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Abstract

Let g be a semisimple Lie algebra, let t be its Cartan subalgebra, and let W be

the Weyl group. The goal of this paper is to prove an isomorphism between suitable

completions of the equivariant Borel–Moore homology of certain affine Springer

fibers for g and the global sections of a bundle related to a Procesi bundle on the

smooth locus of a partial resolution of .t ˚ t�/=W . We deduce some applications

of our isomorphism including a conditional application to the center of the small

quantum group. Our main method is to compare certain bimodules over rational and

trigonometric Cherednik algebras.
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1. Introduction

Let G be a connected reductive algebraic group over C, let g be its Lie algebra, let

t � g be a Cartan subalgebra, let T be the corresponding maximal torus, and let W

be the Weyl group. Pick a nonnegative integer d .
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The goal of this paper is to relate two different geometric objects, “coherent” and

“constructible,” constructed from these data.

First, we describe the “coherent” object. Consider the Poisson variety Y WD .t ˚

t�/=W . We will choose a suitable partial Poisson resolution X of Y (Section 2.1).

For example, in the case of G D GLn, the variety X is going to be the Hilbert scheme

of points in C2. When g is simply laced, X is going to be the so-called Q-factorial

terminalization of Y (see [9] for the general construction or [38, Section 2.2] for a

discussion in the present settings). In types B=C , F4, and G2 we get some interme-

diate partial resolution. See Section 2.1 for details. In all cases, we are going to have

codimX X sing � 4.

The smooth locus X reg comes with several important vector bundles. There is a

“Procesi bundle” P
reg that will be constructed in Section 2.2 based on results from

[38]. One important property of P
reg we need right now is that its endomorphism

algebra is

H WD CŒt˚ t��#W: (1.1)

In the case when G D GLn.C/, we recover Haiman’s Procesi bundle on the Hilbert

scheme (see [28]). When g is simply laced and hence X is a Q-factorial terminaliza-

tion of Y , P
reg is the restriction of the Procesi sheaf P on X (see [38, Section 4]) to

X reg. In types B=C , F4, and G2, we consider the sheaf P obtained by the pushfor-

ward of the Procesi sheaf from the Q-factorial terminalization to X and then restrict

it to X reg. The sign invariants in P
reg is a line bundle to be denoted by O

reg.1/. Its

d th tensor power will be denoted by O
reg.d/.

So, for d 2 Z>0, we can consider the H -bimodule

Bd WD �
�
X reg;P reg;�˝ O

reg.d/ ˝ P
reg
�
: (1.2)

This is the first of the two objects we are interested in.

There are a number of reasons to be interested in the bimodule Bd . First, consider

the case when G D GLn. The bimodule Bd is closely related to the d th power of the

so-called r-operator on symmetric polynomials (cf. [12]). In more detail, the algebra

H and the variety X come with natural actions of .C�/2. The functor R Hom.P ;�/

gives an equivalence from the derived category of .C�/2-equivariant coherent sheaves

on X to the derived category of bigraded H -modules (see, e.g., [29, Theorem 5.3.2]).

The K0-groups of both categories are identified with the degree n symmetric polyno-

mials with coefficients in ZŒq˙1; t˙1� in such a way that the irreducible H -modules

in bi-degree .0; 0/ are sent to the Schur polynomials. The operator of tensoring with

Bd is the r-operator of Bergeron and Garcia (in the Hilbert scheme intepretation

this operator is just the twist by O.1/). It would be interesting to see whether this

observation can be generalized to the case of general G.
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Another reason to care about Bd is that these bimodules (or their variants) are

expected to appear in a variety of other contexts. The subject of this paper is their

connection to the affine Springer theory. Another prospective appearance is the study

of character sheaves on semisimple Lie algebras and the usual Springer theory: the

bimodules Bd are expected to be related to the central elements T 2d
w0

in the Hecke

category. A related appearance should be in the study of invariants of torus knots (see

[27]).

The second object we care about, the “constructible” one, is the equivariant

Borel–Moore homology of a suitable affine Springer fiber for the group G.

Fix a regular element s 2 t. Let t be an indeterminate so that we can form the loop

algebra g..t//. Consider the element ed WD std 2 g..t//. This element gives rise to the

affine Springer fiber F led
in the affine flag variety F l for G; sometimes it is called

an equivalued unramified affine Springer fiber. The maximal torus T , the central-

izer of s, acts on F led
. So we can consider the equivariant Borel–Moore homology

H BM
T .F led

/.

It turns out that H BM
T .F led

/ also carries a bimodule structure but for a some-

what different algebra. Namely, let T _ denote the Langlands dual torus. Consider

the algebra H� WD CŒT �T _�#W . The algebra H� acts on H BM
T .F led

/ from the

left by what we call the CS (Chern–Springer) action; such an action exists for any

homogenous affine Springer fiber, as the construction in Section A.1 shows. For our

particular choices of ed we also have a commuting H�-action that we call the ECM

(equivariant-centralizer-monodromy) action. The action of the Weyl group W in the

ECM action can be related in type A to the Sn-action introduced in [49] on the coho-

mology of Hessenberg varieties. This action in the Hessenberg context is further stud-

ied in [48].

Now we explain a relation between H and H�. For G D GLn, the algebra H�

is a localization of H . In the general case, the algebras H and H� share a common

“completion.” Namely, set

H^ WD H ˝CŒt� CŒt�^0 ; (1.3)

where CŒt�^0 is the completion of CŒt� at zero. The same algebra H^ arises as

H� ˝CŒT � CŒT �^1 , where we identify CŒt�^0 with CŒT �^1 by means of exp W t ! T .

Then we consider

B^d WD Bd ˝CŒt� CŒt�^0 ;

an H^-bimodule, as well as

H T
BM.F led

/^ WD H T
BM.F led

/ ˝CŒT � CŒT �^1 ;

also an H^-bimodule.
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THEOREM 1.1

There is an H^-bilinear isomorphism B^
d

�
�! H BM

T .F led
/^.

Note that both sides are graded: H BM
T .F led

/^ is graded by the homological

degree, and B^
d

from a C�-equivariant structure on P
reg;� ˝ O

reg.d/ ˝ P
reg that

will be explained in Section 3.3. We will see below that one can achieve that the

isomorphism in Theorem 1.1 is grading preserving.

Now we explain how Theorem 1.1 relates to the previous work. In [32], Kivinen

studied the spherical version of F led
and proved a spherical version of Theorem 1.1

in the case of G D GLn. “Spherical” means that Bd is replaced with �Bd for the trivial

idempotent � in CW D CSn. On the level of Springer fibers, this means that we take

the Springer fiber in the affine Grassmannian instead of the affine flag variety. Also

note that Kivinen works with localizations, which is only possible for G D GLn. Even

stronger, one can prove an analog of Theorem 1.1 for localizations using the methods

of this paper, but we are not going to discuss this. In fact, one should be able to prove

a version of Theorem 1.1 for Bd itself and a suitable modification of F led
, but this

will be addressed elsewhere.

The bimodule B1 for G D GLn also appears in the recent paper of Carlsson and

Mellit (see [12, Conjecture 3.7]). Note that a statement similar to Theorem 1.1 (in

the GLn-case) is conjectured in [12, Section 3.3]. We will deduce (see [12, Con-

jecture 3.7]) from Theorem 1.1 combined with other statements that are used in its

proof in Section 7.3. A motivation for [12] was to get some geometric understanding

of the r-conjecture (saying that the image of every Schur polynomial under the r-

operator is Schur positive up to a sign). As we have mentioned above, the r-operator

is directly related to the bimodule B1. On the other hand, [13] contains an interpre-

tation of a stronger version of the r-conjecture in terms of the geometry of spaces

related to the affine Springer fibers. This serves as a motivation for having results like

Theorem 1.1.

Here is another important application of Theorem 1.1. Let Ctriv denote the 1-

dimensional irreducible representation of H^, where t and t� act by 0, and W acts

via the trivial representation.

THEOREM 1.2

We have

dim Bd ˝H Ctriv D dim H BM
T .F led

/ ˝H � Ctriv D .dh C 1/dim t;

where h denotes the Coxeter number of W . Moreover, as a W -module, Bd ˝H Ctriv

is isomorphic to C.ƒ0=.dh C 1/ƒ0/, where we write ƒ0 for the coroot lattice.
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In fact, we show that the first dimension is � .dh C 1/dim t, while the second

dimension is � .dh C 1/dim t. The latter is done by using an argument similar to one

in [5, Proposition 2.9].

Now we explain a reason to be interested in H BM
T .F led

/. It is expected that for

d D 1, this bimodule is closely related to the center of the principal block of the small

quantum group u�.g_/, where � is an odd root of unity (see [5, Theorem 4.12]). We

remark that

�
H T

BM.F le1
/^˝CŒT �T _�^ Ctriv

��
D H�.F le1

/ƒ;

where ƒ stands for the character lattice of T . Let G_ denote the Langlands dual

group, and let T _ be its maximal torus. Let Z denote the center of the principal block

of u�.g_/. The group G_ acts on Z by algebra automorphisms. The main conjecture

of [5, Conjecture A] relates the subalgebra ZT _

of Z to the cohomology of F le1

(there are also connections of the equivariant cohomology to the center, but we are

not going to discuss that). Namely, it is conjectured in [5, Conjecture A] that ZT _

is isomorphic to H�.F le/ƒ. Modulo the conjecture from [5, Conjecture A], The-

orem 1.2 shows that the dimension of the W -invariant part in ZT _

has dimension

.h C 1/dim t.

For G D SLn, we can say more. Using Theorem 1.1 combined with Haiman’s

nŠ theorem [28], one can show that, modulo the conjecture from [5, Conjecture A],

W acts trivially on ZT _

. This implies that G_ acts trivially on Z, so dim Z D .n C

1/n�1. This will confirm a conjecture from [34]. See Section 7.4 for details.

Now we explain two key ideas of the proof of Theorem 1.1. First, unsurprisingly,

we use the induction on d . Our second, and main, idea is to use a one-parameter

deformation: it turns out that we can deform both Bd and H T
BM.F led

/. For a com-

plex number c, we can consider the rational Cherednik algebra H�;c over CŒ�� (see

Section 2.3), deforming H , and the trigonometric Cherednik algebra H�
�;c (see Sec-

tion 2.4), deforming H�. The H -bimodule Bd deforms to a bimodule over H�;d

(acting on the left) and H�;0 (acting on the right). This is achieved by quantizing the

Procesi bundle P
reg and the line bundle O

reg.1/. The bimodule H T
BM.F led

/ deforms

to a bimodule over H�
�;d

and H�
�;0. The deformation in this case is done by consid-

ering the equivariant BM homology for T � C�, where C� acts by the loop rota-

tion. Note that, for each c 2 C, the algebras H�;c and H�
�;c share common partial

completions (at 0 and 1, resp.). We will see that we have a deformed version of the

isomorphism from Theorem 1.1, which turns out to be easier to establish.

In fact, the representations of rational Cherednik algebras appeared in the context

of affine Springer theory previously (see [47]). In particular, for a suitable “ellip-

tic” element e0
d

(different from ed ), it was shown that H BM
C� .F le0

d
/ admits a filtra-

tion (the so-called perverse filtration) with an action of H�;dC1=h on the associated
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graded space turning gr H BM
C� .F le0

d
/ into a deformation of the unique irreducible

finite dimensional module of the quotient HdC1=h WD H�;dC1=h=.�� 1/. Some tech-

niques we use are the same as in [47]: both our action of H�
d;�

and their action of

H�
d;�

on the equivariant cohomology come from the Springer–Chern construction.

But this is where the similarities essentially end; for example, there is no bimodule

structure in their construction, and our techniques of identifying H BM
T�C�.F led

/ with

a Cherednik algebra bimodule are very different. Note also that there is no connection

between H BM
T�C�.F led

/ and H BM
C� .F le0

d
/. However, there is a connection between

H BM.F led
/ and H BM.F le0

d
/ (see [5, Corollary 2.14]).

Note that the bimodule Bd admits a bigrading, while H BM
T .F led

/ a priori only

has one grading. A question that remains open is to understand the second grading

of Bd under the isomorphism in Theorem 1.1 on H BM
T .F led

/. In the result of [47],

this second grading is understood as coming from the perverse filtration, but this

filtration is easy to construct for elliptic elements of g..t// and is more subtle in the

case of nonelliptic elements such as ed . The combinatorics of the bigraded module

H BM.F led 0 / has been studied in [14], [26], and [30] in the case of elliptic elements

such as those studied in [47].

We finish the introduction by describing the content of the paper. In Section 2

we discuss generalities on partial Poisson resolutions of Y D .t ˚ t�/=W , Procesi

sheaves on them, and rational and trigonometric Cherednik algebras. This section

mostly contains known results and their easy modifications.

In Section 3 we construct a deformation of Bd . A key result used in the construc-

tion is that the pushforward from X reg to X of the vector bundle P
reg;�˝ O

reg.d/ ˝

P
reg is a Cohen–Macaulay sheaf without higher cohomology. Two key ingredients

for this result are the construction of the Procesi sheaves via quantizations in charac-

teristic p and the following claim of independent interests: the pushforward to X of

a line bundle on X reg is Cohen–Macaulay.

In Section 4 we provide some background on the equivariant Borel–Moore

homology and equivalued unramified affine Springer fibers. This section does not

contain any new results.

In Section 5 we construct actions of H�
�;d

, H�
�;0 on H BM

T�C�.F led
/ and establish

some properties of the resulting bimodule. A key technique is the localization theorem

for equivariant BM homology. This section relies on an Appendix by the authors and

Kivinen to check the relations for the action of H�
�;d

.

In Section 6 we prove Theorems 1.1 and 1.2. And then in Section 7 we discuss

applications of our own main results to conjectures of Carlsson and Mellit and to the

center of the small quantum group.

The bimodules Bd and related objects were previously studied mostly in type A.

The proof of Theorem 1.1 does simplify in this case as many prerequisite construc-
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tions are easier. The reader interested in type A only can essentially skip Section 2.1

and parts of Section 3: the claim of Proposition 3.2 is vacuous in type A, and (2) of

Proposition 3.1 follows directly from (1) of that proposition.

2. Procesi sheaves and Cherednik algebras

In this section we recall various generalities related to the algebras H D CŒT �t��#W ,

H� D CŒT �T _�#W , their deformations—the rational and trigonometric Cherednik

algebras, and the bimodule Bd . In particular, we discuss a partial resolution X of Y ,

and Procesi sheaves on X .

2.1. Partial Poisson resolutions of Y

Let Y D .t˚ t�/=W . The goal of this section is to construct a partial Poisson resolu-

tion X of Y mentioned in the introduction.

The variety Y is a conical symplectic singularity. As such, it admits a Q-factorial

terminalization, to be denoted by QX (see [9] or [38, Section 2.2]). This is another,

generally, singular symplectic variety together with a projective birational morphism

� W QX ! Y . The variety QX is Q-factorial and has terminal singularities, in particular,

codim QX
QX sing � 4 (see [46]). We remark that QX is not unique. Below we will need a

special choice of QX for some W .

Note that Y carries a natural action of .C�/2, by dilations of t and of t�. This

action lifts to QX , making � equivariant (cf. [43, Proposition A.7]). We will also con-

sider the contracting torus ¹.t; t/ j t 2 C�º � .C�/2. The Poisson bracket on O QX has

weight �2 with respect to the action of this torus.

We will need to understand the structure of the exceptional divisor D of QX ! Y .

For each irreducible component of this divisor, its image in Y is the closure of a codi-

mension 2 leaf (see the proof of [40, Proposition 2.14]). Such leaves are in bijection

with conjugacy classes of reflections in W . All formal slices to these leaves in Y are

of type A1. Therefore the preimage of the closure of such a leaf is irreducible. So we

get a bijection between the conjugacy classes of reflections in W and the irreducible

components of the exceptional divisor. For a reflection s we write Ds for the corre-

sponding component. So in the class group we have D D
P

Ds , where the sum is

taken over the representatives of conjugacy classes.

We proceed to defining a partial resolution X of Y .

When g is simple and simply laced, we set X WD QX . For example, for g D sln, we

get a slight modification of Hilbn.C2/, the Hilbert scheme of n points in C2. Namely,

this variety maps to .Cn ˚ Cn�/=Sn and our X is the preimage of .t ˚ t�/=Sn. Note

that in this case X is smooth (and symplectic).
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Assume again that g is simple and simply laced. Note that since QX is Q-factorial,

there is ` > 0 such that the line bundle O.`D/ on QX reg extends to a line bundle on QX .

The extension, also denoted by O.`D/, is ample.

Now consider the case when W is of type Bn, F4, or G2. In this case, there

are two codimension 2 symplectic leaves in Y , corresponding to the two conjugacy

classes of reflections. We consider the bundle O.D/ on QX reg associated to the divi-

sor D. Again, we can find ` such that O.`D/ extends to QX . But now O.`D/ may

fail to be ample. For example, this is the case in type Bn for n > 1. According to

[45], possible Q-factorial terminalizations of Y are in bijection with chambers of a

suitable hyperplane arrangement in Pic. QX 0/ ˝Z R (where QX 0 is any fixed Q-factorial

terminalization; these spaces are identified for different QX 0) modulo the action of the

Namikawa–Weyl group from [44]: we send QX to its ample cone. We choose QX so that

O.`D/ lies in the closure of the ample cone of QX .

PROPOSITION 2.1

There is an irreducible singular symplectic variety X with projective birational mor-

phisms N� W QX ! X and � W X ! Y such that

(i) codimX X sing � 4,

(ii) for some ` > 0, the bundle O.`D/ is lifted from an ample line bundle on X .

Proof

Intermediate partial resolutions X between QX and Y (that are normal, hence singular

symplectic) are classified by faces of the ample cone of QX in such a way that for

a given face, C0, for any rational point, � 2 C0, a positive rational multiple of � is

pulled back from an ample line bundle on the corresponding partial resolution. This

follows, for example, from [31, Theorem 3-2-1]. In more detail, X in that theorem is

our QX , and S there is our Y . The nef cone NE. QX=Y /, by definition, is spanned by

the numerical equivalence classes of curves in fibers of �. A Cartier divisor H there is

a positive multiple of �. It is �-nef in the terminology of [31, Theorem 3-2-1] because

of the theorem of Kleiman [31, Theorem 0-1-2] that states that the nef cone is dual to

the ample cone. To apply [31, Theorem 3-2-1], we take � there as in the proof of [45,

Lemma 1], so that . QX;�/ is klt.

