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Abstract

Let g be a semisimple Lie algebra, let t be its Cartan subalgebra, and let W be
the Weyl group. The goal of this paper is to prove an isomorphism between suitable
completions of the equivariant Borel-Moore homology of certain affine Springer
fibers for g and the global sections of a bundle related to a Procesi bundle on the
smooth locus of a partial resolution of (t ® t*)/W. We deduce some applications
of our isomorphism including a conditional application to the center of the small
quantum group. Our main method is to compare certain bimodules over rational and
trigonometric Cherednik algebras.
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1. Introduction

Let G be a connected reductive algebraic group over C, let g be its Lie algebra, let
t C g be a Cartan subalgebra, let T be the corresponding maximal torus, and let W
be the Weyl group. Pick a nonnegative integer d .
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The goal of this paper is to relate two different geometric objects, “coherent” and
“constructible,” constructed from these data.

First, we describe the “coherent” object. Consider the Poisson variety Y := (t ®
t*)/ W. We will choose a suitable partial Poisson resolution X of Y (Section 2.1).
For example, in the case of G = GL,,, the variety X is going to be the Hilbert scheme
of points in C2. When g is simply laced, X is going to be the so-called Q-factorial
terminalization of Y (see [9] for the general construction or [38, Section 2.2] for a
discussion in the present settings). In types B/C, F4, and G, we get some interme-
diate partial resolution. See Section 2.1 for details. In all cases, we are going to have
codimy X" > 4.

The smooth locus X" comes with several important vector bundles. There is a
“Procesi bundle” "¢ that will be constructed in Section 2.2 based on results from
[38]. One important property of J°™¢ we need right now is that its endomorphism
algebra is

H :=C[t® t*]#W. (1.1)

In the case when G = GL,(C), we recover Haiman’s Procesi bundle on the Hilbert
scheme (see [28]). When g is simply laced and hence X is a (Q-factorial terminaliza-
tion of Y, ™2 is the restriction of the Procesi sheaf & on X (see [38, Section 4]) to
X'e Intypes B/C, Fy4, and G,, we consider the sheaf $# obtained by the pushfor-
ward of the Procesi sheaf from the Q-factorial terminalization to X and then restrict
it to X ™. The sign invariants in ™8 is a line bundle to be denoted by 9™2(1). Its
dth tensor power will be denoted by 9™¢(d).
So, for d € Z~¢, we can consider the H -bimodule

By :=T (X"t 0% @ O°¢(d) ® P%). (1.2)

This is the first of the two objects we are interested in.

There are a number of reasons to be interested in the bimodule B, . First, consider
the case when G = GL,,. The bimodule By is closely related to the dth power of the
so-called V-operator on symmetric polynomials (cf. [12]). In more detail, the algebra
H and the variety X come with natural actions of (C*)2. The functor R Hom(/, e)
gives an equivalence from the derived category of (C*)2-equivariant coherent sheaves
on X to the derived category of bigraded H -modules (see, e.g., [29, Theorem 5.3.2]).
The Ko-groups of both categories are identified with the degree n symmetric polyno-
mials with coefficients in Z[g*!, %] in such a way that the irreducible H -modules
in bi-degree (0, 0) are sent to the Schur polynomials. The operator of tensoring with
B, is the V-operator of Bergeron and Garcia (in the Hilbert scheme intepretation
this operator is just the twist by (@(1)). It would be interesting to see whether this
observation can be generalized to the case of general G.
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Another reason to care about By is that these bimodules (or their variants) are
expected to appear in a variety of other contexts. The subject of this paper is their
connection to the affine Springer theory. Another prospective appearance is the study
of character sheaves on semisimple Lie algebras and the usual Springer theory: the
bimodules B; are expected to be related to the central elements T,ﬁg in the Hecke
category. A related appearance should be in the study of invariants of torus knots (see
[27D).

The second object we care about, the “constructible” one, is the equivariant
Borel-Moore homology of a suitable affine Springer fiber for the group G.

Fix aregular element s € t. Let 7 be an indeterminate so that we can form the loop
algebra g((7)). Consider the element e; := st¢ € g((¢)). This element gives rise to the
affine Springer fiber ¥/, in the affine flag variety ¥/ for G; sometimes it is called
an equivalued unramified affine Springer fiber. The maximal torus 7', the central-
izer of s, acts on ¥/,,. So we can consider the equivariant Borel-Moore homology
HM(F,,).

It turns out that HTBM(? le,) also carries a bimodule structure but for a some-
what different algebra. Namely, let 7V denote the Langlands dual torus. Consider
the algebra H* := C[T*TV]#W. The algebra H* acts on HEM(¥1,,) from the
left by what we call the CS (Chern—Springer) action; such an action exists for any
homogenous affine Springer fiber, as the construction in Section A.l shows. For our
particular choices of e; we also have a commuting H *-action that we call the ECM
(equivariant-centralizer-monodromy) action. The action of the Weyl group W in the
ECM action can be related in type A to the S,-action introduced in [49] on the coho-
mology of Hessenberg varieties. This action in the Hessenberg context is further stud-
ied in [48].

Now we explain a relation between H and H*. For G = GL,,, the algebra H>
is a localization of H. In the general case, the algebras H and H™ share a common
“completion.” Namely, set

H" := H ®cgq C[7°, (1.3)

where C[t]*¢ is the completion of C[t] at zero. The same algebra H” arises as
H* ®ciry C[T]", where we identify C[t]"0 with C[T']"! by means of exp:t— T.
Then we consider

Blli\ ‘= By Qc[yg C[t]"o,
an H”-bimodule, as well as
HL(Fle ) = HL(FL.,) ®cir CITIM,

also an H”"-bimodule.
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THEOREM 1.1
There is an H"-bilinear isomorphism By — HPM(F [,,)".

Note that both sides are graded: H?M(TF le,)" is graded by the homological
degree, and Bj from a C*-equivariant structure on $™* ® 0™¢(d) ® P'¢ that
will be explained in Section 3.3. We will see below that one can achieve that the
isomorphism in Theorem 1.1 is grading preserving.

Now we explain how Theorem 1.1 relates to the previous work. In [32], Kivinen
studied the spherical version of ¥/, , and proved a spherical version of Theorem 1.1
in the case of G = GL,,. “Spherical” means that By is replaced with € B; for the trivial
idempotent € in CW = CS,,. On the level of Springer fibers, this means that we take
the Springer fiber in the affine Grassmannian instead of the affine flag variety. Also
note that Kivinen works with localizations, which is only possible for G = GL;. Even
stronger, one can prove an analog of Theorem 1.1 for localizations using the methods
of this paper, but we are not going to discuss this. In fact, one should be able to prove
a version of Theorem 1.1 for By itself and a suitable modification of %/, > but this
will be addressed elsewhere.

The bimodule B; for G = GL,, also appears in the recent paper of Carlsson and
Mellit (see [12, Conjecture 3.7]). Note that a statement similar to Theorem 1.1 (in
the GL,-case) is conjectured in [12, Section 3.3]. We will deduce (see [12, Con-
jecture 3.7]) from Theorem 1.1 combined with other statements that are used in its
proof in Section 7.3. A motivation for [12] was to get some geometric understanding
of the V-conjecture (saying that the image of every Schur polynomial under the V-
operator is Schur positive up to a sign). As we have mentioned above, the V-operator
is directly related to the bimodule B;. On the other hand, [13] contains an interpre-
tation of a stronger version of the V-conjecture in terms of the geometry of spaces
related to the affine Springer fibers. This serves as a motivation for having results like
Theorem 1.1.

Here is another important application of Theorem 1.1. Let Cy, denote the 1-
dimensional irreducible representation of H”, where t and t* act by 0, and W acts
via the trivial representation.

THEOREM 1.2
We have

dim By ® g Cyiy = dim HPM(Fle,) ® = Cyiy = (dh + 1)5™,

where h denotes the Coxeter number of W. Moreover, as a W -module, Bg @ g Cyiy
is isomorphic to C(Ao/(dh + 1)Ag), where we write Ag for the coroot lattice.
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In fact, we show that the first dimension is > (dh + 1)%™*t while the second
dimension is < (dh + 1)%™*, The latter is done by using an argument similar to one
in [5, Proposition 2.9].

