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Fig. 1: DKE results from two studies across three tasks show actual vs. perceived performance percentiles on the X and Y axes,
respectively. The blue line shows a baseline if participants perceived their performance accurately. The yellow dotted line depicts
participants’ perceived performance percentile in a sliding puzzle game (a) and a categorization task using cars (b) and credit (c). The
green color depicts participants’ perceived reasoning ability. Across all three tasks, we observe the canonical curves indicative of DKE:
bottom quartile performers tend to overestimate their performance, while top quartile performers tend to underestimate performance.

Abstract—The Dunning-Kruger Effect (DKE) is a metacognitive phenomenon where low-skilled individuals tend to overestimate
their competence while high-skilled individuals tend to underestimate their competence. This effect has been observed in a number
of domains including humor, grammar, and logic. In this paper, we explore if and how DKE manifests in visual reasoning and
judgment tasks. Across two online user studies involving (1) a sliding puzzle game and (2) a scatterplot-based categorization task, we
demonstrate that individuals are susceptible to DKE in visual reasoning and judgment tasks: those who performed best underestimated
their performance, while bottom performers overestimated their performance. In addition, we contribute novel analyses that correlate
susceptibility of DKE with personality traits and user interactions. Our findings pave the way for novel modes of bias detection via
interaction patterns and establish promising directions towards interventions tailored to an individual’s personality traits. All materials
and analyses are in supplemental materials: https://github.com/CAV-Lab/DKE_supplemental.git.

Index Terms—Cognitive Bias, Dunning Kruger Effect, Metacognition, Personality Traits, Interactions, Visual Reasoning

1 INTRODUCTION

Imagine that two colleagues, Bob and Jane, are tasked with analyzing
visualizations of model output for financial forecasting at their company.
Bob, despite his limited experience in data analysis, confidently takes
charge of interpreting the financial charts. He gravitates towards a line
chart with smoothed trends, which he interprets as conclusive evidence
of growth. His confident interpretation presents an incomplete, overly
simplified view of the data, masking critical fluctuations and anomalies
indicated by other visualizations of the model output. This could
potentially lead to misguided strategic decisions based on an incomplete
understanding of market dynamics. On the other hand, Jane, with a
strong background in financial analysis, focuses on a scatterplot that
details individual data points representing key financial metrics with
confidence intervals around each prediction produced by the forecasting
model. Her interpretation highlights variability and outliers, providing
a more comprehensive view crucial for informed decision-making,
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suggesting a more cautious approach to future investments. Despite
the precision of her analysis, Jane lacks confidence, believing that her
nuanced interpretation might not be the best to base decisions on.

Both Bob and Jane exemplify a cognitive bias known as Dunning-
Kruger Effect (DKE). In the seminal paper titled “Unskilled and Un-
aware of It”, Kruger and Dunning describe a phenomenon in which
the people who perform the worst on various knowledge tests have
an inflated perception of their abilities [42]. Bottom-quartile perform-
ers believed that their performance was above average, while those
in the top quartile underestimated their performance relative to their
peers [42]. This lack of realization about one’s own skill reflects a
metacognitive deficit, i.e., a lack of “knowing what we know” and
“knowing what we don’t know” [2].

DKE can have numerous consequences. In the opening example,
Bob’s tendency to express uninformed views likely prevents other
colleagues with more fruitful perspectives from participating. This
phenomenon may also affect organizations, in which the most capable
people may not be the ones making decisions; instead, those with the
greatest self-perceived ability (and often lesser actual skill) take prece-
dence. Hence, the social consequences of this bias can lead to larger
systemic problems [59]. Namely, DKE can lead to situations wherein
true expertise may not reach the decision-making table, dominated
instead by those who may be unaware of their own lack of proficiency.

We posit that DKE also can critically affect visual reasoning and
judgment tasks. People with limited knowledge in the domain of inter-



est or in visual data analysis practices may be prone to overestimating
their ability to accurately reason with data supported by visualiza-
tions. The consequences of DKE in visual reasoning and judgment
tasks could result in people confidently reporting on flawed analyses
or drawing incorrect conclusions. Likewise, highly skilled users might
underestimate their abilities, which can lead to a lack of confidence in
their interpretations or decisions. This could cause second-guessing of
sound analyses or potentially missing important insights or trends in
the data.

In this paper, we demonstrate that DKE can be replicated in
visual reasoning and judgment across two experiments. In the
first study, DKE can be observed in participants’ visual reasoning
abilities using a sliding puzzle game. In the second study, DKE can be
observed in participants’ visual judgment through use of an interactive
scatterplot to categorize data. Furthermore, our work builds on a prior
body of work in interaction analysis that suggest relationships between
(i) interactive behaviors and personality traits [3] and (ii) interactive
behaviors and cognitive biases [65]. Specifically, we demonstrate that
those who are most susceptible to DKE (i.e., have the biggest gap
between their actual and perceived performance) tend to have higher
values for the conscientiousness personality trait in the puzzle game
(Study 1) and the car task (Study 2) and perceive they have greater
domain familiarity in the car task and credit task (Study 2). In addition,
those who performed at the extreme high and low ends in both studies
exhibited some distinct patterns of interaction.

To our knowledge, this work is the first of its kind to address metacog-
nitive deficits in visual reasoning and judgment. By demonstrating the
presence of DKE in visual reasoning and judgment tasks, we provide
further evidence of its pervasive impact. In addition, understanding
how the bias manifests through interactive strategies and how it relates
to personality traits paves the way towards personalized bias detection
and targeted mitigation strategies.

2 RELATED WORK

Our work is contextualized amongst several areas of prior work, includ-
ing investigations of DKE in other settings, making inferences from
user interactions, and efforts to understand biases in visualizations.

2.1 Dunning-Kruger Effect

In the Cognitive Science community, the term bias refers to errors that
occur when people make decisions using “rules of thumb” or heuristics
[35, 36, 61]. Despite being generally efficient [24, 25], these biases may
lead to ineffective or wrong decisions. For DKE, in particular, even
among highly educated communities (e.g., physicians [11], pilots [50],
reviewers and editors [33]), people exhibit a compromised ability to
accurately assess their own skills.

In Kruger and Dunning’s seminal work [42], they attributed DKE
to a lack in metacognitive abilities; that is, insufficient knowledge
about one’s own knowledge [22]. The effect has been uncovered in
many settings involving medical resident training [54], debate team
performance [20], beginning aviators [56], gun owners’ knowledge
of firearms [20], and tournament players in “Texas Hold’em” poker
and chess [18], among others. Additionally, recent work examined
DKE in the context of nuclear weapons, English grammar and logical
reasoning, and considered personality and cognitive characteristics, in
which the neuroticism trait has been linked to underconfidence, leading
to increased underprecision [57]. Across all of these contexts, the
canonical observation for DKE persists: that those who perform the
worst tend to overestimate their performance, while those who perform
the best tend to underestimate their performance.

