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Abstract 

As virtual engineering becomes increasingly important in today’s competitive 

marketplace, there is a growing need for simplified representations of spot joints in finite 

element (FE) modeling of complex structures without sacrificing accuracy in structural life 

evaluation. For this purpose, this paper presents a special shell element with an implicit spot 

weld representation and its numerical implantation as a user element for deployment in 

commercial FE code for reliably computing traction structural stress in a mesh-insensitive 

manner.  The special shell element is formulated by degenerating conventional linear four-nodes 

Mindlin shell elements with consideration of the region around a spot weld by imposing 

kinematic constraints with respect to a series of virtual nodes.  The simplicity and effectiveness 

of the special shell element have been validated by comparing with the explicit weld 

representation for computing mesh-insensitive structural stresses and fatigue life correlation of 

welded components.  
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1. Introduction 

Typical automotive structures like passenger cars and commercial vehicle cabs contain 

about 3,000 and 7,000 spot welds, respectively, as discussed in [1, 2, 3].  Resistance spot welding 

(RSW), and more recently laser or friction stir spot welding, serves as a cost-effective means for 

joining metal sheets together to form lightweight load-bearing structures, as recently discussed in 

Bhatti et al. [1], Junqueira et al. [2], and Yan et al. [3].  Other joining methods like self-piercing 

rivets (SPR) [4], rivet-welded (RW) joints [5] and etc., as described in [6] are also increasingly 

used for assembly of dissimilar materials for advanced lightweight automotive structures [7].  It 

should be noted that fatigue behaviors in these joint types share similar characteristics, as far as 

major failure modes are concerned [8].  These failure modes can be classified as Mode A: sheet 

failure around the joint and Mode B: weld nugget failure (or rivet failure in rivetted joints), as 

shown in Figure 1.  Mode A is most important for structural fatigue evaluation since Mode B can 

be effectively avoided by specifying an adequate spot weld size or rivet size, as discussed in [8] 

and [9].   

 
 

Figure 1. The schematic of two failure modes.  Mode A (left): fatigue cracking from the 

interfacial notch into the sheet.  Mode B (right): fatigue cracking from the interfacial notch into 

the weld nugget. 
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For properly evaluating Mode A failure mode in spot-welded structures, a finite element 

model (FEM) needs to have an explicit and complete representation of a weld periphery on the 

connected sheets, e.g., along the spot weld nugget edge in the base plate, as shown in Figure 2 

[10].  In typical automotive structures containing thousands of spot welds, such a spot weld 

representation procedure, has been impractical.  Note that simplified methods available to date, 

e.g., FE representation schemes using ACM2 or CWELD [11] with the stress parameters 

calculated via Rupp’s LBF method [8], have been shown inadequate and therefore, require costly 

calibrations through fatigue testing and past experiences.  As virtual engineering becomes 

increasingly important, auto makers and their suppliers strive to remain competitive in the global 

marketplace by minimizing or eliminating hardware testing in their vehicle development 

processes.  This has become particularly challenging as automotive structures are going through 

a major paradigm shift towards battery electric vehicles (BEV) for which there exist no prior 

experiences nor sufficient historical test data upon which existing structural durability evaluation 

tools can be calibrated.   
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                                   (a)                                                                                   (b) 

 

Figure 2. The schematic of a spot-welded H-Shear component [10] and required weld 

representation in a finite element model: (a) illustration of a spot welded H-shear component; (b) 

an explicit finite element representation of spot weld joining the steel sheets. 

 

Therefore, a simple and effective spot joint modeling method is highly desirable.  Along 

this line, Zhang et al. [12] recently presented a hybrid method which is capable of producing 

reasonable structural stress results through a novel decomposition technique by taking advantage 

of a set of analytical solutions available in the literature.  With this technique, the nodal forces 

and moments obtained around a group of shell elements surrounding the weld nugget, as shown 

in Figure 3, are decomposed into a series of simple load cases for which analytical structural 

stress solutions based on shell theory are already available [13, 14, 15].  The final structural 

stress solutions can then be obtained through superposition.  While the coarse-mesh hybrid 

structural stress method in Zhang et al. [12] was shown producing reasonably accurate for 

structural stress results for simple laboratory test specimens, its applications for modeling 
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complex spot-welded structures are still limited by both the lack of closed-form solutions in 

literature for some of the load cases that must be considered when dealing with complex loading 

conditions [12-14,16] and the inability of coarse elements for representing complex sheet 

deformation mode around a weld nugget. 