Now we explain a reason to be interested in H?M (Fle,). It is expected that for
d = 1, this bimodule is closely related to the center of the principal block of the small
quantum group u(g"), where ¢ is an odd root of unity (see [5, Theorem 4.12]). We
remark that

(HL(F L) @cirorvis Cuw) ™ = H*(F I, )2,

where A stands for the character lattice of 7. Let GV denote the Langlands dual
group, and let TV be its maximal torus. Let Z denote the center of the principal block
of uc(gV). The group GV acts on Z by algebra automorphisms. The main conjecture
of [5, Conjecture A] relates the subalgebra Z TY of Z to the cohomology of ¥/,
(there are also connections of the equivariant cohomology to the center, but we are
not going to discuss that). Namely, it is conjectured in [5, Conjecture A] that Z TY
is isomorphic to H*(Fl,)*. Modulo the conjecture from [5, Conjecture A], The-
orem |.2 shows that the dimension of the W -invariant part in Z T has dimension
(h + 1)dimt,

For G = SL,,, we can say more. Using Theorem 1.1 combined with Haiman’s
n! theorem [28], one can show that, modulo the conjecture from [5, Conjecture A],
W acts trivially on Z T¥ This implies that GV acts trivially on Z, so dimZ = (n +
1)"~1. This will confirm a conjecture from [34]. See Section 7.4 for details.

Now we explain two key ideas of the proof of Theorem 1.1. First, unsurprisingly,
we use the induction on d. Our second, and main, idea is to use a one-parameter
deformation: it turns out that we can deform both B; and H{\(¥1,,). For a com-
plex number ¢, we can consider the rational Cherednik algebra Hj, . over C[A] (see
Section 2.3), deforming H, and the trigonometric Cherednik algebra H ,;‘ . (see Sec-
tion 2.4), deforming H*. The H-bimodule B; deforms to a bimodule over Hj, 4
(acting on the left) and H}, ¢ (acting on the right). This is achieved by quantizing the
Procesi bundle $™8 and the line bundle @™2(1). The bimodule HgM(? le,) deforms
to a bimodule over H,*; and H;?,. The deformation in this case is done by consid-
ering the equivariant BM homology for 7' x C*, where C* acts by the loop rota-
tion. Note that, for each ¢ € C, the algebras Hy . and H;L‘, . share common partial
completions (at 0 and 1, resp.). We will see that we have a deformed version of the
isomorphism from Theorem 1.1, which turns out to be easier to establish.

In fact, the representations of rational Cherednik algebras appeared in the context
of affine Springer theory previously (see [47]). In particular, for a suitable “ellip-
tic” element e& (different from ey), it was shown that Hg}}’[ (¥ le;) admits a filtra-
tion (the so-called perverse filtration) with an action of H}, 441/ on the associated



812 BOIXEDA ALVAREZ and LOSEV

graded space turning gr H(g’ﬁ’[(fF le;) into a deformation of the unique irreducible
finite dimensional module of the quotient Hyy1/4 1= Hp g41/1/(h—1). Some tech-
niques we use are the same as in [47]: both our action of H;,h and their action of
H;ﬁ on the equivariant cohomology come from the Springer—Chern construction.
But this is where the similarities essentially end; for example, there is no bimodule
structure in their construction, and our techniques of identifying H TBI;’[CX (Fle,) with
a Cherednik algebra bimodule are very different. Note also that there is no connection
between HPY . (Fl,) and HEM(F l7). However, there is a connection between
H®™M(F1,,) and HBM(.‘Fle;) (see [5, Corollary 2.14]).

Note that the bimodule B, admits a bigrading, while HEM(F[,,) a priori only
has one grading. A question that remains open is to understand the second grading
of By under the isomorphism in Theorem 1.1 on HngM(S‘"led). In the result of [47],
this second grading is understood as coming from the perverse filtration, but this
filtration is easy to construct for elliptic elements of g((¢)) and is more subtle in the
case of nonelliptic elements such as e;. The combinatorics of the bigraded module
HBM(F 1, ) has been studied in [14], [26], and [30] in the case of elliptic elements
such as those studied in [47].

We finish the introduction by describing the content of the paper. In Section 2
we discuss generalities on partial Poisson resolutions of ¥ = (t & t*)/ W, Procesi
sheaves on them, and rational and trigonometric Cherednik algebras. This section
mostly contains known results and their easy modifications.

In Section 3 we construct a deformation of B;. A key result used in the construc-
tion is that the pushforward from X" to X of the vector bundle $™&* ® 0™¢(d) ®
P is a Cohen—Macaulay sheaf without higher cohomology. Two key ingredients
for this result are the construction of the Procesi sheaves via quantizations in charac-
teristic p and the following claim of independent interests: the pushforward to X of
a line bundle on X™® is Cohen—Macaulay.

In Section 4 we provide some background on the equivariant Borel-Moore
homology and equivalued unramified affine Springer fibers. This section does not
contain any new results.

In Section 5 we construct actions of H,' ;. H}*, on HPY (¥ 1,,) and establish
some properties of the resulting bimodule. A key technique is the localization theorem
for equivariant BM homology. This section relies on an Appendix by the authors and
Kivinen to check the relations for the action of H hx a

In Section 6 we prove Theorems 1.1 and 1.2. And then in Section 7 we discuss
applications of our own main results to conjectures of Carlsson and Mellit and to the
center of the small quantum group.

The bimodules B, and related objects were previously studied mostly in type A.
The proof of Theorem 1.1 does simplify in this case as many prerequisite construc-
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tions are easier. The reader interested in type A only can essentially skip Section 2.1
and parts of Section 3: the claim of Proposition 3.2 is vacuous in type A, and (2) of
Proposition 3.1 follows directly from (1) of that proposition.

2. Procesi sheaves and Cherednik algebras

In this section we recall various generalities related to the algebras H = C[T*t*|#W,
H* = C[T*TV]#W, their deformations—the rational and trigonometric Cherednik
algebras, and the bimodule By . In particular, we discuss a partial resolution X of ¥,
and Procesi sheaves on X .

2.1. Partial Poisson resolutions of Y
Let Y = (t® t*)/ W. The goal of this section is to construct a partial Poisson resolu-
tion X of Y mentioned in the introduction.

The variety Y is a conical symplectic singularity. As such, it admits a QQ-factorial
terminalization, to be denoted by X (see [9] or [38, Section 2.2]). This is another,
generally, singular symplectic variety together with a projective birational morphism
p: X — Y. The variety X is Q-factorial and has terminal singularities, in particular,
codim 3 Xsing > 4 (see [46]). We remark that X is not unique. Below we will need a
special choice of X for some W.

Note that Y carries a natural action of (C*)?2, by dilations of t and of t*. This
action lifts to X, making p equivariant (cf. [43, Proposition A.7]). We will also con-
sider the contracting torus {(7,7) |t € C*} C (C*)?. The Poisson bracket on O 3 has
weight —2 with respect to the action of this torus.

We will need to understand the structure of the exceptional divisor D of X—>7Y.
For each irreducible component of this divisor, its image in Y is the closure of a codi-
mension 2 leaf (see the proof of [40, Proposition 2.14]). Such leaves are in bijection
with conjugacy classes of reflections in W. All formal slices to these leaves in Y are
of type A;. Therefore the preimage of the closure of such a leaf is irreducible. So we
get a bijection between the conjugacy classes of reflections in W and the irreducible
components of the exceptional divisor. For a reflection s we write D for the corre-
sponding component. So in the class group we have D = )" D, where the sum is
taken over the representatives of conjugacy classes.

We proceed to defining a partial resolution X of Y.

When g is simple and simply laced, we set X := X . For example, for g = sl,,, we
get a slight modification of Hilb, (C?), the Hilbert scheme of n points in C2. Namely,
this variety maps to (C* @ C"*)/S, and our X is the preimage of (t & t*)/S,. Note
that in this case X is smooth (and symplectic).
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Assume again that g is simple and simply laced. Note that since X is Q-factorial,
there is £ > 0 such that the line bundle O (£.D) on X™¢ extends to a line bundle on X .
The extension, also denoted by @ (£D), is ample.

Now consider the case when W is of type B,, F4, or G,. In this case, there
are two codimension 2 symplectic leaves in Y, corresponding to the two conjugacy
classes of reflections. We consider the bundle 9(D) on X™¢ associated to the divi-
sor D. Again, we can find £ such that O (£ D) extends to X. But now O({D) may
fail to be ample. For example, this is the case in type B, for n > 1. According to
[45], possible Q-factorial terminalizations of Y are in bijection with chambers of a
suitable hyperplane arrangement in Pic(X’) ®7 R (where X’ is any fixed Q-factorial
terminalization; these spaces are identified for different X’) modulo the action of the
Namikawa—Weyl group from [44]: we send X to its ample cone. We choose X so that
O (£ D) lies in the closure of the ample cone of X.

PROPOSITION 2.1

There is an irreducible singular symplectic variety X with projective birational mor-
phisms p: X—>X and p: X — Y such that

(i)  codimy Xt > 4,

(i)  for some £ > 0, the bundle O (L D) is lifted from an ample line bundle on X.

