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ABSTRACT

This paper presents a theoretical model examining the interaction between a fibrous network and viscous fluid flow driven by an oscillating
boundary. The aim is to understand how oscillating impacts are transmitted from the skull, through the arachnoid trabeculae network filled
with cerebrospinal fluid, as observed in shaken baby syndrome. The model uses an effective medium approach to determine the fluid velocity
field while each fiber is treated as a soft string undergoing deformation. Results indicate that the frequency of oscillation, fiber stiffness, and
porous structure resistance significantly influence the oscillating shearing flow, as indicated by the Womersley (Wo), Brinkman (a),
and Bingham (Bm) numbers. Application of the model to shaken baby syndrome suggests that oscillations in the cerebrospinal fluid and
arachnoid trabeculae can significantly surpass those on the skull, leading to intense shear stress penetration to the brain. This model is the
first study to integrate the dynamic response of string-like fibrous networks in fluid flows with oscillating boundaries and offers a quantitative
framework for predicting the transmission of shearing forces from the skull to the brain matter.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0206943

I. INTRODUCTION

Shearing flow through a fibrous network involves the interactions
and deformations of flexible fibers with fluid flow. It is widely observed
in industrial applications and biological systems.1–3 Some examples
include microorganismal swimming,4 nuclear positioning in eukary-
otic cells,5 and the motion of red cells over the endothelial glycocalyx
layer that covers the inner surface of blood vessels.6–9 The present
paper is inspired by our recent study about brain injury due to rota-
tional impacts on the head. The brain is the main organ in the human
central nervous system. Figure 1(a) shows the basic structure of the
head, where the soft brain tissue is enclosed in the hard skull. Between
them, there is a thin subarachnoid space (SAS), which is filled with
cerebrospinal fluid (CSF) derived from blood plasma.3 The gap of the
SAS is typically below 3mm in thickness and contains thin connective

tissue strands called arachnoid trabeculae (AT) that loosely connect
the inner surface of the skull and the outer surface of the brain
matter.10–13 Figure 1(b) shows the detailed structure of the SAS where
one end of the AT is attached to the Pia matter that covers the outer
surface of the brain, while the other end of it is attached to the arach-
noid membrane that lines the inner side of the skull. With a radius of
r¼ 15lm,14 AT is too thin to be detected by ultrasound or high-
resolution magnetic resonance imaging (MRI). However, in recent
years, it has been studied extensively with the aid of transmission elec-
tron microscopy and scanning electron microscopy.14,15 Despite their
thin profile, AT serve to suspend the brain within the CSF-filled SAS
and severely restrict relative motion between the skull and brain sur-
face.16 Due to its existence, the SAS is considered to be a porous
space17 whose permeability is estimated to be 3:125� 10�10 m2:16
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When a sudden impact is imposed on the head, some critical and fun-
damentally important questions one would ask are the following: How
is an impact on the skull transmitted through the SAS to the soft brain
matter? What is the role of the CSF flow through the porous AT net-
work during the force transmission process? To answer these ques-
tions, one must thoroughly understand the fluid-structure interaction
between the CSF and AT during the impact process.

Impacts on the head are commonly identified as the cause of
brain injury.18,19 Repetitive head impacts, even those with no acute
symptoms or signs, have been suggested as a possible cause of chronic
brain injury (CBI).20 For example, shaken baby syndrome is the most
common cause of neurological injury in children.21,22 When a baby is
shaken periodically, the skull is forced to move concurrently. As a
result, the AT would be dragged to move and deform,23 and the CSF
would flow simultaneously. It is expected that the viscous flow of the
CSF through the AT porous network plays a critical role in mitigating
the impact by acting as a damping system. It also behaves as a bridge
to transmit the shearing impact from the skull to the soft brain matter.
Therefore, the dynamics of fluid-structure interaction between the
fibrous network and viscous fluid flow, driven by an oscillating bound-
ary, are central to understanding the physics of force transmission.
Exploring this mechanism offers insights into physiological or patho-
logical processes like those observed in shaken baby syndrome.

The viscous shearing flow driven by a tangentially moving
boundary could date back to Couette flow. Since then, extensive stud-
ies have been developed to investigate all flow phenomena caused by
the tangentially moving boundary. For example, a series of studies
investigated the flow instability and transition caused by the oscillating
boundary.24–26 The shearing flow patterns formed during the Taylor-
Couette flow have drawn wide attention.27,28 Phenomena like nano-
ferroliquid flow29 and droplet deformation30 under parallel shearing
flow have also been studied.

When a space is filled with fibrous porous media, the mechanism
of the fluid flowing through and its interaction with the fibrous struc-
ture becomes important. Both anchored and freely suspended flexible
fibers have recently been studied. The fibers are either actuated or pas-
sively driven by the fluid flow. Luhar and Nepf31 investigated wave-
induced oscillatory flow through natural aquatic vegetation, and the
wave energy dissipation caused by the flexible blades was discussed.
Elastic fibers like flagella and cilia deformed in a shear flow have been
studied by Zuk et al.32 and Becker and Shelley.33 Fiber bending, curl-
ing, and rotation caused by the flow have been solved.

