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Abstract— The field of legged robots has seen tremendous
progress in the last few years. Locomotion trajectories are
commonly generated by optimization algorithms in a Model
Predictive Control (MPC) loop. To achieve online trajectory
optimization, the locomotion community generally makes use of
heuristic-based contact planners due to their low computation
times and high replanning frequencies. In this work, we propose
ContactNet, a fast acyclic contact planner based on a multi-
output regression neural network. ContactNet ranks discretized
stepping locations, allowing to quickly choose the best feasible
solution, even in complex environments. The low computation
time, in the order of 1 ms, enables the execution of the contact
planner concurrently with a trajectory optimizer in a MPC
fashion. In addition, the computational time does not scale
up with the configuration of the terrain. We demonstrate the
effectiveness of the approach in simulation in different scenarios
with the quadruped robot Solo12. To the best knowledge of the
authors, this is the first time a contact planner is presented that
does not exhibit an increasing computational time on irregular
terrains with an increasing number of gaps.

I. INTRODUCTION

Online motion planning for legged robots remains a chal-
lenging problem. The common approach is to use opti-
mization algorithms in a Model Predictive Control (MPC)
loop to automatically generate trajectories based on sensor
feedback [1], [2], [3]. High frequency updates enable robots
to react quickly to changes in the environment and reject ex-
ternal disturbances [4]. In order to maximize the replanning
frequency, the problem is often split into two components -
contact planning and trajectory generation. Contact planning
selects feasible footholds on the terrain to allow the robot
to reach a desired location. Trajectory generation computes
whole-body movements and contact forces to be applied at
these locations.

Significant progress has been made in the area of online
trajectory generation. Some approaches simplify the robot
dynamics to a single rigid body with limited base rotations to
render the underlying optimization problem convex [1]. This
allows for fast trajectory planning using a Quadratic Program
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Fig. 1. Solol2 robot traversing generated terrain with randomly removed
squares of 5x5 cm dimensions.

(QP). Other methods use either the non-linear Single Rigid
Body Dynamics (SRBD) [2] or the full body model [3],
[4] to generate almost any desired behavior on different
robots. Despite this progress, most of these methods still
rely on heuristic-based contact planners [5] to ensure real-
time computation. However, such contact planners limit the
overall motion planning framework (contact planning plus
trajectory generation) to cyclic gaits only.

The most recent works in this direction included the
contact dynamics into a contact implicit MPC [6], [7]. Kim
et al. [6] presented a DDP-based contact implicit MPC with
an analytical gradient for contact impulses to discover new
gait sequences. However, no constraint on the feasibility of
the chosen foot placement with respect to the morphology
of terrain is considered. A bi-level planning formulation was
introduced in [7]. The approach computes offline the optimal
references and performs the linearization of the model for the
entire motion; this allows to obtain an online local tracking
controller that can change the contact plan in the presence of
large disturbances. Finally, [8] simulates in parallel multiple
robot dynamics during the linesearch in the forward pass
of a Hybrid LQR. This allows to solve the hybrid system
till convergence and thus obtain the best contact sequence.
The approach is computationally heavy and so it depends on
the performance of the Isaac Gym simulator [9]. However,
automatically navigating terrain with constraints such as
stepping stones is often not possible with such approaches.
When complex motions are desired, the user is then forced
to design a contact plan suitable for the desired task [10].

In the literature, there are examples of contact planners
that can tackle complicated situations. Deits and Tedrake [11]
proposed a Mixed Integer Program (MIP) to find footholds
that avoid obstacles and violations of the kinematic lim-
its. Similarly, the contact planning problem can also be
optimized by maximizing the sparsity of the contact se-
lection vector [12]. Alternative to optimization techniques,
sampling-based methods have been proposed to select fea-



sible contact plans. For example, Lin et al. [13] presented a
search-based footstep planner which explicitly takes into ac-
count disturbances. A neural network predicts if a a candidate
foothold location is zero-step and one-step capturable for a
full-body dynamic model. Amatucci et al. [14] presented a
contact planner based on a Monte Carlo Tree Search (MCTS)
algorithm; even though this approach demonstrated good
performance, the expansion of the MCTS becomes too slow
when a high number of discrete options are available, e.g.
terrain with holes. Consequently, all these methods cannot
be used in an MPC fashion at high control rates.