Proof

Intermediate partial resolutions X between X and Y (that are normal, hence singular
symplectic) are classified by faces of the ample cone of X in such a way that for
a given face, Cy, for any rational point, y € Cy, a positive rational multiple of y is
pulled back from an ample line bundle on the corresponding partial resolution. This
follows, for example, from [31, Theorem 3-2-1]. In more detail, X in that theorem is
our X, and S there is our Y. The nef cone W()Z /Y), by definition, is spanned by
the numerical equivalence classes of curves in fibers of p. A Cartier divisor H there is
a positive multiple of y. It is p-nef in the terminology of [3 1, Theorem 3-2-1] because
of the theorem of Kleiman [31, Theorem 0-1-2] that states that the nef cone is dual to
the ample cone. To apply [3 1, Theorem 3-2-1], we take A there as in the proof of [45,
Lemma 1], so that (X, A) is klt.

We provide details on the latter claim for readers’ convenience. Note that in our
case, Y is Q-factorial. Indeed, let V° denote the locus of points in t @ t* without
stabilizers in W. The complement to this locus has codimension 2. Therefore, we
have isomorphisms

CI(Y) = Pic(V°/ W) = Pic" (V?) = Pic" (V) = Homgoups (W, C).

The latter group is finite; hence, Y is QQ-factorial. So, we can use the construction
explained in [33] to get an effective divisor D’ on X supported on the exceptional
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locus of p that pairs negatively with every nonzero class in W(f /Y). We take A =
€D’ for a very small positive rational number €. The claim that ()? , A) is kit follows
from the definition of terminal singularities (see [31, Definition 0-2-6]).

So, the conditions of [31, Theorem 3-2-1] are satisfied. Then Y in that theorem
isour X.

Explicitly, let £ be a line bundle on X thatis a positive multiple of y. Then X
is the image of X inY xP(V) for a sufficiently large integer d, where V is a finite
dimensional generating subspace of the C[Y ]-module I'(£4).

In particular, we get a unique partial resolution X satisfying (ii). We need to
show that it satisfies (i) as well. Assume the contrary: codimy X*"8 = 2. Since
codimz X*" > 4 (see [46]), an irreducible component of 5~'(X*") is a divisor.
On the other hand, as argued in the second paragraph of the proof of [40, Proposi-
tion 2.14], the image in Y of an irreducible divisor under p either intersects ¥ ™# or
coincides with the closure of a codimension 2 leaf. It follows that a codimension 2
leaf in X maps to a codimension 2 leaf in Y. This contradicts the claim that some
multiple of D corresponds to an ample line bundle on X. So X satisfies (i) as well,
which finishes the proof. U

We note that, by the construction, (C*)? acts on X and the morphisms p and p
are equivariant.

Remark 2.2

When W is of type B, the varieties X (which is actually smooth), X, and Y can be
realized as Nakajima quiver varieties for the affine quiver of type A, with dimension
vector nd and unit framing at the extending vertex 0. The Nakajima quiver varieties
(see [42] for generalities) with these data depend on the choice of a pair of integers
(6o, 61), and we write M @091 for the corresponding quiver variety. We take X =
MDD x = MOD and Y := MO0,

We now sketch the argument. Recall that M (@0-91) is defined as the GIT quotient
for an action of the group GL, x GL,, on an affine variety with respect to the character
0 : (g0, g1) — det(go)? det(go)?'. Let £ denote the line bundle on X corresponding
to the character (go, g1) > det(g1). The slices to codimension 2 singularities in Y
look like C?/{#1} (meaning that the formal slice is the formal neighborhood of 0
in C2/{=£1}). Over these slices X — Y looks like 7*P' — C2/{£1}. To check that
X = M©D_ we need to show that £ restricts to the same line bundle on both P's.
Recall (see [42, Section 6] or [8, Section 2.1.6]) that the slices in M@0 can also
be realized as Nakajima quiver varieties but for smaller quivers. The groups we need
to quotient out are realized as subgroups in GL, x GL,, and the characters used to
take the GIT quotients are obtained by restricting 6 to these subgroups. The relevant
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computations were performed in [35, Section 6.5]. Our conclusion is that the restric-
tion of the line bundle on X corresponding to @ to the two P! is given by the same
formulas as in [35, Theorem 6.2.1] (up to the sign—the sign convention in that paper
is opposite, and in the formulas we need to take & = 0): if the restrictions are O (k)
and O(c) for k,c € Z, then 6y = (c —k)/2 and 6, = c/2.

The reason why we need to use X (instead of X ) is that the Serre vanishing
theorem holds: since @ (£d) is ample on X, for every coherent sheaf ¥ on X we
have H (X, ® O({D)?) =0 foralli > 0 and d is sufficiently large (depending on
F). This plays a crucial role in the proof of Proposition 3.1 below.

2.2. Procesi sheaves
The goal of this section is to produce a Procesi sheaf on X. The case of Procesi
sheaves on X was handled in [38, Section 4].

Let us recall the construction of the latter. We can reduce X mod p for p > 0.
Namely, set F := Fp. Then we can define the reduction Xy to F. Since p is suffi-
ciently large, Xrisa singular symplectic variety with codim g_ X ];i"g > 4 and vanish-
ing higher cohomology of the structure sheaf. In [38, Section 4.2], the second named
author constructed a filtered quantization Dr of the structure sheaf 9 %.» Whose global
sections are A(tp @ tH:‘i)W, where A stands for the Weyl algebra of a symplectic vec-
tor space. Consider the Frobenius morphism Fr : Xr — Xél) and the pushforward
Fry Or. The restriction of this sheaf of algebras to the regular locus is an Azumaya
algebra [38, Lemma 4.3]. Consider the completion F[Y (D] of F[Y (D] at 0. We
denote its spectrum by YF(I)A. Consider the scheme

XN = i s XD, @.1)

It was shown in [38, Section 4.3] that the restriction of Fr. Dr to the regular locus
in X ]él)’/\ splits. Moreover, it was shown there that we can find a Morita equivalent
sheaf of algebras #Ap on )?Igl)’A whose global §ecti0ns are F[t(1) @ t(D*]hogw/ . Lete
denote the averaging idempotent in FW. Set P} := Are. Then the restriction of P}
to X ]él)’A’reg is a splitting bundle for the Azumaya algebra

AF|X]I(‘1).A.1'eg.

Also note that Ap is a maximal Cohen—Macaulay sheaf that coincides with the endo-
morphism sheaf of /. Note that, by the construction, we have

PN __
€Pp = (9)?]1(71),/\.

Consider the contracting [F*-action on X, ];1)/\. Then JSFA can be shown to admit an
[F*-equivariant structure. Using this, we can extend & to an F*-equivariant maximal



AFFINE SPRINGER FIBERS, PROCESI BUNDLES, AND CHEREDNIK ALGEBRAS 817

Cohen—Macaulay sheaf on )Z]él) to be denoted by Pr (see [38, Lemma 4.6]). By the
same lemma, we can modify the F*-equivariant structure on Pr so that we get a
graded algebra isomorphism End(P5) — F[tO @ tO* W

Finally, we can lift #p to characterlstlc 0 (see [38, Section 4.4]). We get a maxi-
mal Cohen—Macaulay sheaf J on X with the following properties:

1) we have a graded algebra isomorphism End(ﬂs) 5 H,
(i) &nd (f)) is a maximal Cohen—Macaulay module,

(iii) H’(X End(P)) =0 fori >0,

(iv) €P > (9X, a C*-equivariant isomorphism.

Sheaves & satisfying (i)—(iv) are called Procesi sheaves on X.

We note that, for the same reason as in [38, Lemma 4.6], % can also be made
equivariant with respect to (C*)2, and the isomorphisms in (i) and (iv) can be assumed
to be (C*)2-equivariant. As remarked in [38, Remark 4.8], the argument in [36] clas-
sifying the Procesi bundles in the smooth case carries over to the singular case. So the
bundles # on X satisfying (i)—(iv) are classified by the elements of the Namikawa—
Weyl group of Y introduced in [44]. We will denote this group by Wy . This group
is [ [;(Z/27Z), where s runs over representatives of conjugacy classes of reflections
in W. Below, in Section 2.3, we will recall how the classification of Procesi sheaves
works.

To finish the section, we discuss Procesi sheaves on X. Recall the birational pro-
jective morphism 5 : X — X from Proposition 2.1. Set

= psP

LEMMA 2.3
The sheaf P on X has properties completely analogous to (i)—(iv).

Proof

First of all, note that Rp, @ ¢ = Ox. This is because X and X are singular symplectic,
and p is birational and projective. Indeed, by [1, Proposition 1.3], singular symplectic
varieties have rational singularties. So, for any resolution of singularities 7 : Z — X s
we have R0z = O and R(po m)«Oz = Oy, implying Rp, 0 3 = Ox.