We build upon these findings to determine the presence of DKE in
two visual tasks and investigate the correlation between these tasks,
personality traits, and interaction strategies.

2.2 Making Inferences from User Interactions

In this work, we aim to probe reasoning processes pertaining to DKE
among two user groups exhibiting extreme task performance. Prior
work on analytic provenance emphasizes the importance of understand-
ing a user’s reasoning process through their interactions with visual

interfaces to perform analytical tasks [49, 53]. Previous research in the
visual analytics and human computer interaction communities has laid
a foundation for logging, storing, and interpreting a user’s interactions
and activities. Cowley et al., for instance, documented low-level events
in the Glass Box system such as copy/paste, mouse clicks, and win-
dow activations [9], while others such as Willett et al. used historical
interaction data to refine interfaces [71]. Others including Gomez and
Laidlaw [28], Battle and Heer [1], Dou et al. [16], and Brown et al. [3]
focus on predicting and recovering higher level reasoning processes.
Our work leverages these prior insights on analytic provenance, with
the goal of learning how interactions may correlate with DKE.

Additionally, existing research proposes that individual personality
traits can serve as predictors of proficiency, specifically speed and
accuracy when performing tasks [30, 76]. Interactive strategies such
as basic navigation of zoom-in, zoom-out, and pan interactions was
shown to correlate with locus of control, neuroticism, and extraversion
in a “Where’s Waldo”task [3].

We are inspired by these efforts to assess the extent to which we may
observe relationships between personality traits, interactive strategies,
and DKE, aiming to ultimately enable early personalized interventions
by understanding individual tendencies and patterns.

2.3 Human Bias in Visualization

A growing body of work in visualization related to other forms of bias
informs our efforts to explore DKE. For instance, Wall et al. defined
metrics to quantify signals of bias from interactive behavior [64, 66].
Other metrics have been introduced to similarly capture concepts such
as analytic focus [75] and exploration pacing and uniqueness [21].
Some such metrics have been associated with, e.g., selection bias [29]
or anchoring bias [65]. Other researchers have replicated a variety
of other cognitive biases in visual analytics. For instance, Xiong et
al. demonstrated that existing knowledge or beliefs affect individuals’
interpretations of charts and communication with visualizations (the
curse of knowledge) [72], while Cho et al. demonstrated the anchoring
effect in a visual analytic tool by priming [7].

Overarching the study of individual biases are efforts to create char-
acteristic frameworks or taxonomies [14, 67] and identify strategies
to mitigate biases [13, 48, 68, 69]. In addition to the explicit work on
cognitive biases in visualization discussed above, there are other efforts
that inform this work on metacognition in the visualization community.
For instance, numerous studies utilize measures of self-reported con-
fidence, e.g., [34, 39, 46, 52], which is a critical feature for measuring
DKE (particularly in evaluating the gap between perceived and actual
performance). Further, Kim et al. illustrated that people’s interpre-
tations of visualizations resemble Bayesian updating [40], a process
integral to metacognition as it involves the reflection and adjustment of
one’s knowledge base.

3 GENERAL METHOD

We conducted two complementary user studies that cover visual rea-
soning and judgment tasks. In the first study (Section 4), participants
arranged tiles in a 15-puzzle game, and in the second study (Section 5),
participants completed a data categorization task using an interactive
scatterplot. These tasks engage spatial reasoning and pattern recogni-
tion skills [37, 70] as well as interactivity [74], which are critical for
making sense of data in visualizations [74]. In this section we outline
the general method and hypotheses that are common to both studies.

3.1 Procedure

After providing informed consent, participants began with the 20-item
Big Five Personality inventory [15], which produces a score from 4 to
20 for five personality traits: Openness, Conscientiousness, Extraver-
sion, Agreeableness, and Neuroticism. Participants then completed the
main task (15 puzzle game in Study 1; data categorization in Study
2), during which we logged their interactions with the interface. Two
attention check questions were interspersed. Participants were com-
pensated at $10/hour based on the estimated completion time for each
study.



Afterward, participants were asked to estimate their performance
relative to their peers as a percentile along two dimensions: solution
optimality (Study 1) or accuracy (Study 2), and reasoning ability (both).
This estimation was done in a post-survey with questions such as ‘how
efficiently (fewer moves is better) do you think you did relative to your
peers?’ A higher percentile means that the participant perceived that
they performed better than their peers. Participants were also asked to
rate their familiarity with the puzzle game (Study 1) or data domain
(Study 2), e.g., ‘To what degree do you consider yourself familiar with
the puzzle game?’ on a 5-point Likert scale (1: not at all familiar,
5: extremely familiar). We asked participants about their domain
familiarity after the task to prevent any influence on their confidence
or perceived expertise before the task. This approach aimed to gather
unbiased performance data and assess the correlation between perceived
familiarity and actual/perceived performance without pre-task bias.

3.2 Hypotheses

Across the two user studies, we hypothesized that:

H1 DKE in Visualization. We will replicate DKE within the context
of visualization. Specifically, less competent individuals will over-
estimate their task performance relative to peers, while competent
individuals will underestimate their corresponding performance
percentile.

H2 Performance and Interactions. To our knowledge, no previ-
ous work has specifically explored whether there are indicative
behaviors associated with the DKE. Hence, we hypothesize that
there will be detectable differences in interactive strategies used
by individuals who are more and less competent.

H3 Interactions and Personality. People with different personalities
will display different interactive strategies.

H4 Personality and ∆ Performance. The difference between actual
and perceived performance (∆ Performance) quantifies the mag-
nitude of metacognitive miscalibration in DKE. We hypothesize
that there will be correlations between personality traits and ∆

Performance.

H5 ∆ Performance and Domain. Previous studies have demon-
strated that personal familiarity with a particular event or outcome
tends to boost comparative optimism [47]. Hence, we hypothesize
that people’s overestimation of their performance will be posi-
tively associated with their familiarity in the respective domains.

4 STUDY 1: VISUAL REASONING WITH 15-PUZZLE GAME

We selected a puzzle game as our first task because of its relevance
to spatial reasoning [10] and pattern recognition [6] that are key to
reasoning with visualizations [62, 63]. Importantly, it also serves as
a relatively simple task, characterized by few interactive elements,
which can be a valuable starting point to first verify the relevance of
DKE in visualization prior to exploring more complex interactions and
tasks. The goal of this study is to (1) examine if DKE exists in the
context of visual reasoning, (2) investigate users’ interactive behaviors
when performing the task, and (3) examine if their personality traits
are indicative of this bias. To realize the three goals, we designed a
pre-registered experiment.

4.1 Experimental Setup

Task & Interface. The primary view of the 15-puzzle game, as
depicted in Figure 2, features a 4x4 grid with 15 numbered tiles and
one empty space, allowing tiles to be moved by dragging them into
the empty slot (A). The goal of the puzzle is to rearrange tiles in
ascending numerical order (1, 2, ..., 15) in the least number of moves
possible. Below the board, a move counter increments by one with each
move (B), allowing participants to track their total number of moves.
Participants were informed at the beginning of the study that the back
button was disabled to prevent reversing the move count. To guarantee
comparability, all participants started the game with the same initial
configuration (as shown in Figure 2). Users’ interactions (including

tiles clicked, positions they moved from/to, and time stamps of each
movement) while performing the task were recorded for analysis.