 
(a)                                                                              (b) 

 

Figure 3. Illustration of the coarse mesh hybrid structural stress modeling method in Zhang et.al 

[12]: (a) a rectangular spot weld region in a component; (b) a simplified finite element 

representation of the spot weld region. 

 

To address the above deficiencies associated with the coarse-mesh hybrid structural stress 

method in Zhang et al. [12], a special shell element incorporating spot weld deformation 

constraints is presented in this paper, hereafter referred to as Spot Weld Element (SWE).  In 

Section 2, we start with the SWE formulation by considering two linear four-node Mindlin shell 

elements embedded with a series of virtual nodes representing a curved weld edge position 

which must satisfy the kinematic constraints and equilibrium conditions consistent with those if 

an actual weld is present.  The numerical implementation of SWE in the form of user element 

(often referred to as “UEL”) in commercial FE codes, e.g., ABAQUS,  is then described, along 

with how the nodal forces and moments along the virtual weld edge represented by virtual nodes 

are used for computing the mesh-insensitive structural stress distribution.  Validations are 

presented in Section 3.  These include detailed comparisons of computational results on single 
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spot-welded lab specimens and spot-welded complex components among various methods.  The 

effectiveness of the SWE proposed for correlating fatigue test data collected from two types of 

“H-Section” components, i.e., H-shear and H-peel [10], is given in Section 4.  Key findings are 

given in Section 5.    

 

2. Spot Weld Element (SWE) Formulation 

2.1 Structural stress definition 

Figure 4(a) shows a through-thickness curvilinear cut plane into sheet thickness around a 

spot weld edge on which there exist three traction-based structural stress components under 

general loading conditions. The three structural stress components, i.e., the normal, in-plane 

shear, and transverse shear structural stresses, can be directly expressed in terms of  the  

equilibrium-equivalent line forces ( rf , f , zf ) and line moments ( rm , m ) computed through 

the nodal forces and nodal moments obtained from FEA along the spot weld edge.  Note that the 

nodal forces and moments are defined with respect to a global fixed coordinate system ( X , Y , 

Z ) while line forces and moments are defined with respect to the local coordinate system ( r ,  , 

z ) at the weld center shown in Figure 4(b).  The line forces ( rf , f , zf ) and line moments ( rm , 

m ) can be solved using a system of simultaneous equations as described in [17, 18] which will 

be further discussed in a latter section.  Finally, the traction-based structural stress components 

can be expressed as follows: 
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where s  is normal stress, s  is in-plane shear stress, z  is transverse shear stress, and t  is plate 

thickness.  In general, the normal stress s  and in-plane shear stress s  are expressed in terms of 

their membrane and bending components, i.e., membrane stress m  and bending stress b  for 

normal stress s  and membrane stress m  and bending stress b  for in-plane shear stress s .  

Note that the transverse shear stress z  is represented only by membrane part of the transverse 

shear force in Equation (1).   

It should be emphasized that the computational procedure for the three traction-based 

structural stress components are given in Dong et al. [19] by using the nodal forces and moments 

from shell elements along the nodal positions representing the spot weld edge as shown in Figure 

4(c) for achieving element size insensitivity.   

 
 

Figure 4. Illustration of structural stresses in welded components: (a) the close-up view near a 

spot weld in the modified H-shear component [10];(b) the definition of three traction-based 

structural stress components near weld edge; (c) the nodes and elements at weld edge in FEM for 

evaluation of structural stresses.  
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2.2 Spot Weld Element (SWE) 

Without losing generality, we consider the same representative spot weld region as 

illustrated in Figure 3(b).  Due to the presence of the spot weld, its local stiffness with respect to 

relevant degrees of freedom can be assumed as being equivalent to a rigid inclusion [20], as 

originally introduced by Radaj and Zhang [21] for modeling simple spot-welded test specimens. 

As such, the concept of SWE is described in Figure 5 in which two conventional linear Mindlin 

shell elements neighboring a sector of a rigid inclusion are used to represent a quarter of the 

square domain in Figure 3.  As shown in Figure 5(a), the 1st shell element consists of 4 nodes 

with the numbering sequence as v1-2-3-v2 and the 2nd shell element consists of 4 nodes with the 

numbering sequence as v2-3-4-v3.  Nodes v1, v2, and v3 represent the rigid inclusion (spot 

weld) boundary of radius a  measured from its center defined by Node 1.  Therefore, Nodes 1, 

v1, v2, and v3 form a quarter of a circular inclusion region.  Within the inclusion or spot weld 

region, its effects on the two neighboring shell elements can be described through a set of 

kinematic constraints and force/moment equilibrium conditions, leading to the formulation of its 

equivalent four-node special shell element shown in Figure 5(b) by following steps which will be 

explained in details in latter sections: 

1st Step: The element stiffnesses for Element #1 and Element #2 are derived.   