In this work, we address these limitations and propose
an online, MPC friendly multi-contact planner - ContactNet,
that can automatically generate arbitrary gait schedules,
select footholds in unstructured environments, e.g. stepping
stones, and recover from external perturbations. This contact
planner extends the principles used in [15], a reactive planner
for bipedal locomotion, which was limited to single contacts
and cyclic gaits. ContactNet, on the other hand, computes
acyclic gaits online for multiple legs. The key point of this
approach is that the solve time is low and remains unaffected
by the number of terrain constraints, such as stepping stones.

ContactNet is based on a multi-output regression network
[16] that ranks a discrete set of foothold locations. This
information is then used to generate a contact plan. The
ContactNet is trained offline on a simple flat terrain using
data generated with a novel cost function (see Sec. III-B)
which considers robustness, stability and minimizes trajec-
tory generation cost. After training, we combine the Contact-
Net foothold plan with a centroidal trajectory optimizer [2]
to generate online a desired behavior.

To evaluate our approach, we generate acyclic walk and
acyclic trot behaviors on the Solo12 robot [17] in simulation
(Fig. 1). We show that ContactNet can automatically navigate
terrains with holes, even though those kind of terrains are not
considered during the data collection for training. Finally,
we systematically analyze the robustness of the ContactNet
in face of measurement uncertainties, i.e. Gaussian noise in
the joint velocity measurements, to emulate the behaviour of
a real sensor.

A. Contributions

In summary, this paper proposes a fast contact planner for

legged locomotion with the following main contributions:

« the ContactNet, a neural network-based contact planner,
which can rapidly generate acyclic gait sequences with
safe footholds, even in the presence of holes in the
ground, considering tracking performance of an MPC,
stability and robustness. To the best knowledge of
the authors, in contrast to all the other state-of-the-
art approaches that suffer from terrain complexity, our
contact planner is the only one with a computational
time that does not increase with the number of gaps
present in the terrain.

o extensive preliminary simulation results with Solo12
that demonstrate the effectiveness of our approach with
two gaits: an acyclic walk and an acyclic trot to navigate

terrains with constraints (stepping stones). We show that
changing online the gait sequence is crucial to address
certain situations where fixed gait sequences fails.

B. Outline

The paper is organized as follows: Sec. II presents other
works related to the proposed approach. Sec. III gives an
overview of our contact planner. Sec. IV presents the results
of simulation with the Solo12 robot with ContactNet for both
walk and trot in different scenarios. Finally, limitations and
conclusions are drawn respectively in Sec. V and VI.

II. RELATED WORK

Several motion planning methods that handle both contact
planning and trajectory generation together by solving a
non-linear problem have been developed in the past years.
Posa et al. [18] use complementary constraints to ensure
that that the end-effector either moves or applies a force to
the environment. Winkler et al. [19] presented a trajectory
optimization formulation which considers also foot position
and stance/swing duration to generate different gaits. Ponton
et al. [20] use Mixed-Integer Quadratically Constrained QPs
to find contact sequences and whole-body movements for
humanoids. On the other hand, methods exist that use convex
optimization. Aceituno-Cabezas et al. [21] use Mixed-Integer
Convex Programming to plan for both Center of Mass (CoM)
trajectory and contacts for the quadruped robot HyQ [22].
Recently, Jiang et al. [23] obtained a QP formulation to
compute optimal trajectories of the CoM by neglecting
several terms in the centroidal dynamics. In addition, the
authors extended the approach to an offline Mixed-Integer
QP which plans also for gait sequences, timings, and foot
locations. A common drawback of all these methods is that
they are not fast enough to be used in an MPC fashion,
which is important to compensate for model inaccuracies
and external disturbances.

