A Special Shell Element Formulation and Implementation for Reliable Fatigue Evaluation
of Spot-Welded Structures

Lunyu Zhang, Shengjia Wu and Pingsha Dong!
Naval Architecture and Marine Engineering
University of Michigan
Ann Arbor, MI 48109, USA
March 2, 2024

Abstract

As virtual engineering becomes increasingly important in today’s competitive
marketplace, there is a growing need for simplified representations of spot joints in finite
element (FE) modeling of complex structures without sacrificing accuracy in structural life
evaluation. For this purpose, this paper presents a special shell element with an implicit spot
weld representation and its numerical implantation as a user element for deployment in
commercial FE code for reliably computing traction structural stress in a mesh-insensitive
manner. The special shell element is formulated by degenerating conventional linear four-nodes
Mindlin shell elements with consideration of the region around a spot weld by imposing
kinematic constraints with respect to a series of virtual nodes. The simplicity and effectiveness
of the special shell element have been validated by comparing with the explicit weld

representation for computing mesh-insensitive structural stresses and fatigue life correlation of

welded components.
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1. Introduction

Typical automotive structures like passenger cars and commercial vehicle cabs contain
about 3,000 and 7,000 spot welds, respectively, as discussed in [1, 2, 3]. Resistance spot welding
(RSW), and more recently laser or friction stir spot welding, serves as a cost-effective means for
joining metal sheets together to form lightweight load-bearing structures, as recently discussed in
Bhatti et al. [1], Junqueira et al. [2], and Yan et al. [3]. Other joining methods like self-piercing
rivets (SPR) [4], rivet-welded (RW) joints [5] and etc., as described in [6] are also increasingly
used for assembly of dissimilar materials for advanced lightweight automotive structures [7]. It
should be noted that fatigue behaviors in these joint types share similar characteristics, as far as
major failure modes are concerned [8]. These failure modes can be classified as Mode A: sheet
failure around the joint and Mode B: weld nugget failure (or rivet failure in rivetted joints), as
shown in Figure 1. Mode A is most important for structural fatigue evaluation since Mode B can

be effectively avoided by specifying an adequate spot weld size or rivet size, as discussed in [8]

and [9].
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Figure 1. The schematic of two failure modes. Mode A (left): fatigue cracking from the
interfacial notch into the sheet. Mode B (right): fatigue cracking from the interfacial notch into
the weld nugget.



For properly evaluating Mode A failure mode in spot-welded structures, a finite element
model (FEM) needs to have an explicit and complete representation of a weld periphery on the
connected sheets, e.g., along the spot weld nugget edge in the base plate, as shown in Figure 2
[10]. In typical automotive structures containing thousands of spot welds, such a spot weld
representation procedure, has been impractical. Note that simplified methods available to date,
e.g., FE representation schemes using ACM2 or CWELD [11] with the stress parameters
calculated via Rupp’s LBF method [8], have been shown inadequate and therefore, require costly
calibrations through fatigue testing and past experiences. As virtual engineering becomes
increasingly important, auto makers and their suppliers strive to remain competitive in the global
marketplace by minimizing or eliminating hardware testing in their vehicle development
processes. This has become particularly challenging as automotive structures are going through
a major paradigm shift towards battery electric vehicles (BEV) for which there exist no prior
experiences nor sufficient historical test data upon which existing structural durability evaluation

tools can be calibrated.
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Figure 2. The schematic of a spot-welded H-Shear component [10] and required weld
representation in a finite element model: (a) illustration of a spot welded H-shear component; (b)
an explicit finite element representation of spot weld joining the steel sheets.

Therefore, a simple and effective spot joint modeling method is highly desirable. Along
this line, Zhang et al. [12] recently presented a hybrid method which is capable of producing
reasonable structural stress results through a novel decomposition technique by taking advantage
of a set of analytical solutions available in the literature. With this technique, the nodal forces
and moments obtained around a group of shell elements surrounding the weld nugget, as shown
in Figure 3, are decomposed into a series of simple load cases for which analytical structural
stress solutions based on shell theory are already available [13, 14, 15]. The final structural
stress solutions can then be obtained through superposition. While the coarse-mesh hybrid

structural stress method in Zhang et al. [12] was shown producing reasonably accurate for

structural stress results for simple laboratory test specimens, its applications for modeling
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complex spot-welded structures are still limited by both the lack of closed-form solutions in
literature for some of the load cases that must be considered when dealing with complex loading
conditions [12-14,16] and the inability of coarse elements for representing complex sheet

deformation mode around a weld nugget.