For similar reasons, H'(X,Ox) = 0 for all i > 0. So the same is true over F
(assuming, as always, that p > 0). Therefore, R0, D = 0 for i > 0, and the sheaf
0. D is a filtered quantization of Ox;, and has no higher cohomology. From here we
deduce that p, AF is a maximal Cohen—Macaulay sheaf without higher cohomology.
Moreover P+ Pp = €p,Ar. Now note that & is obtained from p, "3]FA in the same
way as # is obtained from O’\ . It follows that the natural homomorphism End(;P) —
End(#) is an isomorphism yleldlng (i). Conditions (ii) and (iii) also follow, while (iv)
is immediate from the construction of &. O



818 BOIXEDA ALVAREZ and LOSEV

2.3. Rational Cherednik algebras

Let us write S for the set of reflections in W. Let ¢ : S — C be a W -invariant function.
Let & be an independent variable. Then we can define the rational Cherednik algebra
Hip, . as the quotient of T'(t & t*)[I][#W by the following relations:

1 =001=0, Dxl=h((rx) = Y e .y (v a)s).

seS

Here x,x' €t,y, y’ € t*, and «y, oz;/ denote the positive root and the positive coroot
corresponding to a reflection s. For example, Hy o = Dy (t*)#W, where we write
Dy, (t%) for the algebra of homogenized differential operators on t*.

We will write H, for the specialization of Hy . to h = 1.

Now we will discuss a connection between the rational Cherednik algebras and
Procesi sheaves. We start with the Procesi sheaves on X , the case treated in [38,
Section 5.1].

The formal quantizations of X' witha compatible action of the contracting torus
are classified by the points of H2(X™2, C) (see [35, Section 2.3]). We note that the
first Chern class map induces an isomorphism C ®z Pic(X™¢, C) 5 H 2(Xree C),
both spaces have dimensions equal to the number of conjugacy classes of reflections
in W. The quantizations of X are in a natural bijection with those of X' via push-
forward and pullback (see [10, Proposition 3.4]). Let us write J@h, . for the formal
quantization of X corresponding to A. Note that {[)h, 2 also has an action of the torus
(C*)?2, and the action of the Hamiltonian subtorus {(¢,7™') | € C*} is still Hamilto-
nian.

The algebra of global sections I (iih, ) is related to the rational Cherednik alge-
bra Hp, . as follows. Consider the spherical subalgebra e Hj, ¢ €, a graded quantization
of C[Y]. We can consider the subalgebra F(i)h, 1)™ of C*-locally finite elements in
F(f)ﬁ, ) with respect to the contracting C*-action. Then we have

[(D5.2)™ = €Hp €, 2.2)

where ¢ is computed as follows. The Chern classes of the line bundles @ (Dy) form
a basis in H2(X™,C). Let A be the coefficient of the basis element corresponding
to s in A.

Definition 2.4
By definition, ¢, sends s € S to A5 — %

Isomorphism (2.2) follows from [40, Proposition 3.17].
Note that the Namikawa—Weyl group Wy acts on H2(X ™, C) by changing signs
of the coordinates Ag; this follows, for example, from [40, Section 3.6]. In particular,
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we get a Wy -action on the affine space of parameters c. Two Wy -conjugate parame-
ters give rise to the same algebra I'(Dj, ;)™ (see [10, Proposition 3.10]).

Now we discuss a connection of rational Cherednik algebras with Procesi
sheaves, established in [35] in a special case and in [38] in the general case. See,
in particular, [38, Section 5.1]. Let Pree denote the restriction of P to X™¢; this is
a vector bundle. Let !Oreg be the restriction of JDh 5. Since End(P) is a maxnnal
Cohen—Macaulay module that has no higher cohomology (see Section 2.2), the con-
dition codim g Xsing > 4 implies that F(é?nd(ﬂ’reg)) = H and H'! (Snd(fPreg)) =0

reg

fori =1,2. So we have a unique quantization of ™ to a left §D 3 -module to be

denoted by & pree 3- This quantization is (C*)2-equivariant. Set

€)% = End g (P15 2.3)

This is a sheaf of C[[/i]]-algebras on X™¢ deforming & nd(P™€)°PP,
As was argued in [38, Section 5.1],

F(greg )hn —> Hh /(L) (24)

for an affine map A > ¢’(1). By multiplying the source and the target of (2.4) with
€ on the left and on the right, we get I'(JOreg )i = €Hy, or(1y€ that gives the identity
endomorphism of C[Y] after taking the quotient by i = 0. So, as argued in [38, Sec-
tion 5.1], we have an element w € Wy such that ¢’(1) = wc,. This element depends
on the choice of #. This defines a bijection between the set of possible Procesi bun-
dles and Wy, already mentioned in Section 2.2. This was proved in [36, Theorem 1.1]
in the case when X is smooth and carries over to the general case verbatim.

We will always choose P corresponding to the unit element in Wy .

Let e_ denote the sign idempotent in CW . Using the previous discussion, we can
describe P™%c_, the sign component of pree.

LEMMA 2.5
We have c1(P™8e_) = %cl((9 (D)).

Proof
Let s be a reflection in W. Pick a point y € Y lying in the symplectic leaf correspond-
ing to 5. We set Y := Spec(C[Y]"?) and X" := Y xy X.

Pick A € H?(X™2,C) and set ¢ := c;. We can also consider the completion
H}?: As was checked in [6, Section 3.3], this is a matrix algebra of size |W|/2 over
H 2,00( 5)» the completed rational Cherednik algebra for (t, (s)) with parameter c(s).
On the other hand, analogously to [36, Proposition 4.1], .J Py = P | g~y coincides
with Homgyg, s}((CW P, where P is the Procesi bundle over (t @ t*)* x T*P!.
Leti: X" — X" be the embeddlng. Then we have the pullback map
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*:H*(X™8,C) = Hpp(X™®) — Hpp(X™) = H*((t® t*)* x T*P',C) = C.

The isomorphism End (5, ;) = Hh 3 gives rise to an isomorphism End(J *(A)) =
H° Hy' ) By Definition 2 4, the isomorphism of parameter spaces correspondmg to P
sends i*(A) to i*(A) — 5. The two possibilities for /> are @ & O(1) and O @ O(-1).
The map between the parameter spaces we have is reahzed by the former. This is an
easy special case of [36, Section 4.2], for example.

In particular, using the direct analog of [36, Proposition 4.1] again, we see that
the restriction of the line bundle Pe_ to X”v is @ (1) on that scheme. Since the line
bundle @ (P') on T*P! is ©(2), the claim of the lemma follows. O

Now we explain how to relate the rational Cherednik algebras to quantizations of
P (instead of P¢). Let ¢ denote the embeddmg Xreg s X, Set P = t*(?reg)

Since H'! (X reg oreg) = 0, we see that J h.A 1S a quantization of &°. Similarly, Sh, A=
L*é;f is the endomorphism sheaf of #; 5 (with opposite multiplication).

Let us proceed to quantizations of J, the Procesi sheaf on X, and its endo-
morphism sheaf. Similarly to the proof of Lemma 2.3, we see that R'5,& = 0 for
i > 0. So we get that &, := ﬁ*éﬁk is a quantization of &nd(P). Further, we set
Pr.a = €&y, . This is a quantization of P. Also

Epa = Endyp, , (P )",

where Dy, ; is the pushforward of f)h, s to X.
In what follows we will write @™2(1) := £"™8¢_. This is a line bundle on X%,
Note that p* induces an isomorphism Pic(X ") = Pic(X"). This allows us to
view ¢ (Q™¢(1)) as an element of H2(X™2,C). If A € H?(X"¢,C) corresponds to a
Cherednik parameter ¢ = ¢, then the Cherednik parameter, say ¢’, corresponding to
A+ c1(0™8(1)) satisfies ¢’(s) = c(s) + 1 forall s € S.

2.4. Trigonometric Cherednik algebras
In this section we will discuss the trigonometric Cherednik algebras and their connec-
tion to rational Cherednik algebras. Assume that G is a connected reductive group.
Recall that 7" denotes a maximal torus in G.

Let A denote the cocharacter lattice of 7', and let Ay be the coroot lattice of
g, a sublattice of A. Consider the extended affine Weyl group W :=W x A that
contains the affine Weyl group W¢ := W x Ay as a normal subgroup. We have the
length function £ : W — Z>p. The subgroup of length 0 elements is identified with
A/ Ao under the projection W — W /W9 2 A/ Aq. We have the decomposition W =
(A/Ao) x W4,

The group W actson A x Z by
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w(p,a) = (wy,a), x(u,a):=(n+ay,a),
yeNCW,weWcCW,neAacl. (2.5)

We consider the dual action of W on t* & C. It is given by

w(y,z)=(wy,z), x(».2)=0.z+{(x.y), x€AweW,yet' zeC.

Let s1,...,s, denote the simple reflections in W, and let sy denote the simple
affine reflection. Let o)/, ..., denote the simple coroots, and let oy denote the min-
imal (negative) coroot. Pick a W -invariant function ¢ : S — C. Set ¢ (o) := ¢(Sq,)-

The trlgonometrlc Cherednik algebra H hc is defined as the algebra generated by
two subalgebras CW and CJt, h], subject to the following cross relations:

siy — (si.y)si = he(si)(y, o)), i=0,....r,y €t’,
ny=(my)m, yet' ., meA/AgCW, (2.6)
xh=hx, xeWw.