As already mentioned, in order to reduce the computa-
tional effort, several approaches assume a predefined gait
sequence and optimize only the foot locations. For example,
Villarreal et al. developed a foothold classifier based on a
Convolutional Neural Network (CNN) [24] and combined it
with a MPC-based trunk controller [25] to achieve reactive
and real-time obstacle negotiation, considering a 3D map
of the terrain. Another example of using a CNN to select
the optimal landing location was presented by Belter et
al. [26]. Their approach is based on the learning of a model
to evaluate the quality a potential touchdown point taking
into account the local elevation map, kinematic constraints
and collision. Grandia et al. [10] performed a convex inner
approximation of the steppable terrain, optimizing foot loca-
tions inside that region. However, the authors mention that
a change in the gait sequence should be required to prevent
the robot from falling in the presence of strong disturbances.

In Section IV we showcase a scenario in which computing
online both footholds and gait sequence is fundamental to
accomplish the motion.



IIT. CONTACTNET

ContactNet computes foot locations and contact status
(i.e., swing or stance) for each leg in the horizon. In this
section, we describe the cost function and data generation
approach used to rank footholds offline. After that, we
discuss the details regarding ContactNet and we present
the entire framework used to generate acyclic multi-contact
plans.

A. Footholds

We discretize the allowed stepping region for each leg
into a fixed set of IV, possible locations. These footholds
are defined at fixed distances from the current hip location
of the corresponding foot, similar to [15]. Subsequently, as
the robot moves, the allowed foot locations also change.
Discretizing the candidate footholds is quite a common
approach, e.g., [24]; we show in our experiments that, despite
losing the freedom of stepping anywhere in the feasible
region very reliable behaviors can be generated.

B. Cost Function

Given the discrete set of possible footholds for all the
legs, the goal is to identify the best one, considering the
morphology of the terrain, the references and the current state
of the robot. For this, we propose a novel cost function that
is used to rank all the foot locations based on several aspects,
such as robot stability, robustness and optimal trajectory. We
consider the input to be:

ur = [CPf;Pc,zanV(l:lsr] (1)

where ¢pr € R® represents X and Y components of the foot
location in the CoM frame C!, Pc,» € R is the Z component
of the CoM position, v, € R3 is the actual CoM velocity.
Finally, the variable v € R? is the user-defined reference
linear velocity.

To evaluate a foothold, we first generate a trajectory that
moves the robot from the current configuration to the chosen
one and then use the following cost function

Ns
V=> Wi+, 2)
k=0
where Ny is the step horizon, Vi is the running cost (eval-
uated at each node of the trajectory), V., is the terminal
cost (evaluated only at the final point). The running cost Vi
consists of three terms

Vi = ’yoptvkﬁopt + r)/stabvi(,stab + ’Ykinvhkin- 3)

The first term corresponds to the cost of the optimization
problem obtained from the trajectory optimization [2], i.e.
tracking of references for states (CoM quantities) and control
inputs (Ground Reaction Forces (GRFs)). It guarantees that
a feasible trajectory that respects the dynamics and friction
cone constraints exists. In this work, we use a SRBD model
[27], but any other model could also be used. The variable

All the quantities without left subscript are expressed in the inertial fixed
World frame W.

Vi stab, evaluates the margin of stability of the motion. It
computes the distance of the projection of the CoM on the
ground from the closest support polygon edge. For instance,
in a walk, this encourages footholds in which the robot is
statically stable (CoM inside the support polygon, Vi dist =
0); for a trot, this maximizes the controllability of the robot.
The last term Vi kin enforces kinematic limits - it assigns
a high value when a leg in stance violates these limits.
Even though our simplified model does not include joint
values, we consider a violation of the kinematic limits if
the distance between the foot and the hip exceeds a certain
threshold. To do so, we assume that the positional offset
between the hip and the CoM remains constant for the entire
trajectory. Further, a conservative threshold value is chosen
to encourage the motion of one leg when it is close to the
kinematic limits, i.e. to place it in a more kinematically
favourable location, similarly to [28].

