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Abstract: Plant traits are often measured in the field or laboratory to characterize stress responses. 
However, direct measurements are not always cost effective for broader sampling efforts, whereas 
indirect approaches such as reflectance spectroscopy could offer efficient and scalable alternatives. 
Here, we used field spectroscopy to assess whether (1) existing vegetation indices could predict leaf 
trait responses to heat stress, or if (2) partial least squares regression (PLSR) spectral models could 
quantify these trait responses. On several warm, sunny days, we measured leaf trait responses in-
dicative of photosynthetic mechanisms, plant water status, and morphology, including electron 
transport rate (ETR), photochemical quenching (qP), leaf water potential (Ψleaf), and specific leaf 
area (SLA) in 51 urban trees from nine species. Concurrent measures of hyperspectral leaf reflectance 
from the same individuals were used to calculate vegetation indices for correlation with trait re-
sponses. We found that vegetation indices predicted only SLA robustly (R2 = 0.55), while PLSR pre-
dicted all leaf trait responses of interest with modest success (R2 = 0.36 to 0.58). Using spectral band 
subsets corresponding to commercially available drone-mounted hyperspectral cameras, as well as 
those selected for use in common multispectral satellite missions, we were able to estimate ETR, qP, 
and SLA with reasonable accuracy, highlighting the potential for large-scale prediction of these pa-
rameters. Overall, reflectance spectroscopy and PLSR can identify wavelengths and wavelength 
ranges that are important for remote sensing-based modeling of important functional trait re-
sponses of trees to heat stress over broad ranges. 

Keywords: chlorophyll fluorescence; leaf water potential; specific leaf area; partial least squares  
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1. Introduction 
Trees in many regions are likely to experience more frequent and intense heat and 

water-stress events as the climate warms [1–4]. Many urban trees are at the leading edge 
of this shift given the urban heat island effect [5], thus providing examples of what other 
trees are likely to exhibit in the coming decades and making urban trees a management 
and research priority [6]. Temperature and drought-induced impairments could decrease 
photosynthetic rates and lead to increased mortality in extreme cases [7]. Plant functional 
traits associated with chlorophyll fluorescence [8–10] and leaf water potential (Ψleaf) 
[11,12] can serve as indicators of photosynthetic rates and plant water status, making them 
valuable metrics of heat and water-stress responses in trees. However, it is challenging to 
monitor these physiological responses at different scales because they are dynamic, influ-
enced by fluctuating environmental conditions, and require sophisticated measurement 
techniques. 
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Recent technological developments in remote sensing show the potential to monitor 
forest ecophysiological responses to climate warming. Specifically, satellite [13–16] and 
airborne imaging spectrometers [17–20] may enable remote detection of stress levels and 
physiological responses over broad spatial ranges. To support remote sensing, empirical 
relationships between selected traits and spectral signatures at the leaf level must be es-
tablished. Therefore, field-based studies that integrate leaf-level physiological measure-
ments and proximal sensing spectroscopy are essential for developing a basis for compar-
ison with remote sensing imagery, ultimately improving the extensive quantification of 
plant traits [21–24]. 

Plant physiological responses to heat and water stress are well documented. For in-
stance, chlorophyll fluorescence parameters like electron transport rate (ETR) and photo-
chemical quenching (qP) are known to respond to physiological stress under drought and 
high-temperature conditions [25–28]. ETR is an indicator of photosynthetic potential that 
is highly sensitive to light and temperature [8–10]. As long as light is not limiting, ETR is 
tightly correlated with carbon assimilation via photosynthesis. However, excessive light 
and temperature can damage photosynthetic apparatuses. As a response, plants perform 
non-stomatal regulation by qP and non-photochemical quenching (NPQ) to protect them-
selves from photodamage and heat-induced impairment [29]. Under fluctuating light con-
ditions, qP is a more critical limiting factor than NPQ for photosynthesis, and qP tends to 
be more responsive to temperature [30]. Therefore, the field-measured ETR and qP values 
can be used as input parameters for modeling spatiotemporal variability in plant photo-
synthetic activity and biome-specific gross primary productivity [16,31]. 

Leaf water potential (Ψleaf) is a responsive and useful measure of heat and water stress 
as it declines (becomes more negative) when the tension on water flowing through the 
xylem increases [11,12,32]. Diurnal variation in Ψleaf can help to identify plants as being 
more isohydric or anisohydric [33], or more risk-averse versus risk-taking in their man-
agement of water use. Isohydric species maintain a relatively steady daytime Ψleaf to pre-
vent xylem embolism, whereas anisohydric species exhibit a greater variation in daytime 
Ψleaf under water stress [34]. 

Specific leaf area (SLA) is the ratio of a leaf’s area to its dry mass, and it therefore 
varies as a function of tissue density and leaf thickness [35,36]. Variation in SLA or leaf 
mass per area (LMA; the inverse of SLA) is known to describe strategies that plants use 
when constructing leaf tissue, i.e., whether they prioritize longevity or rapid return on 
their energetic investment [37,38]. Investing in short-lived, lower LMA leaves may be ad-
vantageous when environmental conditions are more stressful [39,40]. Therefore, differ-
ences in SLA across individual trees and species capture variability in structural attributes 
as well as light interception, light absorption, leaf chlorophyll content, nutrient concentra-
tions, and gas exchange rates. 

Hyperspectral leaf reflectance can provide an efficient means of estimating leaf func-
tional trait responses. A hyperspectral sensor can detect high-resolution spectral reflec-
tance across hundreds of narrow bands. This is helpful in identifying the specific bands 
or spectral regions that correspond to each functional trait. For example, the chlorophyll 
fluorescence emission from photosystem I and II has a peak reflectance in the red region 
at 640–750 nm [41] and therefore has the potential to spectrally predict ETR and qP. Like-
wise, there could be a relationship between leaf reflectance and Ψleaf for some tree species, 
but the wavelength range associated with Ψleaf is not consistent across studies. One study 
found visible, near-infrared, and shortwave infrared regions (VNIR–SWIR; 350–2500 nm) 
to be predictive of Ψleaf [42], whereas others found that only the SWIR region (1100 to 2000 
nm [43] or 1300 to 2500 nm [44]) was needed to predict Ψleaf. In addition to Ψleaf, SWIR can 
detect leaf structural properties, including cellulose and lignin content; thus, SWIR [45,46] 
or SWIR integrated with VNIR [47] may estimate SLA better than VNIR alone can. Re-
gardless, uncertainty remains with respect to which spectral regions are most useful for 
estimating these trait responses and how much information will be retrieved using solely 
VNIR. 
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Leaf traits have been estimated from vegetation indices composed of either narrow-
band or broadband spectral reflectance. For example, the double-peak optical index was 
developed with wavelengths in the red-edge region (688, 697, and 710 nm) for predicting 
steady-state chlorophyll a fluorescence [48], the photochemical reflectance index was de-
veloped with green-yellow wavelengths (531 and 570 nm) for photosynthetic radiation 
use efficiency [49], and the water index was developed with near-infrared wavelengths 
(900 and 970 nm) for plant water status [50]. Many vegetation indices were developed for 
estimating selected traits of vegetation in general, whereas others were developed for one 
or a few tree species. Consequently, the applicability of vegetation indices needs to be 
evaluated for common urban tree species, especially when they are measured under 
stressful environmental conditions.  