Here we write x.y for the image of y € t* under x € W for the action of W on t & C
described above (with % corresponding to 1 € C).

The algebra H ,;( . admits an embedding into the algebra Dy (T V-"¢)#W, where
TV-"¢ denotes the complement to the union of root codimension 1 subgroups in the
Langlands dual torus 7V; we write Dy for the algebra of homogenized differential
operators. Namely, let us write e* for the function on T given by A. The embedding
maps A € A C W to e’l, weWtoweW, htoh, and y €t to the trigonometric
Dunkl operator (see [15, (2.12.16)]) defined as follows:

Dy =39, +th(s,x) ( Zlv(l—sa)—<th(sa)a ,y>

a>0 a>0

This embedding can be used to establish the following well-known result that
plays an important role in our paper.

LEMMA 2.6
We have an algebra isomorphism

Hp.e ®cpe CIE )™ = Hy . crrv) CIT VM.

Proof

We can identify C[t*]"0 =~ C[T V]! by sending x € t to e*. This identification is W -
equivariant. It remains to show that the subalgebra in Dy (t*>0-"¢)#W generated by
C[t*]"o#W and the rational Dunkl operators coincides with the subalgebra generated
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by C[t*]"o#W and the trigonometric Dunkl operators. This is because the difference
between the trigonometric and rational Dunkl operators associated to y € t* lies in
C[t*]"o#W . The latter subalgebra lies in both images. O

2.5. Representation theory of rational Cherednik algebras
In this section we will recall several known constructions and facts related to the
representation theory of rational Cherednik algebras. Set H, := Hp, ./(h—1);thisisa
filtered deformation of C[T*t*|#W . Let €, e_ denote the trivial and sign idempotents
in CW.

We abuse the notation and write ¢ + 1 for the map S — W, sending s to c(s) + 1.
We start with the following classical result (see, e.g., [3, Proposition 4.6]) that will
also be established below, in Lemma 3.7.

LEMMA 2.7
We have a filtered algebra isomorphism e H.€ =~ e_H.€_ that is the identity on the
associated graded algebras.

We say that a parameter c is e-spherical if H. = H.eH,. In this case the cat-
egories H, —mod and € H.e —mod are equivalent via the bimodules H €, eH.. The
following result, due to Bezrukavnikov, is [16, Theorem 5.5].

PROPOSITION 2.8
The parameter c is €-spherical if and only if the algebra € H € has finite homological
dimension.

Similarly, we can talk about e_-spherical parameters. A complete analog of
Proposition 2.8 holds. In particular, we can use Lemma 2.7 to prove the following
result.

COROLLARY 2.9
The parameter c is €-spherical if and only if ¢ + 1 is e_-spherical.

We will be interested in two classes of parameters c¢. The first class is the param-
eters ¢ with c(s) € Z for all s. The following result was obtained in [2, Theorem 1.4,
Proposition 1.7].

LEMMA 2.10
If c¢(s) € Z for all s, then the algebra H_ is simple. In particular, ¢ is both €¢- and
€_-spherical.
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The second class of parameters is as follows. Assume that g is simple. Let &
denote the Coxeter number for W and let d € Zx(. We consider constant functions
¢:S — Csuchthatc(s) =d + % forall s € S.

The following result was obtained in [3, Theorem 1.4, Proposition 1.7].

PROPOSITION 2.11
There is a unique irreducible finite dimensional H.-module. Its dimension is (dh +
1)4mt Moreover, as a W -representation, it is isomorphic to the permutation module

C(Ao/(dh + 1)Ay), where, recall, Ay is the coroot lattice.
The following is [20, Lemma 4.5].

PROPOSITION 2.12
The parameter ¢ = d + % is €-spherical for d > 0 and €_-spherical for d > 0.

3. Deformation of B,

Let d be a positive integer. The goal of this section is, for a Cherednik parameter
c, to define an Hy, o4 q-Hp c-bimodule By, 44« that is a C[h]-flat deformation of
Bg;. This is done in Section 3.3. This construction is based on two algebro-geometric
results of independent interest, Propositions 3.1 and 3.2.

3.1. Main geometric results
Consider the vector bundle £™8 on X8, the restriction of & from Section 2.2, and
the line O™8(1) := €_J"™¢ on X8, Let ¢ denote the inclusion X < X. We write
O (j) for the jth tensor power of O™&(1).

Here is the first important result in this section.

PROPOSITION 3.1

The following claims hold:

(1)  Forall j >0, the sheaf 1+(P™&* @ O™¢(j) ® P™8) on X is maximal Cohen—
Macaulay and its higher cohomology vanishes.

(2)  In particular, we have H' (X" P™8* @ 9™¢(j) ® ™) =0 for all j >0
andi =1,2.

We will prove this proposition using another major result of this section:

PROPOSITION 3.2
Let £ be a line bundle on X™¢ and let t denote the inclusion X™¢ — X. Suppose there
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is £ > 0 such that 14(£®%) is a line bundle on X. Then 1, £ is a Cohen—Macaulay
sheaf.

Proposition 3.2 will be proved in Section 3.2. Now we prove Proposition 3.1
assuming Proposition 3.2.

Proof of Proposition 3.1

We note that (1) implies (2): if ¥ is a maximal Cohen—Macaulay sheaf on X, then
Ri1,(1*F) =0fori = 1,2 because codimy X*" > 4 (by Proposition 2.1). It follows
that H' (X", Pr8% @ 9™2(j) @ P™8) = H' (X, 14 (P™* @ O™2(j) @ P™¢)) for
i = 1,2. The right-hand side vanishes by (1).

The proof of (1) is in several steps.

Step 1. Note that 9™¢(2k) = @ (kD) for the divisor D C X" from Section 2.1
and some k > 0. This follows from Lemma 2.5. By (ii) of Proposition 2.1, there is
a positive integer £ such that O™¢({) is obtained by restricting an ample line bundle
on X that will be denoted by @ (). So, for each coherent sheaf ¥ on X, there is a
positive integer d(F) such that H (X, ¥ ® O(df)) =0 for all i > 0 and all d >
d(F). Set dy to be the maximum of d(¥), where ¥ runs over (,9™8(j) for j =
0,...,£ — 1. Now, by Proposition 3.2, each of the sheaves (1.0™8(j)) ® O(d¥) is
a maximal Cohen—Macaulay O x-module. We conclude that ¢, (O™(j)) ® O(d¥) is
Cohen—Macaulay and has vanishing higher cohomology for all d sufficiently large
andall j =0,...,£—1.

Step 2. Note that X and @™¢(1) are defined over a finite localization of a ring
of algebraic integers, say R (cf the discussion after [38, Lemma 2.3]). After a further
finite localization of R we can achieve the following:

. R is regular an is a base change of a line bundle, , on
X™e) g is regular and O™%(1) is a base change of a line bundle, @' (1
Xz5,
. Or(£) := 1,0 (£) is an ample line bundle on Xg,
. L*OEg(j) is a maximal Cohen—Macaulay sheaf on Xg forall j =0,...,{—1.

Using these properties we see that L*Ozg( j) ® Or(dl) is a maximal Cohen—

Macaulay sheaf with vanishing higher cohomology for all d sufficiently large, say

d>dj,andall j =0,...,£—1. We conclude that for any field IF that is an R-algebra,

we have

Q) O (j) ® Op(d?) is a maximal Cohen-Macaulay sheaf on X with vanish-
ing higher cohomology for all d > d;.

Step 3. We will use property (Q) to establish (1) in this and subsequent step.
Recall that we write & for endomorphism sheaf of #. Consider the scheme X
defined analogously to (2.1). It is enough to show the direct analog of (1) over F for
p :=charF 3 0. Let &) denote restriction of & to X7 and, similarly, let 05"
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denote the restriction of Op° to X", Similarly to Step 1 in the proof of [39,
Lemma 3.4], we see that the restriction of 14x(6;° ® Ox*(j)) to X coincides with

(627 ® 05" ())), (3.1

where we write (" for the inclusion X" <> X2. So we need to show that (3.1)
is maximal Cohen—Macaulay with vanishing higher cohomology for all j > 0. It is
enough to do this after a Frobenius twist. In the notation of Section 2.2, (3.1) becomes

2 (As]yrnme ® O ())). (3.2)

Recall that #p has the same direct summands as a quantization D7 of X/'. So we
need to show that

(DR nme ® 05V () (3.3)

is maximal Cohen—Macaulay with vanishing higher cohomology. Again, arguing as

in Step 1 of the proof of [39, Lemma 3.4], we see that this sheaf is the restriction to
(1),A

Xp 7" of

L (De ]yt ® OV ())). (3.4)

So it is enough to show that (3.4) is maximal Cohen—Macaulay with vanishing higher
cohomology. We will do this in the next step.
Step 4. We note that D is a filtered deformation of Fr, Oy It follows that

), .
@]F|X];l).rcg ® (9]F reg(])
is a filtered deformation of
(Fre Q) ® O () = Fr, OF2(pj).