(b)

Figure 3. Illustration of the coarse mesh hybrid structural stress modeling method in Zhang et.al
[12]: (a) a rectangular spot weld region in a component; (b) a simplified finite element
representation of the spot weld region.

To address the above deficiencies associated with the coarse-mesh hybrid structural stress
method in Zhang et al. [12], a special shell element incorporating spot weld deformation
constraints is presented in this paper, hereafter referred to as Spot Weld Element (SWE). In
Section 2, we start with the SWE formulation by considering two linear four-node Mindlin shell
elements embedded with a series of virtual nodes representing a curved weld edge position
which must satisfy the kinematic constraints and equilibrium conditions consistent with those if
an actual weld is present. The numerical implementation of SWE in the form of user element
(often referred to as “UEL”) in commercial FE codes, e.g., ABAQUS, is then described, along
with how the nodal forces and moments along the virtual weld edge represented by virtual nodes

are used for computing the mesh-insensitive structural stress distribution. Validations are

presented in Section 3. These include detailed comparisons of computational results on single



spot-welded lab specimens and spot-welded complex components among various methods. The
effectiveness of the SWE proposed for correlating fatigue test data collected from two types of
“H-Section” components, i.e., H-shear and H-peel [10], is given in Section 4. Key findings are

given in Section 5.

2. Spot Weld Element (SWE) Formulation
2.1 Structural stress definition

Figure 4(a) shows a through-thickness curvilinear cut plane into sheet thickness around a
spot weld edge on which there exist three traction-based structural stress components under
general loading conditions. The three structural stress components, i.e., the normal, in-plane
shear, and transverse shear structural stresses, can be directly expressed in terms of the

equilibrium-equivalent line forces ( f., f,, f.) and line moments (m,, m,) computed through

the nodal forces and nodal moments obtained from FEA along the spot weld edge. Note that the
nodal forces and moments are defined with respect to a global fixed coordinate system (X', ¥,

Z ) while line forces and moments are defined with respect to the local coordinate system (r, &,

z ) at the weld center shown in Figure 4(b). The line forces ( f,, f,, f.) and line moments (m, ,
m, ) can be solved using a system of simultaneous equations as described in [17, 18] which will

be further discussed in a latter section. Finally, the traction-based structural stress components

can be expressed as follows:
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where o is normal stress, 7, is in-plane shear stress, 7, is transverse shear stress, and ¢ is plate
thickness. In general, the normal stress o, and in-plane shear stress 7, are expressed in terms of
their membrane and bending components, i.e., membrane stress o, and bending stress o, for
normal stress o, and membrane stress 7, and bending stress 7, for in-plane shear stress 7, .
Note that the transverse shear stress 7, is represented only by membrane part of the transverse
shear force in Equation (1).

It should be emphasized that the computational procedure for the three traction-based
structural stress components are given in Dong et al. [19] by using the nodal forces and moments

from shell elements along the nodal positions representing the spot weld edge as shown in Figure

4(c) for achieving element size insensitivity.

Nodes a.t weld Weld edge
edge of interest

Figure 4. Illustration of structural stresses in welded components: (a) the close-up view near a
spot weld in the modified H-shear component [10];(b) the definition of three traction-based
structural stress components near weld edge; (c) the nodes and elements at weld edge in FEM for
evaluation of structural stresses.



2.2 Spot Weld Element (SWE)

Without losing generality, we consider the same representative spot weld region as
illustrated in Figure 3(b). Due to the presence of the spot weld, its local stiffness with respect to
relevant degrees of freedom can be assumed as being equivalent to a rigid inclusion [20], as
originally introduced by Radaj and Zhang [21] for modeling simple spot-welded test specimens.
As such, the concept of SWE is described in Figure 5 in which two conventional linear Mindlin
shell elements neighboring a sector of a rigid inclusion are used to represent a quarter of the
square domain in Figure 3. As shown in Figure 5(a), the 1% shell element consists of 4 nodes
with the numbering sequence as v1-2-3-v2 and the 2" shell element consists of 4 nodes with the
numbering sequence as v2-3-4-v3. Nodes vl1, v2, and v3 represent the rigid inclusion (spot
weld) boundary of radius @ measured from its center defined by Node 1. Therefore, Nodes 1,
vl1, v2, and v3 form a quarter of a circular inclusion region. Within the inclusion or spot weld
region, its effects on the two neighboring shell elements can be described through a set of
kinematic constraints and force/moment equilibrium conditions, leading to the formulation of its
equivalent four-node special shell element shown in Figure 5(b) by following steps which will be
explained in details in latter sections:

15 Step: The element stiffnesses for Element #1 and Element #2 are derived.
2™ Step: The kinematic constraints and force/moment equilibrium conditions are applied at Node
pairs 1-v1, 1-v2, and 1-v3.