The terminal cost Viy, in the cost function V' takes into
account future actions of the robot. It is defined as follows:

VNS - ’Ycentvvcent - ’yareavarew (4)

With Vient, we introduce a penalization on the distance
between the projection of the CoM and the center of the
support polygon. Minimizing this quantity increases the
number of subsequent stable steps. Finally, the quantity
—Varea improves the robustness of the contact configuration
by maximizing the area of the final support polygon.

The numbers 7; € R scale the different cost terms.

C. ContactNet

Using the cost function discussed previously, it is possible
to automatically generate acyclic multi-contact plans for
locomotion by simply selecting as action - which leg to move
and where to step - the candidate with lowest value of V.
However, evaluating all the possible footholds by computing
optimized trajectories is not feasible online. Consequently,
we propose to train offline a neural network that learns to
rank the possible footholds using the cost function (2), giving
the input of (1).

1) Data Generation: To train the ContactNet, we generate
a dataset containing many possible stepping situations that
the robot can be dealing with on a flat terrain. We start
the robot in a randomly generated configuration (different
joint position and velocity) and choose a random reference
CoM velocity in the range (-0.1,0.1 m/s) for both X and
Y directions. Before each liftoff, the cost function (2) is
evaluated, and the best foothold among the discrete options
is selected, i.e. the one with the smallest V, is selected.
Subsequently, a trajectory is generated with this contact plan
and is tracked on the robot in simulation. We define this
as an instance. After that, a new instance is run (same
reference velocity, starting from the configuration achieved
at the end of the previous instance) to generate a large
dataset containing the input u, and the corresponding V,
i.e., the vector which contains the values of cost V for
each option. A new episode is restarted (i.e., new reference
velocity and initial configuration) after 30 instances or when



Fig. 2.

Example of the evaluation on the ContactNet on a terrain composed of stepping stones. Red disks represent some of the actions evaluated by

the ContactNet. The others are not shown for image clarity. The network computes the ranking order, according to which the yellow disk is the one
which minimizes the cost function (2). In this example, knowing the terrain map, yellow disk is discarded because it corresponds to an hole in the terrain.
Checking iteratively in the ordered output of the ContactNet, the blue disk is chosen since it corresponds to the first action deemed safe.
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Fig. 3.

Block scheme of the entire locomotion framework. Given the user-defined velocities v"" the actual robot state x., and actual foot locations p¢

the ContactNet computes in a few milliseconds the gait sequence & and touchdown points p? for the three following steps, at a frequency of 3.125 Hz
(after each touchdown). Given the sequence as parameter, the Trajectory Optimizer [2] computes CoM trajectory and GRFs tracked by a 1 kHz centroidal
whole-body controller and a joint space impedance controller [17]. In order to guarantee that the motions are feasible also on the real robot, the torques

are saturated to the maximum values that the motor of Solo12 can produce.

the robot falls down. In this way, the dataset contains the
configurations the robot will likely have during a motion.
Since we do not know which step led to the final fall, we
heuristically remove the last 3 instances of the episode in
case of falling. The framework is not real-time friendly, but
generating the dataset does not take too long - about 6-7
hours with a standard computer.

2) ContactNet Training: Our goal now is to learn a
function fp : R'* — R™a, which maps the current input u,
to the list of the ranked footholds. The main advantage of
a learning approach is that it guarantees low computational
effort at runtime, allowing us to integrate it with our MPC.

In order to learn the ranking function for all the possible
actions, we used a multi-output regression network [16]. To
do so, we sort the vector V from the dataset in decreasing
order and create a vector Y € R¥e, assigning to each value
of V its index in the sorted vector; the smaller the cost for the
action a, the higher its value in Y. We normalize each entry
by N, — 1, such that the values in Y are between 1 and 0 (1
smaller cost, 0 higher cost). For the sake of clarity we provide
a small example, i.e., an instance with only 3 possible
footholds: V = [0.8,0.3,0.9], sorted(V) = [0.9,0.8,0.3]
Y =[1/2,2/2,0/2], since the cost 0.8 has index 1, the cost
0.3 has index 2, and the 0.9 has index O in the sorted V. As
a training loss, we use the mean squared error between the

prediction Y = fy(u,) and Y.