We provide details on the latter claim for readers’ convenience. Note that in our

case, Y is Q-factorial. Indeed, let V 0 denote the locus of points in t ˚ t� without

stabilizers in W . The complement to this locus has codimension 2. Therefore, we

have isomorphisms

Cl.Y / Š Pic.V 0=W / Š PicW .V 0/ Š PicW .V / Š HomGroups.W;C�/:

The latter group is finite; hence, Y is Q-factorial. So, we can use the construction

explained in [33] to get an effective divisor D0 on QX supported on the exceptional
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locus of � that pairs negatively with every nonzero class in NE. QX=Y /. We take � D

�D0 for a very small positive rational number �. The claim that . QX;�/ is klt follows

from the definition of terminal singularities (see [31, Definition 0-2-6]).

So, the conditions of [31, Theorem 3-2-1] are satisfied. Then Y in that theorem

is our X .

Explicitly, let L be a line bundle on QX that is a positive multiple of �. Then X

is the image of QX in Y � P.V / for a sufficiently large integer d , where V is a finite

dimensional generating subspace of the CŒY �-module �.Ld /.

In particular, we get a unique partial resolution X satisfying (ii). We need to

show that it satisfies (i) as well. Assume the contrary: codimX X sing D 2. Since

codim QX
QX sing � 4 (see [46]), an irreducible component of N��1.X sing/ is a divisor.

On the other hand, as argued in the second paragraph of the proof of [40, Proposi-

tion 2.14], the image in Y of an irreducible divisor under � either intersects Y reg or

coincides with the closure of a codimension 2 leaf. It follows that a codimension 2

leaf in X maps to a codimension 2 leaf in Y . This contradicts the claim that some

multiple of D corresponds to an ample line bundle on X . So X satisfies (i) as well,

which finishes the proof.

We note that, by the construction, .C�/2 acts on X and the morphisms N� and �

are equivariant.

Remark 2.2

When W is of type Bn, the varieties QX (which is actually smooth), X , and Y can be

realized as Nakajima quiver varieties for the affine quiver of type QA2 with dimension

vector nı and unit framing at the extending vertex 0. The Nakajima quiver varieties

(see [42] for generalities) with these data depend on the choice of a pair of integers

.�0; �1/, and we write M
.�0;�1/ for the corresponding quiver variety. We take QX D

M
.1;1/, X WD M

.0;1/, and Y WD M
.0;0/.

We now sketch the argument. Recall that M
.�0;�1/ is defined as the GIT quotient

for an action of the group GLn � GLn on an affine variety with respect to the character

� W .g0; g1/ 7! det.g0/�0 det.g0/�1 . Let L denote the line bundle on QX corresponding

to the character .g0; g1/ 7! det.g1/. The slices to codimension 2 singularities in Y

look like C2=¹˙1º (meaning that the formal slice is the formal neighborhood of 0

in C2=¹˙1º). Over these slices QX ! Y looks like T �P1 ! C2=¹˙1º. To check that

X D M
.0;1/, we need to show that L restricts to the same line bundle on both P1s.

Recall (see [42, Section 6] or [8, Section 2.1.6]) that the slices in M
.�0;�1/ can also

be realized as Nakajima quiver varieties but for smaller quivers. The groups we need

to quotient out are realized as subgroups in GLn � GLn and the characters used to

take the GIT quotients are obtained by restricting � to these subgroups. The relevant
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computations were performed in [35, Section 6.5]. Our conclusion is that the restric-

tion of the line bundle on QX corresponding to � to the two P1 is given by the same

formulas as in [35, Theorem 6.2.1] (up to the sign—the sign convention in that paper

is opposite, and in the formulas we need to take h D 0): if the restrictions are O.k/

and O.c/ for k; c 2 Z, then �0 D .c � k/=2 and �1 D c=2.

The reason why we need to use X (instead of QX ) is that the Serre vanishing

theorem holds: since O.`d/ is ample on X , for every coherent sheaf F on X we

have H i .X;F ˝ O.`D/d / D 0 for all i > 0 and d is sufficiently large (depending on

F ). This plays a crucial role in the proof of Proposition 3.1 below.

2.2. Procesi sheaves

The goal of this section is to produce a Procesi sheaf on X . The case of Procesi

sheaves on QX was handled in [38, Section 4].

Let us recall the construction of the latter. We can reduce QX mod p for p � 0.

Namely, set F WD Fp . Then we can define the reduction QXF to F. Since p is suffi-

ciently large, QXF is a singular symplectic variety with codim QXF

QX
sing

F
� 4 and vanish-

ing higher cohomology of the structure sheaf. In [38, Section 4.2], the second named

author constructed a filtered quantization DF of the structure sheaf O QXF
, whose global

sections are A.tF ˚ t�
F
/W , where A stands for the Weyl algebra of a symplectic vec-

tor space. Consider the Frobenius morphism Fr W QXF ! QX
.1/
F

and the pushforward

Fr�DF. The restriction of this sheaf of algebras to the regular locus is an Azumaya

algebra [38, Lemma 4.3]. Consider the completion FŒY .1/�^0 of FŒY .1/� at 0. We

denote its spectrum by Y
.1/^
F

. Consider the scheme

QX
.1/;^
F

WD Y
.1/^
F

�
Y

.1/
F

QX
.1/
F

: (2.1)

It was shown in [38, Section 4.3] that the restriction of Fr�DF to the regular locus

in QX
.1/;^
F

splits. Moreover, it was shown there that we can find a Morita equivalent

sheaf of algebras AF on QX
.1/;^
F

whose global sections are FŒt.1/ ˚ t.1/��^0#W . Let �

denote the averaging idempotent in FW . Set QP^
F

WD AF�. Then the restriction of QP^
F

to QX
.1/;^;reg

F
is a splitting bundle for the Azumaya algebra

AFj QX.1/;^;reg

F

:

Also note that AF is a maximal Cohen–Macaulay sheaf that coincides with the endo-

morphism sheaf of QP^
F

. Note that, by the construction, we have

� QP^
F

D O QX.1/;^
F

:

Consider the contracting F�-action on X
.1/^
F

. Then QP^
F

can be shown to admit an

F�-equivariant structure. Using this, we can extend QP^
F

to an F�-equivariant maximal
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Cohen–Macaulay sheaf on QX
.1/
F

to be denoted by QPF (see [38, Lemma 4.6]). By the

same lemma, we can modify the F�-equivariant structure on QPF so that we get a

graded algebra isomorphism End. QPF/
�
�! FŒt.1/ ˚ t.1/��#W .

Finally, we can lift QPF to characteristic 0 (see [38, Section 4.4]). We get a maxi-

mal Cohen–Macaulay sheaf QP on QX with the following properties:

(i) we have a graded algebra isomorphism End. QP /
�
�! H ,

(ii) End. QP / is a maximal Cohen–Macaulay module,

(iii) H i . QX;End. QP // D 0 for i > 0,

(iv) � QP
�
�! O QX , a C�-equivariant isomorphism.

Sheaves QP satisfying (i)–(iv) are called Procesi sheaves on QX .

We note that, for the same reason as in [38, Lemma 4.6], QP can also be made

equivariant with respect to .C�/2, and the isomorphisms in (i) and (iv) can be assumed

to be .C�/2-equivariant. As remarked in [38, Remark 4.8], the argument in [36] clas-

sifying the Procesi bundles in the smooth case carries over to the singular case. So the

bundles QP on QX satisfying (i)–(iv) are classified by the elements of the Namikawa–

Weyl group of Y introduced in [44]. We will denote this group by WY . This group

is
Q

s.Z=2Z/, where s runs over representatives of conjugacy classes of reflections

in W . Below, in Section 2.3, we will recall how the classification of Procesi sheaves

works.

To finish the section, we discuss Procesi sheaves on X . Recall the birational pro-

jective morphism N� W QX ! X from Proposition 2.1. Set

P WD N�� QP :

LEMMA 2.3

The sheaf P on X has properties completely analogous to (i)–(iv).

Proof

First of all, note that R��O QX D OX . This is because QX and X are singular symplectic,

and � is birational and projective. Indeed, by [1, Proposition 1.3], singular symplectic

varieties have rational singularties. So, for any resolution of singularities 	 W Z ! QX ,

we have R	�OZ D O QX and R.� ı 	/�OZ D OX , implying R��O QX D OX .

For similar reasons, H i .X;OX / D 0 for all i > 0. So the same is true over F

(assuming, as always, that p � 0). Therefore, Ri��D D 0 for i > 0, and the sheaf

��D is a filtered quantization of OXF
, and has no higher cohomology. From here we

deduce that ��AF is a maximal Cohen–Macaulay sheaf without higher cohomology.

Moreover, ��
QP^
F

D ���AF. Now note that P is obtained from ��
QP^
F

in the same

way as QP is obtained from QP^
F

. It follows that the natural homomorphism End. QP / !

End.P / is an isomorphism yielding (i). Conditions (ii) and (iii) also follow, while (iv)

is immediate from the construction of P .
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2.3. Rational Cherednik algebras

Let us write S for the set of reflections in W . Let c W S ! C be a W -invariant function.

Let � be an independent variable. Then we can define the rational Cherednik algebra

H�;c as the quotient of T .t˚ t�/Œ��#W by the following relations:

Œx; x0� D Œy; y0� D 0; Œy; x� D �

�
hy;xi �

X

s2S

c.s/hy;˛_s ihx;˛sis
�
:

Here x;x0 2 t; y, y0 2 t�, and ˛s , ˛_s denote the positive root and the positive coroot

corresponding to a reflection s. For example, H�;0 D D�.t�/#W , where we write

D�.t�/ for the algebra of homogenized differential operators on t�.

We will write Hc for the specialization of H�;c to � D 1.

Now we will discuss a connection between the rational Cherednik algebras and

Procesi sheaves. We start with the Procesi sheaves on QX , the case treated in [38,

Section 5.1].

The formal quantizations of QX reg with a compatible action of the contracting torus

are classified by the points of H 2. QX reg;C/ (see [35, Section 2.3]). We note that the

first Chern class map induces an isomorphism C ˝Z Pic. QX reg;C/
�
�! H 2. QX reg;C/,

both spaces have dimensions equal to the number of conjugacy classes of reflections

in W . The quantizations of QX are in a natural bijection with those of QX reg via push-

forward and pullback (see [10, Proposition 3.4]). Let us write QD�;� for the formal

quantization of QX corresponding to 
. Note that QD�;� also has an action of the torus

.C�/2, and the action of the Hamiltonian subtorus ¹.t; t�1/ j t 2 C�º is still Hamilto-

nian.

The algebra of global sections �. QD�;�/ is related to the rational Cherednik alge-

bra H�;c as follows. Consider the spherical subalgebra �H�;c�, a graded quantization

of CŒY �. We can consider the subalgebra �. QD�;�/fin of C�-locally finite elements in

�. QD�;�/ with respect to the contracting C�-action. Then we have

�. QD�;�/fin Š �H�;c�
�; (2.2)

where c� is computed as follows. The Chern classes of the line bundles O.Ds/ form

a basis in H 2. QX reg;C/. Let 
s be the coefficient of the basis element corresponding

to s in 
.

Definition 2.4

By definition, c� sends s 2 S to 
s � 1
2

.

Isomorphism (2.2) follows from [40, Proposition 3.17].

Note that the Namikawa–Weyl group WY acts on H 2. QX reg;C/ by changing signs

of the coordinates 
s ; this follows, for example, from [40, Section 3.6]. In particular,
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we get a WY -action on the affine space of parameters c. Two WY -conjugate parame-

ters give rise to the same algebra �.D�;�/fin (see [10, Proposition 3.10]).

Now we discuss a connection of rational Cherednik algebras with Procesi

sheaves, established in [35] in a special case and in [38] in the general case. See,

in particular, [38, Section 5.1]. Let QP reg denote the restriction of QP to QX reg; this is

a vector bundle. Let QD
reg

�;�
be the restriction of QD�;�. Since End. QP / is a maximal

Cohen–Macaulay module that has no higher cohomology (see Section 2.2), the con-

dition codim QX
QX sing � 4 implies that �.End. QP reg// D H and H i .End. QP reg// D 0

for i D 1; 2. So we have a unique quantization of QP reg to a left QD
reg

�;�
-module to be

denoted by QP
reg

�;�
. This quantization is .C�/2-equivariant. Set

QE
reg

�;�
WD End QD reg

�;�
. QP

reg

�;�
/opp: (2.3)

This is a sheaf of CŒŒ���-algebras on QX reg deforming End. QP reg/opp.

As was argued in [38, Section 5.1],

�. QE
reg

�;�
/fin ��! H�;c0.�/ (2.4)

for an affine map 
 7! c0.
/. By multiplying the source and the target of (2.4) with

� on the left and on the right, we get �. QD
reg

�;�
/fin
�
�! �H�;c0.�/� that gives the identity

endomorphism of CŒY � after taking the quotient by � D 0. So, as argued in [38, Sec-

tion 5.1], we have an element w 2 WY such that c0.
/ D wc�. This element depends

on the choice of QP . This defines a bijection between the set of possible Procesi bun-

dles and WY , already mentioned in Section 2.2. This was proved in [36, Theorem 1.1]

in the case when QX is smooth and carries over to the general case verbatim.

We will always choose QP corresponding to the unit element in WY .

Let �� denote the sign idempotent in CW . Using the previous discussion, we can

describe QP reg��, the sign component of QP reg.

LEMMA 2.5

We have c1. QP reg��/ D 1
2
c1.O.D//.

Proof

Let s be a reflection in W . Pick a point y 2 Y lying in the symplectic leaf correspond-

ing to s. We set Y ^y WD Spec.CŒY �^y / and X^y WD Y ^y �Y
QX .

Pick 
 2 H 2. QX reg;C/ and set c WD c�. We can also consider the completion

H
^y

�;c . As was checked in [6, Section 3.3], this is a matrix algebra of size jW j=2 over

H
^0

�;c.s/
, the completed rational Cherednik algebra for .t; hsi/ with parameter c.s/.

On the other hand, analogously to [36, Proposition 4.1], QP^y WD QP j QX^y coincides

with HomC¹1;sº.CW;P^0/, where P is the Procesi bundle over .t ˚ t�/s � T �P1.

Let i W X^y ! QX reg be the embedding. Then we have the pullback map
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i� W H 2. QX reg;C/ D H 2
DR. QX reg/ ! H 2

DR.X^y / Š H 2
�
.t˚ t�/s � T �P1;C

�
D C:

The isomorphism End.P�;�/
�
�! H

^�
�;�

gives rise to an isomorphism End.P
^0

�;i�.�/
/
�
�!

H
^0

�;c.s/
. By Definition 2.4, the isomorphism of parameter spaces corresponding to P

sends i�.
/ to i�.
/ � 1
2

. The two possibilities for P are O ˚ O.1/ and O ˚ O.�1/.

The map between the parameter spaces we have is realized by the former. This is an

easy special case of [36, Section 4.2], for example.

In particular, using the direct analog of [36, Proposition 4.1] again, we see that

the restriction of the line bundle P �� to X^y is O.1/ on that scheme. Since the line

bundle O.P1/ on T �P1 is O.2/, the claim of the lemma follows.

Now we explain how to relate the rational Cherednik algebras to quantizations of
QP (instead of QP reg). Let � denote the embedding QX reg ,! QX . Set QP�;� WD ��. QP

reg

�;�
/.

Since H 1. QX reg; QP reg/ D 0, we see that QP�;� is a quantization of QP . Similarly, QE�;� WD

�� QE
reg

�;�
is the endomorphism sheaf of QP�;� (with opposite multiplication).

Let us proceed to quantizations of P , the Procesi sheaf on X , and its endo-

morphism sheaf. Similarly to the proof of Lemma 2.3, we see that Ri��
QE D 0 for

i > 0. So we get that E�;� WD ��
QE�;� is a quantization of End.P /. Further, we set

P�;� WD �E�;�. This is a quantization of P . Also

E�;� D EndD�;�
.P�;�/opp;

where D�;� is the pushforward of QD�;� to X .

In what follows we will write O
reg.1/ WD P

reg��. This is a line bundle on X reg.

Note that N�� induces an isomorphism Pic.X reg/
�
�! Pic. QX reg/. This allows us to

view c1.Oreg.1// as an element of H 2. QX reg;C/. If 
 2 H 2. QX reg;C/ corresponds to a

Cherednik parameter c D c�, then the Cherednik parameter, say c0, corresponding to


 C c1.Oreg.1// satisfies c0.s/ D c.s/ C 1 for all s 2 S .

2.4. Trigonometric Cherednik algebras

In this section we will discuss the trigonometric Cherednik algebras and their connec-

tion to rational Cherednik algebras. Assume that G is a connected reductive group.

Recall that T denotes a maximal torus in G.

Let ƒ denote the cocharacter lattice of T , and let ƒ0 be the coroot lattice of

g, a sublattice of ƒ. Consider the extended affine Weyl group eW WD W � ƒ that

contains the affine Weyl group W a WD W � ƒ0 as a normal subgroup. We have the

length function ` W eW ! Z�0. The subgroup of length 0 elements is identified with

ƒ=ƒ0 under the projection eW � eW =W a Š ƒ=ƒ0. We have the decomposition eW D

.ƒ=ƒ0/� W a.

The group eW acts on ƒ �Z by
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w.�;a/ WD .w�;a/; �.�;a/ WD .� C a�;a/;

� 2 ƒ � eW ;w 2 W � eW ;� 2 ƒ;a 2 Z: (2.5)

We consider the dual action of eW on t�˚ C. It is given by

w.y; z/ D .wy; z/; �.y; z/ D
�
y; z C h�;yi

�
; � 2 ƒ;w 2 W;y 2 t�; z 2 C:

Let s1; : : : ; sr denote the simple reflections in W , and let s0 denote the simple

affine reflection. Let ˛_1 ; : : : ; ˛_r denote the simple coroots, and let ˛_0 denote the min-

imal (negative) coroot. Pick a W -invariant function c W S ! C. Set c.s0/ WD c.s˛0
/.

