


sible contact plans. For example, Lin et al. [13] presented a

search-based footstep planner which explicitly takes into ac-

count disturbances. A neural network predicts if a a candidate

foothold location is zero-step and one-step capturable for a

full-body dynamic model. Amatucci et al. [14] presented a

contact planner based on a Monte Carlo Tree Search (MCTS)

algorithm; even though this approach demonstrated good

performance, the expansion of the MCTS becomes too slow

when a high number of discrete options are available, e.g.

terrain with holes. Consequently, all these methods cannot

be used in an MPC fashion at high control rates.

In this work, we address these limitations and propose

an online, MPC friendly multi-contact planner - ContactNet,

that can automatically generate arbitrary gait schedules,

select footholds in unstructured environments, e.g. stepping

stones, and recover from external perturbations. This contact

planner extends the principles used in [15], a reactive planner

for bipedal locomotion, which was limited to single contacts

and cyclic gaits. ContactNet, on the other hand, computes

acyclic gaits online for multiple legs. The key point of this

approach is that the solve time is low and remains unaffected

by the number of terrain constraints, such as stepping stones.

ContactNet is based on a multi-output regression network

[16] that ranks a discrete set of foothold locations. This

information is then used to generate a contact plan. The

ContactNet is trained offline on a simple flat terrain using

data generated with a novel cost function (see Sec. III-B)

which considers robustness, stability and minimizes trajec-

tory generation cost. After training, we combine the Contact-

Net foothold plan with a centroidal trajectory optimizer [2]

to generate online a desired behavior.

To evaluate our approach, we generate acyclic walk and

acyclic trot behaviors on the Solo12 robot [17] in simulation

(Fig. 1). We show that ContactNet can automatically navigate

terrains with holes, even though those kind of terrains are not

considered during the data collection for training. Finally,

we systematically analyze the robustness of the ContactNet

in face of measurement uncertainties, i.e. Gaussian noise in

the joint velocity measurements, to emulate the behaviour of

a real sensor.

A. Contributions

In summary, this paper proposes a fast contact planner for

legged locomotion with the following main contributions:

• the ContactNet, a neural network-based contact planner,

which can rapidly generate acyclic gait sequences with

safe footholds, even in the presence of holes in the

ground, considering tracking performance of an MPC,

stability and robustness. To the best knowledge of

the authors, in contrast to all the other state-of-the-

art approaches that suffer from terrain complexity, our

contact planner is the only one with a computational

time that does not increase with the number of gaps

present in the terrain.

• extensive preliminary simulation results with Solo12

that demonstrate the effectiveness of our approach with

two gaits: an acyclic walk and an acyclic trot to navigate

terrains with constraints (stepping stones). We show that

changing online the gait sequence is crucial to address

certain situations where fixed gait sequences fails.

B. Outline

The paper is organized as follows: Sec. II presents other

works related to the proposed approach. Sec. III gives an

overview of our contact planner. Sec. IV presents the results

of simulation with the Solo12 robot with ContactNet for both

walk and trot in different scenarios. Finally, limitations and

conclusions are drawn respectively in Sec. V and VI.

II. RELATED WORK

Several motion planning methods that handle both contact

planning and trajectory generation together by solving a

non-linear problem have been developed in the past years.

Posa et al. [18] use complementary constraints to ensure

that that the end-effector either moves or applies a force to

the environment. Winkler et al. [19] presented a trajectory

optimization formulation which considers also foot position

and stance/swing duration to generate different gaits. Ponton

et al. [20] use Mixed-Integer Quadratically Constrained QPs

to find contact sequences and whole-body movements for

humanoids. On the other hand, methods exist that use convex

optimization. Aceituno-Cabezas et al. [21] use Mixed-Integer

Convex Programming to plan for both Center of Mass (CoM)

trajectory and contacts for the quadruped robot HyQ [22].

Recently, Jiang et al. [23] obtained a QP formulation to

compute optimal trajectories of the CoM by neglecting

several terms in the centroidal dynamics. In addition, the

authors extended the approach to an offline Mixed-Integer

QP which plans also for gait sequences, timings, and foot

locations. A common drawback of all these methods is that

they are not fast enough to be used in an MPC fashion,

which is important to compensate for model inaccuracies

and external disturbances.