Theoretically, the interaction between flexible fibers and viscous
fluids has been extensively researched using two main approaches. The
local slender body theory (SBT) employs the Stokes equation to ana-
lyze fluid flow around individual fibers, providing a local relation

between elastic and drag forces.34 Conversely, the effective medium
approach examines the global interaction of a fibrous network with
viscous flow, utilizing the Brinkman equation. In this method, fibers
are often modeled as cantilever beams undergoing small34 and large
deformations,31,35 or as a series of beads.32,36 However, the cantilever
beam or beads model is inappropriate for applications involving very
soft, string-like fibers observed in biological systems, e.g., AT. Hence, a
notable research gap is evident in the theoretical modeling of fiber
behavior, especially in systems closely resembling physiological
environments.

In this paper, we have developed a unique theoretical model that
explores the interaction between a fibrous network and a viscous fluid
flow. A string function describes the fiber displacement, while an effec-
tive medium approach governs the fluid flow through the fiber.37–43 A
comprehensive parametric study will be performed to examine pri-
mary factors that govern the fluid-structure interaction process.
Finally, we will apply the model to examine the CSF flow in the SAS
through the fibrous AT network. This model is among the first to inte-
grate the dynamic response of fibrous networks in fluid flows with
oscillating boundaries, offering a new perspective to examine these
complex interactions. Our application of the developed theory to esti-
mate the interaction between the AT and CSF flow under mechanical
impacts provides the first quantitative framework to predict the trans-
mission of shearing forces from the skull to the brain matter.

II. THEORETICAL MODEL

Figure 2(a) shows a simplified SAS. Evenly distributed fibers
extend across the liquid gap, with their two ends anchored to the fixed
bottom and the horizontally oscillating top plate. The fiber network
has been assumed to be homogeneous. The coordinate system (y) and
the gap height (h) are shown in Fig. 2(a). The fibers and the fluid will
be driven by the top plate and interact with each other. Figure 2(b)
shows the forces acting on a single fiber element, which includes the
tension force, T, along the fiber and the fluid drag force, Fl , in the hori-
zontal direction. n in the figure represents the horizontal displacement
of the fiber. This problem features a thin gap height, a fibrous struc-
ture, and a horizontally oscillating boundary. It is assumed that the
velocity of the top plate follows a sine function, V0 sinðxtÞ, where V0

is the characteristic velocity,x is the angular frequency, and t is time.
Darcy–Lapwood–Brinkman model,44–46 which accounts for the

inertial effect, the viscous effect, and the hydraulic resistance from the
porous media, is used in this study to capture the fluid flow,

q
@u

@t
þ u �rð Þu

� �

¼ �rP þ lr 2u� l

Kp
u: (1)

FIG. 1. (a) Basic structure of the head
and (b) Sketch of the subarachnoid space.
Fibrous arachnoid trabeculae connect the
arachnoid membrane and pia mater
across the gap.
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where u ¼ /u0 is the local macroscopic velocity of the fluid, / is the
porosity defined as the fraction of the total volume that is occupied by
void spaces within a material, u0 is the microscopic velocity of the fluid,
q is the fluid density, P is the pressure, l is the dynamic viscosity of
the fluid, and Kp is the Darcy permeability. Here, as the gap is very
thin, the gravitational force is neglected.

Considering the gap height is significantly smaller than the length
scale of the flow channel in the flow direction, we assume the flow
within the gap to be unidirectional. Then, Eq. (1) is simplified as

q
@u

@t
¼ l

@2u

@y2
� l

Kp
u; (2)

where u is the horizontal component of the local macroscopic velocity.
u ¼ /u0, where u0 is the horizontal component of the microscopic
velocity.

The last term in Eq. (2) represents the hydraulic resistance caused
by the relative motion between the fluid and the porous structure. As
the fibers can also move and deform, the last term in Eq. (2) has been
modified based on a relative velocity,

q
@u

@t
¼ l

@2u

@y2
� l

Kp
u� /

@n

@t

� �

: (3)

We assume the fiber displacement in the vertical direction is negligible
compared to the displacement in the horizontal direction. Hence, the
fiber is treated as a string. According to the force analysis shown in
Fig. 2(b), the governing equation of a single fiber is

qspR
2
f

@2n

@t2
¼ T

@2n

@y2
þ

pR2
f

1� /

l

Kp
u� /

@n

@t

� �

; (4)

where qs is the density of the fiber, Rf is the fiber radius. The term on
the left-hand side (LHS) represents the acceleration; the first term on
the right-hand side (RHS) represents the tension force from the
stretched fiber; the second term on the RHS is the flow resistance force
received by a single fiber, which is the reaction force of the last term in
Eq. (3). Here, it is assumed that the tension force, T , is the average
force along the fiber and does not change with time. This assumption
is based on the linear deformation theory, suggesting minimal tension
variations in the scenarios we modeled. This simplification enables an
analytical solution, providing a foundational understanding of the
fluid-solid interactions with minimal impact on the accuracy of the
phenomena being studied. The term pR2

f =ð1� /Þ represents the effec-
tive cross-sectional area of an infinitesimal fiber element within a
porous medium, adjusted for the fiber’s volume fraction in that
medium. Then, the last term on the RHS captures the force received by
the fiber, which effectively is the reaction force of the porous resistance.