Task Difficulty. Every possible state of a 4x4 board is solvable in 0
to 80 moves [4]. We conducted preliminary pilot studies to calibrate
the appropriate task difficulty. These pilot studies involved a variety
of puzzle sizes, ranging from the simpler 8-puzzle (3 by 3 layout) to a
more complex 24-puzzle (5 by 5 layout). These trials were instrumental
in gauging performance across a spectrum of difficulties, leading us to
settle on the standard 15-puzzle (4 by 4 layout) configuration. We chose
an initial configuration that could be solved in 10 moves, as determined
by the A* algorithm [31], indicating a moderate difficulty level.

Fig. 2: 15-puzzle interface with (A) the primary puzzle and (B) move
counter. The tiles shown represent the initial board configuration used in
Study 1.

Recruitment. We conducted a power analysis of pilot data with 18
participants who completed the 15-puzzle using a similar experimental
setup. Our minimum target sample size was 36 participants to obtain .8
power to detect a medium effect size of .25 at the standard α = .05. We
recruited 48 participants in total. Participants were compensated $2.50
for the study which had an estimated duration of 15 minutes (actual
median completion time of 7.5 minutes). Prolific allowed participants
to spend a maximum of 56 minutes on the task; no participants timed
out. Participants were incentivized with an additional $1 performance
bonus if they completed the puzzle in the top 10% based on lowest
move count. The performance bonus was awarded to 23 people who
completed the puzzle in the optimal number of 10 moves. No data were
excluded from analyses due to failed attention checks in this study;
however, 9 were discarded due to (i) data loss resulting in missing logs
(5 people), and (ii) erroneous logs resulting from refreshing the browser
which reset the task (4 people). This may lead to a skew in the data
(e.g., poor performers with high move counts may be the ones who
were more likely to refresh). In total we collected and used data from
39 individuals in our forthcoming analysis.

Participant Demographics. Among the 39 participants who completed
the study, 18 identified as female, 20 identified as male, and 1 preferred
not to disclose. The majority of participants (25) hold a college degree
(Bachelor’s, Master’s, or Doctorate), while 10 have some college or
Associate’s degree, and 4 have a High School diploma. Participants
were on average 34.87 years (SD = 11.71) of age. Participants rated
familiarity with the solution of the puzzle game on average 2.23 out of
5 (with 33 participants reporting a familiarity level of 3 or lower).

4.2 Results

Analysis of DKE is based on a comparison of actual and perceived
performance percentiles, particularly for the top quartile performers
and bottom quartile performers. 23 participants completed the task in
the optimal number of 10 moves. Thus for the forthcoming analysis on
DKE, we defined quartiles of actual task performance primarily based
on minimal move count, further differentiated by task completion time
as an additional performance indicator. Participants spent on average
3.18 minutes (min: 0.22, max: 27.23) to solve the puzzle.

4.2.1 H1: DKE in Visual Reasoning

To test H1, we assigned a percentile ranking for each participant based
on their actual move count, then by time spent to complete the puzzle .



As Fig 1(a) illustrates, bottom quartile participants whose actual

move counts (blue) ranked in the 10th percentile on average, placed

themselves around the 40th percentile (yellow). In the top quartile,

however, participants whose actual performance fell in the 85th per-
centile grossly underestimated their move count compared to their

peers to be in the 65th percentile on average. We found a statisti-
cally significant discrepancy between the actual and perceived per-
centiles for both the bottom quartile (t = −4.11, p < 0.01) and the
top quartile (t = 4.62, p < 0.01). The misjudgment of performance
among the two extreme quartiles was still observed even though per-
ceived performance was significantly correlated with actual perfor-
mance (r(37) = 0.36, p = 0.025). This indicates that although there is
a general alignment between individuals’ perceptions of their perfor-
mance and their actual performance, those at the very high and very
low ends of the spectrum tend to have distorted views of their own
performance. Thus, we find support for H1, consistent with DKE.

Discussion of Results. Our results indicated that DKE is observable
in the context of visual reasoning in the sliding puzzle game. We also
considered possible confounds, e.g., that participants who performed
the fewest movements might not spend the least time completing the
puzzle, as they may be more likely to spend more time strategizing
before moving. However, further exploratory analysis suggests oth-
erwise. On average, the top performers took 0.47 minutes to ‘think’
before making their first move (the time between loading the puzzle
game page and initiating the first move), compared to 1.57 minutes for
the bottom group. In addition, the top performers averaged only 0.29
minutes (SD = 0.14) elapsed between the first and last move, whereas
the bottom group took much longer with 6.65 minutes (SD = 6.41).

We also considered time spent as a measure of success (‘how quickly
(less time is better) do you think you did relative to your peers’), rather
than move count, and nonetheless observed a similar pattern of DKE
(see details in the supplemental materials). While the extent of the
bias varied slightly between the two measures of success (move count
vs. time spent), the overarching trend was consistent: participants at
both ends of the skill spectrum showed discrepancies between their
perceived and actual performances. Likewise, we also considered how
performance compares to individuals’ general perceived reasoning
ability (‘how well do you think your reasoning ability compares to your
peers’) (Fig 1a, green). We again found a comparable result among
top (t = 4.54, p < 0.01) and bottom (t = −5.15, p < 0.01) quartile.
This reinforces the prevalence of DKE across multiple measures of
task success and general reasoning ability. Details are provided in the
supplemental materials.

4.2.2 H2: Performance and Interactions

To test H2, we visually examined the interactions of participants in
four quartiles using lines overlaid on the puzzle grid (Fig. 3). Line
thickness is proportional to the number of times a tile was moved in
the given direction. For example, a horizontal mark in the top right
portion of the figure signifies that participants moved tiles left-right
or right-left into the top rightmost grid cell of the puzzle. The thicker
the line, the more frequently that path was taken. The line widths are
normalized based on each participant’s actual move counts to ensure the
view of the interactions is not dominated by participants who performed
significantly more moves than others in their quartile.

Because 23 participants achieved the optimal solution, Figure 3
reveals the same movement paths for the third (nQ3

= 10) and top
(nQ4

= 9) quartile groups, reflecting a single unique optimal solution.
Low-skilled participants (Q1) tended to randomly explore the board
to find a solution, compared to their higher-skilled peers. We thus
find support for H2 via visual inspection, that there are detectable
differences in interactive strategies used by individuals who are more
and less competent.