2nd Step: The kinematic constraints and force/moment equilibrium conditions are applied at Node 

pairs 1-v1, 1-v2, and 1-v3.   

3rd Step: The stiffness matrix corresponding to the SWE shown in Figure 5(b) is assembled.   
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(a)                                            (b) 

 

Figure 5. Illustration of SWE: (a) a schematic of the explicit and complete FEM of one quarter of 

spot weld region; (b) the SWE of one quarter of spot weld region.  

 

 

2.3 Kinematic and Equilibrium Conditions around Spot Weld 

By considering the spot weld as a rigid inclusion in Figure 5(a), the following kinematic 

constraints needs to be satisfied with respect to the coordinate system defined in Figure 5:  
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where 
iu , 

iv , 
iw , are the translational displacements, i

x , i

y , i

z  are the rotations at virtual node 

𝑖, with 𝑖 = v1, v2, and v3, and 
1u , 

1v , 
1w , 1

x , 1

y , 1

z  are the corresponding displacements and 

rotations at Node 1.  The 
1ix x−  and 

1iy y−  are differences of local coordinates or local 

distances between virtual Nodes v1, v2, v3 and 1.   Due to the kinematic constraints in Equation 
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(2), only the displacements and rotations at Node 1 are independent degrees of freedom (DOFs).  

The displacements and rotations at virtual nodes v1, v2, and v3 are dependent DOFs.   

The nodal positions defining the inclusion boundary , e.g., Nodes 1, v1, v2, and v3, must 

satisfy the force and moment equilibrium conditions: 
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where i

xF , i

yF , i

zF  are the forces act at virtual nodes v1, v2, v3, i

xM , i

yM , i

zM  are the moments 

act at virtual nodes v1, v2, v3, and 1

xF , 1

yF , 1

zF  are the forces and 1

xM , 1

yM , 1

zM  are the moments 

act at Node 1.  From Equation (3), the nodal forces and nodal moments at virtual nodes can be 

transferred to Node 1.   

 

2.4 SWE Element Stiffness Assembly 

For convenience, we first define the stiffness matrices of Element #1 and Element #2 in 

Figure 5(a) are represented as 1K  and 2K , respectively, in the following form: 
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where i  is 1 or 2 for Element #1 and Element #2, respectively.  In Equation (4), ,

i

m nk  represents 

the entry at mth row and nth column.  It should be noted that the element stiffness matrices 1K  

and 2K  can be easily calculated as their formulations are well documented and can be found in 

FEM textbooks [22].  

Then, a unit displacement vector U  containing displacement field at Nodes 1, 2, 3, and 4 

can be defined as: 

 
24 1
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T

U


=                                                                                                    (5) 

The above represents a unit displacement applied at Node 1 along X direction and other DOFs 

are set to zeros.  Next, this unit displacement vector U  is substituted into Equation (2) to 

generate two displacement vectors 
1U  and 

2U  corresponding to the displacement fields for 

Element #1 and Element #2, respectively: 
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Then, with the element stiffness matrices 1K  of Element #1 and 2K  of Element #2, the 

nodal forces for Element #1 and Element #2 can be calculated as 

1 1 1
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and the 1F  and 2F are expressed as 
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1 1 1 1 1 1 1 1 1

1,1 2,1 3,1 4,1 21,1 22,1 23,1 24,1 24 1

2 2 2 2 2 2 2 2 2

1,1 2,1 3,1 4,1 21,1 22,1 23,1 24,1 24 1

T

T

F k k k k k k k k

F k k k k k k k k





 =  

 =  

                                        (8) 

It should be mentioned again the ,

i

m nk  in Equation (8) are now fully defined with the entries of 

element stiffness matrices being given by Equation (4).   

These nodal force vectors 1F  and 2F  are then substituted into Equation (3) to generate 

the nodal force vector F  corresponding to SWE with nodes 1, 2, 3 and 4: 
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Equation (9) lists the first 6 entries in the nodal force vector F .  These 6 given entries are the 

forces and moments act at Node 1.    

Finally, because the element stiffness matrix K  of the SWE should satisfy: 

KU F=                                                                                                                            (10) 

where U  is given in Equation (4) and F  is given in Equation (9).  Because U  is a unit vector, 

Equation (10) can be written as 

1,1 2,1 3,1 4,1 21,1 22,1 23,1 24,1 24 1

T

KU k k k k k k k k F


 = =                                   (11) 
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Therefore, by comparing Equation (11) and Equation (9), one can easily determine the 1st 

column of K .   