As already mentioned, in order to reduce the computa-

tional effort, several approaches assume a predefined gait

sequence and optimize only the foot locations. For example,

Villarreal et al. developed a foothold classifier based on a

Convolutional Neural Network (CNN) [24] and combined it

with a MPC-based trunk controller [25] to achieve reactive

and real-time obstacle negotiation, considering a 3D map

of the terrain. Another example of using a CNN to select

the optimal landing location was presented by Belter et

al. [26]. Their approach is based on the learning of a model

to evaluate the quality a potential touchdown point taking

into account the local elevation map, kinematic constraints

and collision. Grandia et al. [10] performed a convex inner

approximation of the steppable terrain, optimizing foot loca-

tions inside that region. However, the authors mention that

a change in the gait sequence should be required to prevent

the robot from falling in the presence of strong disturbances.

In Section IV we showcase a scenario in which computing

online both footholds and gait sequence is fundamental to

accomplish the motion.



III. CONTACTNET

ContactNet computes foot locations and contact status

(i.e., swing or stance) for each leg in the horizon. In this

section, we describe the cost function and data generation

approach used to rank footholds offline. After that, we

discuss the details regarding ContactNet and we present

the entire framework used to generate acyclic multi-contact

plans.

A. Footholds

We discretize the allowed stepping region for each leg

into a fixed set of Na possible locations. These footholds

are defined at fixed distances from the current hip location

of the corresponding foot, similar to [15]. Subsequently, as

the robot moves, the allowed foot locations also change.

Discretizing the candidate footholds is quite a common

approach, e.g., [24]; we show in our experiments that, despite

losing the freedom of stepping anywhere in the feasible

region very reliable behaviors can be generated.

B. Cost Function

Given the discrete set of possible footholds for all the

legs, the goal is to identify the best one, considering the

morphology of the terrain, the references and the current state

of the robot. For this, we propose a novel cost function that

is used to rank all the foot locations based on several aspects,

such as robot stability, robustness and optimal trajectory. We

consider the input to be:

ur = [Cpf ,pc,z,vc,v
usr
c ] (1)

where Cpf ∈ R
8 represents X and Y components of the foot

location in the CoM frame C1, pc,z ∈ R is the Z component

of the CoM position, vc ∈ R
3 is the actual CoM velocity.

Finally, the variable vusr
c ∈ R

2 is the user-defined reference

linear velocity.

To evaluate a foothold, we first generate a trajectory that

moves the robot from the current configuration to the chosen

one and then use the following cost function

V =

Ns∑

k=0

Vk + VNs
(2)

where Ns is the step horizon, Vk is the running cost (eval-

uated at each node of the trajectory), VNs
is the terminal

cost (evaluated only at the final point). The running cost Vk

consists of three terms

Vk = γoptVk,opt + γstabVk,stab + γkinVk,kin. (3)

The first term corresponds to the cost of the optimization

problem obtained from the trajectory optimization [2], i.e.

tracking of references for states (CoM quantities) and control

inputs (Ground Reaction Forces (GRFs)). It guarantees that

a feasible trajectory that respects the dynamics and friction

cone constraints exists. In this work, we use a SRBD model

[27], but any other model could also be used. The variable

1All the quantities without left subscript are expressed in the inertial fixed
World frame W .

Vk,stab, evaluates the margin of stability of the motion. It

computes the distance of the projection of the CoM on the

ground from the closest support polygon edge. For instance,

in a walk, this encourages footholds in which the robot is

statically stable (CoM inside the support polygon, Vk,dist =

0); for a trot, this maximizes the controllability of the robot.

The last term Vk,kin enforces kinematic limits - it assigns

a high value when a leg in stance violates these limits.

Even though our simplified model does not include joint

values, we consider a violation of the kinematic limits if

the distance between the foot and the hip exceeds a certain

threshold. To do so, we assume that the positional offset

between the hip and the CoM remains constant for the entire

trajectory. Further, a conservative threshold value is chosen

to encourage the motion of one leg when it is close to the

kinematic limits, i.e. to place it in a more kinematically

favourable location, similarly to [28].