Discussion of Results. The interaction analysis highlights differences
in the interactions of participants across varying skill levels during the
puzzle task. However, the ability to discern differences in strategies can
be complicated by the large number of participants who achieved an
optimal solution. Had we chosen a more complex puzzle configuration

(a) Q1 (b) Q2 (c) Q3 (d) Q4

Fig. 3: Interaction strategies by four participant groups (Q1 = lowest
performers and Q4 = highest performers).

or one that had multiple optimal solutions, we may have been able to
observe greater diversity in strategies among the top performers. We
explore this further in the more difficult scatterplot categorization task
in Study 2 (Section 5).

4.2.3 H3: Personality and Interactions

To test H3, we visualized participants’ movement patterns similarly
to the analysis for H2, but stratified by low and high scores for per-
sonality traits rather than low and high task performance. We analyze
each individual personality trait independently, consistent with prior
work on personality traits and DKE [57] and personality traits and
interactions [3]. We confirmed that the distribution of scores for all
five personality traits were normally distributed using a Shapiro-Wilk
test [58] with all p values > 0.05. According to [27], participants’ per-
sonality trait scores are considered ‘average’ if they fall within one-half
standard deviation of the mean. Accordingly, we categorize the middle
40% of scores as average, with each tail (30%) representing high and
low values for each personality trait. Figure 4 illustrates movement
paths with average move counts by varied personality groups.

By visual inspection, we observe that participants with higher scores
for each of four personality traits (conscientiousness, extraversion,
agreeableness, and neuroticism) tended to explore the entire puzzle
grid more evenly to find a solution and generally with higher move
counts, whereas those with a lower score often left blank areas in
certain segments of the grid. However, a significant difference was
observed in move count between individuals with high and low scores
for conscientiousness only (u = 105, p = 0.01).

These preliminary findings could indicate that individuals with lower
scores might lean towards more precise interaction strategies and po-
tentially achieve optimal task performance, although these trends are
not statistically significant for four traits. Overall, we find mixed sup-
port for H3, with observable differences in interaction strategies for
agreeableness, conscientiousness, extraversion, and neuroticism, and
less clear differences for openness.

57.8 ± 141.8 44.5± 80.7 57.5 ± 135.8 36.9 ± 73.5 51.7 ± 94.1

45.1 ± 84.6 12.9 ± 8.6 29.1 ± 64.4 14.7 ± 11.8 12.8 ± 4.0

Fig. 4: Movement path triggered by different personality traits with move
counts Mean ± SD.

Discussion of Results. Our results suggest that participants scoring
high in conscientiousness, extraversion, agreeableness, and neuroticism
appeared to evenly explore the puzzle grid, possibly indicating a more
exhaustive or trial-and-error approach to problem-solving. In contrast,
participants with lower scores in these traits exhibited more selective
interaction with the grid. One potential explanation for the blank areas
in their movement paths could indicate a more contemplative approach
where participants might have spent time strategizing before making
moves which could reflect a more cautious or measured approach to
problem-solving. The mixed support for H3 underscores the com-
plexity of the relationship between personality and problem-solving



Fig. 5: Correlation between personality traits and ∆Performance =
Estimated Percentile−Actual Percentile).

behaviors and emphasizes the need for further research to unpack these
dynamics.

4.2.4 H4: Personality and ∆ Performance

To test H4, we computed Pearson correlation [51] for each of five
personality traits compared to their respective disparity between actual
and perceived performance. We use difference in performance as a
proxy for susceptibility to DKE, e.g., people with a larger magnitude
of ∆ Performance are more prone to metacognitive miscalibration. Fig-
ure 5 depicts personality trait scores (x-axis, ranging from 4 to 20), and
∆ Performance (y-axis, ∆ = Estimated Percentile−Actual Percentile).
When there is a positive/negative slope, it suggests a trend in over-/
under-estimation of performance relative to the personality trait, while
a flatter slope reflects more accurate perception of performance inde-
pendent of personality traits.

Only Conscientiousness (C) was observed to have a significant effect
on perceived performance (r(37) = 0.48, p < 0.01), implying that indi-
viduals with higher conscientiousness scores tend to exhibit a greater
magnitude of overestimation of task performance. Thus, we find weak
support for H4.

Discussion of Results. We observe that individuals high in conscien-
tiousness, known for their meticulousness and strong commitment to
task completion, may exhibit an optimistic attitude in assessing their
capabilities and achievements [55, 60]. This optimism could stem from
lofty personal standards and goals, leading to a self-view that matches
their ideal performance.

While we found a statistically significant correlation for conscien-
tiousness, we note that this result may be sensitive to how we define top
and bottom performers. For example, altering our selection method to
a random choice of 9 from the 23 participants who attained the optimal
move count as the top quartile—instead of further differentiating by
task completion time—eliminated the statistical significance for all
personality traits (see details in Supplemental Materials). This sug-
gests that the significant association with conscientiousness may not
be robust and could be dependent on the performance metrics we
adopted.

4.2.5 H5: ∆ Performance and Domain

To test H5, we investigated the correlation between self-reported do-
main familiarity (from 1-5) and the manifestation of DKE. The Pearson
correlation revealed no significant correlation between the two variables
(r(37) =−0.035, p = 0.83). Thus, we find no support for H5.

Discussion of Results. Our results suggest that the tendency for people
to overestimate their performance is not correlated with their familiarity
with the sliding puzzle game. These results contribute to the ongoing
discourse about the complex nature of self-assessment in cognitive
tasks and highlight the interplay between self-perception and actual
skill levels in various domains [8, 22].

5 STUDY 2: CATEGORIZATION WITH INTERACTIVE SCATTER-
PLOT

In Study 1, we replicated DKE in the context of a puzzle game, in which
bias was measured as a function of perceived optimality of achieving
the solution. We explore a complementary task in Study 2, where
participants categorize data points in an interactive scatterplot. Bias
in this study is measured as a function of the perceived accuracy of
categorization. We build upon Study 1 by seeking to replicate DKE
in a task that increases the complexity of interactions supported and
gets closer to a realistic judgment task facilitated by visualizations . We

present results of a pre-registered within-subjects study exploring DKE
in the context of two categorization tasks in the domains of cars and
credit where participants engage in interactive labeling [38].

5.1 Experimental Setup

Dataset & Tasks. Participants completed two tasks (order counter-
balanced) in different domains. We used datasets from the domains
of car type and credit score level as the general public usually has a
reasonable degree of familiarity with these topics. For the car task,
participants were asked to assign one of three types (SUV, Sedan, Mini-
van) to each point by comparing the provided statistics for each car,
such as engine size and fuel economy (see details in the Supplemental
Materials). Similarly, for the credit task, participants were asked to
assign one of the three levels (Good, Standard, Poor) to each point
based on credit-related traits for each person, such as number of credit
cards and credit history age (see details in the Supplemental Materials).

These domains allow us to understand (1) the generalizability of
DKE in this task beyond a single domain, and (2) varying levels of
task complexity, facilitating the investigation of how these differences
influence task performance [5].