Although vegetation indices benefit from simplicity, they include limited spectral in-
formation. As an alternative, partial least squares regression (PLSR) leverages machine 
learning to develop robust statistical models from wide portions of hyperspectral reflec-
tance datasets. In particular, PLSR shows promise in analyzing high-dimensional hyper-
spectral data containing multiple correlated and noisy predictor variables [51,52]. The 
PLSR models developed with hyperspectral leaf and canopy reflectance have proven use-
ful for high-throughput phenotyping in the field and are increasingly being used for pre-
dicting key physicochemical and structural parameters, including but not limited to chlo-
rophyll fluorescence, Ψleaf, photosynthetic capacity, leaf nitrogen concentration, and cel-
lulose and lignin content [51,53–56]. Therefore, PLSR modeling with reflectance spectros-
copy may be able to predict the trait responses selected in our study as well. 

The combination of air temperature (Ta) with leaf reflectance data may improve 
model prediction due to its capacity to capture physiological responses to diurnal and 
seasonal shifts in heat loading. Trees in cites can be physiologically more stressed than 
those in outlying rural areas and forested landscapes because they experience elevated 
urban temperatures and limited space for root growth [57]. In addition, factors such as 
photosynthetic phenology and the timing and length of the growing season can vary 
across heterogeneous urban landscapes due largely to their temperature gradients [58–
60]. These findings suggest that Ta may serve as a useful complementary predictor of 
physiological responses in urban trees. 

When upscaling leaf-specific measures to broader remote sensing applications, it is 
important to understand whether leaf-level spectral models can be applied to airborne 
and satellite data. This translation requires empirical results from leaf-level research that 
suggests the spectral resolution, individual wavelengths, and wavelength ranges needed 
to detect each trait response. Hyperspectral sensors mounted on drones can collect high 
spatial resolution imagery, thus enabling digitization of individual tree crowns and ex-
traction of canopy reflectance spectra. However, commercially available hyperspectral 
cameras (e.g., Cubert Firefleye S185 and Ultris X20 Plus; Cubert GmbH, Ulm, Baden-Würt-
temberg, Germany) that are capable of being deployed on drones can detect only the VNIR 
region [61–63]. Therefore, the extent to which drone-mounted hyperspectral VNIR sys-
tems can monitor key plant trait responses remains unclear. Alternatively, satellite remote 
sensing remains a reliable approach to broad-scale monitoring. Among readily accessible 
and high temporal resolution multispectral satellite data, the Copernicus Sentinel-2 deliv-
ers relatively high spatial resolution (10 m), with 13 multispectral bands encompassing 
the VNIR–SWIR region, that is comparable with the wavelength range (400–2500 nm) of 
hyperspectral data collected in this study. However, it is not clear if the limited number 
of bands available in the multispectral data will be useful for broad-scale monitoring of 
plant trait responses.  

In this study, we sought to determine the accuracy with which functional trait re-
sponses to heat and moisture stress could be estimated using reflectance spectroscopy. 
Our objectives were to (1) assess the capacity of existing vegetation indices to predict se-
lected trait responses, and to (2) predict selected trait responses using PLSR on all availa-
ble bands and band subsets corresponding to realistic remote sensing scenarios. To 
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address these questions, we conducted a field-based, proximal sensing study using trees 
that were growing on a university campus outside Baltimore, Maryland, USA. We meas-
ured trait responses using conventional methods (e.g., leaf fluorometry) and concurrently 
recorded hyperspectral reflectance. We then used statistical modeling to determine the 
extent to which vegetation indices, the full spectral range, and portions of the range cor-
responding to drone- and satellite-borne sensors could predict stress-related physiologi-
cal and morphological trait responses. 

2. Materials and Methods 
2.1. Study Area  

This study took place on the campus of the University of Maryland, Baltimore 
County (UMBC; 39°15′20.37″N, 76°42′39.59″W). The campus has a heterogeneous mix of 
land cover features that are commonly observed in cities, such as medium-rise buildings, 
parking lots, sidewalks, grass, and other impervious surfaces. In addition, the campus has 
a diverse tree community that includes many common species in eastern North American 
cities. We focused on a set of 51 mature trees representing nine species and six genera 
(Table 1) that were distributed across the UMBC campus. Mature, medium-stature trees 
were selected such that each species spanned a gradient of surrounding impervious cover 
up to 15 m. This was done so the broad range of growing conditions experienced in ur-
banized landscapes would be included in our data.  

Table 1. Tree species included in this study. Sample size (n) indicates the number of samples col-
lected from all trees in the species at multiple times spanning July–October in 2022; total number of 
trees = 51. ETR—electron transport rate, qP—photochemical quenching, Ψleaf—leaf water potential, 
SLA—specific leaf area, and ρ—fresh leaf reflectance. 