The terminal cost VNs
in the cost function V takes into

account future actions of the robot. It is defined as follows:

VNs
= γcentVcent − γareaVarea. (4)

With Vcent, we introduce a penalization on the distance

between the projection of the CoM and the center of the

support polygon. Minimizing this quantity increases the

number of subsequent stable steps. Finally, the quantity

−Varea improves the robustness of the contact configuration

by maximizing the area of the final support polygon.

The numbers γi ∈ R scale the different cost terms.

C. ContactNet

Using the cost function discussed previously, it is possible

to automatically generate acyclic multi-contact plans for

locomotion by simply selecting as action - which leg to move

and where to step - the candidate with lowest value of V .

However, evaluating all the possible footholds by computing

optimized trajectories is not feasible online. Consequently,

we propose to train offline a neural network that learns to

rank the possible footholds using the cost function (2), giving

the input of (1).

1) Data Generation: To train the ContactNet, we generate

a dataset containing many possible stepping situations that

the robot can be dealing with on a flat terrain. We start

the robot in a randomly generated configuration (different

joint position and velocity) and choose a random reference

CoM velocity in the range (-0.1,0.1 m/s) for both X and

Y directions. Before each liftoff, the cost function (2) is

evaluated, and the best foothold among the discrete options

is selected, i.e. the one with the smallest V , is selected.

Subsequently, a trajectory is generated with this contact plan

and is tracked on the robot in simulation. We define this

as an instance. After that, a new instance is run (same

reference velocity, starting from the configuration achieved

at the end of the previous instance) to generate a large

dataset containing the input ur and the corresponding V,

i.e., the vector which contains the values of cost V for

each option. A new episode is restarted (i.e., new reference

velocity and initial configuration) after 30 instances or when





disk represents the first value in Ŷ′, but it cannot be selected

since there is no terrain below it. Consequently, we check the

following elements in Ŷ′ till the first one that is coherent

with the terrain, e.g. blue disk.

Remark: We chose to discretize the foothold locations and

rank all of them, mainly to navigate complicated terrain

situations online without adding the morphology of the

terrain directly into the formulation.

D. Overall control architecture

Figure 3 shows the block scheme of our locomotion

framework. The user decides the linear velocities vusr
c ∈ R

2

that the robot should follow. Given the X and Y components

of actual foot position in the CoM frame C Cpf ∈ R
8, Z

component of the actual CoM position pc,z, actual CoM

velocity vc and reference velocities vusr
c , the ContactNet

returns the best candidate foothold, as explained in the

previous section. In our architecture we compute online a

contact plan with three steps for a prediction horizon of N
= 3 Ns step horizons. Reference velocities are integrated to

compute the CoM position at the end of each step horizon.

They are used together with the chosen foothold to define

the input ur of (1) for the second step horizon to re-

evaluate the neural network; similarly it happens for the

third evaluation. The swing times are preset depending on

the chosen gait (discussed in detail IV-A). This contact plan

along with the reference CoM trajectories and the reference

GRFs2 are provided to the trajectory optimizer to generate an

optimal movement using the algorithm described in [2]. The

CoM trajectories are then tracked by a 1 kHz whole-body

controller [17], combined with a PD controller in Cartesian

space for the swing trajectories. The swing trajectory is

defined in the swing frame; a semi-ellipse represents the X

component and a fifth-order polynomial the Z. At the end of

each step horizon, the procedure is repeated in MPC fashion.

IV. RESULTS

In this section, we present the results obtained by our

approach. We perform simulations with Solo12, a 2.2 kg
open-source torque-controlled modular quadruped robot. The

entire framework runs on a Dell precision 5820 tower ma-

chine with a 3.7 GHz Intel Xeon processor. We perform our

simulation using the PyBullet library [29].

For all the experiments, the ContactNet is composed of

4 fully connected layers with 128 neurons each. All layers

except the last one are activated with a ReLU function. As

hyper-parameters for training, we choose a number of epochs

equal to 1000 with a batch size of 100. The learning rate is set

to 0.001. The input ur is normalized to be in the range (-1,1)

to improve the accuracy of the network [30]. To evaluate the

network’s performance we used 70 % of the entries of the

dataset as a training set and the remaining part as a test

set. We use a top-5 metric to determine the statistics of the

network, i.e., we consider a correct prediction if the first

element of Ŷ, i.e. what the neural network outputs as a best

2Weight of the robot divided by the number of legs in contact with the
terrain for the stance phase, zero for the swing phase

action, is one of the first five elements in the corresponding V

stored in the dataset. In our case, this metric has a particular

importance since the best action will not be always feasible

due to the requirements of the terrain.