The trigonometric Cherednik algebra H�
�;c is defined as the algebra generated by

two subalgebras CeW and CŒt;��, subject to the following cross relations:

si y � .si :y/si D �c.si /hy;˛_i i; i D 0; : : : ; r; y 2 t�;

	y D .	:y/	; y 2 t�; 	 2 ƒ=ƒ0 � eW ;

x� D �x; x 2 eW :

(2.6)

Here we write x:y for the image of y 2 t� under x 2 eW for the action of eW on t˚C

described above (with � corresponding to 1 2 C).

The algebra H�
�;c admits an embedding into the algebra D�.T _;reg/#W , where

T _;reg denotes the complement to the union of root codimension 1 subgroups in the

Langlands dual torus T _; we write D� for the algebra of homogenized differential

operators. Namely, let us write e� for the function on T _ given by 
. The embedding

maps 
 2 ƒ � eW to e�, w 2 W to w 2 W , � to �, and y 2 t to the trigonometric

Dunkl operator (see [15, (2.12.16)]) defined as follows:

Dtrig
y D @y C

X

˛>0

�c.s˛/
h˛;yi

1 � e�˛_ .1 � s˛/ �
DX

˛>0

�c.s˛/˛_; y
E
:

This embedding can be used to establish the following well-known result that

plays an important role in our paper.

LEMMA 2.6

We have an algebra isomorphism

H�;c ˝CŒt�� CŒt��^0 Š H�
�;c ˝CŒT _� CŒT _�^1 :

Proof

We can identify CŒt��^0 Š CŒT _�^1 by sending x 2 t to ex . This identification is W -

equivariant. It remains to show that the subalgebra in D�.t�;^0;reg/#W generated by

CŒt��^0#W and the rational Dunkl operators coincides with the subalgebra generated
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by CŒt��^0#W and the trigonometric Dunkl operators. This is because the difference

between the trigonometric and rational Dunkl operators associated to y 2 t� lies in

CŒt��^0#W . The latter subalgebra lies in both images.

2.5. Representation theory of rational Cherednik algebras

In this section we will recall several known constructions and facts related to the

representation theory of rational Cherednik algebras. Set Hc WD H�;c=.��1/; this is a

filtered deformation of CŒT �t��#W . Let �, �� denote the trivial and sign idempotents

in CW .

We abuse the notation and write c C1 for the map S ! W , sending s to c.s/C1.

We start with the following classical result (see, e.g., [3, Proposition 4.6]) that will

also be established below, in Lemma 3.7.

LEMMA 2.7

We have a filtered algebra isomorphism �Hc� Š ��HcC1�� that is the identity on the

associated graded algebras.

We say that a parameter c is �-spherical if Hc D Hc�Hc . In this case the cat-

egories Hc �mod and �Hc� �mod are equivalent via the bimodules Hc�, �Hc . The

following result, due to Bezrukavnikov, is [16, Theorem 5.5].

PROPOSITION 2.8

The parameter c is �-spherical if and only if the algebra �Hc� has finite homological

dimension.

Similarly, we can talk about ��-spherical parameters. A complete analog of

Proposition 2.8 holds. In particular, we can use Lemma 2.7 to prove the following

result.

COROLLARY 2.9

The parameter c is �-spherical if and only if c C 1 is ��-spherical.

We will be interested in two classes of parameters c. The first class is the param-

eters c with c.s/ 2 Z for all s. The following result was obtained in [2, Theorem 1.4,

Proposition 1.7].

LEMMA 2.10

If c.s/ 2 Z for all s, then the algebra Hc is simple. In particular, c is both �- and

��-spherical.
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The second class of parameters is as follows. Assume that g is simple. Let h

denote the Coxeter number for W and let d 2 Z�0. We consider constant functions

c W S ! C such that c.s/ D d C 1
h

for all s 2 S .

The following result was obtained in [3, Theorem 1.4, Proposition 1.7].

PROPOSITION 2.11

There is a unique irreducible finite dimensional Hc-module. Its dimension is .dh C

1/dim t. Moreover, as a W -representation, it is isomorphic to the permutation module

C.ƒ0=.dh C 1/ƒ0/, where, recall, ƒ0 is the coroot lattice.

The following is [20, Lemma 4.5].

PROPOSITION 2.12

The parameter c D d C 1
h

is �-spherical for d � 0 and ��-spherical for d > 0.

3. Deformation of Bd

Let d be a positive integer. The goal of this section is, for a Cherednik parameter

c, to define an H�;cCd -H�;c-bimodule B�;cCd c that is a CŒ��-flat deformation of

Bd . This is done in Section 3.3. This construction is based on two algebro-geometric

results of independent interest, Propositions 3.1 and 3.2.

3.1. Main geometric results

Consider the vector bundle P
reg on X reg, the restriction of P from Section 2.2, and

the line O
reg.1/ WD ��P

reg on X reg. Let � denote the inclusion X reg ,! X . We write

O
reg.j / for the j th tensor power of O

reg.1/.

Here is the first important result in this section.

PROPOSITION 3.1

The following claims hold:

(1) For all j > 0, the sheaf ��.P
reg;�˝ O

reg.j / ˝ P
reg/ on X is maximal Cohen–

Macaulay and its higher cohomology vanishes.

(2) In particular, we have H i .X reg;P reg;� ˝ O
reg.j / ˝ P

reg/ D 0 for all j > 0

and i D 1; 2.

We will prove this proposition using another major result of this section:

PROPOSITION 3.2

Let L be a line bundle on X reg and let � denote the inclusion X reg ,! X . Suppose there
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is ` > 0 such that ��.L
˝`/ is a line bundle on X . Then ��L is a Cohen–Macaulay

sheaf.

Proposition 3.2 will be proved in Section 3.2. Now we prove Proposition 3.1

assuming Proposition 3.2.

Proof of Proposition 3.1

We note that (1) implies (2): if F is a maximal Cohen–Macaulay sheaf on X , then

Ri ��.�
�
F / D 0 for i D 1; 2 because codimX X sing � 4 (by Proposition 2.1). It follows

that H i .X reg;P reg;� ˝ O
reg.j / ˝ P

reg/ D H i .X; ��.P
reg;� ˝ O

reg.j / ˝ P
reg// for

i D 1; 2. The right-hand side vanishes by (1).

The proof of (1) is in several steps.

Step 1. Note that O
reg.2k/ Š O.kD/ for the divisor D � X reg from Section 2.1

and some k > 0. This follows from Lemma 2.5. By (ii) of Proposition 2.1, there is

a positive integer ` such that O
reg.`/ is obtained by restricting an ample line bundle

on X that will be denoted by O.`/. So, for each coherent sheaf F on X , there is a

positive integer d.F / such that H i .X;F ˝ O.d`// D 0 for all i > 0 and all d >

d.F /. Set d0 to be the maximum of d.F /, where F runs over ��O
reg.j / for j D

0; : : : ; ` � 1. Now, by Proposition 3.2, each of the sheaves .��O
reg.j // ˝ O.d`/ is

a maximal Cohen–Macaulay OX -module. We conclude that ��.O
reg.j // ˝ O.d`/ is

Cohen–Macaulay and has vanishing higher cohomology for all d sufficiently large

and all j D 0; : : : ; ` � 1.

Step 2. Note that X and O
reg.1/ are defined over a finite localization of a ring

of algebraic integers, say R (cf the discussion after [38, Lemma 2.3]). After a further

finite localization of R we can achieve the following:

� .X reg/R is regular and O
reg.1/ is a base change of a line bundle, O

reg

R .1/, on

X
reg

R ,

� OR.`/ WD ��O
reg

R .`/ is an ample line bundle on XR,

� ��O
reg

R .j / is a maximal Cohen–Macaulay sheaf on XR for all j D 0; : : : ; `�1.

Using these properties we see that ��O
reg

R .j / ˝ OR.d`/ is a maximal Cohen–

Macaulay sheaf with vanishing higher cohomology for all d sufficiently large, say

d � d1, and all j D 0; : : : ; `�1. We conclude that for any field F that is an R-algebra,

we have

(~) ��O
reg

F
.j / ˝ OF.d`/ is a maximal Cohen–Macaulay sheaf on XF with vanish-

ing higher cohomology for all d � d1.

Step 3. We will use property (~) to establish (1) in this and subsequent step.

Recall that we write E for endomorphism sheaf of P . Consider the scheme X^
F

defined analogously to (2.1). It is enough to show the direct analog of (1) over F for

p WD charF � 0. Let E
^
F

denote restriction of EF to X^
F

and, similarly, let O
^;reg

F
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denote the restriction of O
reg

F
to X

^;reg

F
. Similarly to Step 1 in the proof of [39,

Lemma 3.4], we see that the restriction of ��.E
reg

F
˝ O

reg

F
.j // to X^

F
coincides with

�^�
�
E
^;reg

F
˝ O

^;reg

F
.j /
�
; (3.1)

where we write �^ for the inclusion X
^;reg

F
,! X^

F
. So we need to show that (3.1)

is maximal Cohen–Macaulay with vanishing higher cohomology for all j > 0. It is

enough to do this after a Frobenius twist. In the notation of Section 2.2, (3.1) becomes

�^�
�
AFj

X
.1/;^;reg

F

˝ O
.1/;^;reg

F
.j /
�
: (3.2)

Recall that AF has the same direct summands as a quantization D
^
F

of X^
F

. So we

need to show that

�^�
�
D
^
F

j
X

.1/;^;reg

F

˝ O
.1/;^;reg

F
.j /
�

(3.3)

is maximal Cohen–Macaulay with vanishing higher cohomology. Again, arguing as

in Step 1 of the proof of [39, Lemma 3.4], we see that this sheaf is the restriction to

X
.1/;^
F

of

��
�
DFj

X
.1/;reg

F

˝ O
.1/;reg

F
.j /
�
: (3.4)

So it is enough to show that (3.4) is maximal Cohen–Macaulay with vanishing higher

cohomology. We will do this in the next step.

Step 4. We note that DF is a filtered deformation of Fr�OXF
. It follows that

DFj
X

.1/;reg

F

˝ O
.1/;reg

F
.j /

is a filtered deformation of

.Fr�OX
reg

F

/ ˝ O
.1/;reg

F
.j / Š Fr�O

reg

F
.pj /:

Since p is sufficiently large, by (~), �� Fr�O
reg

F
.pj / is maximal Cohen–Macaulay

with vanishing higher cohomology. Similarly to the derivation of (1))(2) in the

beginning of the proof, we see that R1�� Fr�O
reg

F
.pj / D 0. It follows that (3.4) is a

filtered deformation of �� Fr�O
reg

F
.pj /. Since the latter is maximal Cohen–Macaulay

with vanishing higher cohomology, so is (3.4). This finishes the proof.

3.2. Cohen–Macaulay property

In this section we prove Proposition 3.2. Let L be as in Proposition 3.2. We need to

prove that ��L is Cohen–Macaulay. We start with the following lemma.
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LEMMA 3.3

Every point x 2 X has a Zariski open neighborhood, say U , such that LjU reg has a

D-module structure.

Proof

Since H 1.X reg;O/ D 0, the line bundle L quantizes to a D�;�Cc1.L/-D�;�-bimodule

for any 
 2 H 2.X reg;C/ (see, e.g., [10, Proposition 5.2]). Take a Zariski open neigh-

borhood U of x in X such that the line bundle ��.L
˝`/ trivializes on U . We can

assume that U is affine. Then H i .U reg;O/ D 0 for i D 1; 2 (because U is Cohen–

Macaulay and codimU U sing � 4); hence, the formal quantizations of U reg are classi-

fied by their period (see [7, Theorem 1.8]).

Since ��.L
˝`/ trivializes on U , it follows that L

˝` is trivial on U reg; hence,

c1.LjU reg/ D 0. Therefore, we have

D�;�jU reg Š D�;�Cc1.L/jU reg :

A vector bundle that quantizes to a bimodule over the same formal quantization on

the left and on the right gets a Poisson structure (see, e.g., [39, Section 2.4]). But

over a smooth symplectic variety, a coherent Poisson module is the same thing as a

D-module (see, e.g., Step 3 of the proof of [37, Lemma 3.9]).

Recall the morphism � W X ! Y . Set y WD �.x/. Let v 2 t ˚ t� be a point in

the preimage of y. Choose a Wv-stable small disc Z around v. Then Z=Wv is a

neighborhood of y in the complex analytic topology. Set QZ WD ��1.Z=Wv/.

LEMMA 3.4

The group 	1. QZreg/ is a quotient of Wv .

Proof

Indeed, .Z=Wv/reg embeds into QZreg as the complement to a closed complex analytic

subspace; hence, 	1..Z=Wv/reg/ � 	1. QZreg/. But 	1..Z=Wv/reg/ is easily seen to

coincide with Wv .

Proof of Proposition 3.2

What we need to show is that the completion .��L/^x is Cohen–Macaulay; this

implies that the stalk of ��L is Cohen–Macaulay. The proof is in several steps.

Step 1. Let W 0 denote the kernel of 	1..Z=Wv/reg/ � 	1. QZreg/. Set Y 0 WD .t˚

t�/=W 0 and X0 WD Y 0 �Y X . Let 
 denote the projection X0
� X . The preimage

Z0 of QZreg in X0 is smooth and is a simply connected cover of QZreg, by the choice

of W 0. The morphism 
 W Z0 ! QZreg is étale. It follows that there is a Zariski open
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neighborhood U1 of x in U such that 
 is étale over U
reg

1 . Define U 0
1 from the Stein

decomposition for 	�1.U
reg

1 / ! U1 so that 
�1.U
reg

1 / embeds into U 0
1 as an open

subset and U 0
1 ! U1 is the quotient morphism for the group 	1. QZreg/. As in the

proof of [39, Lemma 2.5], it follows that U 0
1 has symplectic singularties and hence

Cohen–Macaulay.

Step 2. Let O
an
X and O

an
X reg denote the sheaves of analytic functions on X and

X reg. Then we have the analytification functor �an WD O
an
X ˝OX

� from the category

of coherent OX -modules to the category of coherent O
an
X -modules, and similarly for

X reg. We claim that .��L/an coincides with the analytic pushforward of L
an, to be

denoted by �an
� L

an.

Note that O
an
X is flat over OX . So we have an isomorphism of functors

HomOX
.�;OX /an ��! HomO

an
X

.�an;Oan
X / (3.5)

(from Coh.X/ to Coh.Xan/). Since codimX X sing � 2, the pushforward ��L is a

reflexive OX -module, that is, it coincides with its double dual. It follows from (3.5)

that .��L/an is a reflexive O
an
X -module. Note that L

an coincides with the pullback

of .��L/an. Since .��L/an is reflexive and codimX X sing � 2, we see that .��L/an

coincides with �an
� L

an.

Step 3. Recall from Lemma 3.3 that LjU reg has a D-module structure. In par-

ticular, L
anj QZreg is a D-module, that is, a vector bundle with a flat connection. It

follows that it is the direct sum of 	1. QZreg/-isotypic component in 
�O
an

��1. QZreg/
.

Therefore, .��L/^x is also the direct sum of isotypic components in the complete

ring CŒ
�1.X^x /�. The latter is ring is Cohen–Macaulay because U 0
1 has symplectic

singularities. Hence, .��L/^x is a Cohen–Macaulay CŒX�^x -module.

Remark 3.5

We expect that a direct analog of Proposition 3.2 holds for the partial resolutions of

general conical symplectic singularities. The proof should be similar to the one we

gave above, modulo some technical issues.

3.3. Construction and properties of B�;cCd c

Let d > 0. Recall the space

Bd WD �
�
X reg;P reg;�˝ O

reg.d/ ˝ P
reg
�
:

We view P as a right H -module, so Bd becomes an H -bimodule. Moreover, recall

that P has a .C�/2-equivariant structure. The line bundle O.1/ D P �� inherits the

.C�/2-equivariant structure. This equips Bd with a .C�/2-equivariant structure. We

will mostly consider a part of the action, an action of C� given by t:.x; y/ D .x; t�2y/

for x 2 t, y 2 t�.
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In this section we produce a deformation of Bd to an H�;cCd -H�;c-bimodule

and study its properties. The deformation of Bd is constructed as follows. Recall

from Section 2.3 that P
reg quantizes to a D

reg

�;�
� E

reg

�;�
-bimodule P

reg

�;�
for any


 2 H 2.X reg;C/. Set � WD c1.O.1//. Also O
reg.d/ quantizes to a D

reg

�;�Cd�
-D

reg

�;�
-

bimodule to be denoted by D
reg

�;�Cd� �
(see [10, Proposition 5.2]). So

�.X reg;P
reg;�

�;�Cd�
˝

D
reg

�;�Cd�
D�;�Cd� � ˝

D
reg

�;�
P

reg

�;�
/ (3.6)

becomes a .C�/2-equivariant H
^�
�;�Cd�

-H
^�
�;�

-bimodule, where the superscript �^�

indicates an �-adic completion. We set

B�;�Cd� � WD �.X reg;P
reg;�

�;�Cd�
˝

D
reg

�;�Cd�
D

reg

�;�Cd� �
˝

D
reg

�;�
P

reg

�;�
/fin;

where the superscript “fin” means that we take the finite part for our C�-action. This

is a bigraded H�;�Cd�-H�;�-bimodule. Note that for d D 0, we recover the regular

H�;�-bimodule.

Remark 3.6

By the construction, B�;�Cd� � carries an action of .C�/2. So it is bigraded.

We claim that B�;�Cd� � is a free-graded CŒ��-module with

B�;�Cd� �=.�/ D Bd : (3.7)

We only need to prove (3.7). By (2) of of Proposition 3.1,

H 1
�
P

reg;�˝ O
reg.d/ ˝ P

reg
�

D 0:

We now use the long exact sequence in cohomology for

0 ! P
reg;�

�;�Cd�
˝

D
reg

�;�Cd�
D

reg

�;�Cd� �
˝

D
reg

�;�
P

reg

�;�

�

�! P
reg;�

�;�Cd�
˝

D
reg

�;�Cd�
D

reg

�;�Cd� �
˝

D
reg

�;�
P

reg

�;�
! P

reg;�˝ O
reg.d/ ˝ P

reg ! 0

and the argument in the last paragraph of the proof of [21, Lemma 5.6.3] to show that

H 1.P
reg;�

�;�Cd�
˝

D
reg

�;�Cd�
D

reg

�;�Cd� �
˝

D
reg

�;�
P

reg

�;�
/ D 0:

From the same long exact sequence we deduce that (3.6) is a CŒŒ���-flat deformation

of Bd . (3.7) easily follows.