N,—1

1
min - ;(ere(ur)i) 5)

3) ContactNet Evaluation: After training the ContactNet,
we can quickly obtain the optimal foothold by constructing
the vector of indices that sort in decreasing order Y (we refer
to this vector as Y’) and pick the first value. In the example
before, assuming a perfect output of the neural network, we
have Y = [1/2,2/2,0/2], and so Y’ = [1,0,2]. This means
that the action number 1 in the discretized set is the optimal
one. Even though we consider only flat terrains, in certain
situations some options in Y’ must be discarded because
unsafe, i.e. they correspond to a point in which there is a
hole in the terrain. We identify if a foothold is safe by using
the knowledge of the terrain map. In particular, we iteratively
check the elements in the vector Y’ till we find the one that
does not coincide with a hole. Since Y’ has been ordered
based on the lower cost function, this approach chooses the
optimal safe action (which leg to move and where to place
the foot). An example of such a situation is shown in Fig. 2,
where the robot is expected to walk across stepping stones.
The red circles correspond to some of the allowed footholds
of the Left Front leg. The others are not shown for image
clarity but are also evaluated in this situation. The yellow



disk represents the first value in \'d , but it cannot be selected
since there is no terrain below it. Consequently, we check the
following elements in Y’ till the first one that is coherent
with the terrain, e.g. blue disk.

Remark: We chose to discretize the foothold locations and
rank all of them, mainly to navigate complicated terrain
situations online without adding the morphology of the
terrain directly into the formulation.

D. Overall control architecture

Figure 3 shows the block scheme of our locomotion
framework. The user decides the linear velocities v € R?
that the robot should follow. Given the X and Y components
of actual foot position in the CoM frame C ¢ps € RE 7
component of the actual CoM position p,, actual CoM
velocity v. and reference velocities v°", the ContactNet
returns the best candidate foothold, as explained in the
previous section. In our architecture we compute online a
contact plan with three steps for a prediction horizon of N
= 3 N step horizons. Reference velocities are integrated to
compute the CoM position at the end of each step horizon.
They are used together with the chosen foothold to define
the input u, of (1) for the second step horizon to re-
evaluate the neural network; similarly it happens for the
third evaluation. The swing times are preset depending on
the chosen gait (discussed in detail IV-A). This contact plan
along with the reference CoM trajectories and the reference
GRFs? are provided to the trajectory optimizer to generate an
optimal movement using the algorithm described in [2]. The
CoM trajectories are then tracked by a 1 kHz whole-body
controller [17], combined with a PD controller in Cartesian
space for the swing trajectories. The swing trajectory is
defined in the swing frame; a semi-ellipse represents the X
component and a fifth-order polynomial the Z. At the end of
each step horizon, the procedure is repeated in MPC fashion.

IV. RESULTS

In this section, we present the results obtained by our
approach. We perform simulations with Solol12, a 2.2 kg
open-source torque-controlled modular quadruped robot. The
entire framework runs on a Dell precision 5820 tower ma-
chine with a 3.7 GHz Intel Xeon processor. We perform our
simulation using the PyBullet library [29].

For all the experiments, the ContactNet is composed of
4 fully connected layers with 128 neurons each. All layers
except the last one are activated with a ReLU function. As
hyper-parameters for training, we choose a number of epochs
equal to 1000 with a batch size of 100. The learning rate is set
to 0.001. The input u, is normalized to be in the range (-1,1)
to improve the accuracy of the network [30]. To evaluate the
network’s performance we used 70 % of the entries of the
dataset as a training set and the remaining part as a test
set. We use a top-5 metric to determine the statistics of the
network, i.e., we consider a correct prediction if the first
element of Y, i.e. what the neural network outputs as a best

2Weight of the robot divided by the number of legs in contact with the
terrain for the stance phase, zero for the swing phase

action, is one of the first five elements in the corresponding V
stored in the dataset. In our case, this metric has a particular
importance since the best action will not be always feasible
due to the requirements of the terrain.