A. Acyclic gaits

In this subsection, we discuss the various parameters

defined to generate the two gaits - walk and trot.

1) Walk: In this experiment, the robot is only allowed to

move one leg at a time. We choose a discretization time of

40 ms for the trajectory optimization. The step horizon Ns

is equal to 320 ms (8 Nodes) and it is composed of 120

ms of four leg stance phase (3 nodes), 160 ms (4 nodes)

of swing phase, and the last node of four leg stance phase.

The prediction horizon N used by the trajectory optimizer is

composed of three step horizons, 960 ms, corresponding to

three evaluations of the neural network, as discussed in Sec.

III-D. The duration of the swing and stance phase has been

chosen based on our previous experiments with the Solo12

robot; the presented approach is generic and can be applied

with other values for swing/stance.

We define the allowed stepping region for each leg to be

a 20 × 20 cm grid which is a meaningful size given the

kinematic limits of Solo12. This space is discretized into

25 footholds which are 5 cm apart, see red disks in Fig. 2.

Subsequently, the network needs to choose among a total

of Na = 100 possible footholds (4 × 25) since we do not

prescribe which leg needs to swing, but we only require

one leg swing at a time. For data generation, we run 1500

episodes using the procedure discussed in Sec. III-B. The

resulting data had 43410 instances of (ur/V) tuples. We

obtained an accuracy of the 93.48/90.81 % in the training/test

set according to the top-5 metric.

2) Trot: In the trot gait, two diagonal feet are leaving the

ground at the same time. The total stepping region for each

leg is a square size 10 × 10 cm. The foothold discretization

resolution is still 5 cm, 9 choices per leg. At the start of a

stepping horizon, there are a total of 162 - 2 × 92 foothold

choices since at each step two legs leave the ground. All

the other parameters are the same as the walk. We run 1500

episodes to generate the dataset for this gait and train the

ContactNet, obtaining 45000 instances. The neural network

achieves an accuracy of 99.48/97.7 % in the training/test set.

In the accompanying video3, we show a long horizon trot

motion in a scenario with holes in the terrain. The reference

velocity changes every 10 s in the range (−0.1, 0.1)m/s. In

this way, we demonstrate the locomotion stability and the

ability of avoiding unsafe footholds of ContactNet.

B. Stepping stones scenario

To verify the effectiveness of our MPC framework, we

designed a terrain composed of 8 sparse stepping stones of

different shapes: 3 stars, 2 circles and 3 rectangles, see Fig.

2. Two squares are positioned as starting and end points.

The goal of the task is to traverse the terrain with a user-

defined forward velocity of 0.05 m/s using the ContactNet

3https://www.youtube.com/watch?v=ta1JpSigRKo







been shown only on flat terrain. The ContactNet can be

extended to uneven terrain by discretizing the 3D stepping

region and retraining the network. While the trajectory

generator could handle uneven terrains [2], we did not pursue

this direction because uneven terrain locomotion requires

additional components, such as a collision-free swing tra-

jectory, which was not readily available and goes beyond

the scope of the contact planning problem. Currently, the

ContactNet does not update the foothold during the swing

phase. Throughout our experiments, we found this replanning

frequency to be sufficiently robust to uncertainties in the

environment. However, if the need arises for faster updates,

the trajectory optimizer has been demonstrated to be able to

compute the optimal trajectories with arbitrary initial contact

configurations. The same cost function (2) can be used to

rank footholds during the swing phase as well. Finally,

ContactNet can choose small steps in a row with the same

leg, especially for the trot. An energy-based cost term could

be added to the cost function (2) to prevent ”useless” swings

and facilitate natural motions.