We now explain the choice of 
 we mostly need: we want c� to take the same

value (to be denoted by c) on all simple reflections. Then c�Cd� takes value c C d on
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every reflection. So we will write H�;cCd , H�;c for the algebras and B�;cCd c for

the bimodule.

Now we explain an important property of the bimodules B�;cC‹ c . We note that

(1) below also follows from Lemma 2.7 but we are not going to check that the iso-

morphism below coincides with the isomorphism from that lemma (although it does).

LEMMA 3.7

The following claims are true:

(1) For all c 2 C, we have a bigraded algebra isomorphism ��H�;cC1�� Š

�H�;c�.

(2) Thanks to (1) we can view the ��B�;cCdC1 c as �H�;cCd �-H�;c-bimodule.

For all c 2 C and all d > 0, we have an �H�;cCd �-H�;c-bilinear bigraded

isomorphism

��B�;cCdC1 c Š �B�;cCd c :

Proof

Consider the E
reg

�;cCdC1
-D

reg

�;cCd
-bimodule .P

reg

�;cCdC1
/�˝

D
reg

�;cCdC1
D

reg

�;cCdC1 cCd
.

We claim that

��
�
.P

reg

�;cCdC1
/�˝

D
reg

�;cCdC1
D

reg

�;cCdC1 cCd

�

is the regular D
reg

�;cCd
-bimodule. Indeed, P

reg

�;cCdC1
�� is the unique quantization of

O
reg.1/ to a left D

reg

�;cCdC1
-module; the uniqueness follows from H 1.X reg;OX reg/ D

0 (cf the proof of [10, Proposition 5.2]). The opposite endomorphism sheaf is D
reg

�;cCd
.

Hence, P
reg

�;cCdC1
�� Š D

reg

�;cCdC1 cCd
as a bimodule. Our claim follows.

To prove (1) we use the previous paragraph to see that

��E
reg

�;cC1�� D End
D

reg

�;cC1
.P

reg

�;cC1��/opp D D�;c D �E
reg

�;c�: (3.8)

Since �.X;E
reg

�;c/fin D H�;c , (3.8) implies (1).

We proceed to (2). We note that

��P
reg�

�;cCdC1
˝

D
reg

�;cCdC1
D

reg

�;cCdC1 c
˝

D
reg

�;c
P

reg

�;c

D .��P
reg�

�;cCdC1
˝

D
reg

�;cCdC1
D

reg

�;cCdC1 cCd
/

˝
D

reg

�;cCd
.D

reg

�;cCd c
˝

D
reg

�;cCd
P

reg

�;c/

D D
reg

�;cCd c
˝

D
reg

�;c
P

reg

�;c D �P
reg�

�;cCd
˝

D
reg

�;cCd
D

reg

�;cCd c
˝

D
reg

�;c
P

reg

�;c :

Passing to the global sections of the initial and final expressions and taking the C�-

finite part, we arrive at the statement of (2).
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We will also need a description of EndH�;c
.B�;cCd c/. Note that we have a

graded CŒ��-algebra homomorphism

H�;cCd ! EndH�;c
.B�;cCd c/: (3.9)

LEMMA 3.8

This homomorphism is an isomorphism.

Proof

It is enough to prove that the homomorphism

H ! EndH .Bd / (3.10)

is an isomorphism. Indeed, the injectivity of (3.9) will follows because the source is

flat over CŒ��, while the surjectivity follows from the graded Nakayama lemma (note

that EndH�;c
.B�;cCd c/=.�/ ,! EndH .Bd /).

Since Bd is the global section of a vector bundle on X reg, and CŒY � D CŒX reg�,

we see that Bd is a torsion-free CŒY �-module. It follows that we have an algebra

embedding

EndH .Bd / ,! EndH reg.B
reg

d
/: (3.11)

Here we write H reg, B
reg

d
for the restrictions of H and Bd to Y reg. So it is enough to

show that the composition of (3.11) and (3.10) is an isomorphism. On the other hand,

from the definition of the Procesi bundle P
reg and the construction of Bd , it is easy

to see that

H reg ��! EndH reg.B
reg

d
/: (3.12)

The composition H ! EndH reg.B
reg

d
/ of (3.11) and (3.10) is obtained from (3.12) by

passing to global sections. This finishes the proof.

4. Borel–Moore homology

4.1. General properties of Borel–Moore homology

In this section we recall the notion of equivariant Borel–Moore homology and the

necessary properties needed to prove the isomorphism in Theorem 1.1. The main

references we use are [32], [11], and [23].

Let X be a projective variety. Then we can consider the dualizing sheaf !X 2

Db
c .X/, the bounded derived category of constructible sheaves on X . Then we can

define:
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H BM
� .X/ D H��.!X /:

Now assume we have an algebraic action of a torus T on X . To consider the

equivariant Borel–Moore homology we need to define the Borel–Moore homology

of the Borel construction X �T ET , where ET ! BT is the universal T bundle.

Since this is not a finite type variety we need to do this by approximating ET using

finite-type varieties, which can be done along the lines of [4].

Note that from the map X �T ET ! BT , we get a map � W H BM
T .X/ !

H BM
T .pt/ D CŒt�. Also, there is an action of the constant sheaf C 2 Db

c .X/ on !X ,

which equips H BM
T .X/ with an H�T .X/-module structure. In particular, H BM

T .X/

becomes a module over H�T .pt/ D CŒt�. The map � W H BM
T .X/ ! H BM

T .pt/ is

CŒt�-linear. We get a map

H�T .X/ ! HomH �
T

.pt/

�
H BM

T .X/;H�T .pt/
�

(4.1)

by ˛ 7! Œˇ ! �.˛ˇ/�. This map is an isomorphism when X is equivariantly formal,

which follows from [11, Proposition 1]. Also, when X is equivariantly formal, the

dual map

H BM
T .X/ ! HomH �

T
.pt/

�
H�T .X/;H�T .pt/

�
(4.2)

is also an isomorphism.

We further have the following two localization lemmas which follow from [11,

Lemma 1].

LEMMA 4.1

Suppose that X has isolated T -fixed points. Consider the inclusion of the fixed points

XT ,! X . This induces a map

H BM
T .XT / ! H BM

T .X/:

This map is an isomorphism after inverting finitely many characters of T .

A dual result also holds for the cohomology H�T .X/; that is, we have a natural

map

H�T .X/ ! H�T .XT /

that is an isomorphism after inverting the same characters as in the above lemma.

LEMMA 4.2

Let T 0 � T and X be a variety with T -action; then we have the localization map
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H BM
T .XT 0

/ ! H BM
T .X/

which becomes an isomorphism after inverting those characters of Lemma 4.1 that do

not vanish on T 0.

Lemma 4.2 follows from Lemma 4.1 applied to the action of T 0.

We also have that these two localization maps are compatible with the action of

H�T .X/ on H BM
T .X/ in the sense that we have a commuting diagram

H�T .X/ ˝ H BM
T .XT / H�T .X/ ˝ H BM

T .X/

H�T .XT / ˝ H BM
T .XT / H BM

T .XT / H BM
T .X/

Further, we can explicitly understand the equivariant Borel–Moore homology

under certain conditions of the T -action on the space X , using the map in Lemma 4.1.

We first introduce some notation that we will need to state the result. Consider a

1-dimensional orbit E of T in X . Then consider the action of T on E factors through

some character � W T ! Gm, such that the kernel of � is precisely the stabilizer of a

point in E . Note that there are two choices here by changing the sign, but this does not

make a difference to the conditions in the following proposition. Taking the closure

of E , we get two fixed points in the boundary, which we denote by x0 and x1. With

this notation we get the following result [11, Corollary 1].

PROPOSITION 4.3

Let X be a proper equivariantly formal variety with a T -action. Assume further

that it only has finitely many 1-dimensional orbits. Let Ei ; i D 1; : : : ; k be these

orbits and let �i ; i D 1; : : : ; k denote the corresponding characters. Then H BM
T .X/ �

H BM
T .XT / ˝H �

T
.pt/ Frac.H�T .pt// coincides with the subset of all tuples .fx/x2XT

(with fx 2 Frac.H�T .pt// note that only finitely many fx are nonzero because we

consider BM homology) satisfying the following conditions:

� Let x 2 XT . Let E1; : : : ;Ek be all 1-dimensional orbits whose closure

contains x, and let �1; : : : ; �k be the corresponding characters. Then

fx

Qk
iD1 �i 2 H�T .pt/ for any x 2 XT .

� Let E be a 1-dimensional T -orbit and let x0 and x1 be the two points in the

boundary of E . Let � be the character corresponding to E . Then

Res�D0.fx0
C fx1

/ D 0

for all 1-dimensional orbits E .
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The above results are stated for varieties, but we will need them for ind-schemes.

In this setting, the corresponding functors H�T and H BM
T can be defined respectively

as the limit and colimit over the finite dimensional T -stable subvarieties, and so we

can use the above results for varieties to get similar results for ind-schemes.

Remark 4.4

Under Hom, colimits are sent to limits. So we still have an isomorphism

H�T .X/
�
�! HomH �

T
.pt/

�
H BM

T .X/;H�T .pt/
�
:

Note that in the finite-type scheme case we also have the dual map

H BM
T .X/ ! HomH �

T
.pt/

�
H�T .X/;H�T .pt/

�

being an isomorphim, but in the ind-scheme case this is only true when we consider

continuous Hom with respect to the limit topology.

Remark 4.5

In the case of ind-schemes, we have a direct analog of Proposition 4.3 under the

following conditions:

� X is an ind-proper equivariantly formal ind-scheme with a T -action.

� X has isolated fixed points.

� For any two fixed points x, x0, there are finitely many 1-dimensional orbits E

whose boundary is ¹x;x0º.

4.2. Borel–Moore homology of equivalued unramified affine Springer fibers

In this section we will describe some properties of the Borel–Moore homology of

our affine Springer fibers. We use the above results, and the main references for this

section are [25] and [24].

We use the notation K D C..t// and O D CŒŒt ��.

We start by recalling the definition of the affine flag variety. For a reductive alge-

braic group G with root data .R;X� D ƒ�;R_;X� D ƒ/, consider the Borel sub-

group B � G and a maximal torus T � B . We also consider the arc and loop groups

G.O/ � G.K/ and the Iwahori subgroup B� G.O/. Recall that the latter is defined

as the preimage of B under the projection G.O/ � G.

Using these we can define the affine flag variety F l D G.K/=B, which is an ind-

projective variety. This space has actions by T and T .K/ given by left multiplication.

Further, C� acts by field automorphisms on K scaling t and so we get an induced

action on F l , which is referred to as the loop rotation action.

We write ƒ for the cocharacter lattice of T . The fixed points of the action of both

T and T � C� are in bijection with the affine Weyl group eW D W � ƒ under the
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natural embedding eW ,! F l . To get this embedding, note that W ,! G=B ,! F l

and that T .K/=T .O/ Š ƒ and T .O/ acts trivially on the image of W in F l .

Further, we have an action of the affine Weyl group eW on the extended torus

T � C�. The finite Weyl group W acts only on the T factor with the usual action

coming from W D N.T /=T . The cocharacter lattice ƒ acts via

t� W T �C�! T �C�

.t; h/ 7!
�
t
.h/; h

�
:

Note that the cocharacter lattice of T �C� is naturally identified with ƒ �Z and the

induced action of eW on ƒ �Z is given by (2.5).

Now we can introduce the affine Springer fibers we will look at. Fix a non-

negative integer d . Consider a regular semisimple element s 2 t ,! g. Then we can

consider ed D td s 2 g.O/ and its associated affine Springer fiber, known as the equiv-

alued unramified affine Springer fiber

F led
WD
®
gB 2 F l

ˇ̌
Ad.g/�1ed 2 Lie.B/

¯
: (4.3)

Note that ed is fixed by T and thus F led
� F l is T -stable and the loop rotation

scales ed ; hence, these Springer fibers F led
are also stable under the loop rotation

action. The image of eW is contained in all these affine Springer fibers; thus, these

give the T -fixed and T �C�-fixed points for all F led
.

We can further consider the 1-dimensional orbits of T � C�. In order to do this,

we need some notation. For a root ˛ of g, we write s˛ for the corresponding reflection

in W . For an integer k, we write s˛;k for tk˛s˛ ; this is a reflection in eW . A root

˛ gives a character ˛ W T ! C� and so also gives a character of T � C� by acting

trivially on the loop rotation factor. Further, define � W T �C�! C� as the projection

to the loop rotation factor. We can also act on the characters of T � C� by eW , the

action induced from that on T � C�. So we get the character ˛ C k� of T � C�. Let
x.˛ C k�/ denote the image of ˛ C k� under the action of x 2 eW .

The 1-dimensional orbits in F l can be seen to be given by P1s connecting the

fixed points x and xs˛;k for all x 2 eW , roots ˛, and integers k. The associated char-

acter is given by x.˛ C k�/.

Below we will use the following notation

R WD H�T�C�.pt/; F WD Frac.R/: (4.4)

PROPOSITION 4.6

(1) For the affine Springer fibers F led
, the 1-dimensional orbits are exactly the

1-dimensional orbits in F l connecting x and xs˛;k if �d � k � d � 1.
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(2) The affine Springer fibers F led
and the affine flag variety F l with the T �C�-

action are equivariantly formal.

(3) H BM
T�C�.F led

/ is flat as an R-module and we have

H BM
T .F led

/ Š H BM
T�C�.F led

/ ˝H �
C� .pt/ C;

H BM.F led
/ Š H BM

T�C�.F led
/ ˝R C:

The similar claim holds for F l .

Proof

The first result is worked out in [24, Section 5.11]. The second result follows from the

existence of an affine space paving as constructed in [25, Theorem 0.2] for the affine

Springer fibers, while for the affine flag variety it follows from the Bruhat decompo-

sition. The last result follows immediately from the second.

Example 4.7

Let d D 0. Then e0 D s, a regular semisimple element. The Springer fiber F le0
is

discrete and is identified with the T -fixed point locus, eW . Claim (1) of the proposition

is manifestly true.

The following claim follows from combining Proposition 4.3 (or, more precisely,

its ind-scheme generalization, see Remark 4.5) and Proposition 4.6.

COROLLARY 4.8

The localization homomorphism identifies H BM
T�C�.F led

/ with the subset of all ele-

ments .fx/x2fW 2
L

fW F satisfying the following two conditions:

(i) For all x, the product

fx

Y

˛2RC

d�1Y

kD�d

. x˛ C k�/

is an element of R. Here RC stands for the system of positive Dynkin roots.

(ii) For all x 2 eW , ˛ 2 RC and k with �d � k � d � 1, we have

Resx.˛Ck�/.fx C fxs˛;k
/ D 0:

We will also need the following corollary of (1) of Proposition 4.6. Recall that

ed D td s, where s 2 treg.
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COROLLARY 4.9

The image of H BM
T�C�.F led

/ in
L

fW F is independent of the choice of a regular

semisimple element s 2 treg.

Using this corollary we identify the spaces H BM
T�C�.F led

/ for different choices

of s.

Remark 4.10

We now discuss line bundles on F l . For a weight 
 2 ƒ� � Z of T � C� we can

construct a 1-dimensional T .O/ � C�-representation C�, which extends to a B-

representation. The latter gives rise to a G.K/ �C�-equivariant line bundle on F l

to be denoted by L�.

The proof of Proposition 4.6 also implies that the conditions for Proposition 4.3

are satisfied for F led
and F l . We can thus consider the localization homomorphism

H�T�C�.F l/ ,!
Y

fW

F:

Now we want to compute the images of the Chern classes of the line bundles L� under

this localization map. To compute the localization to the fixed points of c1.L�/, we

need to consider the T � C�-representations given by L� restricted to a fixed point,

x 2 eW . Note that this gives the 1-dimensional representation Cx� and thus under the

map

H�T�C�.F l/ !
Y

x2fW

F

the Chern class c1.L�/ is sent to . x
/x2fW .

5. The actions on the Borel–Moore homology

In Section 2.4 we have recalled the trigonometric Cherednik algebras H�
�;c . The goal

of this section is to equip H BM
T�C�.F led

/ with a structure of an H�
�;d

-H�
�;0-bimodule

and establish some properties of this bimodule. Recall that we write R for H�T�C�.pt/

and F for Frac.R/.

5.1. Chern–Springer action

In this section we will establish a left action of H�
�;d

on H BM
T�C�.F led

/. Let � denote

the localization embedding

H BM
T�C�.F led

/ ,!
M

fW

F: (5.1)
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For x 2 eW , let �.‹/x denote the x-component of �.‹/; this is an element of F. We note

that the target of (5.1) can be viewed as the space of functions eW ! F that are zero

outside of a finite set.

We start by describing the action of the Chern classes. Note that
Q

fW R naturally

acts on
L

fW R. So, for a character 
 of T � C�, the element c1.L�/ acts on im � as

the multiplication with . x
/x2fW . This is a consequence of Remark 4.10. So we get an

action of t� ˚ C� on H BM
T�C�.F led

/. Note that the operators of this action pairwise

commute.

The group eW acts on H�T�C�.F led
/ via the Springer action (see [41], [50], [47]).

We will recall the construction in Section A.1.

So we get two actions on H BM
T�C�.F led

/: the action of t� ˚ C� by the multpli-

cation with Chern classes and the Springer action of eW . The former gives rise to an

action of the algebra CŒt;��, while the latter gives an action of the algebra CeW . Both

actions are R-linear and so extend to the localization
L

fW F.

PROPOSITION 5.1

These two actions equip
L

fW F with an H�
�;d

-module structure. The subspace

H BM
T�C�.F led

/ embedded via � is a submodule.

The key tool in the proof is as follows: we write formulas for the actions of simple

affine reflections, the elements of ƒ=ƒ0 � eW , and also the elements of CŒt;�� on the

image of the embedding �. Let us state the corresponding result.

LEMMA 5.2

For all ˇ 2 H BM
T�C�.F led

/, x 2 eW , simple affine reflections s D s˛ , 
 2 t�˚ C� and

	 2 ƒ=ƒ0 � eW we have the following formulas:

�.sˇ/x D
d�
x˛

�.ˇ/x C
xs˛ � d�

xs̨
�.ˇ/xs;

�.
ˇ/x D . x
/�.ˇ/x;

�.	ˇ/x D �.ˇ/x	 :

(5.2)

Note that the formulas make sense for an arbitrary element of
L

fW F not just for

�.ˇ/. They define an action of H�
�;d

on
L

fW F.