3 Step: The stiffness matrix corresponding to the SWE shown in Figure 5(b) is assembled.
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Figure 5. Illustration of SWE: (a) a schematic of the explicit and complete FEM of one quarter of
spot weld region; (b) the SWE of one quarter of spot weld region.
2.3 Kinematic and Equilibrium Conditions around Spot Weld

By considering the spot weld as a rigid inclusion in Figure 5(a), the following kinematic
constraints needs to be satisfied with respect to the coordinate system defined in Figure 5:

ui:ul_gzlx(yi_yl)

vi=y' +l921x(xi—xl)

wi:WI+6?;><(y"—y1)—¢9;x(x"—xl) @)
0, =0,
0 =0
0. =0,

where u', v', W', are the translational displacements, ¢, 6, , 0" are the rotations at virtual node
i, withi =vl,v2,and v3,and u', v', w', 6!, ), 6! are the corresponding displacements and

rotations at Node 1. The x' —x' and 3’ — ' are differences of local coordinates or local

distances between virtual Nodes v1, v2, v3 and 1. Due to the kinematic constraints in Equation



(2), only the displacements and rotations at Node 1 are independent degrees of freedom (DOFs).
The displacements and rotations at virtual nodes v1, v2, and v3 are dependent DOFs.
The nodal positions defining the inclusion boundary , e.g., Nodes 1, v1, v2, and v3, must

satisfy the force and moment equilibrium conditions:

F=3F

i=vl

v3 )
-3

i=vl

F. =iFJ

h:; v3 3)
My =3 M+ Fix(y' =)
i=vl i=vl
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where F!, F,, F! are the forces act at virtual nodes v1, v2, v3, M., M|, M_ are the moments

act at virtual nodes v1, v2,v3,and F,, F), F! are the forces and M, M|, M_ are the moments

act at Node 1. From Equation (3), the nodal forces and nodal moments at virtual nodes can be

transferred to Node 1.

2.4 SWE Element Stiffness Assembly

For convenience, we first define the stiffness matrices of Element #1 and Element #2 in

Figure 5(a) are represented as K' and K, respectively, in the following form:
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kli,l kli,z o kli,23 kli,24
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where i is 1 or 2 for Element #1 and Element #2, respectively. In Equation (4), k;, represents

n

the entry at m™ row and n'" column. It should be noted that the element stiffness matrices K’
and K’ can be easily calculated as their formulations are well documented and can be found in
FEM textbooks [22].

Then, a unit displacement vector U containing displacement field at Nodes 1, 2, 3, and 4

can be defined as:
U=t 0 .. 0 0] (5)

The above represents a unit displacement applied at Node 1 along X direction and other DOFs

are set to zeros. Next, this unit displacement vector U is substituted into Equation (2) to

generate two displacement vectors U' and U’ corresponding to the displacement fields for

Element #1 and Element #2, respectively:

T

24x1
(6)
U*=[1 00 00000000O0O0O0O0OO0OOOT10O0O0O0 O]

24x1

U'=1 00000 000O0O0OO0OOO0OOO01O00O0O0 0]

Then, with the element stiffness matrices X' of Element #1 and K* of Element #2, the

nodal forces for Element #1 and Element #2 can be calculated as

K'U' =F'

K*U* = F*? @)

and the F' and F”are expressed as
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It should be mentioned again the k;’n in Equation (8) are now fully defined with the entries of

element stiffness matrices being given by Equation (4).

These nodal force vectors F' and F* are then substituted into Equation (3) to generate

the nodal force vector F' corresponding to SWE with nodes 1, 2, 3 and 4:

F = Fxl = kll,l + k119,1 +k12,1 + k129,1
Fz = F;;l = k;,l + kéo,l + kzz,l + k220,1
F = le = k31,1 +k211,1 +k32,1 +k221,1
F, = Mi = kj,l +k212,1 + kj,l +k222,1
+k31,1 X(yVI _y1)+k211,1 X(yvz _y1)+k32,1 x(yvz _y1)+k221,1 X(yV3 _yl)
F= Mi = ksl,l + k;3,1 +k52,1 + k223,1

9
- k;’l X (xv1 —x' ) - k;u X (xv2 —x' ) - k32,1 X (xvz —x' ) - k;Ll X (xV3 —x' ) ®
Fy=M!=ky,+k,, +hk;, +k;,,
—ki < (0" =) =k x (07 =) =R x (07 =) =k x (07 =)
+hy, % (x"1 —x' ) +hy X (x”2 —x' ) +h;, % (x”2 —x' ) + ki, X (x”3 —x' )
Fy=-
Equation (9) lists the first 6 entries in the nodal force vector F'. These 6 given entries are the
forces and moments act at Node 1.
Finally, because the element stiffness matrix K of the SWE should satisfy:
KU=F (10)

where U 1is given in Equation (4) and F is given in Equation (9). Because U is a unit vector,

Equation (10) can be written as

T
KU=|:kl,l kz,l k3,1 kyy k21,1 k22,l k23,1 k24,1:| =F (11)

24x1
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Therefore, by comparing Equation (11) and Equation (9), one can easily determine the 1%
column of K.