To guarantee that the classes are distinctly separable based on the
attributes of the data, we selected 30 points from each dataset and
selected a subset of attributes to describe each data point: 6 attributes
for the car task and 8 attributes for the credit task. This served as a
proxy for task difficulty, where a pilot study with n = 12 participants
confirmed (t = 4.69, p < 0.01) that the credit task was more difficult
(µaccuracy = 0.33) than the car task (µaccuracy = 0.47).

Interface. We used an interactive scatterplot system in which the
primary view displays the 30 points that represent individual cars or
bank customers (Fig 6 (A)). Hovering on a point shows details about
the particular car or customer in a tooltip (B). To label a point in the
scatterplot, participants can click the appropriate category button (C)
then click the respective points in the scatterplot. The x- and y-axes
can be changed to represent any of the attributes through a drop down
menu (D). Task instructions and interface guidance are presented in a
tooltip when participants hover over the help button (E). As with the
15-puzzle game in Study 1, interactions with the system were logged
including time stamped records of click, hover, and axis interactions.
To ensure data quality, we required participants to classify at least 90%
of data points (≥ 27) before proceeding to the next task.

Procedure. Participants were first presented with a practice task
using a dog breeds dataset (categorize the dogs by breed: Bernedoodle,
Shih Tzu and American Bulldog based on attributes such as amount of
shedding, size, etc.) to become comfortable with the interface prior to
completing the main tasks. Prior to beginning each task, participants
needed to select the default attributes that would be displayed on the x-
and y-axes for the initial visualization, to avoid biasing participants to
use any particular attributes in their decision making. Additionally, we
prefaced the task with an additional visualization literacy assessment
including 7 multiple-choice questions (raw scores ranged from 0 to 7)
specific to scatterplots adopted from VLAT [43] in the preliminary sur-
vey to ensure that participants could accurately interpret the scatterplot
visualization.

Recruitment. We initially recruited 48 participants through the Pro-
lific crowdsourcing platform based on a power analysis of pilot data
with 12 participants who completed the categorization task using a
similar experimental setup. Our minimum target sample size was 44
participants to obtain .8 power to detect a medium effect size of .25 at
the standard α = 0.05. Participants were initially compensated $3.50
for the study which had an estimated duration of 20 minutes (actual
median completion time of 25 minutes led to an adjustment of payment
to $4.85). Prolific allowed participants to spend a maximum of 67
minutes on the task; three participants timed out and their data was sub-
sequently excluded. Participants were incentivized with an additional
$1 performance bonus respectively if they (1) completed a visualization
literacy assessment survey with the highest correctness in the top 5%
and (2) completed the categorization task with accuracy in the top 5%.
13 participants earned performance bonuses: 7 for top performance on



Fig. 6: Interactive scatterplot (A) that shows tooltips on hover (B). It also
features category buttons for labeling (C), x- and y-axis dropdowns (D)
and a help reminder of interface mechanics (E).

the visualization literacy assessment, 3 for the highest accuracy in the
car task, and another 3 for the highest accuracy in the credit task.

No data were excluded from analyses due to failed attention checks
in this study. However, we excluded data from participants with a
visualization literacy score below 3 out of 7, deviating from our initial
pre-registration plan of measuring DKE as a function of visualization
literacy. This decision was based on the realization that a fundamental
grasp of visualization literacy is a crucial prerequisite for meaningfully
measuring DKE. Including participants with poor visualization literacy
could undermine the study’s integrity, akin to measuring DKE through
a literature test presented in a language unfamiliar to the participants.
Finally, two data points were excluded as outliers (outside 1.5 times
the Interquartile Range). In total we used data from 46 individuals in
our forthcoming analyses.

Participant Demographics. 12 participants identified as female, 33
identified as male, and 1 identified as non-binary. The majority of
participants (31) hold a college degree (Bachelor’s, Master’s, or Doc-
torate), while 9 have some college or Associate’s degree, and 6 have
a High School diploma. Participants were on average 30.60 years old
(SD = 9.48). After excluding individuals who achieved a scatterplot
literacy score of less than 3 out of 7, the remaining participants achieved
average scores of 5.18 (min = 3, max = 7) after applying the correction-
for-guessing method [12, 23]. Participants reported average familiarity
of 2.57 out of 5 for cars (35 participants rated 3 or lower) and 2.98 for
credit (29 participants rated 3 or lower).

5.2 Results

In this study, we define performance based on categorization accu-
racy. Top performers (top quartile) are those individuals who achieved
the highest categorization accuracy (largest number of points labeled
correctly), while bottom performers (bottom quartile) are those who
achieved the lowest categorization accuracy. To evaluate DKE, we
compare participants’ actual categorization accuracy to their perceived
accuracy relative to their peers. Participants achieved on average
46.7% accuracy (SD = 18.3%) in the car task and 32.59% accuracy
(SD = 10.2%) in the credit task. Participants spent approximately 3.47
minutes on the car task and 5.36 minutes on the credit task.

5.2.1 H1: DKE in Visual Reasoning

Consistent with the findings of DKE in the sliding puzzle game in Study
1, we likewise observe DKE for both the car and credit categorization
tasks (Figure 1 (b and c, respectively)). Participants in the bottom quar-
tile of the car task (Figure 1 (b), blue), with an average accuracy in the

15th percentile, overestimated their accuracy (42th percentile, Figure 1
(b), yellow) relative to their peers (t =−3.36, p < 0.01). Conversely,

participants in the top quartile, who scored in the 90th percentile on

average, significantly underestimated their accuracy (37th percentile)
relative to their peers (t = 6.19, p < 0.01). A congruent pattern was
observed in the credit task (Figure 1 (c)) as well, where bottom quartile

participants, scoring in the 15th percentile (Figure 1 (c), blue) on aver-

age, overestimated their accuracy (50th percentile, Figure 1 (c), yellow)

relative to their peers (t =−4.27, p < 0.01), while top quartile partic-

ipants, scoring in the 90th percentile on average underestimated their

accuracy (57th percentile) relative to their peers (t = 4.95, p < 0.01).
This finding supports H1, less competent individuals overestimate their
performance relative to peers, while competent individuals underesti-
mate their performance.

Discussion of Results. These findings offer an empirical understanding
of the relationship between self-assessment and actual performance in
both low-skilled and high-skilled participants in an interactive scatter-
plot categorization task across two domains, contributing to the growing
body of knowledge that DKE is a generalized pattern rather than a task-
specific anomaly. Similar to Study 1, we considered an individual’s
general perceived reasoning ability relative to their peers (Fig 1(b and
c, green)) and again found comparable results (car: bottom quartile
(t =−6.11, p < 0.01), top quartile (t = 5.45, p < 0.01); credit: bottom
quartile (t =−4.00, p < 0.01), top quartile (t = 4.55, p < 0.01)).

We note that accuracy in the credit task was chance, suggesting
higher task difficulty. This could be due in part to the greater number
of attributes increasing task complexity. It is unlikely participants
categorically misunderstood the task given (1) the higher accuracy
(47%) in the car task, and (2) the higher average self-reported credit
familiarity level (µcar = 2.57 vs. µcredit = 2.98) with 22 participants
rating 3 or above for cars and 32 participants rating 3 or above for
credit. Detailed distributions can be found in supplemental materials.