The second equality in (5.2) has already been discussed in the beginning of the

section. The last equality easily follows from the construction of the ƒ=ƒ0-action to

be discussed in Section A.1. The first equality requires more work; it will be estab-

lished in the appendix, Section A.2.
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Proof of Proposition 5.1

It is enough to check the commutation relations of (2.6).

The second and third equalities in (2.6) are immediate from Lemma 5.2. In the

remainder of the proof we will check the first equality. That is, for a simple reflection

s WD s˛ and 
 2 t�, we should check the following relation:

s
 � s
s D d h
;˛_i�: (5.3)

To check this, we apply the summands of the left-hand side to an element � 2
L

fW F:

.s
�/x D
d�
x˛

.
�/x C
xs˛ � d�

xs̨
.
�/xs D

d�
x˛

x
�x C
xs˛ � d�

xs̨
xs
�xs;

. s
s�/x D xs

�d�

x˛
�x C

xs˛ � d�
xs̨

�xs

�
:

So

.s
� � s
s�/x D . x
 � xs
/
d�
x˛

�x D h
;˛_i x˛
d�
x˛

�x D d h
;˛_i��x :

This proves the first equality in (2.6) and finishes the proof.

5.2. Equivariant-centralizer-monodromy action

The goal of this section is to define an action of H�
�;0 on H BM

T�C�.F led
/. We will view

H BM
T�C�.F led

/ ,!
L

fW F as right R-modules; this structure on the former space was

discussed in the general situation in Section 4.1.

Define a right action of eW on
L

fW F by

.fy/x D y�1

fyx ; x; y 2 eW ; .fx/ 2
M

fW

F: (5.4)

LEMMA 5.3

The right actions of R D CŒt�Œ�� and eW on
L

fW F constitute a right action of H�
�;0.

Moreover, im � is a submodule.

Proof

We start by proving that we indeed get an action of H�
�;0. The only missing relation

is the commutation relations of the eW action and the R action, that is,

y
 � y
y D 0; y 2 eW ;
 2 t�:

For .fx/ 2
L

fW F, we get

.fy
/x D 
.fy/x D 
 y�1

fyx D y�1

. y
fyx/ D .f y
y/x :
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This completes the proof of the claim that the actions of R and eW constitute an action

of H�
�;0.

The claim that the image of � is H�
�;0-stable is immediate from the formulas

defining the action and the description of the image in Corollary 4.8.

Remark 5.4

The action of ƒ � eW on H BM
T�C�.F led

/ comes from the action of T .K/ on F led
.

The action of W � eW is more tricky. Recall from Corollary 4.9 that the spaces

H BM
T�C�.F led

/ are identified for all choices of s via �. So the action of W can be

interpreted as the monodromy action. However, we do not know a way to identify the

BM homology space for various s without the GKM description. So it is easier just

to define the action on the localized BM homology spaces.

The resulting action of H�
�;0 will be called the ECM (equivariant-centralizer-

monodromy) action.

COROLLARY 5.5

The CS action of H�
�;d

on
L

fW F commutes with the ECM action of H�
�;0. Hence,

these actions also commute on H BM
T�C�.F led

/.

Proof

The actions of generators are specified in Lemma 5.2 for the CS action and in

Lemma 5.3 for the ECM action. One directly checks that the generators of H�
�;d

commute with the generators of H�
�;0.

So H BM
T�C�.F led

/ becomes an H�
�;d

-H�
�;0-bimodule.

Example 5.6

Consider the example of d D 0, where F le0

�
�! eW by Example 4.7. The image of � is

just
L

fW R that naturally identifies with H�
�;0. The bimodule structure on H BM

T�C�.pt/

is that of the regular bimodule, as seen directly from the formulas in Lemmas 5.2 and

5.3.

5.3. Properties of the bimodule

The goal of this section is to prove some properties of the H�
�;d

-H�
�;0-bimodule

H BM
T�C�.F led

/ that are analogous to those of the H�;d -H�;0-bimodule B�;d 0 in

Lemma 3.7.
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LEMMA 5.7

For d � 0, we have a graded H�
�;0-linear isomorphism �H BM

T�C�.F led
/ Š

��H BM
T�C�.F ledC1

/ (where we shift the grading on one of the sides).

Proof

The proof is in several steps.

Step 1. Let ˇ 2 H BM
T�C�.F ledC1

/. Set .fx/ WD �.ˇ/. The condition that ˇ 2

��H BM
T�C�.F ledC1

/ is equivalent to fx D �fxs for all simple Dynkin reflections s.

This follows from Lemma 5.2.

Now let ˇ0 2 H BM
T�C�.F led

/. Set .f 0x/ D �.ˇ0/. Thanks to Lemma 5.2, we have

ˇ0 2 �H BM
T�C�.F led

/ if and only if . x˛ C d�/fxs D . x˛ � d�/fx for all simple

Dynkin reflections s D s˛ .

Step 2. We want to define mutually inverse maps between �.��H BM
T�C�.F ledC1

//

and �.�H BM
T�C�.F led

//. Define the element � 2 CŒt�Œ�� D R by

� WD
Y

˛2RC

.˛ C d�/;

where we write RC for the system of positive Dynkin roots. Define an endomorphism

of
L

fW F by

‡ W .fx/ 7! .gx/ WD . x�fx/: (5.5)

Note that ‡ is invertible. Also note that � can be viewed as an element of H�
�;d

(see

Proposition 5.1 and Lemma 5.2). From Corollary 5.5 we deduce that ‡ is H�
�;0-linear.

The element � has degree jRCj so we can shift the grading and assume ‡ is graded.

It remains to show that

‡
�
�
�
��H BM

T�C�.F ledC1
/
��

� �
�
�H BM

T�C�.F led
/
�
; (5.6)

‡�1
�
�
�
�H BM

T�C�.F led
/
��

� �
�
��H BM

T�C�.F ledC1
/
�
: (5.7)

Step 3. We start by proving (5.6) in this step and the next two. Assume .fx/ 2

�.��H BM
T�C�.F ledC1

//. We need to check that .gx/ 2 �.�H BM
T�C�.F led

//. We begin

by checking .gx/ 2 �.H BM
T�C�.F led

//. This will be done using Corollary 4.8 (for both

d and d C 1).

We first check (i) for d , that is, that

gx

Y

˛2RC

d�1Y

kD�d

. x˛ C k�/ D
h�

fx

Y

˛2RC

. x˛ C d�/
� Y

˛2RC

d�1Y

kD�d

. x˛ C k�/
i

2 R:

By (i) applied to d C 1 and the point x in Corollary 4.8, we have
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fx

Y

˛2RC

dY

kD�d�1

. x˛ C k�/ 2 R:

It remains to show that fx (hence gx) cannot have poles along x˛ � .d C 1/� for

any positive roots ˛. Note fx D �fxs so it can only have poles along . xs˛ C k�/ for

k D �d � 1; : : : ; d . But, for s D s˛ , . xs˛ C k�/ D �. x˛ � k�/. So fx indeed has no

pole along . x˛ � .d C 1/�/. This establishes (i) of Corollary 4.8 for d .

Step 4. Now we need to check that (ii) of Corollary 4.8 holds for .gx/:

ResxˇCk�.gx C gxsˇ;k
/ D 0

for all x 2 eW , ˇ 2 RC, and k D �d; : : : d � 1. Note that

xF 	 xsˇ;kF mod xˇ C k�; 8F 2 R:

In particular,

Y

˛2RC

. x˛ C d�/ 	
Y

˛2RC

. xsˇ;k˛ C d�/ mod xˇ C k�: (5.8)

Recall that fx has at most simple pole at xˇ C k�. It follows that

ResxˇCk�

�
fx

Y

˛2RC

. x˛ C d�/ � fx

Y

˛2RC

. xsˇ;k˛ C d�/
�

D 0: (5.9)

Since

ResxˇCk�.fx C fxsˇ;k
/ D 0;

for all ˇ 2 RC and all k D �d; : : : ; d � 1 (this is a part of (ii) of Corollary 4.8) for

d C 1, we deduce from (5.9) that

ResxˇCk�.gx C gxsˇ;k
/ D 0

for ˇ and k in the same range. This is exactly (ii) of Corollary 4.8. This finishes the

proof of ‡.�.��H BM
T�C�.F ledC1

/// � �.H BM
T�C�.F led

//.

Step 5. We finally check that �.gx/ D .gx/, equivalently sˇ .gx/ D .gx/ for each

Dynkin simple root ˇ. This will finish the proof of (5.6).

Using the formula for the Springer action of sˇ , Lemma 5.2, and the construction

of .gx/, we see that the equality sˇ .gx/ D .gx/ is equivalent to

. xˇ � d�/
� Y

˛2RC

. x˛ C d�/
�
fx D . xˇ C d�/

Y

˛2RC

. xs˛ C d�/fxs (5.10)

for all x 2 eW .
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Rearranging the factors, we get

. xˇ � d�/
Y

˛2RC

. x˛ C d�/ D �. xˇ C d�/
Y

˛2RC

. xs˛ C d�/: (5.11)

Since .fx/ 2 �.��H BM
T�C�.F ledC1

//, we have fx D �fxs . Combining this with

(5.11), we get (5.10). This finishes the proof of (5.6).

Step 6. Now we check (5.7). Let .gx/ 2 �.�H BM
T�C�.F led

//. Set fx WD

.gx

Q
˛2RC. x˛ C d�/�1/. We need to show that

� fx D �fxs for all x 2 eW and simple Dynkin reflection s;

� and the collection .fx/ satisfies (i) and (ii) of Corollary 4.8 for d C 1.

The first bullet is checked by reversing the argument of Step 5. In the remainder of

the proof we will check the second bullet.

Step 7. We start by checking (i). Note that, by condition (i) for d , gx has at most

simple poles along . x˛ C k�/ for ˛ 2 RC, k D �d; : : : d � 1. Hence, fx has at most

simple poles along . x˛ C k�/ for ˛ 2 RC, k D �d; : : : d . This verifies condition (i)

for d C 1.

Step 8. Now we just need to check condition (ii):

ResxˇCk�.fx C fxsˇ;k
/ D 0 (5.12)

for ˇ 2 RC and k D �.d C 1/; : : : ; d . Step 7 implies that fx has no pole along the

roots . x˛ � .d C 1/�/. (5.12) for k D �.d C 1/ and all ˇ follows.

Now we establish (5.12) for k D �d; : : : ; d � 1. The function .
Q

˛2RC. x˛ C

d�//�1 has no poles along . xˇ C k�/ for k ¤ d . Using this and (5.8), we easily

deduce (5.12) from condition (ii) of Corollary 4.8 for the collection .gx/.

It remains to establish (5.12) for k D d . Note that, by Step 6, fx C fxsˇ;d
D

�fxsˇ
� fxsˇ;�d

. So (5.12) for k D d follows from the equation for k D �d (with x

replaced with xsˇ ). The latter has been established in the previous paragraph.

6. Proofs of the main theorems

In this section we will prove Theorems 1.1 and 1.2.

6.1. Isomorphism of deformations

Now we state the main result of this section that implies Theorem 1.1. We write H^
�;c

for the isomorphic algebras in Lemma 2.6. Set

B^
�;d 0 WD B�;d 0 ˝CŒt�� CŒt��^0 ;

H T�C�

BM .F led
/^ WD H T�C�

BM .F led
/ ˝CŒT _� CŒT _�^1 :
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Both B^
�;d 0

and H T�C�

BM .F led
/^ are graded H^

�;d
-H^

�;0-bimodules that are flat over

CŒ��. This follows from Section 3.3 for the former bimodule, and from Corollary 5.5

and (2) of Proposition 4.6 for the latter bimodule.

THEOREM 6.1

We have a graded H^
�;d

-H^
�;0-bimodule isomorphism B^

�;d 0

�
�! H BM

T�C�.F led
/^.

Let us explain key ideas of the proof. We use induction on d . Note that for d D 0

both sides are isomorphic to the regular H^
�;0-bimodule: for the left-hand side this

follows from the construction in Section 3.3. For the right-hand side the claim follows

from Example 5.6. The case d D 0 is our induction base.

Note that H BM
T�C�.F led

/^ is flat over CŒt;�� for the right action; this follows

from (3) of Proposition 4.6. With this in mind, the induction step is based on Lemmas

3.7, 5.7, and the next proposition.

PROPOSITION 6.2

Let d > 0. Let M� be a graded H^
�;d

-H^
�;0-bimodule that is flat over CŒ��. More-

over, assume M�=.�/ is torsion-free over CŒt�. Any graded ��H^
�;d

��-H^
�;0-linear

isomorphism

��M�

�
�! ��B^

�;d 0 (6.1)

uniquely extends to a graded H^
�;d

-H^
�;0-linear isomorphism

M�

�
�! B^

�;d 0:

The proof will be given after a construction and a lemma.

We can view H^
�;c as a filtered algebra (with deg� D degCŒt�^0 D deg W D 0,

deg t D 1). Formally, the filtered algebra H^
�;c is obtained as CŒ�0� ˝CŒ�� H^

�;c , where

the homomorphism CŒ�� ! CŒ�0� sends � to �0, but �0 is treated as a degree 0 element.

In what follows we write � instead of �0. Note that the resulting filtration on H^
�;c is

C�-stable (for the C�-action induced by the grading). We have gr H^
�;c D H^˝CŒ��.

This follows from the triangular decomposition, CŒt��^0 Œ�� ˝ CW ˝ CŒt�
�
�! H^

�;c ,

which is an easy consequence of the analogous decomposition for H�;c .

Set

t�^ WD Spec
�
CŒt��^0

�
; Y ^ WD t�^=W �t�=W Y; Y ^

�
WD Y ^ � Spec

�
CŒ��

�
;

where we recall that Y D .t ˚ t�/=W . The scheme Y ^
�

is the spectrum of the center

of gr H^
�;c because Y is the spectrum of the center of H . So the algebra H^

�;c can be

microlocalized to Y ^
�

.
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Now we recall some basics on the microlocalization. The result of microlocal-

ization of H^
�;c is a sheaf of algebras on Y ^

�
whose sections are defined on C�-stable

open subsets of Y ^
�

(for the C�-action, that is the original action on Y ^ and is trivial

on Spec.CŒ��/; we call this the modified C�-action—note that we also have the initial

C�-action for which � has degree 1). It is enough to define sections over principal

open subsets of Y ^
�

. Pick a homogeneous element f 2 CŒY ^
�

� for the modified C�-

action. Consider the Rees algebra Rh.H^
�;c/, where h is a variable of degree 1 for

the modified C�-action (and degree 0 for the initial C�-action). Lift f to a homoge-

neous element Qf 2 Rh.H^
�;c/. Then ¹ Qf k j k � 0º is an Ore subset in each quotient

Rh.H^
�;c/=.hn/. The localization is easily seen to be independent of the lift Qf ; denote

it by Rh.H^
�;c/=.hn/Œf �1�. This is completely analogous to [18, Construction of AS ].

The localizations inherit gradings from the grading on Rh.H^
�;c/=.hn/ that comes

from the Rees construction. The graded algebras Rh.H^
�;c/=.hn/Œf �1� form a projec-

tive system with respect to n. So we can consider the inverse limit in the category of

graded algebras. Denote this inverse limit by Rh.H^
�;c/Œf �1�. Set

H^
�;c Œf �1� WD Rh.H^

�;c/Œf �1�=.h � 1/:

By the construction, the algebra H^
�;c Œf �1� is filtered, and the filtration is complete

and separated. Also by the construction, the algebra Rh.H^
�;c/Œf �1� is flat over CŒh�.

It follows that

gr H^
�;c Œf �1� Š Rh.H^

�;c/Œf �1�=.h/ D H^Œ��Œf �1�:

The algebras H^
�;c Œf �1� form a presheaf of filtered algebras. It is a sheaf because

the filtration is complete and separated and the associated graded presheaf (that of

algebras H^Œ��Œf �1�) is a sheaf. We denote the resulting sheaf of filtered algebras

(with sections on C�-stable open subsets for the modified C�-actions) by H
^;loc
�;c .

This sheaf is complete and separated with respect to the filtration. Its algebra of global

sections coincides with H^
�;c : we have a filtered algebra homomorphism H^

�;c !

�.H
^;loc
�;c / that is the identity on the associated graded algebras. We note that if f

is homogeneous with respect to the initial C�-action on H^
�;c , then H^

�;c Œf ��1 inher-

its this action. So H
^;loc
�;c is a C�-equivariant sheaf of filtered algebras for the initial

action.

Now consider a graded H^
�;d

-H^
�;0-bimodule B. We can view it as a filtered

H^
�;d

-H^
�;0-bimodule by doing the same base change as with the algebra. Consider

the microlocalization B
loc of B, a microlocal filtered sheaf on Y ^

�
, defined similarly

to the H
^;loc
�;c . The sections are defined on C�-stable Zariski open subsets, while the

filtration is complete and separated. In particular, the space of sections on any open

C�-stable subset inherits the filtration, and this filtration is complete and separated.
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Note that B
loc is a sheaf of H

^;loc

�;d
-H
^;loc
�;0 -bimodules. We have an isomorphism B

�
�!

�.B loc/ because Y ^
�

is an affine scheme (cf [8, Lemma 2.10]).

We note that, similarly to H
^;loc
�;c , the sheaf B

loc still carries a natural C�-action

that turns it into a C�-equivariant H
^;loc

�;d
-H
^;loc
�;0 -bimodule (for the initial C�-action).

Set

Y
^;0
�

WD Y ^
�

n
�
Y ^;sing � ¹0º

�
: (6.2)

Let B
0 denote the restriction of B

loc to (6.2). We get a natural homomorphism B !

�.B0/.

LEMMA 6.3

We have the following properties:

(1) For any ��-spherical parameter c, the microlocal sheaves of algebras H
^;0
�;c

and ��H
^;0
�;c �� are Morita equivalent via the bimodule H

^;0
�;c ��.

(2) For B D B^
�;d 0

, the homomorphism B ! �.B0/ is an isomorphism.