The fluid starts from a static state, and the fiber has no displace-
ment and zero velocity:

u ¼ 0; n ¼ 0; and
@n

@t
¼ 0; when t ¼ 0: (5)

The boundary conditions at the fixed bottom, where y ¼ 0, are

u ¼ 0 and n ¼ 0: (6)

The oscillating boundary conditions at the top plane, where y ¼ h, are

u ¼ /V0 sin xtð Þ and
@n

@t
¼ V0 sin xtð Þ: (7)

Here, the following dimensionless numbers are defined: y� ¼ y=h,
u� ¼ u=ð/V0Þ, n� ¼ n=ðV0=xÞ, t� ¼ t=t0, t0 ¼ 1=x, g ¼ qs=q,
Bingham number, Bm ¼ T=ðxlpR2

f Þ, Womersley number,
Wo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qxh2=l
p

, and Brinkman number, a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=KP

p

.
The Bingham number (Bm) measures the balance between fiber

tension and viscous forces, illustrating the role of fiber stiffness in
fluid–structure interactions; a higher Bm suggests increased fiber stiff-
ness. The Womersley number (Wo) compares inertial to viscous
forces, which are vital for analyzing fluid behavior under oscillatory
conditions; a greater Wo signifies more pronounced oscillatory effects.
The Brinkman number (a) evaluates the porous medium’s permeabil-
ity, indicating the porous resistance relative to viscous forces; a higher
a reflects a stronger porous resistance.

Equations (3) and (4) can then be cast into a dimensionless
format,

Wo2
@u�

@t
¼ @2u�

@y�2
� a2u� þ a2

@n�

@t�
; (8)

Wo2g
@2n�

@t�2
þ /a2

1� /

@n�

@t�
¼ Bm

@2n�

@y�2
þ /a2

1� /
u�: (9)

The dimensionless initial condition is given by

u� ¼ 0; n� ¼ 0; and
@n�

@t�
¼ 0 when t� ¼ 0; (10)

and the dimensionless boundary conditions become

u� ¼ 0 and n� ¼ 0 at y� ¼ 0; (11)

as well as

u� ¼ sin t�ð Þ and
@n�

@t�
¼ sin t�ð Þ at y� ¼ 1: (12)

Laplace transform is performed on Eqs. (8) and (9),

@2�u

@y�2
� Wo2sþ a2ð Þ�u þ a2s�n ¼ 0; (13)

FIG. 2. Sketch of the problem. (a)
Simplified SAS featuring evenly distributed
fibrous AT within the CSF. (b) The free-
body diagram of a fiber element.
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�u ¼ � 1� /

/a2
Bm

@2�n

@y�2
þ 1� /

/a2
Wo2gs2 þ s

� �

�n; (14)

where �u and �n are the Laplace transform of u� and n�, and s is the
Laplace operator.

The transformed boundary conditions become

�u ¼ 0 and �n ¼ 0 at y� ¼ 0; (15)

and

�u ¼ 1

s2 þ 1
and �n ¼ 1

s s2 þ 1ð Þ at y� ¼ 1: (16)

Substituting Eq. (14) into Eq. (13), the governing equation could be
simplified as an ordinary differential equation of �n,

@4�n

@y�4
� b1

@2�n

@y�2
þ b2

�n ¼ 0; (17)

where

b1 ¼ s2
Wo2g

Bm
þ s Wo2 þ 1

Bm

a2/

1� /

� �

þ a2;

b2 ¼ s3
Wo4g

Bm
þ s2

Wo2a2

Bm

/

1� /
þ g

� �

:

(18)

Substituting Eqs. (15) and (16) into Eq. (14), the fluid boundary condi-
tions could be transferred to the boundary conditions of the solid fiber,

�n ¼ 0 and
@2�n

@y�2
¼ 0; at y� ¼ 0; (19)

and

�n ¼ 1

s s2 þ 1ð Þ and
@2�n

@y�2
¼ Wo2g

Bm

s

s2 þ 1
at y� ¼ 1: (20)

Subject to the boundary conditions, Eqs. (19) and (20), Eq. (17) is
solved analytically, which gives

�n ¼
k22 �

Wo2g

Bm
s2

� �

s s2 þ 1ð Þ k22 � k21
� �

sinh k1yð Þ
sinh k1ð Þ �

k21 �
Wo2g

Bm
s2

� �

s s2 þ 1ð Þ k22 � k21
� �

sinh k2yð Þ
sinh k2ð Þ ;