By repeating the Equations (5) to (12) with different nonzero entry for the unit
displacement vector U in Equation (5), one can calculate the entire K of the SWE. For

example, by letting i entry of U equals to 1 and the other entries equal to 0 as

U=[o 0 w10 0f,
U(j=i)=1 (12)
U(j#i)=0

Readers can then follow the Equations (6) to (12) to calculate the i column of X which will not
be elaborated here.

It is worth noted that the entire element stiffness matrix K of the SWE has the
dimensions of 24 by 24 (4 nodes with 6 DOFs per node). However, due to symmetry, only 300
entries of K are unique. In addition, because the membrane part and plate part of shell element
are decoupled, only 124 entries among that 300 unique entries are nonzero.

If the SWE element by Nodes 1, 2, 3 and 4 happens to form a square with the spot weld
nugget radius a, element size b, material Young’s modulus E, material Poisson’s ratio v, and

plate thickness 7, then the entry k;, of element stiffness matrix K of the SWE can be expressed

as:

13x107 Et(v=3)(7.7a* ~18.5a’b + a’h’ +25.6ab’ —16b* )

k1,1 (l—vz) (13)

Part of the stiffness matrix entries of K for the example SWE given in Figure 5(b) are

documented in Appendix A for readers’ reference.
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It should be noted that for both parabolic elements and arbitrary-shaped quadrilateral
linear elements, the combined stiffness matrix must be defined numerically by imposing

Equations (2) and (3), as presented in Appendix B.

2.5 Structural Stress Computations

For comparison purpose, we first consider the conventional shell element modeling
procedure for the spot weld specimen with an explicit weld representation shown in Figure 2,
hereafter referred to as the reference model. In such a model, plane-remaining-plane within the
weld nugget area is required, which can be implemented as “MPC beam” constraints in Abaqus
[23]. Then, nodal forces and moments along weld nugget periphery (see Figure 4) are collected
by completing FE analysis under given loading and boundary conditions. These nodal forces and
moments are then converted to line forces and moments through Equation (14). The resulting
structural stresses can then be calculated through Equation (1) [18].

In contrast, the newly formulated SWEs in Section 2.4 above offers a much simpler mesh
layout around the spot weld region, as illustrated in Figure 3 in which each of the elements is a
SWE element (see Figure 5b) with spot weld radius represented by a set of virtual nodes (3 in all
examples reported in this paper. A total of four SWEs are used around the spot weld on the top
sheet and bottom sheet, respectively. The top and bottom sheet can be simply connected by one
beam element of diameter a. As such, SWEs interfaced with any commercial finite element code
offer user-element interface with nodal forces and moments at the virtual nodes positioned at the
spot weld periphery. Then, the existing simultaneous equations (Equation (14)), relating nodal
forces/moments to line forces/moments, can be used directly for computing the structural

stresses, as described below.
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The mesh-insensitive structural stress methods [17, 18, 19] were developed based on the
work equivalent argument that the work done by the nodal forces/moments is equal to the work
done by the distributed line forces/moments, the nodal forces and moments are then converted to
the line forces and moments around the nugget edge line (at virtual nodes v1, v2, v3, ...). Thisis
done through a system of simultaneous equations from [17, 18, 19] for converting nodal forces to

nodal line forces along the weld nugget edge line (at virtual nodes v1, v2, v3, ...), as:

M l_l O O B ln—l
3 6 6
K Lo ()L /,
138 6 3 6 2
F3 - 0 l_2 (12 +13) 1_3 f3 (14)
6 3 6
F,_, . . fH
ln—l 0 0 0 Zn_—2 (ln—2 +ln—1)
) 6 3 i
where f,, f,, f;, ... are the local line forces at virtual nodes v1,v2,v3, ..., F|, F,, F,, ... are

local nodal forces in local coordinate systems at the virtual nodes v1,v2,v3, ...,and [/, [, 5, ...

are the element lengths between corresponding nodes. Since the weld nugget edge line along the
nugget periphery is closed, the local line force at virtual node vN is the same as the local line
force at virtual node v1. Similarly, the local line moments can be calculated using the local
nodal moments using the same simultaneous equations, Equation (14). With the calculated local
line forces and line moments, structural stress is then calculated at each virtual nodes on the

periphery of the nugget by the means of Equation (1).
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3. Validation Examples

In addition to a series of one element numerical tests for a quarter of weld region
provided in Appendix B, actual fatigue specimens including both simple laboratory specimens
with single weld and complex multi-weld structural components are presented here to examine

both the accuracy and the robustness of the SWE method for fatigue evaluation purpose.