Before we get to the proof, we comment on (2). It is a well-known property

that for a vector bundle on a regular scheme its global sections coincide with the

sections over any open subset whose complement has codimension at least 2. By the

construction, B^
�;d 0

is the global section of a quantization of a vector bundle, and

(2) is a quantum version of the property explained in the previous sentence. And we

need the microlocalization procedure explained before the lemma to make this work

in the quantum setting.

Proof

Let us prove (1). The claim is equivalent to H
^;0
�;c ��H 0

�;c D H
^;0
�;c , which, in its turn,

is equivalent to the claim that H^
�;c=H^

�;c��H^
�;c is supported on Y ^;sing � ¹0º. First,

the condition that c is ��-spherical is equivalent to the claim that H�;c=H�;c��H�;c

is �-torsion. So the support of H^
�;c=H^

�;c��H^
�;c is contained in Y ^�¹0º. (1) follows

because H=H��H is supported on Y sing—this is because H is Azumaya over Y reg

(e.g., this is an easy special case of [17, Theorem 1.7]).

Let us prove (2). Both B and �.B0/ come with complete and separated filtra-

tions: the filtration on B was specified in the discussion preceding the lemma, and

it induces a filtration on �.B0/. The homomorphism B ! �.B0/ is that of filtered

bimodules. To show that it is an isomorphism, it is enough to check that the associated

graded homomorphism

gr B ! gr �.B0/ (6.3)
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is an isomorphism. We have gr B D B^
d 0

˝CŒ�� by the construction of the filtration

on B. Also we have a natural inclusion

gr �.B0/ ,! �.gr B
0/; (6.4)

and the composition of (6.3) and (6.4) is the natural homomorphism

gr B ! �.gr B
0/: (6.5)

So, (2) will follow if we show that (6.5) is an isomorphism.

Set

X^ WD Y ^ �Y X; X^
�

WD X^ � Spec
�
CŒ��

�
; X

^;0
�

WD Y
^;0
�

�Y ^
�

X^
�

:

We have

(}) the complement to X
^;0
�

in X^
�

has codimension 2.

Note that gr B is the global section of the vector bundle

�
P

reg;�˝ O
reg.d/ ˝ P

reg
�
�OSpec.CŒ��/

on X
^;reg

�
, while �.gr B

0/ is the global section of the same vector bundle restricted

to X
^;reg

�
\ X

^;0
�

. Because of the codimension condition (}), (6.5) is indeed an iso-

morphism.

Proof of Proposition 6.2

The proof is in several steps.

Step 1. We are going to produce a homomorphism M� ! B^
�;d 0

. Consider the

isomorphism

��M 0
�

�
�! ��B

^;0
�;d 0

induced by (6.1). Thanks to (1) of Lemma 6.3, this isomorphism gives rise to

M 0
�

�
�! B

^;0
�;d 0

: (6.6)

Note that this isomorphism is C�-equivariant, by the construction. So we have homo-

morphisms

M 0
�

! �.M 0
�

/
�
�! �.B

^;0
�;d 0

/
�
�! B^

�;d 0:

The first homomorphism is the natural one (see the discussion before Lemma 6.3), and

the second is obtained from (6.6) by passing to the global sections, while the third is

the inverse of the isomorphism in (2) of Lemma 6.3. The composed homomorphism
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is graded and H^
�;d

-H^0 -bilinear by the construction. We need to show that it is an

isomorphism.

Step 2. Our proof of this is based on the following easy general fact: let M ,

N by two Z�0-filtered vector spaces. Let ' W M ! N be an isomorphism mapping

M�i ! N�i for all i . If gr ' W gr M ! gr N is injective, then it is an isomorphism

(and hence ' intertwines the filtrations).

Step 3. We apply the observation of Step 2 to the homomorphism

M� ! B^
�;d 0

specialized at � D 1. Denote this specialization by '. It is an isomorphism by

Lemma 2.10 applied to c D d and is filtered by the construction. To show that gr ' is

injective, we recall that M�=.�/ D gr.M�=.� � 1// is torsion-free over CŒt�. By the

assumption of the proposition, gr ' gives an isomorphism between the sign-invariant

parts. It follows from (1) of Lemma 6.3 that gr ' is an isomorphism over the local-

izations of the full bimodules to .Y ^/reg, and, in particular, to its open subscheme

.t=W /reg �t=W Y ^. Since M�=�M� is torsion-free over CŒt�, we see that gr ' is

injective.

Thanks to Step 2, this completes the proof.

Proof of Theorem 6.1

We prove the theorem by induction on d . We have an isomorphism

B^
�;0 0

�
�! H BM

T�C�.F le0
/^

by the remark after the theorem. The proof of the theorem is now in several steps.

Step 1. Suppose we already have a graded bimodule isomorphism

B^
�;d 0

�
�! H BM

T�C�.F led
/^

for some d � 0. Multiply by � on the left. Thanks to Lemma 3.7, we have a graded

algebra isomorphism ��H^
�;dC1

�� Š �H^
�;d

� and a graded �H^
�;d

�-H^0;�-bimodule

isomorphism ��B^
�;dC1 0

�
�! �B^

�;d 0
. On the other hand, by Lemma 5.7, we have

a graded H^
�;0-linear isomorphism

��H BM
T�C�.F ledC1

/^
�
�! �H BM

T�C�.F led
/^: (6.7)

We are not going to check that this isomorphism is also �H^
�;d

�-linear. Instead, we

will see that it is semilinear with respect to an automorphism of �H^
�;d

� given by

conjugation with an invertible element of CŒt��^0 .

Step 2. We claim that the homomorphism



848 BOIXEDA ALVAREZ and LOSEV

�H^
�;d � ! EndH ^

�;0
.�B^

�;d 0/ (6.8)

is an isomorphism. From Lemma 3.8 we deduce that

�H�;d �
�
�! EndH�;0

.�B�;d 0/: (6.9)

Note that B�;d 0 is a finitely generated right H�;0-module. Using this and the fact

that CŒt��^0 is a flat CŒt��-module, we see that (6.9) implies (6.8).

Recall that

�B^
�;d 0

�
�! �H BM

T�C�.F led
/^:

It follows from (6.8) that isomorphism (6.7) becomes �H^
�;d

�-linear after we twist

one of the actions by a uniquely determined graded CŒ��-linear automorphism of

the algebra �H^
�;d

�. We denote this automorphism by �. We claim that there is an

invertible element F 2 CŒt�^�W such that � is the conjugation with F .

Step 3. The formula for ‡ in the proof of Lemma 5.7 implies that ‡ modulo

� is CŒT �T _�W -linear. It follows that � is the identity modulo �. So � D exp.�@/,

where @ is a derivation of �H^
�;d

� that has degree �1 with respect to the grading. We

have @ D 1
�

Œf; 
� for some f 2 �H^
�;d

�. This follows because every Poisson derivation

of CŒY ^� is restricted from a W -equivariant Poisson derivation of CŒT �t�;^� (cf the

proof of [17, Lemma 2.23]) and hence is inner. Then f 2 CŒt�^�W because f has

degree 0. Subtracting a scalar from f we can assume that it lies in the maximal ideal

of CŒt�^�W . Set F WD exp.f /. Then we can compose (6.7) with the multiplication by

F and achieve that (6.7) is a graded bimodule isomorphism.

Step 4. We now have graded ��H^
�;dC1

��-H^
�;0-bimodule isomorphisms

��B^
�;dC1 0

�
�! �B^

�;d 0

�
�! �H BM

T�C�.F led
/^
�
�! ��H BM

T�C�.F ledC1
/^:

Applying Proposition 6.2 to M� D H BM
T�C�.F led

/^, which satisfies the assumptions

of that proposition thanks to (3) of Proposition 4.6, we extend the composed isomor-

phism to a graded H^
�;dC1

-H^
�;0-bimodule isomorphism

B^
�;dC1 0

�
�! H BM

T�C�.F ledC1
/^:

This finishes the proof of the induction step and hence of the theorem.

COROLLARY 6.4

B�;d is flat over CŒt�Œ��.

Proof

The bimodule B�;d is bigraded (Remark 3.6) and, thanks to Theorem 6.1 combined

with Proposition 4.6, B
^0

�;d
is flat over CŒt;��. The claim of the corollary follows.
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Remark 6.5

In fact, the proof of Theorem 6.1 gives us a characterization of the family of bimodules

B�;d for d � 0. Suppose we have another family of finitely generated graded H�;d -

H�;0-bimodules B 0
�;d

satisfying the following conditions:

(i) B 0
�;d

is flat over CŒ�� and B 0
�;d

=.�/ is torsion-free over CŒt� for all d .

(ii) B 0
�;0 is isomorphic to H�;0 as a graded H�;0-bimodule.

(iii) We have an isomorphism of graded right H�;0-modules �B 0
�;d

Š ��B 0
�;dC1

.

Then the argument of the proof of Theorem 6.1 shows that for all d we have a

graded H�;d -H�;0-bimodule isomorphism B 0
�;d

�
�! B�;d . Moreover, if we require the

isomorphisms in (ii) and (iii) to be bigraded, then we get a bigraded isomorphism

B 0
�;d

�
�! B�;d . In fact, the proof simplifies: � from Step 2 of the proof of Theorem 6.1

is automatically the identity.

6.2. Proof of Theorem 1.2

Recall that we are going to prove that

Bd ˝H Ctriv Š H BM
T .F led

/ ˝H � Ctriv D C
�
ƒ0=.dh C 1/ƒ0

�
;

where h denotes the Coxeter number of W , and ƒ0 is the root lattice of g. We write

Ctriv for the 1-dimensional trivial W -module, and we assume that CŒt� ˚ t� � H

acts on Ctriv via the specialization to 0, while CŒT _ � t� � H� acts on Ctriv via the

specialization to .1; 0/.

We already know that the dimensions are the same thanks to Theorem 1.1. We

will prove that

Bd ˝H Ctriv �C
�
ƒ0=.dh C 1/ƒ0

�
; (6.10)

dim H BM
T .F led

/ ˝H � Ctriv � .dh C 1/dim t: (6.11)

This will prove Theorem 1.2.

We first establish (6.10).

PROPOSITION 6.6

We have Bd ˝H Ctriv �C.ƒ0=.dh C 1/ƒ0/, an epimorphism of W -modules.

This proposition is inspired by [22, Theorem 1.8] and [20, Theorem 1.4].

Proof

Consider the HdC1=h-H1=h-bimodule B�;dC1=h 1=h. By the construction in Sec-

tion 3.3, this is a CŒ��-flat bimodule with

B�;dC1=h 1=h=�B�;dC1=h 1=h

�
�! Bd ; (6.12)
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which is a special case of (3.7). Set

BdC1=h 1=h WD B�;dC1=h 1=h=.�� 1/B�;dC1=h 1=h: (6.13)

Since B�;dC1=h 1=h is flat over CŒ��, (6.12) is equivalent to gr BdC1=h 1=h D Bd .

Recall from Proposition 2.11 that HdC1=h has a unique finite dimensional represen-

tation to be denoted by LdC1=h. By that proposition, this representation is isomor-

phic to C.ƒ0=.dh C 1/ƒ0/ as a W -representation. In particular, L1=h is the trivial

1-dimensional representation of W . The subspaces t; t� � H1=h act by 0 on L1=h,

for example, thanks to the presence of the grading element in H1=h (see, e.g., (4) in

[19, Section 3.1]). Equip BdC1=h 1=h ˝H1=h
L1=h with the tensor product filtration.

Then we have

Bd ˝H Ctriv � gr.BdC1=h 1=h ˝H1=h
L1=h/:

To show that dim Bd ˝H Ctriv �C.ƒ0=.dhC1/ƒ0/, it is therefore sufficient to show

that

BdC1=h 1=h ˝H1=h
L1=h Š LdC1=h: (6.14)

Thanks to Proposition 2.11, (6.14) will follow once we show that BdC1=h 1=h is

a Morita equivalence bimodule. We will prove this by induction on d starting with

d D 0, where B1=h 1=h D H1=h and the claim is vacuous.

Suppose we already know that BdC1=h 1=h is a Morita equivalence bimodule.

Since d C 1=h is �-spherical (see Proposition 2.12), we see that �BdC1=h 1=h is a

Morita equivalence bimodule between H1=h and �HdC1=h 1=h�. It follows from (2)

of Lemma 3.7 that we have a bimodule isomorphism

��BdC1C1=h 1=h Š �BdC1=h 1=h:

So ��BdC1C1=h 1=h is a Morita equivalence bimodule between ��HdC1C1=h��

and H1=h. But, according to Proposition 2.12, d C 1 C 1=h is ��-spherical, so

BdC1C1=h 1=h is also a Morita equivalence bimodule between HdC1C1=h and

H1=h. This finishes the proof.

Now we proceed to the upper bound. The proof here is an easy generalization of

a proof due to the first named author joint with Bezrukavnikov, Shan, and Vasserot in

[5, Proposition 2.9], but we include it here for completeness.

PROPOSITION 6.7

We have dim H BM
T .F led

/ ˝H � Ctriv � .dh C 1/dim t.
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Proof

The proof is in several steps. Note that it is enough to assume that G is simply

connected and hence eW D W a. For example, this follows from the isomorphism

H BM
T .F led

/˝H � Ctriv Š Bd ˝H Ctriv as the right-hand side manifestly depends only

on W .

Step 1. We note that H BM
T .F led

/ ˝H � Ctriv is nothing else as the space of coin-

variants H BM.F led
/fW for the action of the affine Weyl group eW on H BM.F led

/.

Recall from Proposition 4.6 that the affine Springer fiber F led
has a paving by affine

cells. Each cell is the intersection of F led
with a Schubert cell by [25, Theorem 0.2].

This gives a basis in H BM.F led
/ consisting of the fundamental classes of cells.

We will study the action of eW on this basis to get a spanning set of H BM.F led
/fW

with .dh C 1/dim t elements.

Step 2. Let us introduce some notation. In this proof b will denote the Lie algebra

of the Iwahori subgroup B � G.K/. For the Schubert cell BxB=B, we denote the

corresponding basis element in H BM.F led
/ (or H BM

T�C�.F led
/) by 'x . For x 2 eW we

will write xb for Ad. Px/b for a lift Px of x to the normalizer of T .K/. Also for a T .O/-

stable subset Z � F l we use the notation xZ for PxZ; this is well- defined. Finally,

we set ex
d

WD Ad. Px/�1.ed /. We note that x
F led

D F lex
d

for all x 2 eW . Finally, for

x 2 eW we will write Ax for the corresponding (closed) alcove in tR.

Step 3. For w 2 eW , consider the subvariety F l�w
ed

D F led
\ tx�wBxB=B

of F led
. It is T � C�-stable. The Borel–Moore homology H BM

T�C�.F l�w
ed

/ �

H BM
T�C�.F led

/ is spanned by the classes 'x for x � w as a H�T�C�.pt/-module.

The image of H BM
T�C�.F l�w

ed
/ under � from (5.1) is given by

�
�
H BM

T�C�.F l�w
ed

/
�

D
®
.gy/y2fW 2 �

�
H BM

T�C�.F led
/
� ˇ̌

gy ¤ 0 ) y � w
¯
: (6.15)

This follows by applying Proposition 4.3 to the space F l�w
ed

. Further, note that we

have the long exact sequence


 
 
 ! H
BM;i
T�C�.F l<w

ed
/ ! H

BM;i
T�C�.F l�w

ed
/ ! H

BM;i
T�C�.F led

\BwB/ ! 
 
 
 ;

where the superscript i indicates the cohomological grading.

Note that odd homology vanishes as all spaces involved have affine pavings and

so the long exact sequence breaks up into short exact sequences. Assembling these

exact sequences for all degrees we get

0 ! H BM
T�C�.F l<w

ed
/ ! H BM

T�C�.F l�w
ed

/ ! H BM
T�C�.F led

\BwB/ ! 0:

Further, by construction 'w is mapped to the basis element spanning H BM
T�C�.F led

\

BwB/. Using the compatibility with the localization map from (6.15) and the

description of the image � in Corollary 4.8, we see that that �.'w/w D 1Q
�

, where the

product is over all characters � appearing in the T �C�-representation F led
\BwB.
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Step 4. Pick a simple affine reflection s WD s˛ at a root ˛. We want to get a

necessary and sufficient condition on x for 'sx D s'x C l:o:t . when sx > x in the

Bruhat order. Here “l:o:t .” indicates an H�T�C�.pt/-linear combination of the ele-

ments 'y with y < sx in the Bruhat order. We claim that this equality holds if the

cells s.F led
\ BxB=B/ and F les

d
\ BsxB=B are equal. Indeed, if s.F led

\

BxB=B/ D F les
d

\ BsxB=B, then �.s'x/sx D �.'sx/sx and so 'sx � s'x is a

class in H BM
T�C�.F l<sx

ed
/ and thus, by Step 3, a combination of 'y with y < sx. We

conclude that the equality 'sx D s'x C l:o:t . also holds in H BM.F led
/.

Note that, for all x, one of s.BxB=B/ and BsxB=B contains the other. There-

fore one of the two cells s.F led
\ BxB=B/ and F les

d
\ BsxB=B contains the

other. Note that both cells are contracting loci for suitable tori actions. So they coin-

cide if and only if their tangent spaces at their common T �C�-fixed point sx are the

same, equivalently, and have the same dimension.

Note that the tangent space of F led
\BxB=B at the fixed point x is T �C�—

equivariantly isomorphic to

b\ t�d . xb/

b\ xb
: (6.16)

So the tangent spaces of interest are

b \ t�d . sxb/

b\ sxb
; s

�b \ t�d . xb/

b\ xb

�
: (6.17)

The roots that appear as weights of (6.16) are exactly from

RCaff \ x
� G

1�r�d

.RC � rı/ t
G

0�r�d�1

.R� � rı/
�
; (6.18)

where we write RCaff for the set of positive affine roots, RC, R� for the sets of positive

and negative Dynkin roots, and ı for the indecomposable imaginary root. Note that

every element in RCaff n ¹˛º appears as a weight in one of the spaces in (6.17) if and

only if it appears in the other. On the other hand, �˛ does not appear as a weight in

the first space and ˛ does not appear as a weight of the second space. It thus follows

that

s.F led
\BxB=B/ D F les

d
\BsxB=B

if and only if

˛ … x
� G

1�r�d

.RC � rı/ t
G

0�r�d�1

.R� � rı/
�
: (6.19)

Step 5. In particular, if (6.19) holds, the projection of 'sx (for s D s˛) to

H BM.F led
/fW coincides with a linear combination of projections of 'y with y < sx.
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Consider the equivalence relation on eW generated by the relation x ! s˛x for ˛

satisfying (6.19).