No. Scientific Name Common Name Abbreviation 
n 

ETR qP Ψleaf SLA ρ
1. Acer rubrum Red maple ACRU 29 29 14 28 28
2. Acer saccharum Sugar maple ACSA 23 23 9 23 24
3. Betula nigra River birch BENI 20 20 20 19 19
4. Cercis canadensis Eastern redbud CECA 26 26 26 25 27
5. Liquidambar styraciflua Sweet gum LIST 20 20 19 20 19
6. Quercus palustris Pin oak QUPA 28 28 28 26 28
7. Quercus phellos Willow oak QUPH 23 23 24 23 24
8. Quercus rubra Red oak QURU 8 8 8 8 8
9. Tilia tomentosa Silver linden TITO 22 22 21 22 22

Total 199 199 169 194 199

2.2. Air Temperature 
Ambient Ta can indicate heat loading as well as seasonality that can impact the phys-

iological mechanisms and spectral response patterns of tree species. In this study, we used 
Ta as an ancillary environmental parameter in developing models to predict trees’ mor-
phological and physiological responses. We measured Ta every minute using a Type-T 
thermocouple shaded by a RAD06 METSPEC 6-plate solar radiation shield (Campbell Sci-
entific Inc., Logan, UT, USA). During all field visits, the sensor was placed in a shaded, 
centralized location on the UMBC campus so that it could provide continuous, site-level 
data concurrent with leaf-level physiological and hyperspectral measurements. 
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2.3. Physiological and Morphological Measurements 
2.3.1. Leaf Sampling 

We conducted field campaigns on sunny days during each month from July to Octo-
ber 2022. This allowed us to capture high heat conditions and evaluate the implications of 
summer stress on end-of-season functionality (i.e., photosynthetic phenology). Each cam-
paign spanned 2–3 days per month (July 20–22, August 24–25, September 26–27, and Oc-
tober 20–21). Measurements were made between 11:00 AM and 4:00 PM Eastern Daylight 
Time when heat loading and water limitation were near their daily peaks. 

During each field visit, we collected fresh leaf samples from 51 trees located along a 
gradient of urban-like site conditions on the UMBC campus. We repeatedly sampled the 
same trees each month from July to October, making about 200 measurements of each trait 
by the time the field campaigns ended (Table 1). During sample collection, we used a long 
pole pruner to cut a shoot (30–50 cm long) from the sunlit portion of each tree’s middle or 
upper canopy. The cut end of the shoot was recut underwater, and measurements were 
taken immediately. 

2.3.2. Chlorophyll Fluorescence 
We measured chlorophyll fluorescence parameters from a representative leaf while 

it was still attached to the cut shoot. We clamped the leaf into a Portable Photosynthesis 
System equipped with a pulse amplitude-modulated fluorometer (LI-6800F, LI-COR Bio-
sciences Inc., Lincoln, NE, USA). Leaves were allowed to equilibrate to chamber condi-
tions (typically 2-3 min), which included irradiance equivalent to full sun (2000 µmol m−2 
s−1) and ambient CO2 (400 ppm). Target leaf temperatures were set to mimic afternoon 
temperatures each month (35° C in July and August, 25° C in September, and 20° C in 
October) and the chamber’s vapor-pressure deficit was set to 1.5 kPa.  

Once equilibrated, leaves were subjected to a multi-phase flash to determine light-
adapted maximum fluorescence (F′m). Steady-state fluorescence (Fs) was measured once 
the leaf returned to actinic light conditions. Light-adapted minimum fluorescence (F′o) 
was measured after the removal of actinic light and a brief exposure to far-red light [64]. 
From these values, we derived (a) qP, which is related to the maximum efficiency of pho-
tosystem II (PSII) or, equivalently, the proportion of PSII centers that are open, qP = (F′m − 
Fs)/(F′m − F′o) [65] and (b) the quantum yield of PSII (ΦPSII; (F′m − Fs)/F′m). ETR was then 
calculated as follows: ETR—PFDa × ΦPSII × 0.5, where PFDa is the photon flux density of 
absorbed light and 0.5 is a correction factor for the partitioning of energy [65]. 

2.3.3. Leaf Water Potential  
We measured leaf water potential (Ψleaf) on one fully developed leaf from each tree. 

Leaves were typically taken from the same shoots as those selected for chlorophyll fluo-
rescence, with measurements made 2–3 min apart. A sample leaf was excised with a razor 
blade and immediately sealed in a pressure chamber (Model 615, PMS Instrument Com-
pany, Albany, OR, USA). Nitrogen gas was slowly added until sap first emerged from the 
xylem visible in the petiole’s cut surface; the valve was closed at this moment and the 
pressure was recorded. Because an overabundance of foam precluded measurements 
from Acer spp. [66,67], the Ψleaf dataset was smaller than the others (Table 1). 

2.3.4. Specific Leaf Area 
We measured the SLAs of sample leaves taken from the same shoots as those used in 

physiological measurements. After petioles had been removed, leaves were sealed in plas-
tic bags and kept cool until their areas could be measured in the laboratory with a LI-
3100C Area Meter (LI-COR Biosciences Inc., Lincoln, NE, USA). Leaves were then trans-
ferred to paper bags and oven-dried at 60 °C for at least 48 h, allowed to cool in a desicca-
tion chamber, and weighed. SLA was calculated as the ratio of fresh leaf area to dry leaf 
mass. 
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2.4. Leaf-Level Spectroscopy: Hyperspectral Leaf Reflectance  
Hyperspectral measurements were made concurrently with physiological and mor-

phological measurements, with leaves excised from the same shoot. We used a handheld 
spectroradiometer (SVC HR-1024i, Spectra Vista Corporation, Poughkeepsie, NY, USA) 
equipped with a leaf clip and a Spectralon white reference panel (99% reflectance). This 
device samples the spectral range of 350–2500 nm with nominal bandwidths of ≤1.5 nm 
for the range of 350–1000 nm, ≤3.8 nm for 1000–1890 nm, and ≤2.5 nm for 1890–2500 nm. 
For each measurement, we collected spectral data by first scanning the white reference 
plate and then the target sample leaf that was placed in the SVC leaf clip (which was con-
nected to a calibrated light source). For large leaves, we measured three leaves per shoot 
separately. For small or narrow leaves, we arranged a leaf mat comprised of 2–3 leaves 
arranged side by side to fill the field of view (FOV) and minimize the gaps and overlaps 
between leaves during measurement [68], and we separately measured this for 2–3 leaf 
mats per tree. In rare cases where leaves could not be arranged to fill the FOV (e.g., 90% 
FOV coverage), leaf reflectance values were normalized to 100% FOV. 

After the field measurements were completed, hyperspectral leaf reflectance data 
were post-processed. Overlapping portions of spectra were joined by setting the detector 
overlap controls within the wavelength range of 990 to 1900 nm and applying the NIR-
SWIR overlap algorithm within the matching region; this was available in the SVC HR-
1024i PC Data Acquisition Software version 1.22 and yielded a single set of values. Next, 
samples that showed atypical green leaf spectra in the VNIR region were discarded (n = 
7); these were mainly found in senescing leaves collected in October. Finally, the spectra 
measured from replicate leaves or leaf mats were averaged to yield one spectrum per tree. 
The resultant curve of hyperspectral reflectance followed a characteristic pattern across 
the VNIR–SWIR wavelength range (400 to 2500 nm), though it varied strongly by species 
(Figure 1). 