VI. CONCLUSION

In conclusion, we proposed a multi-contact planner, Con-

tactNet, capable of generating acyclic gaits, i.e., without a

predefined leg sequence, in a few milliseconds, even in the

presence of unstructured terrains. Simulations with Solo12

robot are performed with walk and trot motion. Robustness is

demonstrated by inferring measurement noise and applying

external disturbance. We demonstrated that an acyclic gait

planner performs better than a planner that chooses only the

foot locations with a fixed gait. Future work will consider

the transfer of the approach to the real hardware.
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jayakumar, “Inverse-dynamics MPC via nullspace resolution,” IEEE

Transactions on Robotics, vol. 39, no. 4, pp. 3222–3241, 2023.
[4] A. Meduri, P. Shah, J. Viereck, M. Khadiv, I. Havoutis, and L. Righetti,

“Biconmp: A nonlinear model predictive control framework for whole
body motion planning,” IEEE Transactions on Robotics, 2023.

[5] M. H. Raibert, Legged robots that balance. MIT press, 1986.
[6] G. Kim, D. Kang, J.-H. Kim, S. Hong, and H.-W. Park, “Contact-

implicit mpc: Controlling diverse quadruped motions without pre-
planned contact modes or trajectories,” arXiv, 2023.

[7] S. L. Cleac’h, T. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop,
M. Schwager, and Z. Manchester, “Fast contact-implicit model-
predictive control,” arXiv, 2023.

[8] N. J. Kong, C. Li, G. Council, and A. M. Johnson, “Hybrid ilqr model
predictive control for contact implicit stabilization on legged robots,”
IEEE Transactions on Robotics, vol. 39, no. 6, pp. 4712–4727, 2023.

[9] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa, and G. State,
“Isaac gym: High performance gpu-based physics simulation for robot
learning,” Conference on Neural Information Processing Systems,

Datasets and Benchmarks Track, 2021.
[10] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter,

“Perceptive locomotion through nonlinear model-predictive control,”
IEEE Transactions on Robotics, vol. 39, no. 5, pp. 3402–3421, 2023.

[11] R. Deits and R. Tedrake, “Footstep planning on uneven terrain with
mixed-integer convex optimization,” in 2014 IEEE-RAS International

Conference on Humanoid Robots, 2014, pp. 279–286.
[12] S. Tonneau, D. Song, P. Fernbach, N. Mansard, M. Taı̈x, and

A. Del Prete, “Sl1m: Sparse l1-norm minimization for contact plan-
ning on uneven terrain,” in 2020 IEEE International Conference on

Robotics and Automation (ICRA), 2020, pp. 6604–6610.
[13] Y.-C. Lin, L. Righetti, and D. Berenson, “Robust humanoid contact

planning with learned zero- and one-step capturability prediction,”
Robotics and Automation Letters, vol. 5, no. 2, pp. 2451–2458, 2020.

[14] L. Amatucci, J.-H. Kim, J. Hwangbo, and H.-W. Park, “Monte carlo
tree search gait planner for non-gaited legged system control,” in IEEE

International Conference on Robotics and Automation (ICRA), 2022.
[15] A. Meduri, M. Khadiv, and L. Righetti, “Deepq stepper: A framework

for reactive dynamic walking on uneven terrain,” in 2021 IEEE

International Conference on Robotics and Automation (ICRA), 2021.
[16] L. Schmid, A. Gerharz, A. Groll, and M. Pauly, “Tree-based ensembles

for multi-output regression: Comparing multivariate approaches with
separate univariate ones,” Computational Statistics & Data Analysis,
vol. 179, 2023.

[17] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wuthrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, J. Fiene,
A. Badri-Sprowitz, and L. Righetti, “An open torque-controlled mod-
ular robot architecture for legged locomotion research,” Robotics and

Automation Letters (RA-L), vol. 5, no. 2, pp. 3650–3657, 2020.
[18] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-

timization of rigid bodies through contact,” The International Journal

of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.
[19] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait

and trajectory optimization for legged systems through phase-based
end-effector parameterization,” IEEE Robotics and Automation Letters

(RA-L), vol. 3, pp. 1560–1567, 2018.
[20] B. Ponton, M. Khadiv, A. Meduri, and L. Righetti, “Efficient multi-

contact pattern generation with sequential convex approximations of
the centroidal dynamics,” IEEE Transactions on Robotics, 2021.

[21] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu,
D. G. Caldwell, J. Cappelletto, J. C. Grieco, G. Fernández-López, and
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