ Ma with x ≥ 2a, we see that x − a ∈ M•
a and, therefore,

A(Ma) ⊆ [a, 2a). On the other hand, 2a is a lower bound for the set G≥a + G≥a ,
which implies that A(Ma) ⊆ [a, 2a). Thus, A(Ma) = [a, 2a). Let us show now that
the conditions (a)–(i) above are equivalent.

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e): This is clear.
(e) ⇒ (f): Suppose that M is nearly atomic, and then take b ∈ M such that b+ c is

atomic for every nonzero c ∈ M . If b = 0, then Ma is atomic and, therefore, almost
atomic. Suppose, on the other hand, that b > 0. In this case, 2b is an atomic element
of M . In addition, for each c ∈ M , the element 2b + c = b + (b + c) is an atomic
element of M . As a consequence, M is almost atomic.

(f) ⇒ (g): This is clear.
(g) ⇒ (h): Assume that Ma is quasi-atomic. Take b ∈ M•

a . As Ma is quasi-atomic,
we can pick c ∈ Ma such that b + c = a1 + · · · + an for some a1, . . . , an ∈ [a, 2a).
Hence b ≤ b + c = a1 + · · · + an < 2na. This implies that b = O(a), and it is clear
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that a = O(b). Thus, b ∼ a for all nonzero b ∈ Ma , whence the inclusion M•
a ⊂ v(a)

holds.
(h) ⇒ (i): Suppose that the inclusion M•

a ⊂ v(a) holds. Fix a nonzero g ∈ G, and
let us verify that v(g) � v(a). After replacing g by −g if necessary, we can assume
that g ∈ G+. If g < a, then v(g) � v(a) and, otherwise, g ∈ Ma ⊂ v(a), which
implies that v(g) = v(a).

(i) ⇒ (a): Assume that v(a) � v(g) for all nonzero g ∈ G. Fix b ∈ M•
a . The fact

that v(a) � v(b) implies that b = O(a) and, therefore, b ≤ Na for some N ∈ N. Now
suppose that b = a1+· · ·+a� for some a1, . . . , a� ∈ M•

a . Then �a ≤ a1+· · ·+a� = b
and so �a ≤ b ≤ Na. Thus, b cannot be written as a sum of more than N elements
of M•

a . Now assuming that � is as large as it could possibly be, we obtain that the
summands in the right-hand side of b = a1 +· · ·+a� are atoms of M•

a , which implies
not only that b is an atomic element of Ma but also that LMa (b) is bounded. Hence Ma

is a BFM. ��
No two of the conditions (a)–(d) in Proposition 5.3 are equivalent in the class of

positive monoids. Indeed, we have seen that the positive monoid M0 of Example 4.6
satisfies theACCPbut is not aBFM, the positivemonoidMq of Example 4.5 is strongly
atomic but does not satisfy the ACCP, and the positive monoid Mα,β of Example 4.3
is atomic but not strongly atomic. Now we proceed to provide examples to illustrate
that, in the class of positive monoids, no two of the conditions (d)–(g) are equivalent.
Using the idea in Example 4.3, we begin with an example of a positive monoid that is
nearly atomic but not atomic.

Example 5.4 Let α be a positive irrational number, and let ϕ : Q≥0 → P be an injective
function. Then consider the positive monoid M of the totally ordered abelian group R

defined as follows:

M :=
〈
q,

α + q

ϕ(q)

∣
∣
∣ q ∈ Q≥0

〉
.

From the irrationality of α, one can readily argue that α+q
ϕ(q)

∈ A(M) for all q ∈ Q≥0.
We proceed to show that M is nearly atomic. In order to do so, we first observe that
α = ϕ(0) α

ϕ(0) ∈ M , and then we claim that α + r is an atomic element of M for each
r ∈ M . Take r ∈ M , and observe that we can write r = q0 + a1 + · · · + an for some
q0 ∈ Q≥0 and a1, . . . , an ∈ A(M). Then

α + r = (α + q0) +
n∑

k=1

ak = ϕ(q0)
α + q0
ϕ(q0)

+
n∑

k=1

ak,

which illustrates that α + r is an atomic element of M . As a consequence, M is nearly
atomic. Finally, the irrationality of α guarantees that no element in M ∩ Q>0 can be
written as a sum of atoms in M , whence M is not atomic.