 
Figure 1. Hyperspectral leaf reflectance curves of nine tree species. The reflectance values of all trees 
within each species were averaged to give mean spectra for each species. The species code abbrevi-
ations are explained in Table 1. The twelve color-shaded rectangles represent full spectral widths of 
Sentinel-2 bands; B1—Aerosol (433–453 nm), B2—Blue (457.5–522.5 nm), B3—Green (542.5–577.5 
nm), B4—Red (650–680 nm), B5—Red Edge 1 (697.5–712.5 nm), B6—Red Edge 2 (732.5–747.5 nm), 
B7—Red Edge 3 (773–793 nm), B8—NIRwide (784.5–899.5 nm), B8a—NIRnarrow (855–875 nm), B9—Wa-
ter Vapor (935–955 nm), B10—Cirrus (1360–1390 nm), B11—SWIR 1 (1565–1655 nm), and B12—
SWIR 2 (2100–2280 nm). 
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2.5. Data Analysis 
2.5.1. Vegetation Indices  

One of our study objectives was to gain insight into whether, and the extent to which, 
each leaf trait response could be modeled with existing vegetation indices. Accordingly, 
we tested a total of 58 published vegetation indices selected for their potential biochemical 
or biophysical relevance to our leaf trait responses of interest (e.g., [46,48–50,69–73]) (Table 
S1). We calculated these vegetation indices from our hyperspectral leaf reflectance data 
and fitted them to our measured data of leaf trait responses using linear models. To eval-
uate their prediction capacity, we calculated their model-fit indicators (R2 and root mean 
square error (RMSE)) and then identified the top three vegetation indices that were the 
most linearly associated with each of the trait responses measured in this study.  

2.5.2. Correlation Analysis 
Using R version 4.2.3 [74], we calculated a Pearson correlation matrix to evaluate re-

lationships among measure leaf trait responses (ETR, qP, Ψleaf, and SLA) and to assess 
which of the responses were affected by Ta. Those that were significantly correlated with 
Ta were likely to be better predicted by models in which Ta was included with hyperspec-
tral bands. 

2.5.3. Model Development: Partial Least Squares Regression 
To predict trait responses of urban tree species under heat and moisture stress, we 

developed partial least squares regression (PLSR) models by using the ‘pls’ package ver-
sion 2.8-1 [75]. Initial models used reflectance over the full range of VNIR–SWIR hyper-
spectral wavelengths (400 to 2500 nm) that were detected with our spectroradiometer 
(hereafter referred to as “full spectral scenario”). We built two PLSR models for each trait 
response—one with hyperspectral leaf reflectance and Ta, and the other with hyperspec-
tral leaf reflectance only. Comparing these two models could provide insight into whether 
Ta captured variation in trait responses that were associated with weekly changes in tem-
perature or diurnal temperature fluxes. 

We also evaluated model performance using subsets of the full spectral dataset lim-
ited to the VNIR range, which was typical of data from drone-mounted hyperspectral 
cameras (hereafter referred to as “drone scenario”) or selected bands within the VNIR–
SWIR range matching those available in Sentinel-2 data (as a stand-in for any common 
multispectral satellite; hereafter referred to as “multispectral scenario”). As before, we de-
veloped separate PLSR models for each trait response but with restrictions on band inclu-
sion corresponding to the scenario in question. To establish independent training and test-
ing datasets, we randomly divided observations into training (80% of samples) and vali-
dation (20%) subsets using the ‘caret’ package version 6.0-94 [76]. During model develop-
ment, we assigned the initial input number of PLS components to 30 [77–79]. We selected 
the best-fit PLSR model with the number of components having the smallest RMSE based 
on the results of a 10-fold cross-validation with ten repetitions [80]. For the “full spectral 
scenario” and “drone scenario”, we identified the 20 most important raw spectral bands 
involved in model fits using the ‘varImp’ function available in the ‘caret’ package [76]. For 
model validation, fitted models were used to predict the validation response and were 
evaluated by calculating model-fit indicators, such as R2, RMSE, and root mean square 
error percentage (RMSE%; calculated as (RMSE/𝑋ത) × 100%). As RMSE% was reported as 
a percentage, its results were more interpretable, especially when comparing model per-
formance across leaf trait responses with different value ranges. 

The entire model-fitting process was repeated 500 times with different randomiza-
tions of training and validation sets to assess the sensitivity of model outputs to sampling 
variation. From these 500 iterations, we calculated the mean and standard error (SE) of 
model-fit indicators in each model-fit scenario. To visualize the observed-vs.-modeled leaf 
trait responses, we created scatterplots for each tested scenario using our measured data 
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as observed values and the average of predicted values resulted from 500 iterated runs as 
modeled values. Only for the most likely best-fit scenario, viz., the “full spectral scenario” 
with hyperspectral leaf reflectance and Ta, did we report the total number of times that 
the most important 20 wavelengths were selected for predicting each leaf trait response. 

For the “full spectral scenario”, we first counted the frequencies of the 20 most im-
portant wavelengths selected from the 500 model runs within the full spectral width of 
each Sentinel-2 band, which were illustrated as shaded areas in Figure 1 [81]. Then, we 
calculated the normalized selection frequency of Sentinel-2 bands by dividing the sum of 
the counts of the 20 most important wavelengths within each band and then scaling the 
resultant values between 0 and 1.  

3. Results 
3.1. Vegetation Indices 

We reported the three vegetation indices that best predicted each leaf trait response 
via linear relationships (Table 2). Results for remaining vegetation indices are in the sup-
plement (Table S1). The top three vegetation indices had R2 values of 0.23–0.28 for ETR, 
0.13–0.17 for qP, 0.11–0.13 for Ψleaf, and 0.48–0.55 for SLA. The double-peak optical index 
(DPi) was able to account for variation in chlorophyll fluorescence (ETR and qP) as well 
as Ψleaf probably because DPi was made up of red-edge wavelengths only (Table 2). Over-
all, the tested vegetation indices had relatively low predictive capacity for trait responses; 
however, they were more successful at predicting SLA (especially mNDLMA [46]; R2 = 0.55).  