3.1 Laboratory Specimens with Single Weld
3.1.1 Lap-Shear Specimens

Figures 7(a) to 7(c) show the reference modeling procedure described earlier and the
simplified SWE modeling for the lap-shear specimen with single spot weld. In these models,
one end of the specimen is constrained in all directions and the other side of the specimen is
subjected to axially symmetrical loading (F,) and vertically un-symmetrical loading (E,),
respectively, as shown in Figure 7(a). All the analyses carried out using ABAQUS for which the
linear shell element based SWE formulation described in Section 2 has been coded as a user
element interface referred to as “UEL” in ABAQUS. Outside the spot weld regions (shaded by
red color), “S4” linear shell elements in ABAQUS are used to represent the rest of the test
specimen geometry. Three element sizes (9.5 mm, 11.875 mm, and 14.25 mm) are used for
examining the mesh-sensitivity in structural stress calculation. In addition, the arbitrary shape of
SWEs is also used with approximate element size of 9.5 mm to further validate the accuracy and
robustness of the developed SWE as shown in Figure 7(c).

It should be mentioned that for the lap-shear specimen with single spot weld, the
reference model shown in Figure 7(a) contains 2,596 nodes, 2,457 elements while the simplified

model with SWEs shown in Figure 7(b) only contains around 130 nodes and 97 elements.
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(a) Reference model

# of nodes = 2,596
# of elements = 2,457

s

z

(b) Simplified model with square SWE

Clamped

s

Z

. Shell
Element size (S4)
(©) Simplified model with arbitrary shape of SWE

# of nodes = 130
# of elements = 97

e

z

Figure 7. Reference model versus SWE-based shell element model of a lap-shear test specimen:
(a) the reference model, (b) simplified model with square SWEs and (c) simplified model with
arbitrary shape of SWEs for a lap-shear specimen with single spot weld.

Figure 8 shows the computational results of structural stresses for the lap-shear specimen
with single spot weld under the loading along X direction. As shown in Figure 8, the coarse

SWE-based model offers the same accuracy as the reference model which entails a significant

mesh refinement. All three traction structural stress components computed by using the SWE-
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based models share rather similar accuracy, as compared with the results obtained by using the
reference model. These are normal, in-plane shear, and transverse shear structural stresses, as
shown in Figures 8(a), 8(c), and 8(d), respectively. In contrast, the hybrid structural stress
method described earlier [12] can only compute the normal structural stress due to the lack of the
corresponding analytical solutions for relevant loading cases [13, 14]. It is worth noting that the
hybrid method in Zhang et al. [12] is capable of providing reasonably accurate normal structural

stress distribution with slightly lower peak value, as shown in Figure 8(b).
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©
€
s 57 6
c
g
N 3
©
€
g o
0
mReference mUEL = Hybrid
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o
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(c) (d)

Figure 8. Comparison of all structural stresses along weld nugget edge in a lap-shear specimen
loaded axially: (a) normal stress o, distribution; (b) the comparison of the maximum normal
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stresses o, ’s from different models; (c) in-plane shear stress o, distribution; (d) transverse

shear o distribution.

Similarly, Figure 9 shows the computational normal stress distribution near the weld in
the lap-shear specimen under a point force in Z direction. As shown in Figure 9, the simplified
model with SWE has more accurate results than those obtained using hybrid method [12]. It
should be noted that the relatively inaccurate results from the hybrid method [12] is because the
analytical solutions for this unsymmetric point loading is not well-developed as discussed in
Zhang et al. [12]. The results shown in Figure 9 also indicates that the simplified model with
SWEs have more accurate stress distribution near weld due to a more realistic deformation

pattern around spot weld is enforced by Equations (2) and (3).

25 i T
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— — —Hybrid
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—6— SWE (Element size = 11.875mm)
. SWE (Element size = 14.25mm)
© 15+
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Figure 9. The computational normal stress o, distribution near weld in the lap-shear specimen

with single spot weld under an unsymmetric vertical point force F, along Z direction.