Let us now construct an almost atomic positive monoid that is not nearly atomic.
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Example 5.5 LetM0 be themonoid generated by the reciprocals of the prime numbers;
that is, M0 = 〈 1

p | p ∈ P
〉
, and then letG be the difference group of M0. Now consider

the Puiseux monoid M := M0 ∪ G≥1. We mentioned in Example 4.6 that A(M0) ={ 1
p | p ∈ P

}
. Therefore the fact that maxA(M0) < 1 ensures that no element of G≥1

divides any atom of M0 in M . As a consequence, { 1p | p ∈ P} ⊆ A(M). Moreover,

because each element in M>1 is divisible by an atom 1
p in M for a sufficiently large

p ∈ P, it follows that A(M) = { 1p | p ∈ P}. Since any element of M can be written
as a difference between two elements of M0, any element of M can be written as a
difference between two sums of atoms of M . Thus, M is almost atomic.

On the other hand, we claim that M is not nearly atomic. Suppose, for the sake of
a contradiction, that there exists q ∈ M such that q + r is an atomic element in M
for all r ∈ M•. Let Pq be the set of all primes dividing d(q). Since Pq is a finite set,
and the series

∑
n∈N 1

pn
is divergent (here pn is the n-th prime number), we can find a

nonempty finite subset S of P such that S ∩ Pq is empty and
∑

p∈S 1
p > q + 2. Now

consider the element r := 1 + ∏
p∈S 1

p . Observe that r ∈ M• and r < 2. Because
q + r is atomic in M , there exist p′

1, . . . , p
′
k ∈ P not necessarily distinct such that

q + r = ∑k
j=1

1
p′
j
. Now the fact that S ∩ Pq is empty implies that S ⊆ {p′

1, . . . , p
′
k},

and so

q + r =
k∑

j=1

1

p′
j

≥
∑

p∈S

1

p
> q + 2,

which contradicts that r < 2. As a consequence, we conclude that M is an almost
atomic monoid that is not nearly atomic.

Lastly, we construct a quasi-atomic positive monoid that is not almost atomic.

Example 5.6 Let M be the additive submonoid of Q≥0 generated by the set S :=
Z[ 12 ]≥0∪Z[ 13 ]≥4/3, which is a positive monoid ofQ. It is clear that 43 ∈ A(M). Hence
each element in 4N is an atomic element in M . Now for each q ∈ M•, we can take the
element b := (4d(q) − 1)q, and conclude that b+ q = 4n(q) is an atomic element in
M . Hence M is quasi-atomic.

To argue that M is not almost atomic, we first verify that d(q) is a power of 3 for
every q ∈ A(M). To do so, let q be an atom of M . Observe that 6 � d(q) as, if this
were not the case, an element in the defining generating set S of M would have its
denominator divisible by 6. In addition, observe that d(q) cannot be a power of 2 as,
otherwise, 1

2q would divide q in M . Hence the denominator of each atom of M is a
power of 3. As a consequence, A(M) ⊆ Z[ 13 ]≥4/3, which implies that the difference
groupG of 〈A(M)〉 is contained inZ[ 13 ]. Therefore the fact that 12 ∈ M \G guarantees
that M is not almost atomic.
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5.2 Finite factorization conductive positive monoids

Our primary task in this subsection is to characterize the conductive positive monoids
that are FFMs. It turns out that the characterization that we proceed to establish is
based solely on the defining groups.

Proposition 5.7 Let G be a nontrivial totally ordered group, and fix a nonzero a ∈ G+.
Then the following conditions are equivalent.

(a) Ma is an FFM.
(b) G is a cyclic group.

Proof (a)⇒ (b): Suppose first thatMa is an FFM. ThenMa is atomic, and so it follows
from Proposition 5.3 thatA(Ma) = [a, 2a) and v(a) = min�G . Now observe that for
each b ∈ [a, 2a), the element 3a−b belongs to [a, 2a) and, therefore, b+(3a−b) is a
factorization of 3a in Ma . As a consequence, the fact that |ZMa (3a)| < ∞ guarantees
that |[a, 2a)| < ∞. Nowobserve that if there existed g ∈ G\{0} such that v(a) ≺ v(g),
then a + (G+ ∩ v(g)) ⊆ (a, 2a), which is not possible because (a, 2a) is finite and
G+ ∩ v(g) contains the infinite set N|g|. Hence |�G | = 1, which means that G is
Archimedean. By virtue of Hölder’s theorem, we can assume that G is a nontrivial
additive subgroup of R.