5.2.2 H2: Performance and Interactions

To test H2, our analysis was divided into three components of inter-
active behavior, including (1) rate of interaction with data labeling,
(2) think time preceding an interaction, and (3) interaction sequences,
which can reflect potential strategies employed by participants.

Interaction Rate. Previous research has identified distinct patterns
in user behavior where some individuals tend to engage in a metic-
ulous contemplation of each action, resulting in slow, deliberative
manipulation of input devices, whereas others opt for more rapid exe-
cution [26]. In this study, top and bottom quartile participants in the
car task registered 8.75 and 7.55 interactions per second respectively
(t =−0.566, p = 0.58), while in the credit task, the corresponding rates
were 6.02 and 8.19 interactions per second (t =−0.541, p = 0.31). In
both scenarios, no significant differences in interaction rate were de-
tected among top and bottom quartile.

Think Time. The think time metric is operationalized as the tem-
poral interval from the end of one interaction to the initiation of the
subsequent interaction. We found a significant difference in think time
between two consecutive interactions for the top and bottom quartiles
only in the credit task (u = 1826896, p < 0.01) using Mann-Whitney
U test [44]. We further deconstructed this analysis by interaction type
(e.g., considering clicks and hovers separately). As depicted in Fig-
ure 7, the left segment of each figure illustrates the mean think time
preceding each type of interaction [1], and the right segment enumer-
ates the average counts of the corresponding interaction types [1] for
the car (a) and credit (b) tasks. Given that multiple pairwise compar-
isons were made, the Bonferroni correction [17] was applied to control
the family-wise error rate, adjusting the significance level from 0.05
to 0.01. For think time by interaction type, no significant differences
were observed between the two quartiles. Similarly, no significant
differences in interaction counts were found between the two groups.
Interaction Sequences. Interaction sequences could reveal underly-
ing strategies employed by users during the categorization task. To
assess this, we computed a transition matrix, aimed at uncovering
common sequential patterns of interactions. Figure 8 demonstrates
the frequency of one interaction type (x-axis) succeeded by another
interaction type (y-axis), stratified by both high-skilled participants
and low-skilled participants in car (a) and credit (b) tasks. Each ele-
ment within the transition matrix has been normalized relative to the
cumulative sum of its corresponding row. This normalization means
that each element now represents a proportion of the total for that row,
ensuring a fair comparison of transition probabilities between differ-
ent types of interactions (i.e., significantly more ‘hover’ interactions



(a) Car

(b) Credit

Fig. 7: Average think time (left) preceding interaction types with 95%
confidence interval and corresponding average interaction counts (right)
with 95% confidence interval for the car (a) and credit (b) tasks.

occurred compared to ‘change axis’ interactions). Cells within the
matrix are color-coded, with darker shades signifying sequences of
interaction types that occur with greater frequency. We then flattened
each matrix into one-dimensional vectors and calculated the Pearson
Correlation Coefficient [51] between the two vectors, yielding a value
of r(22) = 0.93, p < 0.01 for the car task, r(22) = 0.91, p < 0.01 for
the credit task. The significant correlation between the two vectors
suggests there were no real differences in interaction patterns across
bottom and top quartiles in both tasks.

(a) Car Task: bottom (left) and top (right) quartiles

(b) Credit Task: bottom (left) and top (right) quartiles

Fig. 8: Transition matrix representing interaction sequences.

Discussion of Results. While discernible differences appeared in inter-
action patterns in the 15-puzzle game in Study 1, we observe relatively
little distinction between interactive strategies of top and bottom quar-
tile participants in the categorization tasks. We observed no differences
in interaction rate or interaction sequences, and marginal differences

in think time for some specific interaction types. Collectively, these
findings provide little support for H2, that there are detectable differ-
ences in interactive strategies used by individuals who are more and less
competent. Inconsistent differences observed across some measures of
interactive strategy may be attributable to the heightened complexity
of the task and breadth of available interactions leading to individual
differences in task approach.

5.2.3 H3: Interaction and Personality

To test H3, we performed similar analysis as H2, focusing on three
key dimensions of participants’ decision-making behavior: interaction
rate, think time, and interaction sequences; but in this analysis stratified
by low and high score categories for five personality traits. Similar to
Study 1, participants’ personality trait scores were standardized.

Interaction Rate. We computed the interaction rate for high and low
scores on five personality traits. The results are shown in Table 1. We
applied Bonferroni correction [17] to control the family-wise error
rate, adjusting the significance level from 0.05 to 0.01. However, no
significant differences in interaction rates were observed between high
and low scores for the five personality traits in either task.

O C E A N

Score/Task Car Credit Car Credit Car Credit Car Credit Car Credit

High 9.20 7.22 10.19 7.23 8.54 7.38 8.25 6.68 9.07 9.25
Low 9.43 6.14 8.61 8.88 10.21 6.83 10.67 8.70 8.81 7.37

Table 1: Interaction rate (interactions per second) for individuals with
high/low scores on five personality traits.

Think Time. In an effort to understand the determinants of think time
preceding each type of interaction, we fit linear mixed-effects models,
with interaction type, personality traits and their interaction terms as
fixed effects, and participants as a random effect. Five categories of
interaction types (‘click’, ‘drag’, ‘hover’, ‘zoom’, and ‘change axis’)
were included in the model as a categorical variable and the interaction
type ‘click‘ was used as the reference category in the coding scheme.

We can see the results stratified by high and low score in the five
personality traits for the car task (Table 2) and credit task (Table 3).
A lower score in Extraversion exhibits a significantly positive impact
on the think time preceding the ‘change axis’ interaction in both tasks.
Other traits also have significant effects on think time for one of the
tasks. For example, in the car task, both higher and lower scores in
the Conscientiousness trait are significantly positively correlated with
think time preceding change axis interaction. This could suggest that
the effect of Conscientious on think time is significantly modulated
by the type of interaction. Specifically, the ‘change axis’ interaction
might require more deliberation, making typically less conscientious
individuals spend more time thinking, which highly conscientious
individuals are inclined towards. However, these effects vary across the
two tasks.

O C E A N

Task/Score high low high low high low high low high low

Change axis -0.31 -1.40 111...777888∗ 222...000444∗∗ 1.08 222...444555∗ -0.66 0.77 1.59 -0.43
Drag 0.81 0.52 -0.10 0.3 0.33 0.53 -0.39 -0.30 -0.43 0.38
hover 0.21 000...999222∗ -0.17 0.56 0.37 111...000999∗ 0.19 -0.15 −−−000...999777∗ 0.03
Zoom -0.32 0.12 -0.11 0.83 -0.19 0.66 0.72 0.25 -0.92 0.20

Table 2: Car: determinants of think time.