3.1.2 Coach-Peel Specimen
Figures 10(a) and 10(b) show the reference FEM and the simplified FEM with SWEs for

the coach-peel specimen with single spot weld. Similarly, the SWE is only placed around spot
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weld region as shown in Figure 10(b). A symmetric point force F, is applied at one end of the

specimen and the other end is clamped as shown in Figure 10(b). The computational normal
stress distribution around spot weld is shown in Figure 11. As shown in Figure 11, the overall
normal stress distribution around weld with SWE is in good agreement with that from the
reference model. Similarly, the comparison of maximum normal stress using the reference
model, the simplified model with SWEs and the hybrid method in Zhang et al. [12] is also
provided in Figure 11. It is clearly that the simplified model with SWEs can provide more
accurate than the hybrid method [12] with and same modeling simplicity.

It should be mentioned that for the coach-peel specimen with single spot weld, the
reference model shown in Figure 10(a) contains 2,738 nodes, 2,593 elements while the
simplified model with SWEs shown in Figure 10(b) only contains around 130 nodes and 97

elements.
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(a) Reference model

# of nodes = 2,738
# of elements = 2,593

# of nodes = 130 Clamped

# of elements = 97

Shell
(54)

Element size

Figure 10. Reference model versus SWE-based shell element model of a coach-peel test
specimen: (a) the reference model and (b) simplified model with SWEs for a coach-peel
specimen with single spot weld.
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Figure 11. The computational normal structural stress o, near a weld in a coach-peel specimen
under a point vertical force along Z direction: (a) normal stress o, distribution; (b) the

comparison of the maximum normal stresses &, ’s from different models.
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3.2 Multiple Spot-Welded Components

Figure 12 shows the comparison of two-spot weld lap shear specimens modeled using the
reference modeling and SWE-based modeling procedures, respectively. The boundary
conditions of the lap-shear specimens with double spot welds in series are similar to those for the
lap-shear specimen with single weld described in the previous section. The computed normal
stress distributions around the 1 and 2™ welds are shown in Figures 13(a) and 13(b),
respectively. As shown in Figure 13, the overall normal stress distributions computed with the
coarse SWE-based model are as accurate as those with the reference model. Other two traction
structural stress results share the similar trend, not presented here due to space limitation.

It should be mentioned that for the lap-shear specimen with double spot welds in series,
the reference model shown in Figure 12(a) contains 3,596 nodes, 3,434 elements while the
simplified model shown in Figure 12(b) with SWEs only contains around 170 nodes and 130

elements.
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Figure 12. Reference model versus SWE-based shell element model of a lap-shear specimen with
double spot welds under a symmetric point force along X direction: (a) the reference model and
(b) simplified model with SWEs for a lap-shear specimen with double spot welds.
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Figure 13. The computational normal stress o, distributions in a lap-shear specimen with double

spot welds under a symmetric point force along X direction: (a) 1% weld and (b) 2™ weld.
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Figure 14 shows the schematics of the modified H-Peel component [10] on which fatigue
test data are available. Note that the modified H-Shear component [10] is already shown in
Figure 2. Due to symmetry, only one half of the component model is considered here, as shown
in Figures 15 and 16 for the modified H-shear and H-peel components, respectively. It is
obvious that SWEs offers significant simplicity in model generation in addition to
computational resource, comparing the reference modeling procedure.

It should be mentioned that for the modified H-shear specimen, the reference model
shown in Figure 15(a) exclude the boundary regions contains 5,628 nodes, 5,325 elements while
the simplified model with SWEs shown in Figure 15(b) exclude the boundary regions only
contains around 448 nodes and 381 elements. Similarly, for the modified H-peel specimen, the
reference model shown in Figure 16(a) exclude the boundary regions contains 4,038 nodes,
3,754 elements while the simplified model with SWEs shown in Figure 16(b) exclude the

boundary regions only contains around 336 nodes and 273 elements.

Figure 14. The schematic of the modified H-Peel component[10].
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Figure 15. Reference model versus SWE-based shell element model of a modified H-shear

components: (a) the reference model with a close-up view around the critical weld and (b)
simplified model with SWEs.
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Figure 16. Reference model versus SWE-based shell element model of a modified H-peel
components: (a) the reference model with a close-up view around the critical weld and (b)
simplified model with SWEs.
For the modified H-shear and H-peel components, the hybrid method in Zhang et al. [12]
failed to calculate accurate stress distribution around the critical weld. The reason is because the
incorrect deformation pattern around weld if no kinematic constraints are enforced as that in the

simplified model with SWEs. The computational results for the modified H-shear and H-peel

components are shown in Figures 17(a) and 17(b), respectively. It is clear that the computational
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results from the simplified models with SWEs can predict not only the maximum structure stress

but also the overall structural stress distribution around welds.
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Figure 17. The computational structural stress o,, distribution per unit load near critical weld:
(a) modified H-shear component; (b) modified H-peel component.
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4. Structural Stress Based Fatigue Evaluation for CompData—Cerrelatilex en—H Fype