For the second part of the proof, we need the following claim.
Claim: G is dense in R unless G is cyclic.
Proof of Claim: Suppose that rankG ≥ 2, and take integrally independent elements
g, h ∈ G; that is, the elements g and h are linearly independent over Q. Then h �= 0
and g

h /∈ Q. It is well known and not hard to verify that the set {m + n g
h | m, n ∈ Z} is

dense in R. Hence G is dense in R. On the other hand, suppose that rankG = 1. Fix a
nonzero g0 ∈ G, and then set G0 := 1

g0
G. It is clear that G0 is a copy of G inside Q. It

is well known that every subgroup of Q is the union of a (possibly infinite) ascending
sequence of cyclic groups (see [26, Corollary 2.8]). Therefore G0 is either an infinite
cyclic group or 0 is a limit point of G0\{0}, which implies that G0 is dense in Q. As a
consequence, G is either an infinite cyclic group or a dense subset of R, and the claim
follows.

Now assume, for the sake of a contradiction, that G is not cyclic. Then it follows
from the established claim that G is dense in R. However, this is a contradiction as
the interval [a, 2a) of G is finite. Hence G must be a cyclic subgroup of R.

(b) ⇒ (a): Finally, suppose that G ∼= Z. Since Ma is a submonoid of G+ and
G+ ∼= N0, it follows that Ma is isomorphic to a numerical monoid and, therefore, it
is finitely generated. Hence Ma is an FFM. ��

We can use Propositions 5.3 and 5.7 in tandem to construct further examples of
BFMs that are not FFMs (see Example 4.7). To illustrate this, we revisit Example 5.2.

Example 5.8 For the totally ordered group G = Z × Z with the lexicographical order
with priority in the first component, we have seen in Example 5.2 that G \ {0} consists
of two Archimedean classes and that Ma is a BFM provided that a ∈ G+ and v(a) =
min�G . In addition, in light of Proposition 5.7, the fact that |�G | = 2 ensures that
Ma is not an FFM.
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5.3 Length-factorial and half-factorial conductive positive monoids

In this final subsection, our main purpose is to characterize the conductive positive
monoids that are LFMs as well as the conductive positive monoids that are HFMs. Let
us begin with the conductive positive monoids that are LFMs.

Proposition 5.9 Let G be a nontrivial totally ordered group, and fix a nonzero a ∈ G+.
Then the following conditions are equivalent.

(a) Ma is an LFM.
(b) G = Zb for some nonzero b ∈ G+, and a ∈ {b, 2b}.
Proof (a)⇒ (b): Suppose that Ma is an LFM. Then Ma is also an FFM and, therefore,
the group G is cyclic by virtue of Proposition 5.7. Take a nonzero b ∈ G such that
G = Zb. After replacing b by −b if necessary, we can assume that b ∈ G+. Assume,
by way of contradiction, that a ≥ 3b. It follows from Proposition 5.3 that A(Ma) =
�a, 2a − b�, and the fact that a ≥ 3b guarantees that |A(Ma)| ≥ 3. Take c1, c2, c3 ∈
N≥3 such that c1b, c2b, and c3b are distinct atoms of Ma and assume, without loss of
generality, that c1 < c2 < c3. Now take m, n ∈ N such that m(c2 − c1) = n(c3 − c2),
and observe that (m + n)c2b and mc1b+ nc3b yield two distinct factorizations of the
same element of Ma having the same length. This contradicts, however, that Ma is an
LFM. Hence a ≤ 2b and, as a is a nonzero element in the nonnegative cone of Zb,
we can conclude that a ∈ {b, 2b}.