Since p is sufficiently large, by (O), tx Frs O*(pj) is maximal Cohen-Macaulay
with vanishing higher cohomology. Similarly to the derivation of (1)=-(2) in the
beginning of the proof, we see that Rt Fr, Op*(pj) = 0. It follows that (3.4) is a
filtered deformation of ¢, Fr, O *(p/). Since the latter is maximal Cohen-Macaulay
with vanishing higher cohomology, so is (3.4). This finishes the proof. O

3.2. Cohen—Macaulay property
In this section we prove Proposition 3.2. Let &£ be as in Proposition 3.2. We need to
prove that ¢, £ is Cohen—Macaulay. We start with the following lemma.
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LEMMA 3.3
Every point x € X has a Zariski open neighborhood, say U, such that £|yres has a
D-module structure.

Proof
Since H!(X"™2, @) = 0, the line bundle £ quantizes to a Dr, p+¢, (2)-Dn,2-bimodule
for any A € H?(X™2,C) (see, e.g., [ 10, Proposition 5.2]). Take a Zariski open neigh-
borhood U of x in X such that the line bundle ¢, (£%%) trivializes on U. We can
assume that U is affine. Then H*(U™,0) =0 for i = 1,2 (because U is Cohen—
Macaulay and codimy U sing > 4): hence, the formal quantizations of U"™® are classi-
fied by their period (see [7, Theorem 1.8]).

Since 14(£®%) trivializes on U, it follows that £®¢ is trivial on U™¢; hence,
¢1(£€|yre) = 0. Therefore, we have

D aluree = Dppte, () lUree.

A vector bundle that quantizes to a bimodule over the same formal quantization on
the left and on the right gets a Poisson structure (see, e.g., [39, Section 2.4]). But
over a smooth symplectic variety, a coherent Poisson module is the same thing as a
D-module (see, e.g., Step 3 of the proof of [37, Lemma 3.9]). ]

Recall the morphism p: X — Y. Set y := p(x). Let v € t & t* be a point in
the preimage of y. Choose a W),-stable small disc Z around v. Then Z/W, is a
neighborhood of y in the complex analytic topology. Set 7= B_l (Z ] Wy).

LEMMA 3.4
The group w1(Z™#) is a quotient of W.

Proof

Indeed, (Z/ W,)™¢ embeds into Z™¢ as the complement to a closed complex analytic
subspace; hence, w1 ((Z/Wy)™) — w1 (Z"™8). But w1 ((Z/W,)"™®) is easily seen to
coincide with W,,. O

Proof of Proposition 3.2
What we need to show is that the completion (14£)"~ is Cohen—Macaulay; this
implies that the stalk of ¢, £ is Cohen—Macaulay. The proof is in several steps.

Step 1. Let W° denote the kernel of 771 ((Z/ Wy)™8) — 71(Z™€). Set Y := (t ®
t*)/W° and X°:=Y° xy X. Let n denote the projection X° — X. The preimage
Z° of Z™¢ in X° is smooth and is a simply connected cover of zre, by the choice
of W°. The morphism 1 : Z° — Z"™¢ is étale. It follows that there is a Zariski open
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neighborhood U; of x in U such that 7 is étale over U;*. Define U, from the Stein
decomposition for 71 (U;*®) — U; so that n71(U;*®) embeds into U, as an open
subset and U — U is the quotient morphism for the group 71(Z™). As in the
proof of [39, Lemma 2.5], it follows that Ulo has symplectic singularties and hence
Cohen—Macaulay.

Step 2. Let OF" and O, denote the sheaves of analytic functions on X and
X', Then we have the analytification functor " := 9¢" ® @, e from the category
of coherent @ x -modules to the category of coherent 94" -modules, and similarly for
X', We claim that (1+£)%" coincides with the analytic pushforward of £4", to be
denoted by (4" £4".

Note that 0" is flat over Ox. So we have an isomorphism of functors

Homg, (e.0x)*" = Homgan (e, OF") (3.5)

(from Coh(X) to Coh(X4")). Since codimy X*"& > 2, the pushforward 1, & is a
reflexive @ x-module, that is, it coincides with its double dual. It follows from (3.5)
that (1x&£)%" is a reflexive O"-module. Note that £4" coincides with the pullback
of (1+£)%". Since (14£)%" is reflexive and codimy X" > 2, we see that (14&£)*"
coincides with (2" £%".

Step 3. Recall from Lemma 3.3 that £ |y has a D-module structure. In par-
ticular, ef‘”’|2rag is a D-module, that is, a vector bundle with a flat connection. It
follows that it is the direct sum of 71 (Z™8)-isotypic component in 7 (DZﬁ | Gy’
Therefore, (1.£)"~ is also the direct sum of isotypic components in the complete
ring C[n~'(X")]. The latter is ring is Cohen-Macaulay because U} has symplectic
singularities. Hence, (t.£)"* is a Cohen—Macaulay C[X]*~-module. O

Remark 3.5

We expect that a direct analog of Proposition 3.2 holds for the partial resolutions of
general conical symplectic singularities. The proof should be similar to the one we
gave above, modulo some technical issues.

3.3. Construction and properties of By, cd«c
Let d > 0. Recall the space

Bg =T (X", P"8% @ O™¢(d) ® P¢).

We view & as a right H-module, so B; becomes an H -bimodule. Moreover, recall
that # has a (C*)?-equivariant structure. The line bundle @ (1) = Pe_ inherits the
(C*)2-equivariant structure. This equips By with a (C*)2-equivariant structure. We
will mostly consider a part of the action, an action of C* givenby 7.(x, y) = (x,172y)
forx €t, y e t*.
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In this section we produce a deformation of By to an Hp ¢4 4-Hp -bimodule
and study its properties. The deformation of B, is constructed as follows. Recall
from Section 2.3 that $™ quantizes to a {Oreg Sreg -bimodule J ° g for any
A€ H?2(X™ C). Set v :=c1(O(1)). Also (9reg(d) quantlzes to a JO; Atdv Jl);e’i
bimodule to be denoted by D, (see [10, Proposition 5.2]). So

R, A+dv<A
reg oreg, oreg
DX P 3 o, Drataver o Pp3) (3.6)
becomes a (C¥)*-equivariant H, " hatav-H ~-bimodule, where the superscript o”"

indicates an h-adic completion. We set

X reg P reg,* reg

Oreg ﬁn
Brtaver =T( Lhardv Q0 L, Dy, s tdvr Qo J 2)

where the superscript “fin” means that we take the finite part for our C*-action. This
is a bigraded Hj}, ) +4v-Hp, 3-bimodule. Note that for d = 0, we recover the regular
Hj, 5-bimodule.

Remark 3.6
By the construction, By 344y« carries an action of (C*)2. So it is bigraded.

We claim that By, 5 44y« is a free-graded C[A]-module with

Bravaver/(h) = By. (3.7

We only need to prove (3.7). By (2) of of Proposition 3.1,
Hl(c(/)reg,* ® Oreg(d) ® <(Preg) =0.

We now use the long exact sequence in cohomology for

reg

Dreg,* reg
0= P 2vay @0, Praraves o, Ph

h
preg,* reg preg preg,* reg preg
= Pdra O, Prsvaver O, Py — PH7 @ 0™(d) ® P —0

and the argument in the last paragraph of the proof of [21, Lemma 5.6.3] to show that

oreg, reg rex reg
H ( fi,A+dv ®£h A+dv ‘Dﬁak“rdl}(—,{ ®$e ) -

From the same long exact sequence we deduce that (3.6) is a C[[k]]-flat deformation
of By. (3.7) easily follows.

We now explain the choice of A we mostly need: we want ¢, to take the same
value (to be denoted by c) on all simple reflections. Then ¢, 44, takes value ¢ + d on
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every reflection. So we will write Hp 44, Hp for the algebras and By o4« for
the bimodule.

Now we explain an important property of the bimodules Bj, ¢ 42... We note that
(1) below also follows from Lemma 2.7 but we are not going to check that the iso-
morphism below coincides with the isomorphism from that lemma (although it does).

LEMMA 3.7

The following claims are true:

(1) For all ¢ € C, we have a bigraded algebra isomorphism e_Hp 16— =
eHp ce.