A. Acyclic gaits

In this subsection, we discuss the various parameters
defined to generate the two gaits - walk and trot.

1) Walk: In this experiment, the robot is only allowed to
move one leg at a time. We choose a discretization time of
40 ms for the trajectory optimization. The step horizon Ny
is equal to 320 ms (8 Nodes) and it is composed of 120
ms of four leg stance phase (3 nodes), 160 ms (4 nodes)
of swing phase, and the last node of four leg stance phase.
The prediction horizon N used by the trajectory optimizer is
composed of three step horizons, 960 ms, corresponding to
three evaluations of the neural network, as discussed in Sec.
III-D. The duration of the swing and stance phase has been
chosen based on our previous experiments with the Solo12
robot; the presented approach is generic and can be applied
with other values for swing/stance.

We define the allowed stepping region for each leg to be
a 20 x 20 cm grid which is a meaningful size given the
kinematic limits of Solol2. This space is discretized into
25 footholds which are 5 cm apart, see red disks in Fig. 2.
Subsequently, the network needs to choose among a total
of N, = 100 possible footholds (4 x 25) since we do not
prescribe which leg needs to swing, but we only require
one leg swing at a time. For data generation, we run 1500
episodes using the procedure discussed in Sec. III-B. The
resulting data had 43410 instances of (u,/V) tuples. We
obtained an accuracy of the 93.48/90.81 % in the training/test
set according to the top-5 metric.

2) Trot: In the trot gait, two diagonal feet are leaving the
ground at the same time. The total stepping region for each
leg is a square size 10 x 10 cm. The foothold discretization
resolution is still 5 cm, 9 choices per leg. At the start of a
stepping horizon, there are a total of 162 - 2 x 92 foothold
choices since at each step two legs leave the ground. All
the other parameters are the same as the walk. We run 1500
episodes to generate the dataset for this gait and train the
ContactNet, obtaining 45000 instances. The neural network
achieves an accuracy of 99.48/97.7 % in the training/test set.

In the accompanying video®, we show a long horizon trot
motion in a scenario with holes in the terrain. The reference
velocity changes every 10 s in the range (—0.1,0.1)m/s. In
this way, we demonstrate the locomotion stability and the
ability of avoiding unsafe footholds of ContactNet.

B. Stepping stones scenario

To verify the effectiveness of our MPC framework, we
designed a terrain composed of 8 sparse stepping stones of
different shapes: 3 stars, 2 circles and 3 rectangles, see Fig.
2. Two squares are positioned as starting and end points.
The goal of the task is to traverse the terrain with a user-
defined forward velocity of 0.05 m/s using the ContactNet

3https://www.youtube.com/watch?v=talJpSigRKo
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Fig. 4. Gait schedule of a walk motion on a stepping stones scenario. White parts indicates moment in which that leg is in swing. The ContactNet finds

a completely acyclic gait.

trained for the walk gait. The proposed approach successfully
navigates the terrain. Fig. 4 shows the resulting gait sequence
for the entire motion. Each color corresponds to a different
leg; white parts indicate that the foot is in the air at that
time. Fig. 4 demonstrates that the motion is completely
acyclic. For example, when the front legs are on the last
square the CoM is closer to the hind legs, automatically
making the swing of the front legs preferable to prevent
the CoM from going outside the support triangle. The hind
legs are moved only when stability is guaranteed and the set
of actions contains a touchdown point on a stepping stone.
The result of the simulation is shown in the accompanying
video. The ContactNet in average has chosen the 6th element
of Y with a maximum of 30 discarded elements for the
swing of the Left Hind leg at time around 10 s. The average
computation time for a complete iteration of the ContactNet,
i.e. computation of 3 subsequent actions/footholds, is 1.6
ms, which is much faster than the trajectory optimizer.
This scenario is particularly challenging for contact implicit
MPC [6] since the morphology of the terrain should be
considered in the formulation. Similarly, a sampling-based
approach as [14] would suffer from the exponential increase
of computation time.