(b) ⇒ (a): Suppose now that G = Zb for some nonzero b ∈ G+, and a ∈ {b, 2b}.
Since G is the infinite cyclic group, Ma is isomorphic to a submonoid of the addi-
tive monoid N0. As Ma is generated by at most two elements, it follows from [18,
Example 2.13] that Ma is an LFM. ��

We conclude discussing the half-factorial property in the context of conductive pos-
itive monoids. Recall that an atomic monoid M is half-factorial (or an HFM for short)
if any two factorizations of the same element have the same length. Half-factoriality
has been systematically studied for almost four decades (see the recent paper [37] and
references therein): a survey on the advances on half-factoriality until 2000 was given
by Chapman and Coykendall in [9]. It turns out that for conductive positive monoids
the condition of being a UFM and that of being an HFM are equivalent. In fact, we
can characterize both properties as follows.

Proposition 5.10 Let G be a nontrivial totally ordered group, and fix a nonzero a ∈
G+. Then the following conditions are equivalent.

(a) Ma is a UFM.
(b) Ma is an HFM.
(c) G is cyclic, and Ma = G+.

Proof (a) ⇒ (b): This follows from the definitions.
(b) ⇒(c): Assume that Ma is an HFM. We claim that the open interval (a, 2a) is

empty. Suppose, by way of contradiction, that this is not the case, and take b ∈ (a, 2a).
Since 3a − b ∈ (a, 2a), it follows from Proposition 5.3 that 3a − b ∈ A(Ma). Since
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Fig. 4 Adaptation of the chain of implications shown in Fig. 3 for the class of conductive positive monoids.
None of the three implication arrows is reversible in this class. The atomic properties between being a BFM
and being a quasi-atomic monoid in Proposition 5.3 have been omitted for simplicity

a, b ∈ A(Ma) by the same proposition, the equality a+a+a = b+(3a−b) yields two
factorizations of the same element with different lengths, which contradicts that Ma is
an HFM. Thus, (a, 2a) is empty, as we claimed. Then it follows from Proposition 5.3
thatA(Ma) = {a}. Now if c ∈ G+ ∩[0, a), then the fact that 2a−c ∈ (a, 2a] ensures
that c = 0. Therefore a must be the smallest nonzero element of G+, which implies
that Ma = G+. Moreover, since Ma is atomic, every element of Ma must be the sum
of copies of a, which is the only atom of Ma . As a consequence, G+ = Ma = N0a,
and so G = Za is the cyclic group.

(c) ⇒ (a): If G is cyclic and Ma = G+, then Ma ∼= N0, whence Ma is a UFM. ��
In the direction of Proposition 5.10, it is worth mentioning that the property of

being a UFM and that of being an HFM are also equivalent in the class consisting
of all rank-one positive monoids. Indeed, every positive monoid is torsion-free, and
it follows from [22, Theorem 3.12] that every rank-one torsion-free monoid is either
a group or a Puiseux monoid (up to isomorphism). In addition, it was proved in [28,
Proposition 4.3] that a Puiseux monoid is an HFM if and only if it is a UFM. Therefore
we obtain the following remark.

Remark 5.11 A rank-one positive monoid is a UFM if and only if it is an HFM.

For higher ranks, however, there are positive monoids that are HFM but not UFM.
Indeed, in the following example we exhibit a rank-two positive monoid that is an
HFM but is not even an FFM.

Example 5.12 Consider the totally ordered group G = Z×Z with the lexicographical
order with priority in the first component, in which case, G+ = ({0}×N0)∪ (N×Z).
Now consider the monoid M := {(0, 0)} ∪ (N × Z), which is a positive monoid of
G. We first observe that A(M) = {(1, n) | n ∈ Z} and, therefore, M is atomic. In
addition, we can see that each factorization of an element (m, n) ∈ M• consists of
precisely m atoms (counting repetitions). Hence M is an HFM. On the other hand,
since (2, 0) = (1,−n)+ (1, n) for every n ∈ N, the element (2, 0) has infinitely many
factorizations in M (indeed, one can similarly see that every nonzero element of M
that is not an atom has infinitely many factorizations). As a consequence, M is not an
FFM.

We conclude this paper considering the atomic diagram in Fig. 3 restricted to the
class of conductive positive monoids. The implications in the diagram shown in Fig. 4
summarize the main results we have established in this section.
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