(21)

where

k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1
2 � 4b2

q

2

v

u

u

t

and k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1
2 � 4b2

q

2

v

u

u

t

:

(22)

Substituting Eq. (21) into Eq. (14), one obtains the solution of the fluid
flow,

�u ¼ Wo2g
1� /

a2/
s2 þ s

� � k22 �
Wo2g

Bm
s2

� �

s s2 þ 1ð Þ k22 � k21
� �

sinh k1yð Þ
sinh k1ð Þ �

k21 �
Wo2g

Bm
s2

� �

s s2 þ 1ð Þ k22 � k21
� �

sinh k2yð Þ
sinh k2ð Þ

2

6

4

3

7

5

� 1� /

a2/
Bm

k21 k22 �
Wo2g

Bm
s2

� �

s s2 þ 1ð Þ k22 � k21
� �

sinh k1yð Þ
sinh k1ð Þ �

k22 k21 �
Wo2g

Bm
s2

� �

s s2 þ 1ð Þ k22 � k21
� �

sinh k2yð Þ
sinh k2ð Þ

2

6

4

3

7

5

: (23)

Applying the Euler Algorithm47 to inverse Laplace transform Eq. (21)
and Eq. (22), f � and u� are obtained as

n� t�; y�ð Þ ¼ 10M=3

t�

X2M

k¼0
dkR �n s ¼ ck

t�
; y�

� �	 


; (24)

u� t�; y�ð Þ ¼ 10M=3

t�

X2M

k¼0
dkR �u s ¼ ck

t�
; y�

� �	 


; (25)

where

ck ¼
Mln 10ð Þ

3
þ pik and dk ¼ �1ð Þkfk: (26)

Here, �n and �u are complex numbers, i ¼
ffiffiffiffiffiffi

�1
p

, M is an integer indi-
cating the number of terms in the approximation, and R denotes the
real part of the complex number in the curly braces. fk satisfies

f0 ¼
1

2
; f2M ¼ 1

2M
; fk ¼ 1; 1 � k � M; (27)

and

f2M�k ¼ f2M�kþ1 þ 2�M M
k

� �

; 0 < k < M: (28)

After examination, the difference between the solutions with M ¼ 10,
and M ¼ 15 are negligible, and hence, in the following section,
M ¼ 10 is used to plot the results.

With the solved fluid velocity and the fiber displacement, one can
find the shear stress,

s ¼ l
@u

@y
and s� ¼ @u�

@y�
; (29)

where s and s� are dimensional and dimensionless shear stress, respec-
tively, related by s ¼ /l V0

h
s�.

The porous resistance received by the fluid, as a body force, is
solved as

b ¼ � �

kp
u� @n

@t

� �

and b� ¼ @n�

@t�
� u�; (30)
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where b and b� are dimensional and dimensionless porous resistance,
respectively, related by b ¼ /V0

�
kp
b�. A positive b� means the fiber

moves faster than the fluid in the positive direction.
The theoretical model developed here marks a step forward in

comprehending fluid-structure interactions within environments like
SAS, offering an analytical framework for examining these dynamics
with practical implications. It enriches our understanding of how
fibrous networks interact with fluid flows, positioning the model as a
powerful instrument for simulating physiological scenarios.
Nonetheless, it should be recognized that the model relies on assump-
tions of unidirectional flow and linear fiber deformations, although
simplifying the analytical process may restrict its precision in instances
involving considerable gap heights or pronounced fiber deformation.

The linear fiber deformation assumption simplifies the complex
interactions within the SAS by treating Young’s modulus of the fibers
as constant, thus not accounting for any non-linear behavior or
changes in material properties under different stress states.
Additionally, we assume that the fibers are structurally robust enough
to withstand mechanical stresses without breaking or undergoing any
form of structural failure within the tested deformation limits. These
assumptions are based on the limited availability of comprehensive
data on the mechanical properties of AT and are used to derive man-
ageable and analytical solutions within the scope of this study. Further
investigations are needed to validate these assumptions and expand
the model to include non-linear dynamics and failure mechanisms as
more detailed mechanical property data becomes available.

III. RESULTS AND DISCUSSION

This section will present the theoretically predicted fluid velocity,
fiber displacement, shear stress distribution, and porous resistance dis-
tribution. As shown in Eqs. (21) and (23), the problem is governed by
the oscillating frequency (WoÞ; the stiffness of the fiber (Bm), and the
permeability of the porous domain (aÞ. As the density difference
between the fluid and the solid tissue is negligible in the biological sys-
tem, g¼ 1 is used in this study. In addition, / ¼ 0:99 is used as a rep-
resentative porosity in the space. A parametric study will be performed
to investigate the influence of Wo, Bm, and a. Then, an application to
the actual biological system will be calculated and discussed.