To demonstrate that the ContactNet can be generalized
to any stepping stones scenario we considered a second
terrain with three rectangles of different sizes, see Fig. 5. The
terrain is designed to make the stepping stones narrow and
spaced unevenly with the last stepping stone farthest from
the previous. Crossing this terrain would require optimal
foot location planning. Additionally, we use this terrain
to evaluate the impact of online gait selection along with
pure foot location adaptation. We modified the evaluation
procedure of the ContactNet in order to be able to find
the corresponding optimal safe foothold for a specific leg.
In such a case ContactNet only adapts foot location as
it happens in approaches such as [24], using a fixed gait
sequence. We initialize Solol2 with the same initial state
and let it traverse the terrain twice, once with the original
ContactNet able to choose both the footholds and the gait
sequence (optimized acyclic gait), and then using ContactNet
with fixed cyclic gait, In this case, when none of the
discretized options for a leg are coherent with the terrain, a
swing in place is forced. Fig 5 shows frames of the behaviour
of Solo12 in the two scenarios. Solol2 fails to traverse the
terrain when it is not allowed to adapt the gait online. In the

case where Solol2 chooses gait and foothold it is able to
navigate safely across the terrain by finding a feasible and
stable contact plan. This is an example that demonstrates the
need for both acyclic gait and foot location selection (as it
is done by the ContactNet) to navigate complex terrain.

C. Randomly generated terrain

In this section, we evaluate the reliability of our MPC
scheme to navigate unstructured environments with various
terrain constraints. We generate a terrain of 1.5x0.5 m by
placing 300 squares 5x5 cm. Starting from a number of n
=50 till n = 100 (17 % - 33 %), we randomly remove n
terrain patches and evaluate the success rate for both the
walk and trot setups (see Fig. 1) with a reference velocity of
0.05 m/s in the X direction. For each n we performed 100
different attempts, changing the terrain configuration. A trial
is considered successful if the robot reaches the last terrain
patch. In addition we also repeat the navigation task for the
two gaits with Gaussian noise (zero mean, 0.01 variance)
applied to joint velocity measurement. This is performed to
validate the robustness of the approach in conditions closer
to the real robot. The results are shown in Fig. 6.

The ContactNet has a high rate of success for both gaits,
while, as expected, the walk guarantees better performance
due to its intrinsic stability. The addition of noise does not
cause a significant reduction in performance. This suggests
that our framework would reliably work on a real robot. Note
that the ContactNet remains robust to noise even though it
was not trained for it, as is commonly done using domain
randomizing techniques [31]. Further, no assumptions are
made on how terrain patches are removed to guarantee that
a real feasible path exists.

Another important element of our analysis is the solve
time of the ContactNet. We consider the total solve time
to be 3 evaluations of the network, i.e., the time needed
to generate the contact plan for our trajectory optimization.
Table I reports the mean value of the computational time
of ContactNet for each value of n during one attempt. We
highlight that the time is low, around 1 ms, and does not
change with the complexity of the terrain. This contrasts
with other approaches, such as MIP and MCTS, where
the computational time suffers from the dimension of the
solution space. For example, the MIP of [23] takes 55789.3
ms an average for a full walking cycle thus requiring to be
solved offline; the MCTS of [14] requires an average of 400
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Fig. 6. Successful attempts of both walk and trot motions over the number
of terrain patches removed with. For each number of terrain patches we
execute 100 trajectories with and without noise (Gaussian noise with zero
mean and 0.01 variance).

ms to obtain a sequence of 6 steps, given the high number of
possibilities and it is already 2.72 faster than a MICP similar
to the one presented [21]. In addition, the non-convexity
of the star stones is hard to be considered in an analytic
constraint. Furthermore, ContactNet takes into account the
morphology of the terrain, differently from the online contact
implicit MPCs such as [6]. The ContactNet, indeed, only has
to query the terrain map until the first safe action is found.