* represents p-value < 0.05; ** represents p-value < 0.01

Interaction Sequence. Utilizing a method analogous to that delineated
in Section 5.2.2, we examined the interaction sequence and interaction
attention among participants scoring high/low on five personality traits.
We computed the transition matrix to identify underlying sequential
patterns exhibited by the high- and low-scoring individuals. Significant
differences were not detected in either of the two tasks.



O C E A N

Task/Score high low high low high low high low high low

Change axis 0.56 333...111333∗∗ -0.91 -0.08 -0.98 333...111888∗∗ -1.55−−−333...333222∗∗ -0.34 -0.17

Drag -0.08 -0.01 -0.11 1.60 -0.28 0.32 -0.13 0.16 −−−111...999000∗∗ 0.09

hover 0.54 0.44 000...777444∗ 0.36 -0.62 -0.34 -0.59 -0.19 -0.44 -0.25

Zoom 0.09 0.15 0.46 −−−111...555666∗∗−−−000...777888∗ -0.17 0.03 -0.47 -1.01 0.22

Table 3: Credit: determinants of think time.

* represents p-value < 0.05; ** represents p-value < 0.01

Discussion of Results. Although significant effects were observed for
think time for specific personality traits combined with certain interac-
tion types, these effects varied between the two tasks. Despite sharing
commonalities in nature and setting, the unique domain-specific at-
tributes and possible differences in task complexity likely contributed
to these divergent outcomes. Thus, it is crucial to recognize that while
some findings are statistically significant, they are specific to the con-
texts we studied. Overall, these findings provide mixed support for
H3.

5.2.4 H4: Personality and ∆ Performance

To test H4, we conducted a Pearson correlation analysis to discern if
there was a correlation between individual personality traits and the
susceptibility to DKE (∆ Performance = Estimated Percentile - Actual
Percentile). As depicted in Figure 9, only the Conscientiousness (C)
trait showed a significant effect in the car task (r(44) = 0.431, p <

0.01), While we observe some nonzero trend lines for other traits, the
differences are not statistically significant. These findings provide little
support for H4 , that there are some correlations between personality
traits and task performance.

(a) Car

(b) Credit

Fig. 9: Correlation between personality traits and ∆Performance =
Estimated Percentile−Actual Percentile) for (a) the car task, and (b)
the credit task.

Discussion of Results. While we observed a notable relationship be-
tween Conscientiousness and miscalibration of perceived performance,
this pattern was not evident in the credit task, which may suggest a
context-dependent relationship, e.g., confounded by task difficulty.

5.2.5 H5: ∆ Performance and Domain

To test H5, we consolidated the analysis across both the car and credit
tasks to probe for a correlation between self-reported domain familiarity
and the manifestation of DKE.

The Pearson correlation analysis revealed a significant positive cor-
relation between the difference in performance and domain familiarity
(r(90) = 0.448, p < 0.01) (see Supplemental Materials). This finding
suggests that individuals who perceive themselves as more familiar
with a specific domain may be likely to overestimate their abilities
within that domain, whereas those who report less familiarity may con-
versely underestimate their capabilities, supporting H5, that people’s
overestimation of their performance is positively associated with their
familiarity of the domain.

Discussion of Results. Individuals with higher self-reported familiarity
in a specific domain were found to overestimate their abilities, which,
in a broad sense, aligns with the general trend of DKE that people with
lower ability at a task (using domain familiarity as a proxy for ability)
tend to overestimate their ability [20]. On the other hand, the lack of
significant correlation in Study 1 suggests that this trend might not
be universally applicable across all domains or that other factors may
influence the relationship between domain familiarity and accuracy of
self-assessment.

5.2.6 Exploratory Analysis

To understand the extent to which our findings are attributable to the
use of visualization specifically, rather than simply an artifact of the
labeling task, we conducted additional exploratory analyses to analyze
how users engaged with the axes of the scatterplot by selecting different
attribute pairs. Some pairs are inherently more informative for the
tasks, i.e., would produce more clear clustering of correctly labeled
points. To quantify this, we calculated the ratio of inter-class to intra-
class distances for each attribute pair. Here, inter-class distance is the
average distance between category centroids, and intra-class distance
measures the distance of data points from their category’s centroid [45].
A higher ratio signifies better category separability, which we will
refer to as a more informative attribute pair. Analysis details are in
the Supplemental Materials. We found that top performers tended to
more often choose more informative attribute combinations, suggesting
that the interactions with the axes and the resulting visual relationship
between attributes likely contributed to the disparity in performance.

For instance, in the car task, top performers most often chose the
combination Weight × Engine Size with a ratio of 2.6 compared to
the bottom performers’ most chosen combination of Wheel Base ×

Engine Size with a less informative ratio of 1.35. Likewise, in the
credit task, top performers most often chose the combination Number
of Loans × Outstanding Debt with a ratio of 2.54 compared to the
bottom performers’ most chosen combination of Monthly Balance ×

Number of Delayed Payments with a less informative ratio of 1.02.
These disparities in ratios could signify the successful use of visual
clustering strategies for the labeling task.

Our findings further showed that in both tasks, 30 out of 46 par-
ticipants interacted with the axes more than the default requirement
(twice, to set the initial configuration), indicating a more meaningful
engagement with the interactive axes. Analysis of these participants
revealed varied strategies: some participants employed explicit spatial
techniques, as evidenced by feedback like, “I tried to organize them into
sensible groups using the axis to sort them," highlighting a deliberate
manipulation of visual components. In contrast, others followed more
ambiguous methods not directly tied to visualization, e.g., one partici-
pant said “I decided to categorize credit scores based on their monthly
balance and number of delayed payments, I believe. I think these were
the most important among all other factors." While we cannot assert
with absolute certainty that mentioning specific attribute pairs equates
to direct interaction with visual elements, such references suggest an
inclination towards visual analysis rather than simply labeling in the
absence of the visual analysis setting. Moreover, the widespread use of
visual components among participants underscores the critical role of
visualization in their decision-making process. By manipulating axes,
identifying patterns, and grouping data visually, users are engaging
in a form of visual reasoning that leverages spatial relationships and
graphical representations to draw conclusions.

We also found that DKE persisted even when we focused our ex-
ploration on the subset of 30 participants who interacted more heavily
with the axes, doing so at least twice. Particularly, we observed a
significant overestimation of performance by the lower-performing
group in both the car task (t = −2.15, p = 0.049) and the credit task
(t =−3.09, p < 0.01). Conversely, the higher-performing group signifi-
cantly underestimated their abilities in both the car (t = 4.55, p < 0.01)
and credit (t = 3.07, p < 0.01) tasks. Collectively, these exploratory
findings increase our confidence that the observed phenomenon is at-
tributable to DKE in judgments facilitated by visualization.