Components

As additional validations of the SWE method, actual fatigue test data (under constant

amplitude loading conditions) from the two complex components analyzed in the previous

section (Fig. 17) are shown in Fig. 18a Fhe-experimental-data-in terms of applied load range vs

cycles to failure. It can be clearly seen that the test data from the two components forms two

distinct scatter bands in Fig. 18a. With the peak structural stress values per unit load now

available from Fig. 17,

structural stress range Ao, can be simply calculated or scale up by:

Ao, =AF %o, (15)
where AF is the experimental load range and o is structural stress per unit load shown in Figure

17._The structural stress range can then be inserted into an equivalent structural stress range

parameter

evaluation-of-welded-compeonents [24] for the correlation of the fatigue test data shown in Fig.

18a,1.e.,+
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AS, =A% (16)

2-m

N (S

£ (2=m)/2m

where the thickness term with m =3 [24] becomes unity for # =1 (unit thickness) and

therefore, the thickness ¢ can be interpreted as a ratio of actual thickness ¢ to a unit thickness,
rendering the term dimensionless. With this interpretation, the equivalent AS| retains a stress
unit. In addition, /() is a dimensionless integral through numerical integration and expressed

as a polynomial function of bending ratio r as:

1

I(r)" =0.0011r° +0.0767° —0.09887* +0.09467° +0.02217> + 0.014r +1.2223 (17)

In which r defined as:

c
r=—>:>=

(18)

o,+0,

The final results according to Eq. (18) are shown in Fig. 18b. The effectiveness of the

SWE based method is obvious by comparing Fig. 18a in addition to its simplicity in FE model

generation and ability for accommodating coarse FE models. By-using-the-struetural stress
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Figure 18: Correlation of fatigue test data of H-Shear and H-Peel components: (a) Applied load
range versus cycles to failure; (b) Equivalent structural stress range versus cycles to failure.
5. Conclusions

In this paper, a special shell element formulation was presented for significantly
simplifying the finite element mesh generation effort for representing spot joints in complex
structures. Its implementation as a spot weld element (SWE) in the form of a “user element” for
working with commercial finite element code (i.e., ABAQUS) was provided for computing the
traction structural stresses required for fatigue life evaluation of welded structures. Both single
spot-welded lab test specimens and multiple spot-welded components were evaluated using SWE
in this paper. In contrast to conventional spot joint modeling procedures, SWE offers the
following main advantages:
(1) Significantly simplified efforts in representing spot joint geometry and related kinematic
constraints in a finite element model, particularly when dealing with large and complex spot-
welded structures.
(2) Drastically reduced number of elements needed for correctly capturing stress concentration

behaviors around spot welds.
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(3) Mesh-insensitive in traction structural stress calculations, which is essential for achieving

reliable fatigue evaluation of welded structures.
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Appendix A. Element Stiffness Matrix of Square SWE
The followings are the part of entries from the stiffness matrix of SWE with a square

shape as shown in Figure 5:
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Appendix B. Formulation and Validation of Arbitrary Shape of Special Weld Element (SWE)
The formulation of special weld element (SWE) is based on two linear four-nodes
Mindlin shell element with consideration of weld region constraints. The formulation of a linear
four-nodes Mindlin shell element can be found in many textbooks [22] and will not be elaborated

here. Instead, this Appendix will assume the stiffness matrix of the two linear four-nodes
Mindlin shell elements are available and focus on providing the equations and procedures to
enforce the force/moment equilibrium equations as explained in Section 2.2 as well as the
stiffness matrix assembly procedures of SWE.

With the kinematic constraints in Equation (2) and the force and moment equilibrium
conditions in Equation (3), the SWE with nodes 1, 2, 3 and 4 can be assembled based on the
element stiffnesses of Element #1 and Element #2. The calculation procedures are shown in
Figure B1 and summarized as below:

(I) A unit displacement vector U containing displacement field at nodes 1, 2, 3, and 4 is
generated. This unit displacement vector contains only one nonzero entry in a 24 by 1
displacement vector.

(IT) The kinematic constraints, Equation (2), is applied to generate the displacement values at
virtual nodes v1, v2, v3. The displacement values at nodes 2, 3, and 4 are preserved. By using
Equation (2), two displacement vectors U ' for Element #1 (nodes v1, 2, 3, v2) and U * for
Element #2 (v2-3-4-v3) can be calculated.