By repeating the Equations (5) to (12) with different nonzero entry for the unit 

displacement vector U  in Equation (5), one can calculate the entire K  of the SWE.  For 

example, by letting ith entry of U  equals to 1 and the other entries equal to 0 as  

 

( )

( )

24 1
0 0 1 0 0

=1 

=0                 

T
U

U j i

U j i


=

=



                                                                         (12) 

Readers can then follow the Equations (6) to (12) to calculate the ith column of K  which will not 

be elaborated here.   

It is worth noted that the entire element stiffness matrix K  of the SWE has the 

dimensions of 24 by 24 (4 nodes with 6 DOFs per node).  However, due to symmetry, only 300 

entries of K  are unique.  In addition, because the membrane part and plate part of shell element 

are decoupled, only 124 entries among that 300 unique entries are nonzero. 

If the SWE element by Nodes 1, 2, 3 and 4 happens to form a square with the spot weld 

nugget radius a , element size b , material Young’s modulus E , material Poisson’s ratio v , and 

plate thickness t , then the entry 
1,1k  of element stiffness matrix K  of the SWE can be expressed 

as: 

( )( )
( )

3 4 3 2 2 3 4

1,1 2

1.3 10 3 7.7 18.5 25.6 16

1

Et v a a b a b ab b
k

v

− − − + + −
=

−
                           (13) 

Part of the stiffness matrix entries of K  for the example SWE given in Figure 5(b) are 

documented in Appendix A for readers’ reference.   
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It should be noted that for both parabolic elements and arbitrary-shaped quadrilateral 

linear elements, the combined stiffness matrix must be defined numerically by imposing 

Equations (2) and (3), as presented in Appendix B. 

 

2.5 Structural Stress Computations 

For comparison purpose, we first consider the conventional shell element modeling 

procedure for the spot weld specimen with an explicit weld representation shown in Figure 2,  

hereafter referred to as the reference model. In such a model, plane-remaining-plane within the 

weld nugget area is required, which can be implemented as “MPC beam” constraints in Abaqus 

[23].  Then, nodal forces and moments along weld nugget periphery (see Figure 4) are collected 

by completing FE analysis under given loading and boundary conditions. These nodal forces and 

moments are then converted to line forces and moments through Equation (14). The resulting 

structural stresses can then be calculated through Equation (1) [18].  

In contrast, the newly formulated SWEs in Section 2.4 above offers a much simpler mesh 

layout around the spot weld region, as illustrated in Figure 3 in which each of the elements is a 

SWE element (see Figure 5b) with spot weld radius represented by a set of virtual nodes (3 in all 

examples reported in this paper.  A total of four SWEs are used around the spot weld on the top 

sheet and bottom sheet, respectively.  The top and bottom sheet can be simply connected by one 

beam element of diameter 𝑎.  As such, SWEs interfaced with any commercial finite element code 

offer user-element interface with nodal forces and moments at the virtual nodes positioned at the 

spot weld periphery.  Then, the existing simultaneous equations (Equation (14)), relating nodal 

forces/moments to line forces/moments, can be used directly for computing the structural 

stresses, as described below.   
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The mesh-insensitive structural stress methods [17, 18, 19] were developed based on the 

work equivalent argument that the work done by the nodal forces/moments is equal to the work 

done by the distributed line forces/moments, the nodal forces and moments are then converted to 

the line forces and moments around the nugget edge line (at virtual nodes v1, v2, v3, …).  This is 

done through a system of simultaneous equations from [17, 18, 19] for converting nodal forces to 

nodal line forces along the weld nugget edge line (at virtual nodes v1, v2, v3, …), as: 
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 

                  (14) 

where 1f , 2f , 3f , ... are the local line forces at virtual nodes v1, v2, v3, ..., 1F , 2F , 3F , ... are 

local nodal forces in local coordinate systems at the virtual nodes v1, v2, v3, ..., and 1l , 2l , 3l , ... 

are the element lengths between corresponding nodes.  Since the weld nugget edge line along the 

nugget periphery is closed, the local line force at virtual node vN is the same as the local line 

force at virtual node v1.  Similarly, the local line moments can be calculated using the local 

nodal moments using the same simultaneous equations, Equation (14).  With the calculated local 

line forces and line moments, structural stress is then calculated at each virtual nodes on the 

periphery of the nugget by the means of  Equation (1). 
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3. Validation Examples 

In addition to a series of one element numerical tests for a quarter of weld region 

provided in Appendix B, actual fatigue specimens including both simple laboratory specimens 

with single weld and complex multi-weld structural components are presented here to examine 

both the accuracy and the robustness of the SWE method for fatigue evaluation purpose.   