6 DISCUSSION

Implications of DKE in Visualization. Across two experimental
contexts we observed DKE, the systematic miscalibration of perceived
ability by top and bottom performers. Because DKE has been observed
in many diverse domains [18, 20, 56], it is somewhat unsurprising that
DKE appears to affect the visualization context as well. In fact, the
categorization task in Study 2 taken outside the interactive interface is
not unlike some academic contexts where DKE has been previously
observed, e.g., in written exams [42]. Nonetheless, there are critical dif-
ferences that the contexts of the present studies afford, namely through
analyses of DKE with respect to interactive strategies and personality
traits. The observable differences in interaction patterns across profi-
ciency levels, such as movement paths in the 15-puzzle game (Figure 3)
and counts for interaction types (Figure 7) in the categorization task
suggest ways that DKE may uniquely influence interactive behaviors or,
conversely, that interactive behaviors may be indicative of susceptibility
to DKE.

Similarly, some personality traits, specifically people who exhibit
high Conscientiousness may be more prone to a miscalibration between
ability and perception, which was particularly noted in the contexts
of the puzzle game and the car task. These findings enhance our
understanding of visual reasoning and judgment and suggest potential
applications such as tailored guidance and bias mitigation, specifically
by adapting to a user’s proficiency level and personality traits.

For instance, consider a financial investment platform designed to
empower users to make informed decisions about their investment
strategies that dynamically adapts to an individual’s susceptibility to
biases like DKE. Individuals with a tendency to over-estimate their
abilities (e.g., novices, individuals with high conscientiousness, etc.)
could benefit from techniques like subjective probability correction,
wherein the visuals shown to users are adjusted to counteract biased
interpretations of uncertainty in the data [73]. High-skilled individuals,
on the other hand, could benefit from systems that implement tech-
niques to boost confidence in their visualization designs, interpretations
of data, etc. using psychological skill training techniques such as goal-
setting or positive self-talk [32]. In doing so, this provides a tailored
experience that compensates for an individual’s tendency to over- or
underestimate their own abilities. Moreover, incorporating personality
trait assessments into the platform design could enable interfaces that
are more responsive to individual differences, offering personalized
feedback to help users accurately evaluate their investment strategies.
This approach enables designers and developers to create more intu-
itive and effective interfaces that cater to a diverse range of skill levels
and cognitive styles. However, systems that utilize these personalized
strategies would need to take precautions to protect the privacy of users.

Metacognitive Bias or Statistical Artifact? The underlying cause
driving the DKE continues to be a matter of intense debate among
researchers. Some critics of DKE argue that the self-assessment errors
observed by Kruger and Dunning can be largely reduced to statistical
artifacts rather than true metacognitive deficits [5, 41]. Specifically,
Krueger et al. argue that a combination of a statistical artifact known
as “regression toward the mean” and a “better-than-average” heuristic
might explain the observed gaps between actual and perceived per-
formance, particularly the larger discrepancies at lower skill levels.
This occurs as imperfect correlations between actual and perceived
performance inevitably lead the self-assessments of low performers
to regress back toward the average, further amplified by the common
belief that one is above average, while high performers tend to un-
derestimate theirs due to regression to the mean, somewhat coun-
terbalanced by the same better-than-average belief. Consequently,
high performers appear to make more accurate self-assessments than
low performers [41]. But our findings from Study 2 differ from the
anticipated pattern, with larger gaps for higher skilled participants
in one of the tasks. Specifically, in the car task, the discrepancies
(∆ = Estimated Percentile−Actual Percentile) were ∆top = −53 and
∆bottom = 27 percentile points, and the credit task displayed discrep-
ancies of ∆top = −33 and ∆bottom = 35 percentile points. While an
asymmetry was indeed detected, the gap at the lower end was consid-

erably smaller in the less challenging car task (uaccuracy = 46.7%) and
slightly larger in the more demanding credit task (uaccuracy = 32.59%).
This suggests that in the easier task, less skilled individuals exhibited
better calibration, marked by a smaller discrepancy, while in the harder
task, their calibration was less accurate compared to those with higher
performance, evidenced by a slightly greater discrepancy. Contrary to
another criticism that highlighted the instrumental role of task difficulty
on the asymmetry in DKE [5]—wherein less skilled individuals were
thought to have better calibration in moderately difficult tasks compared
to higher performers—our results suggest a reversal of this relationship.

In response to criticisms above, supporters argue that even after
adjusting for statistical reliability concerns in real-world tasks with eco-
logical validity, the DKE pattern still persists, albeit slightly attenuated,
but does not disappear [19, 20].

Confounding Domain Familiarity? Does over- and under-estimation
of performance correspond to domain familiarity? To assess whether
domain familiarity introduced confounding effects, we analyzed H1 by
stratifying the data based on different levels of familiarity across the
two studies. Given the limited data available, we divided participants
into two groups: those with a familiarity rating of ≥ 3, and those with
a rating of ≤ 2 (on a scale of 1-5). Consistent and significant DKE
trends were observed in both studies across the divided groups, with the
exception of the bottom quartile in the credit task for those who rated
familiarity ≤ 2, where the result followed the trend of overestimation
in the bottom quartile, but was not statistically significant for this
group in this task (t = −0.97, p = 0.37). This finding invites further
investigation into how task-specific factors and the level of domain
familiarity influence self-perception of skills and performance. Details
of this analysis are provided in the supplemental materials.

Limitations and Future Work. One limitation of our studies is that
we focused primarily on interaction sequences and rate as measures of
interactive strategy. However, there are many other facets of interactive
behavior, potentially influenced by DKE, that were not captured in
this analysis. This could include measures such as participants’ error
correction frequency (how often participants change their labels), which
can reflect their confidence and self-awareness. Moreover, passive
interactions, such as gaze patterns, may also be revealing of underlying
strategies. The analysis of gaze can serve as a useful indicator of
attention and cognitive processing, complementing explicit interaction
patterns. To delve into this aspect, we conducted an exploratory eye-
tracking analysis, focusing on passive interaction patterns through gaze.
Further details can be found in the Supplemental Materials.

Additionally, future work could explore methodologies for integrat-
ing gaze data with other interaction metrics in more nuanced ways. This
might involve developing new analytic techniques or machine learning
models that take into account both the users’ active interactions and
their passive gaze behaviors together. Another valuable direction for fu-
ture work is to develop and evaluate interventions to mitigate the effects
of DKE. Potential strategies could include designing adaptive interfaces
that respond to real-time analysis of DKE-related behaviors or provide
feedback on user performance such as in the form of peer percentile
rankings, thus aiding in the calibration of their self-assessment.

7 CONCLUSION

Across two online studies focusing on visual reasoning and judgment,
we observed the Dunning-Kruger Effect. Specifically, two extreme per-
formance groups misjudged their abilities: the bottom quartile tended
to overestimate, while the top quartile tended to underestimate their
performance. Our results suggest that there are some observable differ-
ences in interactive strategies employed by individuals that corresponds
with high and low performance across the two studies. We also discov-
ered certain personality traits such as conscientiousness significantly
correlate to the susceptibility to DKE in some of the tasks, which are
prone to underestimate or overestimate one’s performance. The find-
ings from these two studies contribute to an empirical foundation for
future personalized interventions to improve the visual data analysis
process rooted in personality traits and interactive strategies.
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