Table 2. The best vegetation indices for predicting ETR, qP, Ψleaf, and SLA. The top three vegetation 
indices for predicting their respective leaf trait responses are bolded in green. Asterisk indicates the 
significance level of linear relationship between vegetation index and leaf trait response (***—p < 
0.001, **—p < 0.01, *—p < 0.05, and ns—p > 0.05). ρ represents fresh leaf reflectance of corresponding 
wavelengths (expressed as percentage). 

Vegetation Index/Source Formula 
ETR  qP  Ψleaf  SLA  Previously Estimated 

Parameter R2 RMSE R2 RMSE R2 RMSE R2 RMSE 
Double-peak optical index 
(DPi) [48] 

(ρ688 × ρ710)/(ρ697)2 0.28 *** 28.95 0.17 *** 0.10 0.11 *** 0.69 0.00 ** 26.21 
Steady-state chlorophyll 
a fluorescence 

Gitelson et al. [82] ρ735/ρ700 0.24 *** 29.82 0.13 *** 0.10 0.11 *** 0.70 0.00 ** 26.20 Chlorophyll content 
Modified normalized differ-
ence (mND) [83] 

(ρ750 − ρ705)/ 
(ρ750 + ρ705 − 2 × ρ445) 

0.23 *** 29.90 0.13 *** 0.10 0.09 *** 0.70 0.00 ** 26.20 Leaf pigment content 

Normalized photochemical re-
flectance index (PRInorm) [72] 

[(ρ570 - ρ531)/(ρ570+ρ531)]/ 
[((ρ800 - ρ670)/(ρ800 + 
ρ670)^0.5) × (ρ700/ρ670)] 

0.18 *** 31.02 0.09 *** 0.10 0.13 *** 0.69 0.01 ** 26.14 
Pigment content, sto-
matal conductance, wa-
ter stress, and Ψleaf 

Photochemical Reflectance In-
dex (PRI) [49] 

(ρ531 − ρ570)/ 
(ρ531 + ρ570) 

0.16 *** 31.33 0.08 *** 0.10 0.11 *** 0.70 0.00 ** 26.16 

Photosynthetic radiation 
use efficiency and pho-
tosystem II photochemi-
cal efficiency 

Modified simple ratio 
(mSRLMA) [46] 

(ρ2265 − ρ2400)/ 
(ρ1620 − ρ2400) 

0.03 * 33.64 0.01 ** 0.11 0.00 ** 0.74 0.52 *** 18.08 
Leaf-level leaf mass per 
area (LMA) 

Datt [84] 
(ρ850 − ρ2218)/ 
(ρ850 − ρ1928) 

0.01 ** 33.99 0.00 ** 0.11 0.03 * 0.72 0.48 *** 18.90 
Equivalent water thick-
ness (Volume of water 
per unit leaf area) 

mNDLMA [46] 
(ρ2285 − ρ1335)/ 
(ρ2285 + ρ1335 − 2 × ρ2400) 

0.01 ** 34.00 0.00 ** 0.11 0.01 ** 0.73 0.55 *** 17.52 Leaf-level LMA 

3.2. Leaf Trait Responses and Air Temperature 
Initial analysis revealed that physiological trait values (ETR, qP, and Ψleaf) were sig-

nificantly correlated with Ta (Table 3), suggesting that their stress responses could be in-
fluenced by changes in Ta and that spectral models may benefit from the inclusion of this 
widely available parameter. In contrast, the morphological trait, SLA, was not correlated 
with Ta. Summary statistics for ETR, qP, Ψleaf, SLA, and Ta are presented in the supplement 
(Table S2).  
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Table 3. Pearson correlation coefficient (r) matrix for electron transport rate (ETR), photochemical 
quenching (qP), leaf water potential (Ψleaf), specific leaf area (SLA), and air temperature (Ta). Corre-
lations are bolded if statistically significant (p < 0.05). Asterisks indicate the significance level of each 
pairwise correlation (***—p < 0.001, **—p < 0.01, and *—p < 0.05). 

 ETR qP Ψleaf SLA Ta 
ETR 1     
qP 0.92 *** 1    
Ψleaf −0.28 *** −0.19 * 1   
SLA −0.14 −0.03 0.01 1  
Ta 0.58 *** 0.52 *** −0.47 *** −0.04 1 

3.3. Model Performance 
All PLSR model outputs were stable, as evidenced by the size of the standard errors 

(SE) relative to corresponding means (calculated from 500 iterations; Table 4). Predictions 
based on the “full spectral scenario” accounted for substantial yet available portions of 
variation in each functional trait response. Inclusion of Ta in the “full spectral scenario” 
improved the prediction of ETR (R2 = 0.56 vs. 0.51) and qP (R2 = 0.33 vs. 0.28), but not Ψleaf 

or SLA. In Figure 2, we showed scatterplots of models with Ta only because the ability of 
a model to predict Ψleaf and SLA was not generally decreased by the inclusion of Ta. 
Among the tested scenarios, the “full spectral scenario” best predicted Ψleaf (R2 = 0.36) and 
SLA (R2 = 0.56). However, chlorophyll fluorescence predictions were somewhat improved 
in the “drone scenario” vs. the “full spectral scenario”, but not the “multispectral sce-
nario”.  

Models based on the “drone scenario” somewhat improved predictions of ETR (R2 = 
0.58 vs. 0.56) and qP (R2 = 0.42 vs. 0.33) over the “full spectral scenario”, even though only 
the VNIR spectral region was used. Once again, Ta offered some predictive benefit when 
included in ETR and qP predictions, as well as in estimates of Ψleaf (ETR, R2 = 0.58 vs. 0.55; 
qP, R2 = 0.42 vs. 0.40; and Ψleaf, R2 = 0.28 vs. 0.21). 

The “multispectral scenario” also benefited modestly from the inclusion of Ta in the 
spectral models predicting trait responses. Under the “multispectral scenario”, the inclu-
sion of Ta improved the prediction of trait responses—ETR (R2 = 0.43 vs. 0.36), qP (R2 = 
0.31 vs. 0.26), and Ψleaf (R2 = 0.27 vs. 0.20) but, as anticipated, did not improve SLA predic-
tion. The “multispectral scenario” had a comparable capacity to the “full spectral sce-
nario” in predicting SLA (R2 = 0.56 vs. 0.53). Across all models under the “multispectral 
scenario”, prediction of SLA was most accurate, followed by the prediction of ETR, qP, 
and Ψleaf. Figure 2 compares observed and modeled values for each leaf trait response 
under tested scenarios.  