In the next step we will prove that

(*) each equivalence class has a representative x satisfying h˛i ;Axi � �d and

h˛0;Awi � d C 1,

where we write ˛i for the simple Dynkin roots and ˛0 for the longest root.

Showing (*) will finish the proof of the proposition because the set of alcoves A

satisfying h˛i ;Ai � �d and h˛0;Ai � d C 1 forms a poset ideal in the Bruhat order

and has exactly .dh C 1/dim t elements. To see the latter we argue as follows. Shifting

by d�_ we can instead consider the set of alcoves A0 satisfying h˛i ;A
0i � 0 and

h˛0;Ai � d C 1 C d.h � 1/ D dh C 1. There are exactly .dh C 1/dim t such alcoves.

Step 6. Fix an equivalence class for the equivalence relation specified in Step 5

and pick a representative x that is minimal with respect to the Bruhat order. To show

(*), it is enough to check that if h˛i ;Axi � �d , then (6.19) holds for x and ˛i (and

that the similar claim holds for the affine simple reflection). Indeed, since h˛i ;Axi �

�d � 0, we see that six is less than x in the Bruhat order, while six is equivalent

to x. This will give a contradiction with the choice of x.

We will only consider the case of simple Dynkin roots; the remaining case is

similar.

Assume x D wtˇ for w 2 W and ˇ 2 ƒ. Then h˛i ;Axi D hw�1.˛i /;A1 C ˇi;

thus, h˛i ;Axi � �d holds if and only if one of the following conditions hold:

� w�1.˛i / 2 RC and hw�1.˛i /;ˇi � �d � 1
� w�1.˛i / 2 R� and hw�1.˛i /;ˇi � �d .

(6.19) follows from x�1.˛i / D w�1.˛i / C hx�1.˛i /;ˇiı.

Remark 6.8

In our proof of Proposition 6.7 we study the action of simple reflections s.D s˛/ on

the basis of Schubert cells F led
\ BxB=B under the assumption that (6.19) holds.

This is enough to give a spanning set of H BM
T .F led

/ ˝H � Ctriv with .dh C 1/dim t

elements.

However, showing directly that this spanning set is a basis would involve studying

the action of simple reflections s where (6.19) fails. This is more subtle, as 'sx D

s'x C l:o:t . may fail as well.

So the proof of the dimension formula in Theorem 1.2 requires both sides of the

isomorphism of Theorem 1.1.

7. Applications

The goal of this section is to obtain some corollaries of Theorems 1.1 and 1.2 for

d D 1, mostly in type A. We will write e for e1.
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7.1. Statements of the results

Until the further notice, g D sln. Then W D Sn, X is the normalized version of the

Hilbert scheme (of dimension 2n � 2), and P is the restriction of Haiman’s Procesi

bundle to X � Hilbn.C2/ D X �C2. Let QX denote the preimage of X in the isospec-

tral Hilbert scheme; in other words, QX is .t˚ t�/�Y X with its reduced scheme struc-

ture. Let � denote the natural finite morphism eX ! X . Haiman’s nŠ theorem says that
QX is a Cohen–Macaulay scheme, equivalently, � is flat (of degree nŠ). The bundle

P can be obtained as ��O eX . That the bundle we consider coincide with Haiman’s

follows, for example, from the main result of [36].

Set Bsgn WD �.P ˝ P /, this is an H˝2-module (equivalently, an H -bimodule).

It follows from Haiman’s construction—or the main result of [36]—that P Š P
� ˝

O.1/, a .C�/2 � Sn-equivariant isomorphism, where the action of .C�/2 � Sn on

O.1/ comes from the isomorphism O.1/ Š P ��. It follows that Bsgn is obtained

from B.WD B1/ by twisting the left Sn-action with the sign.

In particular, Bsgn has an algebra structure; in fact, this is the algebra CŒ QX �X
QX�.

Our first goal is to describe this algebra structure.

Consider the algebra

QB WD CŒt˚ t�� ˝CŒY � CŒt˚ t��:

Note that both Bsgn and QB are graded CŒt˚ t��˝2-algebras.

THEOREM 7.1

Let g D sln. We have a graded CŒt˚ t��˝2-algebra isomorphism Bsgn Š QB= rad QB .

We can also describe the CŒt˚ t��-bimodule structure on Bsgn.

THEOREM 7.2

Let g D sln. We have a graded CŒt˚ t��-bimodule isomorphism Bsgn Š H�H , where

the latter is viewed as a subbimodule in H .

Remark 7.3

We note that Theorems 7.2, 1.1, and Proposition 3.1 imply [12, Conjecture 3.7].

Namely, their M is H�H , the higher cohomology of P ˝ P vanish thanks to Propo-

sition 3.1, and the claim that B is flat over CŒt� follows from Corollary 6.4. To our

knowledge the claim that H�H is free over CŒt� is new.

Now we proceed to prospective applications to the center of the principal block

of the small quantum group. For now we assume that g is an arbitrary simple Lie

algebra—but we still get more complete results in type A.
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Recall the notations Z, G_, T _ from the introduction. Also recall that

H�T .F le/
�
�! HomCŒt�.H

BM
T .F le/;CŒt�/ (see Remark 4.4). This gives a eW -action

on H�T .F le/ corresponding to the centralizer-monodromy action on H BM
T .F le/. The

eW -action on H�T .F le/ gives rise to a W -action on H�.F le/ƒ.

The following conjecture is due to the first named author joint with Bezrukavni-

kov, Shan, and Vasserot in [5, Conjecture A].

CONJECTURE 7.4

For any semisimple Lie algebra g, there is an algebra isomorphism H�.F le/ƒ �
�!

ZT _

. This isomorphism is W -equivariant, where on the left-hand side we have the

action described above and on the right-hand side the action comes from the identifi-

cation W D NG_.T _/=T _.

In fact, [5, Theorem 4.12] establishes the existence of a W -equivariant algebra

monomorphism H�.F le/ƒ ,! ZT _

. The conjectural part is that this monomorphism

is surjective.

Here is our result on the structure of Z.

THEOREM 7.5

Assume Conjecture 7.4 holds. Then the following claims are true:

(1) For any semisimple Lie algebra g, the dimension of the subalgebra of

NG_.T _/-invariants in Z is .h C 1/dim t.

(2) If g D sln, then the G_-action on Z is trivial. In particular, dim Z D .n C

1/n�1.

Note that (2) confirms a conjecture from [34].

The following result is used to prove Theorems 7.1 and 7.2 as well as (2) of The-

orem 7.5. Consider the 1-dimensional representation C0 of CŒt ˚ t�� corresponding

to the point 0 2 t ˚ t�.

PROPOSITION 7.6

For g D sln, we have B ˝CŒt˚t�� C0 D .B ˝CŒt˚t�� C0/�.

7.2. Proposition 7.6 and nŠ theorem

In this section we prove Proposition 7.6. In fact, we will show that Proposition 7.6 is

equivalent to the nŠ theorem of Haiman [28]. We need some preparation for the proof.

For a partition � on n, let x
 denote the fixed point in X labeled by � and let P


denote the fiber of P at x
. This is a .C�/2-equivariant H -module of dimension nŠ.

The following is a consequence of the nŠ theorem (see, e.g., [29, Corollary 5.2.2]).
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(A) For each �, the head of the H -module P
 is a trivial Sn-module.

In fact, more is true. If we use the Bezrukavnikov–Kaledin construction of P as a

definition, then (A) is equivalent to the nŠ theorem (that, recall, is the claim that QX is

Cohen–Macaulay). Indeed, (A) implies the similar claim for all fibers of P . In par-

ticular, P acquires a sheaf of algebras structure. Once we know that the head of each

fiber of P is the trivial 1-dimensional module, we see that the relative spectrum of P

embeds into QX as a closed subvariety. The embedding is an isomorphism because it

is so over Y reg. Moreover, the relative spectrum of P is Cohen–Macaulay because it

is flat (of degree nŠ) over the smooth variety X .

We will give several equivalent formulations of (A). We will prove that they are

equivalent but will not prove any of them unconditionally, hence getting several equiv-

alent statements of the nŠ theorem but not its new proof.

Consider the adjoint pair

Loc WD P ˝H � W H �mod � Coh.X/ W Q� WD HomOX
.P ;�/:

Note that the derived functors LLoc and R Q� are mutually quasi-inverse equivalences

(see, e.g., [7, Proposition 2.2]).

Note also that we can view every irreducible representation � of Sn as an irre-

ducible H -module by making t˚ t� act by 0.

LEMMA 7.7

(A) is equivalent to the following claim:

(B) For a nontrivial irreducible representation � of Sn, we have Loc.�/ D 0.

Proof

Let us write C
 for the skyscraper sheaf at x
. Then P
�

 D Q�.C
/. Therefore

HomH .�;P �
/ D HomOX

�
Loc.�/;C


�
:

So (A) is equivalent to the claim that HomOX
.Loc.�/;C
/ D 0 for all � as long

as � ¤ triv. Hence, (B))(A). To show the implication in the opposite direction, we

must show that for a nonzero .C�/2-equivariant coherent sheaf F on X there is a

partition � such that HomOX
.F ;C
/ ¤ 0. The action of .C�/2 contains a contracting

1-dimensional subtorus whose fixed points are precisely the points x
 for all �. So if

the fiber Fx�
is zero for all �, then every fiber of F is zero. (A))(B) follows.

To prove Proposition 7.6 we now need to show that (A),(B) is equivalent to the

following condition:

(C) For a nontrivial irreducible representation � of Sn, we have Bsgn ˝Hn
� D 0.

Indeed, (C) is equivalent to the claim of Proposition 7.6.
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In the proof we will need to following lemma.

LEMMA 7.8

We have an isomorphism of endofunctors of Db.H �mod/,

R Q�
�
LLoc.�/.1/

�
Š Bsgn ˝L

H �:

Proof

This is standard: the left-hand side is the derived tensor product with

R Q�
�
LLoc.H/.1/

�
D R HomX

�
P ;P .1/

�
:

The right-hand side in the last equation is Bsgn.

Proof of Proposition 7.6

We will show more: that (B) and (C) are equivalent. This will follow if we show that

for an irreducible representation � of Sn, we have Bsgn ˝H � D ¹0º if and only if

Loc.�/ D ¹0º.

Assume first that Bsgn ˝H � D ¹0º. Note that since the algebra H has finite

homological dimension, only finitely many of homologies of LLoc.�/ are nonzero.

Pick m large enough so that the homology sheaves Hi .LLoc.�//.m/ are generated

by their global sections and their higher cohomology groups vanish. By Lemma 7.8,

R Q�
�
LLoc.�/.m/

�
D .Bsgn/˝

L
H

m�:

The zeroth homology group of the right-hand side is zero. By our choice of m this

implies that Loc.�/ D 0.

Now assume that Loc.�/ D 0. By the previous paragraph, for some m we have

.Bsgn/˝H m� D 0. Let S denote the set of all irreducible Sn-representations � such

that Bsgn ˝H � ¤ ¹0º. Note that � 2 S if and only if

(*) � appears in the Sn-module Bsgn=Bsgn.t˚ t�/ (where Sn acts from the right).

But the H -actions on Bsgn D �.P ˝ P / from the left and from the right are com-

pletely symmetric. So (*) is equivalent to the condition that � appears in Bsgn=.t ˚

t�/Bsgn (where Sn acts from the left). The latter condition in its turn is equivalent to

HomH .Bsgn; �/ ¤ 0. So we see that � 2 S if and only if � appears in the head of some

H -module of the form Bsgn ˝H � 0 (where � 0 is automatically in S ). This shows that

� 2 S if and only if .Bsgn/˝H m� ¤ 0 for all m.

This finishes the proof of (B),(C) and hence shows that the proposition is equiv-

alent to (A), that is, to the nŠ theorem of Haiman.
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7.3. Proofs of Theorems 7.1 and 7.2

Proof of Theorem 7.1

Step 1. Here we prove that Bsgn is a reduced algebra. First of all, note that Bsgn D

�.P ˝P / is nothing else but the algebra CŒ QX �X
QX�. The scheme QX �X

QX is flat and

finite over the Cohen–Macaulay scheme QX , hence is Cohen–Macaulay. It is generi-

cally reduced and therefore reduced. The algebra of regular functions on a reduced

scheme is always reduced.

Step 2. Here we produce an algebra homomorphism ' W QB ! Bsgn. This comes

as the pullback of the morphism

QX �X
QX ! .t˚ t�/ �Y .t˚ t�/

induced by the morphisms QX ! t˚t�, X ! Y . Note that ' is the unique CŒt˚t��˝2-

algebra homomorphism QB ! Bsgn.

Step 3. We show that the homomorphism ' W QB ! Bsgn is surjective. This is a

crucial step in the proof that uses Proposition 7.6. Namely, note that both QB and

Bsgn are finitely generated graded CŒt ˚ t��˝2-modules. Let QB0 and B
sgn

0 denote the

specializations of QB and Bsgn to .0; 0/ 2 .t ˚ t�/2. We need to show that the induced

algebra homomorphism QB0 ! B
sgn

0 is surjective. Clearly, QB0 is 1-dimensional. Now

consider B
sgn

0 . This space is acted by Sn on the left and on the right. Proposition 7.6

implies that the action from the right is trivial. By symmetry, the action on the left is

trivial as well. By Theorem 1.2, we have Bsgn ˝H Ctriv Š sgn ˝C.ƒ0=.n C 1/ƒ0/.

The space of Sn-invariants in the latter module is 1-dimensional. So dim B
sgn

0 D 1 and

our claim follows.

Step 4. It is easy to see that ' W QB ! Bsgn is an isomorphism over Y reg. Since

' is surjective and Bsgn is reduced, we conclude that ' induces an isomorphism
QB= rad QB

�
�! Bsgn. This completes the proof of Theorem 7.1.

Proof of Theorem 7.2

We need to prove that B Š H��H .

According to [29, Proposition 6.1.5], the CŒt˚ t��-module �.P ˝ O.1// is iden-

tified with the ideal J in CŒt˚ t�� generated by the sgn-invariant polynomials. There-

fore we get a graded bimodule homomorphism

B ! HomCŒY �

�
CŒt˚ t��; J

�

from the global sections of the sheaf Hom to the Hom between the global sections.

Composing this with the inclusion J ,! CŒt˚ t��, we get a bimodule homomorphism

B ! EndCŒx;y�Sn

�
CŒx; y�

�
D H: (7.1)
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For the latter equality, see, for example, [17, Theorem 1.5]. By the construction, B is

torsion-free as a module over CŒY �. Also over the localization CŒt��reg of CŒt�� at the

Vandermond determinant, (7.1) becomes an isomorphism. We conclude that (7.1) is

injective. So B is a two-sided ideal in H .

It follows from Theorem 7.1 that the CŒt˚ t��-bimodule B is generated by a sin-

gle element in degree 0 that is sign invariant. The corresponding element in �.P ˝P /

is the image of the identity under the inclusion of CŒY � arising from the direct sum-

mand O of P ˝ P . So the element in B D HomOX
.P ;P .1// we need is described

as the composition P � O.1/ ,! P .1/, where the first map is �� and the second is

the inclusion of O.1/ into P . The image of this element in H is ��. We conclude that

B Š H��H .

Remark 7.9

By [29, Proposition 6.1.5], we have �.P ˝ O.d// D J d . For the same reason as in

the proof of the proposition, we get Bd ,! HomCŒY �.CŒt˚ t��; J d /.

7.4. Proof of Theorem 7.5

In the proof we will need the following three lemmas.

LEMMA 7.10

For any g, we have a W -equivariant identification (for the right action)

�
H�.F le/ƒ

��
Š B ˝CŒt˚t�� C0:

Proof

Recall from Theorem 1.1 that we have an H^-bimodule isomorphism H BM
T .F le/^ Š

B^. Also H BM
T .F le/=H BM

T .F le/t� Š H BM.F le/. Next, we have an identifica-

tion H�.F le/ Š H BM.F le/�; this was discussed in Section 4.1 (in the equiv-

ariant setting). This identification is eW -equivariant. It follows that H�.F le/ƒ Š

.H BM.F le/ƒ/�, where the subscript ƒ indicates taking the coinvariants. Note that

H BM.F le/ƒ
�
�! H BM.F le/^=H BM.F le/^t:

The claim of the lemma follows.

Part (1) of Theorem 7.5 follows from Lemma 7.10 combined with Theorem 1.2.

In the remainder of this section we will prove (2) of Theorem 7.5. Recall that

G D SLn and hence G_ D PGLn.

LEMMA 7.11

Let � be a highest weight of G_ in the center of u� . Let ` denote the order of � and
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recall that it is an odd number. Then we have `� � 2.` � 1/� in the usual order on

the dominant weights.

Proof

We note that 2.` � 1/� D .` � 1/
P

˛>0 ˛ is the maximal weight in u� . The action

of the Lusztig form PU� on Z factors through the quantum Frobenius epimorphism

to give an action of G_. The pullback inflates the weights ` times. This gives the

required inequality.

LEMMA 7.12

Let V be an irreducible PGLn-module with the following property: the action of Sn

on the weight zero subspace, V0, is trivial. Then V Š S2kn.Cn/ or S2kn.Cn/� for

some k 2 Z�0.

Proof

In what follows it will be convenient to view V as a representation of GLn. Our proof

of the lemma is by induction on n.

The base is n D 2, where our claim is easy. Now suppose it is proved for n � 1,

we are going to prove it for n. Let � D .�1; : : : ;�n/ be the highest weight of V . The

GLn�1-module with highest weight 
 D .
1; : : : ; 
n�1/ occurs in the restriction of V

if and only if

�1 � 
1;� �2 � 
 
 
 � 
n�1 � �n: (7.2)

And this GLn�1-module intersects the zero weight space for PGLn if and only if


1 C 
 
 
 C 
n�1

n � 1
D

�1 C 
 
 
 C �n

n
: (7.3)

Clearly, at least one 
 satisfying (7.2) and (7.3) exists.