 

3.1 Laboratory Specimens with Single Weld 

3.1.1 Lap-Shear Specimens 

Figures 7(a) to 7(c) show the reference modeling procedure described earlier and the 

simplified SWE modeling for the lap-shear specimen with single spot weld.  In these models, 

one end of the specimen is constrained in all directions and the other side of the specimen is 

subjected to axially symmetrical loading (𝐹𝑥) and vertically un-symmetrical loading (𝐹𝑧), 

respectively, as shown in Figure 7(a).  All the analyses carried out using ABAQUS for which the 

linear shell element based SWE formulation described in Section 2 has been coded as a user 

element interface referred to as “UEL” in ABAQUS.  Outside the spot weld regions (shaded by 

red color), “S4” linear shell elements in ABAQUS are used to represent the rest of the test 

specimen geometry.  Three element sizes (9.5 mm, 11.875 mm, and 14.25 mm) are used for 

examining the mesh-sensitivity in structural stress calculation.  In addition, the arbitrary shape of 

SWEs is also used with approximate element size of 9.5 mm to further validate the accuracy and 

robustness of the developed SWE as shown in Figure 7(c).   

It should be mentioned that for the lap-shear specimen with single spot weld, the 

reference model shown in Figure 7(a) contains 2,596 nodes, 2,457 elements while the simplified 

model with SWEs shown in Figure 7(b) only contains around 130 nodes and 97 elements.   
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Figure 7. Reference model versus SWE-based shell element model of a lap-shear test specimen: 

(a) the reference model, (b) simplified model with square SWEs and (c) simplified model with 

arbitrary shape of SWEs for a lap-shear specimen with single spot weld. 

 

Figure 8 shows the computational results of structural stresses for the lap-shear specimen 

with single spot weld under the loading along X direction.  As shown in Figure 8, the coarse 

SWE-based model offers the same accuracy as the reference model which entails a significant 

mesh refinement.  All three traction structural stress components computed by using the SWE-
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based models share rather similar accuracy, as compared with the results obtained by using the 

reference model.  These are normal, in-plane shear, and transverse shear structural stresses,  as 

shown in Figures 8(a), 8(c), and 8(d), respectively.  In contrast, the hybrid structural stress 

method described earlier [12] can only compute the normal structural stress due to the lack of the 

corresponding analytical solutions for relevant loading cases [13, 14].  It is worth noting that the 

hybrid method in Zhang et al. [12] is capable of providing reasonably accurate normal structural 

stress distribution with slightly lower peak value, as shown in Figure 8(b).    

 
(a)                                                              (b) 

 

 
(c)                                                              (d) 

 

Figure 8. Comparison of all structural stresses along weld nugget edge in a lap-shear specimen 

loaded axially: (a) normal stress rr  distribution; (b) the comparison of the maximum normal 
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stresses rr ’s from different models; (c) in-plane shear stress r  distribution; (d) transverse 

shear rz  distribution.  

 

Similarly, Figure 9 shows the computational normal stress distribution near the weld in 

the lap-shear specimen under a point force in Z direction.  As shown in Figure 9, the simplified 

model with SWE has more accurate results than those obtained using hybrid method [12].  It 

should be noted that the relatively inaccurate results from the hybrid method [12] is because the 

analytical solutions for this unsymmetric point loading is not well-developed as discussed in 

Zhang et al. [12].  The results shown in Figure 9 also indicates that the simplified model with 

SWEs have more accurate stress distribution near weld due to a more realistic deformation 

pattern around spot weld is enforced by Equations (2) and (3). 

 
 

Figure 9. The computational normal stress rr  distribution near weld in the lap-shear specimen 

with single spot weld under an unsymmetric vertical point force zF  along Z direction. 

  

3.1.2 Coach-Peel Specimen 

Figures 10(a) and 10(b) show the reference FEM and the simplified FEM with SWEs for 

the coach-peel specimen with single spot weld.  Similarly, the SWE is only placed around spot 
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weld region as shown in Figure 10(b).  A symmetric point force zF  is applied at one end of the 

specimen and the other end is clamped as shown in Figure 10(b).  The computational normal 

stress distribution around spot weld is shown in Figure 11.  As shown in Figure 11, the overall 

normal stress distribution around weld with SWE is in good agreement with that from the 

reference model.  Similarly, the comparison of maximum normal stress using the reference 

model, the simplified model with SWEs and the hybrid method in Zhang et al. [12] is also 

provided in Figure 11.  It is clearly that the simplified model with SWEs can provide more 

accurate than the hybrid method [12] with and same modeling simplicity.   