2) Thanks to (1) we can view the €_Bp, cyg+1«c as €Hp ¢4 qg€-Hp o-bimodule.
For all c € C and all d > 0, we have an €H}, o4 qg€-Hp, o-bilinear bigraded

isomorphism
€-Brctd+1—c Z€Bp et
Proof
. reg _qyreg i oreg * reg
Consider the 8m+d+l JDh,Cer bimodule (& h’c+d+1) ®@;efgc+d+l °©h,c+d+1<—c+d'

We claim that

oreg * reg
e (o hiot+d+1) Do L i i)ﬁ,c+d+1ec+d)

. reg . oreg . . . .
is the regular chh’ «4q-bimodule. Indeed, J hotd+1€— 18 the unique quantization of

O"¢(1) to aleft D;% , ;. | -module; the uniqueness follows from H' (X8, O xre) =

0 (cf the proof of [ 10, Proposition 5.2]). The opposite endomorphism sheaf is D . ;.

Hence, J’;ff rd1€- = J);Lei td+1<c+q s abimodule. Our claim follows.
To prove (1) we use the previous paragraph to see that

reg _ oreg opp _ _ reg
€&y oy 16— = 8nd°®;§ir+l (Phet1€6-)" = Dpec = €& €. (3.8)

Since I'(X, €,%)™ = Hp ¢, (3.8) implies (1).
We proceed to (2). We note that

pregx reg oreg
€~ hctrd+1 ®i);fi.+d+1 Dpietd 1 Qo P

_ ol’eg* . reg
= (=P ctrat1 oK Dpetd+1ctd)

reg oreg
® pyreg D & gyreg J
Drcta (Dhyetd e Dpcta © e

reg* reg reg

_ reg Dpreg D D
=Dpevace ot Fre =€Ppera ore Dperdee o Ppe-

Passing to the global sections of the initial and final expressions and taking the C*-
finite part, we arrive at the statement of (2). O
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We will also need a description of Endy,, .(Bs,c+d«c). Note that we have a
graded C[A]-algebra homomorphism

Hpeva — Endy,  (Bretdc)- (3.9

LEMMA 3.8
This homomorphism is an isomorphism.

Proof
It is enough to prove that the homomorphism

H — Endy (By) (3.10)

is an isomorphism. Indeed, the injectivity of (3.9) will follows because the source is
flat over C[A], while the surjectivity follows from the graded Nakayama lemma (note
that Endp,, . (Bhc+d<«c)/(h) > Endp (Bg)).

Since B is the global section of a vector bundle on X™¢, and C[Y] = C[X™¢],
we see that By is a torsion-free C[Y]-module. It follows that we have an algebra
embedding

Endg (B4) < Endgre (BE). (3.11)

Here we write H™®, B;eg for the restrictions of H and By to Y ™. So it is enough to
show that the composition of (3.11) and (3.10) is an isomorphism. On the other hand,
from the definition of the Procesi bundle $™¢ and the construction of By, it is easy
to see that

Hree o End s (B))®). (3.12)

The composition H — Endgrs(B};*) of (3.11) and (3.10) is obtained from (3.12) by
passing to global sections. This finishes the proof. O

4. Borel-Moore homology

4.1. General properties of Borel-Moore homology
In this section we recall the notion of equivariant Borel-Moore homology and the
necessary properties needed to prove the isomorphism in Theorem 1.1. The main
references we use are [32], [11], and [23].

Let X be a projective variety. Then we can consider the dualizing sheaf wx €
ch (X), the bounded derived category of constructible sheaves on X. Then we can
define:
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HM(X) = H ™" (0x).

Now assume we have an algebraic action of a torus 7 on X. To consider the
equivariant Borel-Moore homology we need to define the Borel-Moore homology
of the Borel construction X xI ET, where ET — BT is the universal 7 bundle.
Since this is not a finite type variety we need to do this by approximating ET using
finite-type varieties, which can be done along the lines of [4].

Note that from the map X x” ET — BT, we get a map { : HEM(X) —
H?M(pt) = C[t]. Also, there is an action of the constant sheaf C & Df,’ (X) on wy,
which equips HZM(X) with an Hj(X)-module structure. In particular, HEM(X)
becomes a module over Hf(pt) = C[t]. The map ¢ : HPM(X) — HM(p1) is
C[t]-linear. We get a map

H7(X) — Homp: ) (Hp " (X), HT (1)) (4.1)

by a — [ — {(afB)]. This map is an isomorphism when X is equivariantly formal,
which follows from [l 1, Proposition 1]. Also, when X is equivariantly formal, the
dual map

HPM(X) — Homp» ) (H7(X), Hy (p1)) (4.2)

is also an isomorphism.
We further have the following two localization lemmas which follow from [11,
Lemma 1].

LEMMA 4.1
Suppose that X has isolated T -fixed points. Consider the inclusion of the fixed points
XT < X. This induces a map

HM(XT) — HPM(X).
This map is an isomorphism after inverting finitely many characters of T'.

A dual result also holds for the cohomology H;i (X); that is, we have a natural
map

T
H7(X)— Hp(X7)
that is an isomorphism after inverting the same characters as in the above lemma.

LEMMA 4.2
Let T' C T and X be a variety with T -action; then we have the localization map
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BM( y T BM
Hr" (X" ) —> Hr " (X)

which becomes an isomorphism after inverting those characters of Lemma 4.1 that do
not vanish on T'.

Lemma 4.2 follows from Lemma 4.1 applied to the action of T”.
We also have that these two localization maps are compatible with the action of
H7(X) on HEM(X) in the sense that we have a commuting diagram

HY(X)® HEM(XT) H7(X)® HEM(X)

| |

Hy(XT) @ HPM(XT) —— HPM(XT) HEM(X)

Further, we can explicitly understand the equivariant Borel-Moore homology
under certain conditions of the T -action on the space X, using the map in Lemma 4.1.

We first introduce some notation that we will need to state the result. Consider a
I-dimensional orbit £ of 7" in X. Then consider the action of 7" on E factors through
some character y : T — G,,, such that the kernel of y is precisely the stabilizer of a
point in E. Note that there are two choices here by changing the sign, but this does not
make a difference to the conditions in the following proposition. Taking the closure
of E, we get two fixed points in the boundary, which we denote by x¢ and xs,. With
this notation we get the following result [1 1, Corollary 1].

PROPOSITION 4.3

Let X be a proper equivariantly formal variety with a T-action. Assume further
that it only has finitely many 1-dimensional orbits. Let E;,i = 1,...,k be these
orbits and let y;,i = 1,...,k denote the corresponding characters. Then H?M (X) C
HEM(xT) ®Hz (pr) Frac(HF(pt)) coincides with the subset of all tuples (fx)xexT
(with fx € Frac(HJ.(pt)) note that only finitely many fx are nonzero because we
consider BM homology) satisfying the following conditions:

. Let x € XT. Let Eq,...,Er be all 1-dimensional orbits whose closure
contains x, and let y1,..., ) x be the corresponding characters. Then
k
fe[lizy xi € Hy(pt) forany x € XT.
. Let E be a 1-dimensional T -orbit and let xog and xoo be the two points in the

boundary of E. Let x be the character corresponding to E. Then

Resx=0(fx0 + froo) =0

for all 1-dimensional orbits E.
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The above results are stated for varieties, but we will need them for ind-schemes.
In this setting, the corresponding functors H; and H. ?M can be defined respectively
as the limit and colimit over the finite dimensional 7 -stable subvarieties, and so we
can use the above results for varieties to get similar results for ind-schemes.

Remark 4.4
Under Hom, colimits are sent to limits. So we still have an isomorphism

HF(X) = Hom gz (o) (HPM(X), HE (p1)).
Note that in the finite-type scheme case we also have the dual map
HpY(X) — Homp: ) (H7 (X), Hr (p1))

being an isomorphim, but in the ind-scheme case this is only true when we consider
continuous Hom with respect to the limit topology.

Remark 4.5
In the case of ind-schemes, we have a direct analog of Proposition 4.3 under the
following conditions:

. X is an ind-proper equivariantly formal ind-scheme with a T -action.
. X has isolated fixed points.
. For any two fixed points x, x’, there are finitely many 1-dimensional orbits E

whose boundary is {x, x’}.

4.2. Borel-Moore homology of equivalued unramified affine Springer fibers

In this section we will describe some properties of the Borel-Moore homology of
our affine Springer fibers. We use the above results, and the main references for this
section are [25] and [24].

We use the notation K = C((¢)) and O = C[[¢]].

We start by recalling the definition of the affine flag variety. For a reductive alge-
braic group G with root data (R,X* = A*, RV, X, = A), consider the Borel sub-
group B C G and a maximal torus 7" C B. We also consider the arc and loop groups
G(0) C G(K) and the Iwahori subgroup B C G(O). Recall that the latter is defined
as the preimage of B under the projection G(9) — G.

Using these we can define the affine flag variety ¥/ = G(K) /8, which is an ind-
projective variety. This space has actions by 7" and T (K') given by left multiplication.
Further, C* acts by field automorphisms on K scaling ¢ and so we get an induced
action on ¥/, which is referred to as the loop rotation action.