Let I be the set of indices i 2 ¹1; : : : ; n � 1º such that �i > �iC1. Assume that

jI j > 1. The claim that a solution 
 to (7.2) and (7.3) satisfies the induction assump-

tion easily implies that one of the following possibilities holds:

(1) 
i D �i for all i 2 I ,

(2) 
i D �iC1 for all i 2 I .

Indeed, otherwise we can increase one component of 
 by 1 and decrease another by

1 so that (7.2) continues to hold. But if 
 is the highest weight of S2k.n�1/.Cn�1/ or

its dual (up to a twist with a power of the determinant), then the modification is not

of that form.

Replacing V with V � if necessary we can assume that (1) holds. Also if i … I ,

then 
i D �i .D �iC1/. So we have 
i D �i for all i D 1; : : : ; n � 1. From (7.3) we

deduce
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�n D
�1 C 
 
 
 C �n�1

n � 1
:

Together with �1 � 
 
 
 � �n, this implies �1 D 
 
 
 D �n, a contradiction with

jI j > 1.

So jI j D 1 meaning that � has two different entries. Since 
 is the highest weight

of S2k.n�1/.Cn�1/ or its dual, this implies that I D ¹1º or I D ¹n�1º, which, in turn,

easily implies the claim of the lemma.

Proof of (2) of Theorem 7.5

Recall that we have a W -equivariant isomorphism H�.F le/ƒ �
�! ZT _

by Conjec-

ture 7.4. Using Lemma 7.10 combined with Proposition 7.6, we see that Sn acts triv-

ially on ZT _

. By Lemma 7.12, all irreducible summands of the PGLn-module Z are

of the form S2kn.Cn/ or S2kn.Cn/�. But for k > 0, the highest weights � of these

modules do not satisfy the inequality of Lemma 7.11. It follows that Z is a trivial

PGLn-module, implying the claim of the theorem.

Appendix. Springer action on H BM
T�C�.F led

/

P. BOIXEDA ALVAREZ, I. LOSEV, and O. KIVINEN

In this Appendix we include some of constructions and proofs for Section 5.

A.1. Reminder on the affine Springer action

In this section we recall the generalities on the affine Springer action. We use the

notation from Section 4.2.

The action of W a was constructed in [41, Section 5.4]. To construct the operators

corresponding to simple affine reflections we introduce certain auxiliary spaces. For a

parahoric subgroup P of G.K/ containing B, we can consider the partial affine flag

variety

F lP D G.K/=P:

Using this space, we can introduce the affine Springer fibers in the partial flag variety

F lP:

F lPed
WD
®
gP 2 F l j Ad.g/�1ed 2 Lie.P/

¯
:

Now we introduce certain stacks. To do this we need some notation. Let L be

the standard Levi subgroup of P. Let BL denote the image of B in L; this is a Borel

subgroup of L. We write l, bL for the Lie algebras of these groups.
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With this notation, we have a Cartesian diagram

F led

q1

	2

bL=BL

	1

F l
P
ed

q2

l=L

(A.1)

The map F l
P
ed

! l=L sends gP to the image of Ad.g/�1ed and Lie.P/ ! l.

The map F led
! bL=BL is defined in a similar way.

Note that we have the following canonical isomorphisms of objects in the T �

C�-equivariant derived category:

.	2/�.!F led
/
�
�! .	2/�

�
qŠ

1.CbL=BL
/
� �

�! qŠ
2.	1/�.CbL=BL

/:

Using these isomorphisms we can define the action of W a on H BM
T�C�.F led

/ (see

[41] and [47, Construction 7.1.3]). Namely, fix a simple affine reflection s 2 W a. If

s is a reflection in the Weyl group WL of L, then we can define an action of s on

.	1/�.CbL=BL
/ via the usual finite dimensional Springer correspondence. This gives

rise to an action of s on

.	2/�.!F led
/ D qŠ

2.	1/�.CbL=BL
/: (A.2)

Since q1 and q2 are T �C�-equivariant, we get an action of s on H BM
T�C�.F led

/ (via

pushforward of the left-hand side of (A.2) to the point). This action of s is independent

on the choice of L. To check that the actions of the simple affine reflections satisfy the

braid relations, it is enough to consider two simple reflections at a time, which reduces

to the finite case, because any two simple reflections lie in WL for some choice of P.

To extend the W a-action on H BM
T�C�.F led

/ to an action of eW , recall that eW D

.ƒ=ƒ0/ � W a. We note that ƒ=ƒ0 acts on F l . This action is constructed as fol-

lows. Take a lift of 	 2 ƒ=ƒ0 � eW to P	 in the normalizer of T .K/ and define the

map F l ! F l by gB ! g P	B. This is well defined as the lift of any element of

.ƒ=ƒ0/ � eW normalizes B and the map is independent of the chosen lift. From the

definition of F led
, see, for examnple, (4.3), it follows that this action preserves F led

.

So we get an action of ƒ=ƒ0 on H BM
T�C�.F led

/.

Recall that we write R for H�T�C�.pt/ and F for Frac.R/.

LEMMA A.1

(1) The actions of W a and ƒ=ƒ0 give an action of the affine Weyl group eW on

H BM
T�C�.F led

/.

(2) This eW -action is by R-linear automorphisms.
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(3) The action of eW preserves the homological grading on R.

Proof

(1) follows from [50, Theorem 3.3.3] or [47, Theorem 7.1.5].

(2) is a direct consequence of the construction.

(3) follows from the construction of the action in [47, Construction 7.13, 7.14].

Remark A.2

In this remark we recall a classical description of the connected components of F l

and F led
.

The connected components of the affine flag variety F l are in a natural bijec-

tion with 	1.G/. Namely, recall the decomposition eW D .ƒ=ƒ0/ � W a. The union

of Schubert cells corresponding to the left W a-orbits in eW give the connected com-

ponents. The group ƒ=ƒ0 acts on F l as recalled above in this section. This action

induces a simply transitive action on the set of components.

Let eG be the simply connected cover of the derived subgroup .G;G/ � G. Its

extended affine Weyl group is W a. In fact, F leG is isomorphic to any of the connected

components of F lG . To see this, note that we have a natural map F leG ! F lG .

This map is injective because the kernel of eG ! G is contained in the center and

thus contained in any Iwahori subgroup. The image contains precisely the T -fixed

points given by W a. The B-orbits coincide with the orbits of the pro-unipotent radical

of B. Thus we see the image is precisely one connected component of F lG . Since all

connected components are isomorphic via the ƒ=ƒ0-action the result follows.

Moreover, the action of ƒ=ƒ0 preserves F led
. The embedding F leG ,! F lG

restricts to an embedding of the Springer fibers associated to ed . This embedding real-

izes the Springer fiber for eG as a connected component of the Springer fiber for G. It

follows that every connected component of F led
for G is identified with the Springer

fiber of ed for eG.

A.2. Springer action vs localization

The goal of this section is to prove Lemma A.5, which is the hard part of Lemma 5.2.

Recall that we write � for the localization homomorphism

H BM
T�C�.F led

/ !
M

fW

F:

In the proof we will need an explicit description of im � for SL2. We identify

Z with eWSL2
via 2m 7! tm˛ , 2m C 1 7! tm˛s, where ˛ is the finite simple root of

SL2 and s is the corresponding simple reflection. Let y be the basis element in t�

corresponding to the simple root. So R D CŒy;��.
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Pick an element r 2 ¹0; : : : ; dº. For k;m 2 Z set

f
r;.m/

k
D

rY

iD1

�
y C .k C m C i � 1/�

�
: (A.3)

We then define elements

br
k D .br

k;`/`2Z 2
M

Z

C.y;�/

for r , k as above as follows. For r D 0, we set b0
k;`

WD ık;`, the Kroneker delta. For

r 2 ¹1; : : : ; dº, define m 2 Z, � 2 ¹0; 1º by ` D k C 2m C � and set

br
k;` WD .�1/mC�

 
r

m

!
.f

r;.m/

k
/�1: (A.4)

LEMMA A.3

Let G D SL2. Then �.H BM
T�C�.F led

// �
L

Z
C.y;�/ has a basis over CŒy;�� given

by br
k

where

� either k D 0; 1 and r D 0; : : : d � 1
� or r D d and k 2 Z.

Proof

The elements br
k

are indeed in im �: condition (i) of Corollary 4.8 is immediate, while

condition (ii) is straightforward.

Now we check that the elements br
k

for r , k as in the statement of the lemma span

that CŒy;��-module im �. Pick .gk/ 2 im �.

Replacing .gk/ with its sum with a linear combination of the elements bd
k

we can

assume that .gk/ is supported between 0 and 2d � 2. To see this, assume that gr ¤ 0

for some r < 0 and let k be the minimal such number r . Then the entry gk can have at

most the same singularities as 1=f
d;.0/

k
by Corollary 4.8 and so is a multiple of this.

Hence we can subtract a multiple of bd
k

from .gk/, such that the index of the minimal

nonzero entry is bigger than k. Thus by induction we can assume that for all negative

k we have gk D 0.

A similar argument works for nonzero entries of .gk/ for k > 2d � 2. Here the

inequality k > 2d � 2 comes from the fact that bd
k

has support exactly between k and

k C 2d � 1. So, subtracting the elements bd
k

for k � 0 from .gr/ doesn’t change the

condition that gr D 0 for r < 0. So we can assume that gk ¤ 0 ) 0 � k � 2d � 2.

Now using br
k

for k D 0; 1 and r D 0; : : : d � 1, we can continue reducing the

support and using conditions (i) and (ii) of Corollary 4.8 to ensure the maximal entries

are indeed multiples of those of the br
k

we are considering. Indeed if .gk/ is supported
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between 0 and 2r � �, � 2 ¹0; 1º and 0 � r � d � 1, then g2r�� has at most the

singularities of 1=f
r;.r/

1�� by the conditions of Corollary 4.8.

It follows that the elements br
k

for k, r as described in the statement of the lemma

span the R-module im �.

To check that our elements are linearly independent (hence form a basis) we use

a partial order on Z. Consider the partial order given by

� k � r if 0 > k � r ,

� k � r if 2d � 1 � k � r ,

� and 0 � 1 � 
 
 
 � 2d � 2 � k for all k … ¹0; : : : ; 2d � 2º.

For each element br
k

with r , k as in the statement of the lemma, there is a unique

maximal `.D `.br
k
// in the poset order such that br

k;l
¤ 0, namely,

`.br
k/ D

´
k if k < 0;

k C 2r � 1 else:

It is clear that .k; r/ 7! `.br
k
/ identifies the set r , k in the statement of the lemma with

Z. Now we use induction on the above partial order to show that the elements br
k

are

linearly independent.

Remark A.4

For a general semisimple rank 1 group G, we have a similar basis for each connected

component of F l as described in Remark A.2. In that basis we use the polynomials

f
r;.m/

k
replacing y with the unique root ˛ 2 t� � R of G. Indeed, the 1-dimensional

T �C�-orbit all have characters ˛ C k�, where k 2 Z and ˛ is the positive root of G.

Each connected component of the affine Springer fiber for G is isomorphic to the one

for SL2 by Remark A.2. Then the same proof as for the SL2 case gives a similar basis.

LEMMA A.5

We have

�.sˇ/x D
d�
x˛

�.ˇ/x C
xs˛ � d�

xs̨
�.ˇ/xs: (A.5)

Proof

Our proof is in several steps.

Step 1. Recall that the Springer action is by R-linear automorphisms and pre-

serves the degrees by Lemma A.1.

Step 2. Let ˇ 2 H BM
T�C�.F led

/ and let s be a simple affine reflection. In this step

we will prove that, for every x 2 eW , the element �.sˇ/x only depends on �.ˇ/x and

�.ˇ/xs . To do this we describe the localization morphism in terms of maps of sheaves.

We use the notation from the construction of the Springer action in Section A.1.
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For an arbitrary parahoric P (including B), let iP denote the inclusion

	�1
2

�
.F lPed

/T�C��
! F led

:

By adjunction applied to

!
F lT �C�

ed

! iBŠ!F led
;

we get a morphism of sheaves

iB� .!
F lT �C�

ed

/ ! !F led
(A.6)

in the T �C�-equivariant derived category. The localization map

H BM
T�C�.F lT�C�

ed
/ ! H BM

T�C�.F led
/

is obtained from (A.6) by passing to cohomology.

The same construction as in Section A.1 establishes an action of the Weyl group

WL of L on

.	2/�i
P
� .!

	�1
2

..F l
P
ed

/T �C�
/
/: (A.7)

Note that the space 	�1
2 ..F l

P
ed

/T�C�

/ decomposes as the disjoint union of subspaces

indexed by eW =WL so that the subspace indexed by xWL contains exactly the fixed

points labeled by the elements from xWL. This decomposition is compatible with

Cartesian diagram (A.1). Hence this decomposition yields the decomposition of (A.7)

into the direct sum with summands indexed by eW =WL. Each summand is WL-stable.

Note that (A.6) factors as

iB� .!
F lT �C�

ed

/ ! iP� .!
	�1

2
..F l

P
ed

/T �C�
/
/ ! !F led

:

The induced maps in cohomology,

H BM
T�C�.F lT�C�

ed
/ ! H BM

T�C�

�
	�1

2

�
.F lPed

/T�C���
! H BM

T�C�.F led
/;

become an isomorphism after inverting some characters by a direct analog of

Lemma 4.1 for ind-varieties.

Apply the last observation to the minimal Levi subgroup corresponding to the

reflection s. Consider the classes of the points x and xs in H BM
T�C�.F lT�C�

ed
/. The

subspace (over F) in the localization of H BM
T�C�.	�1

2 ..F l
P
ed

/T�C�

// spanned by their

images is s-stable. Therefore the same conclusion is true if we consider the images in

the localization of H BM
T�C�.F led

/. This claim is equivalent to the claim of that �.sˇ/x

only depends on �.ˇ/x and �.ˇ/xs .
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Step 3. For x 2 eW consider the element ax WD .ıx;y/y2fW 2
L

fW F, where we

recall that ıx;y is the Kroneker delta. Note that in ax 2 im �, one can see this, for

example, from Corollary 4.8. Then the element s.ax/ has the following properties:

(I) s.ax/ D Ax;xax C Ax;xsaxs for some Ax;x ;Ax;xs 2 F. This follows from

Step 2.

(II) Ax;x , Ax;xs are homogeneous of degree 0. This is because ay is of degree 0

for all y and the Springer action preserves the grading (Step 1).

(III) x˛Ax;x ; x˛Ax;xs are linear functions. Indeed, from (i) of Corollary 4.8 it fol-

lows that x˛Ax;x ; x˛Ax;xs 2 R. Now our claim follows from (II).

(IV) Ax;x C Ax;xs has no pole so is an element of C. This follows from (III) and

condition (ii) of Corollary 4.8.

(V) The elements x˛Ax;x ; x˛.Ax;xs � 1/ are divisible by �. This follows from

sax D axs modulo �, which is a consequence of [24, Section 14.4].

Combining (III), (IV) and (V), we see that

Ax;x D
z�
x˛

; Ax;xs D
x˛ � z�

x˛
(A.8)

for some z 2 C. Note that we have �.sˇ/x D Ax;x�.ˇ/x C Axs;x�.ˇ/xs . So the lemma

amounts to showing that z D d .

Step 4. We will use the case of SL2 for the computation of the elements Ax;x

and Ax;xs . For an affine root ˇ let Ň be the projection of ˇ to t�. Equivalently, Ň

is the unique root such that ˇ D Ň C kı for some integer k, where, recall that ı

is the indecomposable imaginary root. Set ˇ WD x˛. Let T Ň � T denote the kernel

of Ň viewed as a homomorphism T ! C�. We write eW Ň for the subgroup of eW
generated by the reflection sˇ and t

Ň_
. Note that F lT Ň is the affine flag variety of

the semisimple rank 1 subgroup Gˇ WD ZG.T Ň/ given by considering orbits of the

loop group of Gˇ at points eW � F l . The connected components of F lT Ň are labeled

by the cosets eW Ň n eW . Each component is isomorphic to the affine flag variety of

SL2 and contains the T -fixed points labeled by points in the corresponding coset.

A similar decomposition holds for F l
T Ň

ed
: it is the union of connected components

labeled by eW Ň n eW .

Now we can localize H BM
T�C�.F led

/ at all characters that do not vanish on T Ň ,

which includes � C k� for � 2 RC n ¹ Ňº and k 2 Z, but not x˛ C k� for any k.

By the ind-variety analog of Lemma 4.2, this localized BM homology is naturally

isomorphic to the same localization of

H BM
T�C�.F l

T Ň

ed
/:
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So the localization H BM
T�C�.F led

/ breaks up as the direct sum of copies of the local-

ized Borel–Moore homology of F led
.Gˇ /, the equivalued unramified affine Springer

fiber for the semisimple rank 1 group Gˇ .

Step 5. Recall that the Springer action of eW on H BM
T�C�.F led

/ is R-linear

(Step 1). So it lifts to the localization considered in Step 4. Consider the con-

nected component in F l
T Ň

ed
whose T -fixed points are the coset eW Ňx. Note that

eW Ňx D eW Ňxs because ˇ D x˛. It follows that the summand in the localization of

H BM
T�C�.F led

/ corresponding to this component is fixed by the Springer action of

s. Lemma A.3, or, more precisely, its generalization discussed in Remark A.4 give

a basis in the summand we consider. Note that there is a unique element k 2 Z

such that the basis element bd
k

of this summand is 0 at xs and nonzero at x. Then

s.bd
k

/ will only have singularities along the affine root hyperplanes x˛ C p� with

p 2 Z. Further, by the description of the basis in Lemma A.3, we have .bd
k

/x D 1
f

for f WD . x˛ � �/. x˛ � 2�/ 
 
 
 . x˛ � d�/.

Note that .s.bd
k

//xs D Ax;xs
1
f

and .s.bd
k

//w D 0 for all w of the form

xss0s : : : , where s0 WD t�˛s. It thus follows that Ax;xs=f only has singularities

along xs˛; : : : ; xs˛ C .d � 1/�. Since x˛Ax;xs is a linear polynomial, we see that

Ax;xs is proportional to

x˛ � d�
x˛

:

We apply (V) to see that

Ax;xs D
x˛ � d�

x˛
: (A.9)

This implies the claim of the lemma by the last sentence of Step 3.
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