It should be mentioned that for the coach-peel specimen with single spot weld, the 

reference model shown in Figure 10(a) contains 2,738 nodes, 2,593 elements while the 

simplified model with SWEs shown in Figure 10(b) only contains around 130 nodes and 97 

elements.   
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Figure 10. Reference model versus SWE-based shell element model of a coach-peel test 

specimen: (a) the reference model and (b) simplified model with SWEs for a coach-peel 

specimen with single spot weld.  

 

  
(a)                                                              (b) 

 

Figure 11. The computational normal structural stress rr  near a weld in a coach-peel specimen 

under a point vertical force along Z direction: (a) normal stress rr  distribution; (b) the 

comparison of the maximum normal stresses rr ’s from different models. 
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3.2 Multiple Spot-Welded Components 

Figure 12 shows the comparison of two-spot weld lap shear specimens modeled using the 

reference modeling and SWE-based modeling procedures, respectively.  The boundary 

conditions of the lap-shear specimens with double spot welds in series are similar to those for the 

lap-shear specimen with single weld described in the previous section.  The computed normal 

stress distributions around the 1st and 2nd welds are shown in Figures 13(a) and 13(b), 

respectively.  As shown in Figure 13, the overall normal stress distributions computed with the 

coarse SWE-based model are as accurate as those with the reference model.  Other two traction 

structural stress results share the similar trend, not presented here due to space limitation.  

It should be mentioned that for the lap-shear specimen with double spot welds in series, 

the reference model shown in Figure 12(a) contains 3,596 nodes, 3,434 elements while the 

simplified model shown in Figure 12(b) with SWEs only contains around 170 nodes and 130 

elements.   
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Figure 12. Reference model versus SWE-based shell element model of a lap-shear specimen with 

double spot welds under a symmetric point force along X direction: (a) the reference model and 

(b) simplified model with SWEs for a lap-shear specimen with double spot welds. 

 

 
   (a)                                                                      (b) 

 

Figure 13. The computational normal stress rr  distributions in a lap-shear specimen with double 

spot welds under a symmetric point force along X direction: (a) 1st weld and (b) 2nd weld. 
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Figure 14 shows the schematics of the modified H-Peel component [10] on which fatigue 

test data are available.  Note that the modified H-Shear component [10] is already shown in 

Figure 2.  Due to symmetry, only one half of the component model is considered here, as shown 

in Figures 15 and 16 for the modified H-shear and H-peel components, respectively.  It is 

obvious  that SWEs offers significant simplicity in model generation in addition to 

computational resource, comparing the reference modeling procedure.  

It should be mentioned that for the modified H-shear specimen, the reference model 

shown in Figure 15(a) exclude the boundary regions contains 5,628 nodes, 5,325 elements while 

the simplified model with SWEs shown in Figure 15(b) exclude the boundary regions only 

contains around 448 nodes and 381 elements.  Similarly, for the modified H-peel specimen, the 

reference model shown in Figure 16(a) exclude the boundary regions contains 4,038 nodes, 

3,754 elements while the simplified model with SWEs shown in Figure 16(b) exclude the 

boundary regions only contains around 336 nodes and 273 elements.   

 
 

Figure 14. The schematic of the modified H-Peel component[10].  
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(a) 

 

 
(b) 

 

Figure 15. Reference model versus SWE-based shell element model of a modified H-shear 

components: (a) the reference model with a close-up view around the critical weld and (b) 

simplified model with SWEs. 
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(a) 

 

 
(b) 

 

Figure 16. Reference model versus SWE-based shell element model of a modified H-peel 

components: (a) the reference model with a close-up view around the critical weld and (b) 

simplified model with SWEs. 

 

For the modified H-shear and H-peel components, the hybrid method in Zhang et al. [12] 

failed to calculate accurate stress distribution around the critical weld.  The reason is because the 

incorrect deformation pattern around weld if no kinematic constraints are enforced as that in the 

simplified model with SWEs.  The computational results for the modified H-shear and H-peel 

components are shown in Figures 17(a) and 17(b), respectively.  It is clear that the computational 
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results from the simplified models with SWEs can predict not only the maximum structure stress 

but also the overall structural stress distribution around welds.   