Table 4. Performance of partial least squares regression models using leaf reflectance (ρ) & air tem-
perature (Ta) vs. only ρ as predictors. Model fit indicators of test data (R2 and RMSE%) are averaged 
over 500 model runs, with SEs indicated in parentheses. Bold indicates the best model for predicting 
a leaf trait across the three scenarios evaluated. 

Trait Predictor 

“Full Spectral Scenario” (Hyperspec-
tral VNIR–SWIR: 

400–2500 nm) 

“Drone Scenario” 
(Hyperspectral VNIR: 

400–1000 nm) 

“Multispectral Scenario” 
(Multispectral Sentinel-2: 

443–2190 nm) 
R2 RMSE RMSE% R2 RMSE RMSE% R2 RMSE RMSE% 

ETR  ρ and Ta 
0.56  

(0.004) 
23.47 (0.116) 

32%  
(0.2%) 

0.58 
(0.004) 

22.64 (0.108) 
31% 

(0.1%) 
0.43 

(0.004) 
26.21 (0.117) 

36% 
(0.1%) 

ETR ρ  
0.51  

(0.004) 
24.93 (0.127) 

34%  
(0.2%) 

0.55 
(0.004) 

23.55 (0.115) 
32%  

(0.2%) 
0.36 

(0.004) 
27.75 (0.124) 

38% 
(0.2%) 

qP ρ and Ta 
0.33  

(0.004) 
0.09 (0.0004) 

39%  
(0.2%) 

0.42 
(0.005) 

0.08 (0.0004) 
35% 

(0.2%) 
0.31  

(0.004) 
0.09 (0.0003) 

38%  
(0.1%) 

qP ρ  
0.28  

(0.004) 
0.10 (0.0004) 

41%  
(0.2%) 

0.40  
(0.005) 

0.09 (0.0004) 
36%  

(0.2%) 
0.26  

(0.004) 
0.09 (0.0003) 

39% 
(0.2%) 

Ψleaf ρ and Ta 0.36  
(0.005) 

0.61 (0.003) −41%  
(0.2%) 

0.28  
(0.005) 

0.65 (0.003) −44%  
(0.2%) 

0.27  
(0.005) 

0.64 (0.003) -44%  
(0.2%) 
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Ψleaf ρ  
0.36  

(0.005) 
0.61 (0.003) 

−41%  
(0.2%) 

0.21  
(0.005) 

0.68 (0.003) 
−46%  
(0.2%) 

0.20  
(0.005) 

0.69 (0.003) 
-47%  

(0.2%) 

SLA ρ and Ta 
0.56  

(0.005) 
17.78 (0.118) 

17%  
(0.1%) 

0.29 
(0.004) 

23.11 (0.153) 
23%  

(0.1%) 
0.53  

(0.005) 
18.48 (0.122) 

18%  
(0.1%) 

SLA ρ  
0.56  

(0.005) 
17.87 (0.117) 

18%  
(0.1%) 

0.30  
(0.004) 

22.81 (0.147) 
22%  

(0.1%) 
0.53  

(0.005) 
18.38 (0.122) 

18%  
(0.1%) 

 
Figure 2. Scatterplots comparing measured and modeled values of ETR (a–c), qP (d–f), Ψleaf (g–i), 
and SLA (j–l) among the “full spectral”, “drone”, and “multispectral” scenarios. Modeled values 
represent the final, modeled results, calculated from the average of predicted values obtained from 
500 iterations, with Ta included as a predictor in all models. Table 1 explains the species abbrevia-
tions. Dashed grey lines depict 1:1 relationships. 

3.4. Important Wavelengths  
In the spectral models that included Ta developed under “full spectral scenario”, the 

VNIR wavelength range was a significant predictor of ETR and qP (Figure 3). For ETR, the 
most selected wavelength ranges were mainly within the visible light region (including 
696–699 nm, i.e., the red edge 1 band in Sentinel-2), followed by SWIR and NIR. This was 
the same for qP in the order of importance; however, spectral widths of both red edge 1 
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(695–707 nm) and blue (521–533 nm) bands in Sentinel-2 were important for qP prediction. 
Overall, many of the chosen wavelengths did not overlap with Sentinel-2 bands, indicat-
ing the importance of blue–green (only for qP), green–red, and SWIR 1–SWIR 2 wave-
lengths for predicting chlorophyll fluorescence. 

The Ψleaf models required visible light and SWIR regions. Between the two regions, 
PLSR mostly selected SWIR wavelengths, including portions of cirrus (1385–1422 nm) and 
SWIR 1 (1561–1580 nm) bands in Sentinel-2. The importance of SWIR and visible light 
regions concurred with Table 4, which recommended the “full spectral scenario” to best 
predict Ψleaf. 

Models of SLA required only the SWIR region. These models also selected portions 
of Sentinel-2 bands such as cirrus (1385–1422 nm) and SWIR 2 (2139–2160 nm and 2265–
2275 nm). This indicates that SLA prediction mainly requires SWIR bands under the “mul-
tispectral scenario”. 

 
Figure 3. Frequency of important wavelengths selected out of 500 model runs in predicting leaf trait 
responses (a) ETR, (b) qP, (c) Ψleaf, and (d) SLA, shown by black bars. Colored rectangles represent 
full spectral widths of Sentinel-2 bands. The green line depicts the grand mean spectrum across all 
leaf samples. 
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3.5. Important Sentinel-2 Bands 
We assessed the potential of satellite-based sensors to predict functional trait re-

sponses by identifying the Sentinel-2 spectral bands with greatest importance in predic-
tion. In correspondence with Table 4 and as shown in Figure 4 that highlighted the most 
selected, important Sentinel-2 bands for predicting each trait response, the visible light 
region, specifically red edge 1 (697.5–712.5 nm) was useful for the prediction of ETR and 
qP. In addition to red edge 1, Figures 3 and 4 generally indicated the importance of having 
wavelengths among the Sentinel-2 bands in predicting ETR and qP, particularly in the 
visible light region, such as blue–green, green–red, and red edge 1–red edge 2 bands. 

For Ψleaf prediction, red edge 1, cirrus (1360–1390 nm), SWIR 1 (1565–1655 nm), and 
green (542.5–577.5 nm) bands were the most important, in this order, in the model that 
included Ta, whereas only red edge 1 was selected as important in the model without Ta. 
Even though important wavelength selections aligned with Sentinel-2 bands, intervals in 
the blue–green and SWIR 1–SWIR 2 spectral ranges (Figures 3 and 4) could also be im-
portant for Ψleaf prediction, as was the case for ETR and qP. 