In the parametric study, the selection of parameters for Bm, Wo,
and a were carefully chosen to illuminate how the model responds
under different conditions related to fiber stiffness, the frequency of
oscillatory loading, and the porosity of the media. The focus extended
beyond merely duplicating conditions associated with rotational head
injuries, striving instead to clarify the underlying dynamics governed
by these parameters. This strategy highlighted the model’s adaptability
and its broad potential for application to a variety of challenges, laying
a groundwork for more specific future research.

In the results, the fluid velocity, u�, and the fiber displacement,
f �, which directly reveals the fluid flow behavior and the fiber displace-
ment, will be presented first. Then, the shear stress distribution, s�, cal-
culated by Eq. (29), revealing how the boundary oscillation penetrates
the gap, will be plotted. s� ¼ 1 equals the shear stress from a Couette
flow. At last, we will present the porous resistance distribution, b�,
which is solved by Eq. (30). A positive b� means the fiber moves faster
than the fluid, while a negative value indicates a faster fluid than the
fiber.

A. Parametric study on oscillating frequency

Figures 3–5 show a parametric study of the fluid flow, fiber dis-
placement, fluid shear stress, and porous resistance with different fre-
quencies. The parameters are Bm ¼ 1, a ¼ 1; for different values of
Wo numbers (1; 5, and 10).

Figure 3 shows the results of the fluid flow and fiber displace-
ment. Figure 3(a) illustrates a representative result of fluid flow across
the gap with a low frequency (Wo ¼ 1). It includes four subplots, in
which the horizontal coordinate, u�, represents the fluid velocity and
the vertical coordinate, z�, is the vertical position. Each subplot
includes 11 radial velocity profiles. The dimensionless time step
between two consecutive profiles is p/20, 1/40 of an oscillating period.
Therefore, one subplot tracks the fluid velocity change during a quarter
of the oscillating boundary period. The starting and ending times of
each subplot are shown in the figure, and the profiles’ color changes
from green to red, indicating the forward time direction. The results
for higher oscillating frequencies are presented in Figs. 3(b) (Wo ¼ 5)
and 3(c) (Wo ¼ 10). Figure 3(d) illustrates the fiber displacement
across the gap at the same working condition as that of Fig. 3(a).
Figure 3(d) includes two subplots in which the horizontal coordinate,
n�, represents the fiber displacement and the vertical coordinate, y�, is
the vertical position. Each subplot includes 21 radial velocity profiles.
The dimensionless time step between two consecutive profiles is p/40,
1/80 of an oscillating period. Therefore, one subplot follows the fluid
velocity change during a half boundary oscillating period. The color of
profiles in each subplot changes from blue to orange, indicating the
forward time direction. Similarly, for higher frequencies, the fiber dis-
placement is shown in Figs. 3(e) (Wo ¼ 5) and 3(f) (Wo ¼ 10).

Figure 3 indicates that when the frequency is small, as shown in
Figs. 3(a) and 3(d), the viscous effect would be dominant, and hence, the
fluid velocity and the fiber displacement have a linear shape. In this con-
dition, the flow behavior is like the classical Couette flow. As the fre-
quency increases, the inertia effect becomes more significant. The results
illustrated in Figs. 3(b), 3(c), 3(e), and 3(f) show that both the fluid veloc-
ity and the fiber displacement begin to fluctuate. The depth influenced
by the oscillating boundary decreases, which means the fluid and the
fiber at the bottom would have a weaker response when the frequency is
higher. Overall, the fluid and fibers in the gap are strongly coupled, mak-
ing the behavior highly sensitive to the oscillation frequency.

Figure 4 shows the results of the shear stress, s�, across the gap
with different frequencies. Figure 4(a) shows a representative result of
the shear stress distribution at a low frequency (Wo ¼ 1). Figure 4(a)
includes four subplots and has 11 radial shear stress profiles in each
subplot. Similar to Fig. 3(a), one subplot consists of the shear stress
change during a quarter of a boundary oscillation period. The starting
and ending times of each subplot are shown in the figure, and the color
of the profiles changes from green to red, indicating the forward time
direction.

Figure 4(a) indicates that, with a low frequency, the shear stress
would have an even distribution across the gap, which means the vis-
cous effect is dominant and the boundary oscillation has enough time
to penetrate to the bottom. As the frequency increases, the magnitude
of the shear stress increases, but the penetration depth of the shear
stress caused by the oscillating boundary quickly decreases, which is
shown in Figs. 4(b) (Wo ¼ 5) and 4(c) (Wo ¼ 10). The reason is that
the fast-changing boundary motion in one period could counterbal-
ance itself.
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FIG. 3. (a)–(c) Fluid velocity and (d)–(f) fiber displacement profile across the gap with parameters Bm ¼ 1, a ¼ 1; and different frequencies (Wo0 ¼ 1; 5; 10). Each of (a)–(c)
shows four subplots of the fluid velocities during one-quarter of a period. Each of (d)–(f) shows two subplots of the fiber displacements during one-half of a period. The starting
and ending times of each subplot are shown in (a) and (d). As the frequency increases, both profiles change from a linear shape to an oscillating profile, and the penetration
depth influenced by the oscillating top plate decreases.