 
(a) 

 

 
(b) 

 

Figure 17. The computational structural stress rr  distribution per unit load near critical weld: 

(a) modified H-shear component; (b) modified H-peel component. 
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4. Structural Stress Based Fatigue Evaluation for CompData Correlatilex on – H Type 

Components 

As additional validations of the SWE method, actual fatigue test data (under constant 

amplitude loading conditions)  from the two complex components analyzed in the previous 

section (Fig. 17) are shown in Fig. 18a The experimental data in terms of applied load range vs 

cycles to failure. It can be clearly seen that the test data from the two components forms two 

distinct scatter bands in Fig. 18a.   With the peak structural stress values per unit load now 

available from Fig. 17, for the modified H-shear and H-peel components were shown in Figure 

18(a).  As expected, the test data presented in terms of the applied load range vs cycles to failure 

from two types of components are far apart from one another.   

For each load range from the experimental tests shown in Figure 18(a), the corresponding 

structural stress range s can be simply calculated or scale up by: 

s sF  =                                                                                                                   (15) 

where F is the experimental load range and s is structural stress per unit load shown in Figure 

17.  The structural stress range can then be inserted into an equivalent structural stress range 

parameter 

It should be emphasized again that for the computational structural stress results in Figure 17, the 

nodal forces/moments are output at virtual nodes in SWEs positioned at the spot weld periphery 

for both H-shear and H-peel components as described in Section 2.5.  Then, an equivalent 

structural stress parameter can be defined as follows which has been shown effective for fatigue 

evaluation of welded components [24] for the correlation of the fatigue test data shown in Fig. 

18a, i.e., :  
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2 1

2 ( )

s
s m

m m

S

t I r


−


 =



                                                                                                           (16) 

where the thickness term 
mmt 2/)2( −

with 𝑚 =3 [24] becomes unity for 1t =  (unit thickness) and 

therefore, the thickness t  can be interpreted as a ratio of actual thickness t  to a unit thickness, 

rendering the term dimensionless.  With this interpretation, the equivalent sS  retains a stress 

unit.  In addition, ( )I r  is a dimensionless integral through numerical integration and expressed 

as a polynomial function of bending ratio r  as: 

1

6 5 4 3 2( ) 0.0011 0.0767 0.0988 0.0946 0.0221 0.014 1.2223mI r r r r r r r= + − + + + +         (17) 

In which 𝑟 defined as: 

b

b m

r


 
=

+
                                                                                                                     (18) 

The final results according to Eq. (18) are shown in Fig. 18b. The effectiveness of the 

SWE based method is obvious by comparing Fig. 18a in addition to its simplicity in FE model 

generation and ability for accommodating coarse FE models.    By using the structural stress 

range calculated at the peak location (Figure 17), the same test data shown in Figure 18(a) can 

now be presented as an equivalent structural stress range versus cycles to failure, as shown in 

Figure 18(b). The good fatigue test data correlation shown in Figure 18(b) clearly demonstrate 

not only the accuracy of the SWE-based structural stress modeling procedure and the 

effectiveness of the structural stress based parameter for fatigue evaluation of complex welded 

components, in addition its obvious advantage in simplicity.  
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    (a)                                                                   (b) 

 

Figure 18: Correlation of fatigue test data of H-Shear and H-Peel components: (a) Applied load 

range versus cycles to failure; (b) Equivalent structural stress range versus cycles to failure.   

 

5. Conclusions  

In this paper, a special shell element formulation was presented for significantly 

simplifying the finite element mesh generation effort for representing spot joints in complex 

structures. Its implementation as a spot weld element (SWE) in the form of a “user element” for 

working with  commercial finite element code (i.e., ABAQUS) was provided for computing the 

traction structural stresses required for fatigue life evaluation of welded structures.  Both single 

spot-welded lab test specimens and multiple spot-welded components were evaluated using SWE 

in this paper. In contrast to conventional spot joint modeling procedures, SWE offers the 

following main advantages:  

(1) Significantly simplified efforts in representing spot joint geometry and related kinematic 

constraints in a finite element model, particularly when dealing with large and complex spot-

welded structures. 