TABLE I
AVERAGE COMPUTATIONAL TIME OF CONTACTNET IN ONE ATTEMPT IN
RANDOMLY GENERATED TERRAIN

Number of terrain patches removed Walk [ms] Trot [ms]
50 1.272 1.507

60 0.938 7.950

70 0.944 0.803

80 1.152 0.785

90 1.0584 0.874

100 0.9167 0.7899

As done for the stepping stones scenario (Sec. IV-B) we
analyzed the difference between changing online the gait
sequence and using a fixed gait during the walk. Table II

reports the result of 300 attempts when n = 110 blocks have
been removed. To achieve a fair comparison, the scenario was
created randomly, but both approaches were run on the exact
same test scenarios. The success rate for ContactNet with
optimized acyclic gait is 93.6% (only 19 attempts failed),
while when using a fixed cyclic gait the robot is able to
accomplish the task only in 85.3% of the cases (44 fails, more
than twice than the previous case). This result confirms that
an online acyclic gait planner has better performance than a
foothold adaptation algorithm with a fixed gait.

TABLE II
COMPARISON OF SUCCESS RATE OF FIXED AND ACYCLIC GATE IN
RANDOMLY GENERATED TERRAIN WITH N=110 PATCHES REMOVED

Type of gait Attempts  Successful attempts  Success rate
optimized acyclic ~ 300 281 93.6 %
fixed cyclic 300 256 853 %

D. Push Recovery

As a final result, we tested the robustness of the Con-
tactNet pushing the robot for 1 s with external forces in
the range of = 5 N (25% of the weight of Solol12) in
both directions while tracking a forward velocity. In addition
some terrain patches of 10x10 cm are randomly removed.
While being pushed, the Contact Planner adjusts footholds
to counteract the external disturbance and avoid holes. Once
the push is removed, the robot automatically recovers a
stable configuration, for example by first moving a leg which
resulted to being close to the kinematic limits.

V. LIMITATIONS

In this paper we have presented preliminary results in sim-
ulation of an online multi-contact planning framework that
can be easily integrated with existing trajectory optimization
approaches. Our analysis of terrain and sensor noise shows
that the results have the potential to be transferred to the real
robot. Even though the cost function (2) does not consider
torque limits, the joint space impedance controller guarantees
that torques sent to the robot satisfy the torque limits by
saturating them. Furthermore, the current formulation has



been shown only on flat terrain. The ContactNet can be
extended to uneven terrain by discretizing the 3D stepping
region and retraining the network. While the trajectory
generator could handle uneven terrains [2], we did not pursue
this direction because uneven terrain locomotion requires
additional components, such as a collision-free swing tra-
jectory, which was not readily available and goes beyond
the scope of the contact planning problem. Currently, the
ContactNet does not update the foothold during the swing
phase. Throughout our experiments, we found this replanning
frequency to be sufficiently robust to uncertainties in the
environment. However, if the need arises for faster updates,
the trajectory optimizer has been demonstrated to be able to
compute the optimal trajectories with arbitrary initial contact
configurations. The same cost function (2) can be used to
rank footholds during the swing phase as well. Finally,
ContactNet can choose small steps in a row with the same
leg, especially for the trot. An energy-based cost term could
be added to the cost function (2) to prevent “useless” swings
and facilitate natural motions.

VI. CONCLUSION

In conclusion, we proposed a multi-contact planner, Con-
tactNet, capable of generating acyclic gaits, i.e., without a
predefined leg sequence, in a few milliseconds, even in the
presence of unstructured terrains. Simulations with Solo12
robot are performed with walk and trot motion. Robustness is
demonstrated by inferring measurement noise and applying
external disturbance. We demonstrated that an acyclic gait
planner performs better than a planner that chooses only the
foot locations with a fixed gait. Future work will consider
the transfer of the approach to the real hardware.
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