Only cirrus and SWIR 2 (2100–2280 nm) bands were important for SLA prediction, 
whereas Figure 3 also highlighted the possible contribution of wavelengths between SWIR 
1 and SWIR 2. There was no contribution of VNIR bands in predicting SLA (Figures 3 and 
4). Inclusion or exclusion of Ta in the SLA models did not affect the determination of im-
portant Sentinel-2 bands. 

 
Figure 4. Normalized selection frequency of Sentinel-2 bands. Normalized selection frequency is 
scaled between 0 and 1, in which 1 is the score most selected. Band center wavelength (nm) is de-
scribed beneath its corresponding band. 

4. Discussion 
4.1. Vegetation Indices 

Vegetation indices were nearly as effective as PLSR for predicting the leaf structural 
trait, SLA (R2 = 0.48–0.55; Table 2). In particular, mNDLMA, a vegetation index formerly 
developed for the estimation of leaf-level LMA in broad-leaved forest [46], was as able to 
predict the SLA of urban trees as the predictive models developed with PLSR (R2 = 0.55–
0.56; Tables 2 and 4). There was also considerable agreement between the top vegetation 
indices and PLSR models in terms of input wavelength and wavelength range of im-
portance. For instance, both mSRLMA and the PLSR models required the contribution of 
2265 nm for SLA estimation (Table 2 and Figure 3). In terms of wavelength range, both 
PLSR models and top vegetation indices required SWIR for SLA prediction, i.e., the wave-
length region spectrally responsive to changes in biochemical and structural traits (includ-
ing cellulose, lignin, carbon, nutrients, and proteins), as well as water absorption [85–87]. 

Although SLA, a leaf structural trait, was well-modeled using vegetation indices, the 
more ephemeral or transient physiological parameters were not. Although the predictive 
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power of the vegetation indices was low, we did see wavelength-range agreement be-
tween the top vegetation indices and the PLSR models selected to model ETR and qP. This 
makes sense because chlorophyll fluorescence emission mainly takes place in the VNIR 
region [88,89]. In contrast, vegetation indices and PLSR band selection did not perfectly 
align for Ψleaf prediction (Figure 3 and Table 4). The top vegetation indices for Ψleaf estima-
tion included only VNIR wavelengths (Table 2); however, PLSR models indicated use of 
the full VNIR–SWIR spectral range (preferably the SWIR wavelengths as shown in Figure 
3) to better model Ψleaf (Table 4), potentially explaining why these indices had significantly 
lower predictive capacity than the PLSR model. Overall, our results suggested that the 
vegetation indices severely reduced the available spectral information, and that retaining 
the original bands for use in PLSR (or perhaps some other machine-learning-based meth-
ods) was required to spectroscopically quantify these dynamic physiological trait re-
sponses.  

4.2. Predicting Trait Responses with PLSR  
Field spectroscopy method allowed us to estimate leaf functional trait expression 

with modest success in this study (e.g., R2 = 0.36–0.56). Spectral models were particularly 
successful at predicting chlorophyll fluorescence and SLA, though they were less success-
ful for Ψleaf. Here, we focus on the potential to quantify variation in these trait responses 
over large areas using narrowband drone data or broadband satellite remote sensing data. 

Under the “full spectral scenario”, PLSR models mainly selected VNIR wavelengths, 
as well as a few bands in the SWIR region such as 1817–1832 nm and 1881–1899 nm for 
ETR and 1881–1892 nm for qP. Prior studies used strong water absorption bands in the 
SWIR region together with VNIR wavelengths to estimate leaf chlorophyll fluorescence in 
spring wheat cultivars [53], mango (Mangifera indica) [90], and the salt marsh plant (Suaeda 
salsa). This combination is possible when photons emitted during chlorophyll fluorescence 
are reabsorbed by chlorophyll pigments; thus, longer wavelengths (beyond the chloro-
phyll and carotenoid absorption range) might also be useful for detecting chlorophyll flu-
orescence [73]. Nonetheless, inclusion of the SWIR region as in the “full spectral scenario” 
did not outperform predictions derived solely from VNIR, suggesting that comparable 
predictive capacity could be achieved with the use of drone-borne hyperspectral data. 

With slightly better predictive capacity than the “full spectral scenario”, our “drone 
scenario” indicated that chlorophyll fluorescence monitoring from a VNIR hyperspectral 
remote sensing system was feasible. Like other studies [91–93], we confirmed that VNIR 
(without SWIR) was the best predictor of ETR and qP across the three tested scenarios. 
From a physiological standpoint, the chlorophyll fluorescence emission from photosystem 
I and II has a peak or a shoulder near the red and far-red spectral regions (680–695 nm 
and 720–740 nm) [88,89,91,92,94]. Correspondingly, PLSR models for predicting chloro-
phyll fluorescence dynamics (particularly qP) selected wavelength ranges at or near these 
regions. Moreover, the most frequent selections for predicting ETR and qP included the 
O2-B band range (682–698 nm), which represents the sun-induced chlorophyll fluores-
cence band widely recommended as a proxy for photosynthetic efficiency of vegetation 
from space [19,95,96]. Not surprisingly, the “multispectral scenario” also showed poten-
tial for the remote detection of ETR and qP. Among the Sentinel-2 bands, red edge 1 was 
the one most selected for predicting fluorescence in our study. This finding was relevant 
to satellite remote sensing because the European Space Agency specifically designed the 
red edge 1 band of Sentinel-2 as the baseline for fluorescence studies [81].  

The “drone scenario” and “multispectral scenario” showed comparable performance 
in predicting Ψleaf. However, both were weaker predictors than the “full spectral sce-
nario”, indicating an even more limited capacity to quantify Ψleaf over extensive areas with 
remote sensing. On the other hand, our findings correspond with previous work in high-
lighting red edge 1 and SWIR 1 as important bands for broad-scale monitoring with Sen-
tinel-2 data [97]. Based on our results, the best scenario for predicting Ψleaf required hy-
perspectral wavelengths across the full spectrum of VNIR–SWIR, yet these models were 
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only able to explain just over one third of the observed variation. However, previous mod-
eling efforts using hyperspectral wavelengths within or near red-edge and cirrus regions 
had twice the explained variation of Ψleaf as in our study [42], where Ψleaf models showed 
notably weaker predictive performance than other trait responses. One plausible explana-
tion may stem from the lack of observations from Acer species during model development 
(n = 169 for Ψleaf vs. n = 194 to 199 for other leaf trait responses). We were not able to 
measure Ψleaf from 30 samples of Acer rubrum and Acer saccharum due to foam formation 
in the cut petiole (as noted by Bahari et al. [66] and Hauer et al. [67]), especially during the 
warmer months. Eitel et al. [44] noted a similar pattern when limited data was available 
for their predictions of Populus species (R2 = 0.34 for entire dataset vs. 0.08 for data without 
highly stressed samples). The exclusion of highly water-stressed samples certainly low-
ered our sample size and might have affected the capacity for Ψleaf prediction. 