(2) Drastically reduced number of elements needed for correctly capturing stress concentration 

behaviors around spot welds. 
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(3) Mesh-insensitive in traction structural stress calculations, which is essential for achieving 

reliable fatigue evaluation of welded structures. 
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Appendix A. Element Stiffness Matrix of Square SWE 

The followings are the part of entries from the stiffness matrix of SWE with a square 

shape as shown in Figure 5: 
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−  − − − + − − + + −− 
=   − + + − + + + − + 
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Appendix B. Formulation and Validation of Arbitrary Shape of Special Weld Element (SWE)  

The formulation of special weld element (SWE) is based on two linear four-nodes 

Mindlin shell element with consideration of weld region constraints.  The formulation of a linear 

four-nodes Mindlin shell element can be found in many textbooks [22] and will not be elaborated 

here.  Instead, this Appendix will assume the stiffness matrix of the two linear four-nodes 

Mindlin shell elements are available and focus on providing the equations and procedures to 

enforce the force/moment equilibrium equations as explained in Section 2.2 as well as the 

stiffness matrix assembly procedures of SWE.   

With the kinematic constraints in Equation (2) and the force and moment equilibrium 

conditions in Equation (3), the SWE with nodes 1, 2, 3 and 4 can be assembled based on the 

element stiffnesses of Element #1 and Element #2.  The calculation procedures are shown in 

Figure B1 and summarized as below:  

(I) A unit displacement vector U  containing displacement field at nodes 1, 2, 3, and 4 is 

generated.  This unit displacement vector contains only one nonzero entry in a 24 by 1 

displacement vector.  

(II) The kinematic constraints, Equation (2), is applied to generate the displacement values at 

virtual nodes v1, v2, v3.  The displacement values at nodes 2, 3, and 4 are preserved.  By using 

Equation (2), two displacement vectors 
1U  for Element #1 (nodes v1, 2, 3, v2) and 

2U  for 

Element #2 (v2-3-4-v3) can be calculated. 

(III) With the element stiffness matrices 1K  of Element #1 and 2K  of Element #2, the nodal 

forces at nodes v1, v2, v3, 2, 3, and 4 can be calculated as 

1 1 1

2 2 2

K U F

K U F

=

=
                                                                                                                     (B1) 
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where 1F  and 2F  are the force vectors for Element #1 and Element #2, respectively . 

(IV) The force and moment equilibrium conditions, Equation (3), is then applied to transfer the 

nodal forces at virtual nodes v1, v2, and v3 to those at node 1.  Then the force vector F  for the 

SWE with nodes 1, 2, 3, and 4 resulted from the unit displacement vector U  in (I) can be 

calculated, which is the corresponding column of the SWE stiffness matrix. 

(V) Finally, repeat the steps (I) to (IV) with different nonzero entry for the unit displacement 

vector U  in (I) such that the entire SWE stiffness matrix can be calculated.  

 
 

Figure B1. The calculation process of the stiffness matrix of SWE. 

 

It should be noted that the expression of the close-form stiffness matrix is usually 

difficult to be obtained for irregular shape of the SWE with the nodes 1, 2, 3, and 4, the 

numerical integration procedure is needed which is similar to any finite element formulation in 

commercial finite element solvers.  

The validation of the SWE is tested using one quarter of weld region as shown in Figure 

B1.  In Figure B2, the specified boundary conditions are placed at the nodes 1, 2, 3 and 4.  The 
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input file (.inp file) for Abaqus and the command window to use the SWE are shown in Figure 

B3.  It should be mentioned that the preparation of Abaqus input file for the SWE model is 

automatically generated using a Python script.  The summarized nodal force results from the 

SWE model are documented in Table B1 and compared with those from the reference model.  In 

Table B1, the errors between the SWE model and the reference model are also provided, for 

example, (1.2%) represents the absolute error is 1.2%.  The results indicate that the developed 

SWE has similar accuracy compared with Abaqus shell element S4.   

 
 

Figure B2. One element test using SWE for modeling of one quarter of weld region. 
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Figure B3. An example of Abaqus input file and command window to use the SWE. 

 

Table B1. The output nodal forces/moments at virtual nodes from one element test. 

 

 Reference Model Single SWE 

v1 v2 v3 v1 v2 v3 

NFORC1 2380 1198 -4265 2354 

(1.0%) 

1181 

(1.3%) 

-4237 

(0.6%) 

NFORC2 -5667 6930 3403 -5820 

(2.7%) 

6741 

(2.7%) 

3435 

(0.9%) 

NFORC3 -7644 -4316 16046 -7431 

(2.7%) 

-4212 

(2.4%) 

15729 

(2.0%) 

NFORC4 480836 -1132840 49261 479070 

(0.4%) 

-115480 

(2.0%) 

49870 

(1.2%) 

NFORC5 -57211 -847190 816958 -56804 

(0.7%) 

-857091 

(1.2%) 

794010 

(2.8%) 
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