(IIT) With the element stiffness matrices K' of Element #1 and K* of Element #2, the nodal

forces at nodes v1, v2, v3, 2, 3, and 4 can be calculated as

K'U' =F'

KU*=F’ B
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where F' and F’ are the force vectors for Element #1 and Element #2, respectively .

(IV) The force and moment equilibrium conditions, Equation (3), is then applied to transfer the
nodal forces at virtual nodes v1, v2, and v3 to those at node 1. Then the force vector F for the
SWE with nodes 1, 2, 3, and 4 resulted from the unit displacement vector U in (I) can be
calculated, which is the corresponding column of the SWE stiffness matrix.

(V) Finally, repeat the steps (I) to (IV) with different nonzero entry for the unit displacement
vector U in (I) such that the entire SWE stiffness matrix can be calculated.

Generate unit displacement vector U at nodes 1,2,3,4

17
0
0| Kinematic constraints . . Ellel[;llerlt ;11 il .
0 Equation (2) | Displacement vector U' at nodes v1,2,3,v2 - ; Forces F1 at nodes v2,3,4,v3!
0 | Displacement vector /2 at nodes v2, 3, 4, v3 i Eloment #2 ! Forces F2 at nodes v1,2,3,v2!
? 77777777777777777777777777777777777777777777777777 K22 = ;?2 ________________________________
OJ Force equilibrium conditions
LY Jaga ) i y Equation (3)
Kll Kl: KIE K14 Kli Klﬁ . Klll 1 Fxl
4 3 K| K, Ky Ky, Ky Ky K,y 0 F,l
K3 1 K3 2 KS 3 K3 4 K3 ] K3 6 KE 24 O ‘F:'l
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v2 : : : : : : : :
4
T a vl > _K:4,1 Ky, Ky, Ky, Kyus; Ku; — Ky I LU | M |,

Calculated column of stiffness matrix

Figure B1. The calculation process of the stiffness matrix of SWE.

It should be noted that the expression of the close-form stiffness matrix is usually
difficult to be obtained for irregular shape of the SWE with the nodes 1, 2, 3, and 4, the
numerical integration procedure is needed which is similar to any finite element formulation in
commercial finite element solvers.

The validation of the SWE is tested using one quarter of weld region as shown in Figure

B1. In Figure B2, the specified boundary conditions are placed at the nodes 1, 2, 3 and 4. The
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input file (.inp file) for Abaqus and the command window to use the SWE are shown in Figure
B3. It should be mentioned that the preparation of Abaqus input file for the SWE model is
automatically generated using a Python script. The summarized nodal force results from the
SWE model are documented in Table B1 and compared with those from the reference model. In
Table B1, the errors between the SWE model and the reference model are also provided, for
example, (1.2%) represents the absolute error is 1.2%. The results indicate that the developed
SWE has similar accuracy compared with Abaqus shell element S4.

Reference model SWE model

0.01

0.15

Other DOFs are 0

Figure B2. One element test using SWE for modeling of one quarter of weld region.
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Figure B3. An example of Abaqus input file and command window to use the SWE.

Table B1. The output nodal forces/moments at virtual nodes from one element test.

Element number

Abaqus .inp file

*USER ELEMENT,

6 DOFs per node ——1, 2, 3, 4, 5,

*Element, types

g, 19, 1e,

13, 19,
14, 19,
48, 19,
48, 74,
53, 74,
54, 74,
80, 74,

3-D problem

|

TYPE=U1, NODE=4, COORDINATES=3, PROPERTIES=7

&

Ul, ELSET=ELEY

18

, 24
, 11
, 10
, 66
, 65
, 73
, 79

%_J

*UEL PROPERTY, ELSET=ELE1
220000, 9.3, 1.5, 0.2947, ©.2084, ©.2947, 1

E

\_7

Node connectivity

7 properties to UEL

I=SWE

t l—'—J

weld size parameters

Abaqus command window

C:\temprabaqus job=lap_shear user=SWE.for

Abaqus input file name

(lap_shear.inp)

Abaqus UEL subroutine

(SWE .for)

Reference Model Single SWE
vl v2 v3 vl v2 v3

NFORCI1 2380 1198 -4265 2354 1181 -4237
(1.0%) (1.3%) (0.6%)

NFORC2 -5667 6930 3403 -5820 6741 3435
(2.7%) (2.7%) (0.9%)

NFORC3 -7644 -4316 16046 -7431 -4212 15729
(2.7%) (2.4%) (2.0%)

NFORC4 480836 -1132840 49261 479070 -115480 49870
(0.4%) (2.0%) (1.2%)

NFORCS5 -57211 -847190 816958 -56804 -857091 794010
(0.7%) (1.2%) (2.8%)
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