FIG. 4. (a)–(c) Fluid shear stress profile across the gap with parameters Bm ¼ 1,
a ¼ 1; and different frequencies (Wo0 ¼ 1; 5; 10). Each of (a)–(c) shows four sub-
plots of shear stress during one-quarter of a period. The starting and ending times
of each subplot are shown in (a). For higher frequencies, the shear stress increases
while the penetration depth decreases.

FIG. 5. (a)–(c) Porous resistance profile across the gap with parameters Bm ¼ 1,
a ¼ 1; and different frequencies (Wo0 ¼ 1; 5; 10). Each of (a)–(c) shows four sub-
plots of the porous resistance during one-quarter of a period. The starting and end-
ing times of each subplot are shown in (c). With increasing frequency and as time
progresses, the porous resistance increases.
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Figure 5 shows the results of the porous resistance across the gap
with different frequencies. Each of Figs. 5(a)–5(c) includes four sub-
plots, each of which has 11 radial shear stress profiles. Like Fig. 3(a),
one subplot consists of the porous resistance change during a quarter
boundary oscillating period. The starting and ending times of each
subplot are shown in Fig. 5(c), and the color of the profiles changes
from green to red, indicating the forward time direction.

Figure 5(a) indicates that, with a low frequency (Wo ¼ 1), the
porous resistance is negligible, which means the fluid and the fiber
would move without much difference in velocity. With an increasing
frequency, as the results shown in Figs. 5(b) (Wo ¼ 5) and 5(c)
(Wo ¼ 10), the velocity difference begins to increase. At the starting
moment, the fluid responds faster, and later, the fibers move faster.
The higher frequency would decrease the influence penetration depth
within the first period because the wave speed along the fiber is inde-
pendent of the frequency. Therefore, the case with higher frequency
would have less time to transmit the influence into the gap.

B. Parametric study on fiber stiffness

Figures 6–8 show a parametric study of the fluid flow, fiber dis-
placement, fluid shear stress, and porous resistance with different fiber
stiffness. The parameters are Wo ¼ 5, a ¼ 1; and different Bm num-
bers (0:1, 1, and 10). A larger Bm corresponds to a stiffer fiber.

Figure 6 shows the results of the fluid flow and fiber displacement
for different values of fiber stiffness. Similar to Fig. 3, Figs. 6(a)–6(c)
show the fluid velocity and Figs. 6(d)–6(f) present the fiber

FIG. 6. (a)–(c) Fluid velocity and (d)–(f) fiber displacement profile across the gap with parameters Wo ¼ 5, a ¼ 1; and different values of fiber stiffness (Bm ¼ 0:1; 1; 10). As
the fiber stiffness increases, the fiber displacement becomes more linear, with little influence on the fluid velocity.

FIG. 7. (a)–(c) Shear stress profile across the gap with parameters Wo ¼ 5,
a ¼ 1; and different fiber stiffness (Bm ¼ 0:1; 1; 10). As the fiber stiffness
increases, the shear stress experiences limited influence.
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displacement. The results indicate that with higher stiffness, the fiber
tends to assume a linear profile, as shown in Fig. 6(f). When the fibers
become softer, they begin to oscillate, and the displacement near the
bottom decreases, as shown in Figs. 6(d) and 6(e). On the other hand,
the fluid velocity exhibits limited sensitivity to the fiber stiffness. The
reason is that fibers still follow the boundary motion, and hence, the
velocity difference between the fluid and the solid is insignificant.

Figure 7 shows the calculated shear stress with different fiber stiff-
ness. Similar to the phenomenon observed in Fig. 6, the results indicate
that the fiber stiffness has little influence on the shear stress distribu-
tion in the gap.

Figure 8 shows the results of the porous resistance for different
fiber stiffnesses. Similar to Fig. 5, Figs. 8(a)–8(c) present the porous
resistance in the same way. The results indicate that with higher stiff-
ness (higher Bm), the influence from the top oscillating boundary
would penetrate to the bottom within a shorter time. The magnitude
of the porous resistance is not much different across these three work-
ing conditions.

C. Parametric study on porous resistance

Figures 9–11 show a parametric study of the fluid flow, fiber dis-
placement, fluid shear stress, and porous resistance with different
porous permeabilities. The parameters are Wo ¼ 5, Bm ¼ 1; and dif-
ferent a numbers (0:1, 1, and 10). A larger value of a indicates a higher
flow resistance from the fibers.

Figure 9 shows the results of the fluid flow and fiber displacement
for different porous permeabilities, which is solved for Wo ¼ 5,

FIG. 8. (a)–(c) Porous resistance profile across the gap with parameters Wo ¼ 5,
a ¼ 1; and different fiber stiffness (Bm ¼ 0:1; 1; 10). For a higher fiber stiffness,
the propagation speed of the oscillation increases.