Our results demonstrated the potential of satellite-based SLA prediction with Senti-
nel-2 data. The models based on the “multispectral scenario” outperformed the “drone 
scenario” and were also comparable to the best-case “full spectral scenario” (R2 = 0.53 vs. 
0.56), reaffirming the observation that the inclusion of SWIR wavelengths, even at multi-
spectral resolution, could significantly improve SLA prediction. Our study also found that 
SWIR, particularly the cirrus and SWIR 2 bands of Sentinel-2, was a key predictor of SLA. 
This was consistent with previous reports that the wavelength range of 1300–1800 nm was 
predictive of SLA in broadleaf, conifer, and mixed forest stands [45]. This range over-
lapped with the most-selected wavelengths in the urban tree types investigated here (Fig-
ure 3). Even though the “multispectral scenario” showed great potential, possibly due to 
the inclusion of the SWIR region, modeling SLA under the “drone scenario” lost a signif-
icant amount of predictive power compared to the best-case “full spectral scenario” (R2 = 
0.56 vs. 0.30), indicating the potential limitation of a drone-mounted hyperspectral VNIR 
system to remotely sense SLA.  

Spectral models developed with PLSR had modest success in predicting key leaf 
functional trait responses (R2 = 0.36 to 0.58). To potentially improve the predictive capac-
ity, or as an alternative, using the machine learning methods that have non-linear fitting 
capacities (e.g., random forest [98] or support vector machine [99]) might capture more 
variability in the data of one or more trait responses. Although not conducted in this 
study, calculating radiance from reflectance data may offer an additional opportunity to 
evaluate correlations between spectral features and chlorophyll fluorescence. This would 
present radiance–trait relationships, providing insight into the mechanistic link with, and 
validation of, upcoming satellite remote sensing products such as Fluorescence Explorer 
(FLEX). This mission will carry a high-resolution Fluorescence Imaging Spectrometer 
(FLORIS), which will measure radiance between 500 and 780 nm and provide fluorescence 
estimates to map photosynthesis and monitor vegetation health [100–102]. 

Across functional traits and predictive scenarios, we found that inclusion of Ta in 
spectral models better predicted tree physiological responses to heat and moisture stress 
at our urbanized site. Like other studies [103–106], our tree physiological trait responses 
were associated with temperature changes. This suggested that large-scale and global 
studies of plant ecophysiology, tree cooling in urban cities, and their responses to heat 
could benefit from the integration of satellite-based reflective and thermal (e.g., land sur-
face temperature) remote sensing data [107–109]. In our study, Ta was able to improve the 
estimation of physiological traits more effectively than the morphological trait SLA since, 
as expected, SLA was less sensitive to temperature variation. In particular, including Ta 
improved predictions of trait responses related to chlorophyll fluorescence, but its effect 
on Ψleaf estimation was equivocal. Even though there was no improvement in the “full 
spectral scenario”, inclusion of Ta did increase the R2 of Ψleaf models by 7% in both the 
“drone scenario” and “multispectral scenario”, suggesting its potential value in remote 
sensing models. Overall, physiological trait responses appear to be sensitive to, and de-
pendent upon, ambient Ta as a covariate; therefore, we recommend including it in remote 
sensing-based predictions of tree responses to heat and moisture stress.  



Remote Sens. 2024, 16, 2291 15 of 21 
 

 

5. Conclusions 
This study used proximal spectral sensing to assess (1) whether existing published 

vegetation indices could predict trees’ functional trait responses to heat in an urbanized 
setting and (2) if predictive models developed with PLSR could quantify these trait re-
sponses. Success would indicate that these trait responses may be predictable remotely, 
and thus over broad scales. We found that SLA was well predicted with some vegetation 
indices, which were comparably as effective as PLSR models. However, physiological trait 
responses (ETR, qP, and Ψleaf) were not well predicted by vegetation indices; thus, the 
more robust PLSR models were needed to predict these dynamic parameters with reason-
able accuracy. Across the evaluated scenarios, traits associated with chlorophyll fluores-
cence (ETR and qP) showed great potential to be remotely sensed with drone-mounted 
sensors due to their important wavelengths being confined to the VNIR region, whereas 
SLA could potentially be sensed with the satellite-borne multispectral sensors due to the 
Sentinel-2 bands extending to the SWIR region. Remote sensing-based scenarios had a 
limited capacity to predict Ψleaf. This limitation may have come from our inability to meas-
ure a wide range of Ψleaf in Acer species when they were highly heat-stressed during 
warmer months (n = 30 measurements). For satellite-based monitoring, red edge 1 band 
of Sentinel-2 may be useful for ETR and qP prediction; green, red edge 1, cirrus, and SWIR 
1 may be useful for Ψleaf prediction; and cirrus and SWIR 2 may be useful for SLA predic-
tion. We recommend including both Ta and spectral remote sensing data to predict phys-
iological responses to heat due to these traits’ sensitivity to Ta. We conclude that field-
based reflectance spectroscopy and PLSR can identify wavelengths and wavelength 
ranges that have the potential to be leveraged when developing remote sensing-based 
monitoring tools for broad-scale predictions of trees’ heat stress responses. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/rs16132291/s1. Table S1, List of tested vegetation indices: The 
top three vegetation indices for predicting their corresponding leaf trait responses are bolded in 
green. ρ represents fresh leaf reflectance of corresponding wavelengths (expressed as percentage). 
The “ns” superscript on R2 indicates no significant relationship between vegetation index and its 
corresponding trait response. Table S2: The mean, standard error (SE), median, minimum, maxi-
mum, and sample size (n) of electron transport rate (ETR), photochemical quenching (qP), leaf water 
potential (Ψleaf), specific leaf area (SLA), and air temperature (Ta). References [110–133] are cited in 
the supplementary materials. 
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