FIG. 9. (a)–(c) Fluid velocity and (d)–(f) fiber displacement profile across the gap with parameters Wo ¼ 5, Bm ¼ 1; and different values of porous resistance
(a ¼ 0:1; 1; 10). With increasing porous resistance, the fluid velocity has received limited influence, while for the fiber displacements, the oscillation in the bottom region
decreases.
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Bm ¼ 1; and different a numbers (0:1, 1, and 10). Similar to Fig. 3,
Figs. 9(a)–9(c) present the fluid velocity and Figs. 9(d)–9(f) show the
corresponding fiber displacement. The results in Figs. 9(d)–9(f) indi-
cate that the fiber oscillation at the bottom tends to become limited
with higher resistance because the higher resistance dissipates the
momentum. However, the fluid velocity has undergone little influence
from the porous resistance. According to Eq. (9), when a is significant,
the velocity difference between the fluid and the fiber becomes negligi-
ble (u� � @n�

@t� ). Then, it follows from Eq. (8) that the fluid flow becomes
independent of a. Therefore, a dense porous fiber structure will not
change the fluid flow in the space.

Figure 10 shows the calculated porous resistance. The results
indicate that the porous resistance has little influence on the shear
stress distribution in the gap.

Figure 11 shows the results of the porous resistance with different
porous permeability values. The results in Figs. 11(a)–11(c) indicate
that with a higher resistance, the magnitude of the porous resistance
decreases. As a reaches 10, the porous resistance becomes negligible,
which means the fiber and the fluid move together with no velocity
difference.

D. Application to rotational impact-induce brain injury

From Secs. III A–III C, parametric studies have been performed
to reveal the behavior of the fibrous gap under oscillating shearing.
This section will apply this model to our original problem, namely,
how oscillating shearing influences behavior in SAS, as shown in
Fig. 1.

In the human head, the average gap height of the SAS is about
3mm.16 The properties of the CSF are similar to those of water, which
has a dynamic viscosity of l ¼ 1:0� 10�3 Pa s, and a density of
q ¼ 1:0� 103 kg=m3. If the head suffers an oscillating shearing with
x ¼ 9Hz, this translates into a Womersley number, Wo
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qxh2=l
p

¼ 9. The porosity of the SAS is about 0.99, and the per-
meability is about 3:125� 10�10 m2:13,48 Then, the Brinkman num-
ber, a ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

h2=kP
p

� 169. The Young’s modulus of the fibrous
trabeculae E ¼ 1� 103 Pa:13,49 If we assume the average strain is
� ¼ 0:018, Bingham number, Bm ¼ T

xlpR2
f

¼ E�
xl

¼ 2000. The results
for the fluid velocity, fiber displacement, shear stress and the porous
resistance in this application is shown in Figs. 12(a)–12(d),
respectively.

The SAS application features high values of a and Bm. Figure 12(a)
shows that the maximum fluid velocity is about twice the boundary
velocity. The fiber displacement shown in Fig. 12(b) indicates that
the fiber oscillation magnitude in the negative direction is as high as
that of the oscillating boundary. Hence, the oscillation in the gap
could be stronger than the oscillation of the boundary. Figure 12(c)
indicates the shear stress at the bottom could be even higher than the
shear stress at the top, which means the shear stress could easily
damage the brain. Finally, as a is pretty high, the velocity difference
between the CSF and the trabeculae is negligible, which is the result
shown in Fig. 12(d).

The structural and mechanical properties of SAS generally
remain constant for an individual, whereas the magnitude of impact
forces can differ greatly. To explore this variability, Fig. 13 examines
the scenario where the head is subjected to an oscillating shearing
impact at a lower frequency of x ¼ 1Hz while other parameters are
maintained. This adjustment yields dimensionless numbers of

FIG. 10. (a)–(c) Shear stress profile across the gap with parameters Wo ¼ 5,
Bm ¼ 1; and different porous resistance (a ¼ 0:1; 1; 10) of the porous resistance,
has limited influence on the shear stress.

FIG. 11. (a)–(c) Porous resistance profile across the gap with parameters Wo ¼ 5,
Bm ¼ 1; and different porous resistance (a ¼ 0:1; 1; 10). For a higher porous
resistance, the velocity difference between the fluid and the fiber decreases.
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FIG. 12. (a) Fluid velocity, (b) fiber displacement, (c) shear stress, and (d) porous resistance profile across the gap for the parameters of the SAS. The results indicate the CSF
velocity could be twice the oscillating boundary velocity. The trabeculae oscillation magnitude is as high as that of the boundary. Shear stress at the bottom could be higher
than the shear stress at the top. The dense trabeculae tightly hold the CSF, which makes the velocity difference between the CSF and the trabeculae negligible.

FIG. 13. (a) Fluid velocity, (b) fiber displacement, (c) shear stress, and (d) porous resistance profile across the gap for the parameters of the SAS. Lower-frequency impacts
lead to reduced deformation and shear stress, potentially lowering the risk of shaking baby syndrome.
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Bm ¼ 18 000, Wo ¼ 3, and a ¼ 169. Figures 13(a)–13(d) display the
results for fluid velocity, fiber displacement, shear stress, and porous
resistance, respectively, under this condition.

The findings reveal that at a lower oscillating frequency, both
fluid velocity and fiber deformation exhibit a linear behavior across the
gap, and the corresponding shear stress is significantly reduced.
Moreover, the difference in velocity between the fluid and the fiber
remains minimal. The findings depicted in Fig. 13 indicate that the
brain’s response to impact is significantly affected by the frequency of
the impacting force. Specifically, impacts at lower frequencies result in
less severe deformation and shear stress, implying that a slower shak-
ing impact could potentially mitigate the risk associated with shaking
baby syndrome.

It is noted that the selection of parameters in this section for the
calculation was guided by the balance of theoretical precision with
real-world relevance. Geometric and mechanical properties were care-
fully chosen, reflecting data reported in the literature to anchor our
model accurately in practical scenarios. The impact loading parameters
were determined to represent plausible scenarios within the modeled
environments. Given the variability of impact loading in real-world
cases, we opted for a representative value to conduct a preliminary
analysis. This approach allows us to demonstrate the model’s capability
while acknowledging that specific values may differ in individual cases.
Our intention is to provide a foundation for further investigation and
application of the model to a broad spectrum of conditions.

IV. CONCLUSION

In this paper, we have developed a novel theoretical model to
examine the fluid-structure interaction of viscous fluid flow through a
fibrous network driven by an oscillating boundary. The highlights of
our findings are as follows:

1. The primary dimensionless parameters affecting the oscillating
shearing process are the Womersley number (Wo) for frequency,
the Brinkman number (a) for porous structure, and the Bingham
number (Bm) for fiber stiffness.

2. Extensive parametric studies indicate that the oscillating fre-
quency predominantly influences the time-dependent response
of fluid velocity, fiber displacement, shear stress, and porous
resistance when an oscillating motion is applied to the boundary
where one end of the fibers is anchored.

We applied the model to investigate shear impact penetration
from the skull through the fibrous AT in the SAS to the brain matter,
aiming to gain crucial insights into force transmission mechanisms rel-
evant to shaken baby syndrome. Our findings revealed that:

1. Oscillations of CSF and AT can substantially surpass boundary
oscillations.

2. Shear stress has the potential to penetrate the SAS, potentially
reaching the brain with heightened intensity, indicating an
increased risk of brain injury.

The developed theoretical model advances the understanding of
fluid-structure interactions, offering critical insights into fibrous net-
work dynamics within physiological settings. Despite its strengths, the
model’s assumptions, unidirectional flow, and liner fiber deformations
may limit its scope. When investigating a heterogeneous fiber network,
variations in flow along the flow direction occur. Under these

conditions, the current governing equations, Eqs. (1) and (4), remain
applicable. However, to accurately model these variations, a numerical
approach must be employed. Future research would refine these
aspects to broaden the model’s accuracy and applicability.

The CSF directly interacts with additional layers like the dura and
pia mater, which exhibit hyperelastic behavior and offer significant
damping during large deformations. However, these effects were not
addressed in the current paper. Our team’s ongoing work focuses on
developing a dynamic response model for these layers, ensuring their
deformation aligns with the existing boundary conditions. This
enhancement is anticipated to enhance the current model’s capability
to simulate more realistic biomechanical interactions within the CSF,
thereby advancing our understanding of physiological impacts under
various conditions.
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NOMENCLATURE

b porous resistance received by the fluid
b� dimensionless porous resistance received by the fluid

Bm Bingham number, T=ðxlpR2
f Þ

E Young’s modulus of the fibrous trabeculae
Fl fluid drag force on the fiber
h gap height

Kp Darcy permeability
M integer indicating the number of terms in the Euler

algorithm
P pressure
Rf fiber radius
s Laplace operator
T tension force of the fiber

t time

t� dimensionless time
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u horizontal components of the local macroscopic
velocity

u local macroscopic fluid velocity
u0 horizontal components of the microscopic velocity
u0 microscopic fluid velocity
u� dimensionless fluid velocity
�u Laplace transform of u�

V0 characteristic velocity
y vertical coordinate
y� dimensionless vertical coordinate
a Brinkman number,

ffiffiffiffiffiffiffiffiffiffiffiffiffi

h2=KP

p

b1 s2 Wo2g
Bm

þ s Wo2 þ 1
Bm

a2/
1�/

� �

þ a2

b2 s3 Wo4g
Bm

þ s2 Wo2a2

Bm
/

1�/
þ g

� �

dk, ck, fk coefficients used in the Euler algorithm, k ¼ 0; 1;…;M
g qs/q

k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b1
2�4b2

p
2

q

k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

b1
2�4b2

p
2

q

l dynamic viscosity
n fiber displacement
n� dimensionless fiber displacement
�n Laplace transform of n
q density of the fluid
qs density of the fiber
s shear stress
s� dimensionless shear stress
x angular frequency
� average strain
/ porosity
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