We write A for the cocharacter lattice of 7. The fixed points of the action of both
T and T x C* are in bijection with the affine Weyl group W =W x A under the
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natural embedding W < F1.To get this embedding, note that W — G/B — ¥l
and that T(K)/T(O) = A and T'(0O) acts trivially on the image of W in ¥1.

Further, we have an action of the affine Weyl group W on the extended torus
T x C*. The finite Weyl group W acts only on the T factor with the usual action
coming from W = N(T)/T. The cocharacter lattice A acts via

t* T xC* = T xC*
(t.h) > (tA(R). h).

Note that the cocharacter lattice of 7 x C* is naturally identified with A x Z and the
induced action of W on A x Z is given by (2.5).

Now we can introduce the affine Springer fibers we will look at. Fix a non-
negative integer d. Consider a regular semisimple element s € t < g. Then we can
consider e = t%s € g(©) and its associated affine Springer fiber, known as the equiv-
alued unramified affine Springer fiber

Fle, ={¢B € Fl|Ad(g) "eq € Lie(B)}. 4.3)

Note that eg is fixed by T and thus ¥, C ¥ is T -stable and the loop rotation
scales eg; hence, these Springer fibers 5 /., are also stable under the loop rotation
action. The image of W is contained in all these affine Springer fibers; thus, these
give the T'-fixed and 7" x C*-fixed points for all ¥/,,,.

We can further consider the 1-dimensional orbits of 7 x C*. In order to do this,
we need some notation. For a root « of g, we write s, for the corresponding reflection
in W. For an integer k, we write sq ; for tkeg,; this is a reflection in W. A root
« gives a character o : T — C* and so also gives a character of T x C* by acting
trivially on the loop rotation factor. Further, define i : T x C* — C* as the projection
to the loop rotation factor. We can also act on the characters of T x C* by W, the
action induced from that on 7' x C*. So we get the character « + kh of T x C*. Let
*(a + kh) denote the image of o + kh under the action of x € w.

The 1-dimensional orbits in F/ can be seen to be given by P!'s connecting the
fixed points x and xs,  for all x € W, roots «, and integers k. The associated char-
acter is given by *(« + kh).

Below we will use the following notation

R:= Hj < (pt),F :=Frac(R). 4.4)

PROPOSITION 4.6
(1) For the affine Springer fibers ¥ l,, the 1-dimensional orbits are exactly the
1-dimensional orbits in ¥'| connecting x and xsq  if —d <k <d — 1.
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2) The affine Springer fibers ¥ l., and the affine flag variety ¥ | with the T x C*-
action are equivariantly formal.

()  HN o (Fl.,) is flat as an R-module and we have

HPM(Fley) = HpYex (Fley) ®uz (pn) G
(1) 2 HY (F) 96 C.

The similar claim holds for ¥ 1.

Proof

The first result is worked out in [24, Section 5.11]. The second result follows from the
existence of an affine space paving as constructed in [25, Theorem 0.2] for the affine
Springer fibers, while for the affine flag variety it follows from the Bruhat decompo-
sition. The last result follows immediately from the second. U

Example 4.7

Let d = 0. Then eg = s, a regular semisimple element. The Springer fiber ¥/, is
discrete and is identified with the 7 -fixed point locus, W . Claim (1) of the proposition
is manifestly true.

The following claim follows from combining Proposition 4.3 (or, more precisely,
its ind-scheme generalization, see Remark 4.5) and Proposition 4.6.

COROLLARY 4.8

The localization homomorphism identifies H?I\X/l@x (Fle,) with the subset of all ele-
ments ( fx) e € Dy F satisfying the following two conditions:

@) For all x, the product

d—1
Lo [T T Ca+kn
a€RtT k=—d

is an element of R. Here R™ stands for the system of positive Dynkin roots.
(i) Forallx e W,a € R and k with —d <k <d — 1, we have

Resx(a+kh)(fx + fxsavk) =0.

We will also need the following corollary of (1) of Proposition 4.6. Recall that
eq =1%s, where s € "¢,
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COROLLARY 4.9
The image of HpYx (¥ le,) in @ F is independent of the choice of a regular
semisimple element s € €.

Using this corollary we identify the spaces Hpyx (¥ le,) for different choices
of s.

Remark 4.10
We now discuss line bundles on %/. For a weight A € A* X Z of T x C* we can
construct a 1-dimensional 7(O) x C*-representation C,, which extends to a 9-
representation. The latter gives rise to a G(JK) x C*-equivariant line bundle on ¥/
to be denoted by £, .

The proof of Proposition 4.6 also implies that the conditions for Proposition 4.3
are satisfied for /., and /. We can thus consider the localization homomorphism

Hfyox (Fl) — ]‘[ F.
W

Now we want to compute the images of the Chern classes of the line bundles £ under
this localization map. To compute the localization to the fixed points of ¢1(£,), we
need to consider the T x C*-representations given by &£ restricted to a fixed point,
x € W. Note that this gives the 1-dimensional representation Cx; and thus under the
map

Hi, o (FD)— [] F

xeW

the Chern class ¢ (&£,) is sent to (*A), 7.

5. The actions on the Borel-Moore homology

In Section 2.4 we have recalled the trigonometric Cherednik algebras H ,;( .- The goal
of this section is to equip HEY .« (¥ le,) with a structure of an H ;; 4~ Hp p-bimodule
and establish some properties of this bimodule. Recall that we write R for Hy_ . (pt)

and F for Frac(R).

5.1. Chern—Springer action
In this section we will establish a left action of H)*, on HY. (¥ l¢,). Let t denote
the localization embedding

HPY o (Flo,) — EPF. (5.1)
W
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For x € W, let t(?)x denote the x-component of ¢(?); this is an element of F. We note
that the target of (5.1) can be viewed as the space of functions W — F that are zero
outside of a finite set.

We start by describing the action of the Chern classes. Note that [ [ R naturally
acts on @7 R. So, for a character A of T x C*, the element ¢ (£,) acts on im¢ as
the multiplication with (*A), .77. This is a consequence of Remark 4.10. So we get an
action of t* @ Ch on HPY .. (¥ l.,). Note that the operators of this action pairwise
commute.

The group W acts on H7 o~ (Fle,) viathe Springer action (see [41], [50], [47]).
We will recall the construction in Section A.1.

So we get two actions on H2Y (¥ I, ): the action of t* @& Ch by the multpli-
cation with Chern classes and the Springer action of W . The former gives rise to an
action of the algebra C[t, h], while the latter gives an action of the algebra CW. Both
actions are R-linear and so extend to the localization Py F.

PROPOSITION 5.1
These two actions equip @y F with an H Ff 4-module structure. The subspace
H?I)\(/I(Cx (Fle,) embedded via v is a submodule.

The key tool in the proof is as follows: we write formulas for the actions of simple
affine reflections, the elements of A/A¢ C W, and also the elements of C[t, i] on the
image of the embedding ¢. Let us state the corresponding result.

LEMMA 5.2
Forall B € HY (¥ le,), x € W, simple affine reflections s = 5o, A € t* & Ch and
7w € A/Aog C W we have the following formulas:

dh o —dh
(sB)x = T1(B)x + —5—1(B)xs.

xsa

tAB)x = (A)u(B)x, (5.2)
L(Tlfﬂ)x = L(ﬂ)xn-

Note that the formulas make sense for an arbitrary element of @ F not just for
t(B). They define an action of H,*; on (B F.

The second equality in (5.2) has already been discussed in the beginning of the
section. The last equality easily follows from the construction of the A /Ag-action to
be discussed in Section A.l. The first equality requires more work; it will be estab-
lished in the appendix, Section A.2.
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Proof of Proposition 5.1
It is enough to check the commutation relations of (2.6).

The second and third equalities in (2.6) are immediate from Lemma 5.2. In the
remainder of the proof we will check the first equality. That is, for a simple reflection
5 := 54 and A € t*, we should check the following relation:

sA—"As=d (A, av)h. (5.3)

To check this, we apply the summands of the left-hand side to an element £ € P F:

dh Yo —dh dh Yo —dh
(548)x = 22 (A)x + ——— (A)xs = T Abx + — 0 T AExs,
dh oo —dh
(As)x = “A( T8 + —o—bxs)-
So
dh dh
(SAE — AsE)x = (A= "V~ = (Aa”) Ta—&c = d (A, ") héx.
o o
This proves the first equality in (2.6) and finishes the proof. O

5.2. Equivariant-centralizer-monodromy action
The goal of this section is to define an action of Hy‘; on Hp) . (¥ Le,). We will view
H o (Fl.,) — @y F as right R-modules; this structure on the former space was
discussed in the general situation in Section 4.1.

Define a right action of W on @D F by

(f)x=""fox. x.yeW.(f)ePF (54)
w

LEMMA 5.3
The right actions of R = C[t][h] and W on D F constitute a right action of Hy .
Moreover, im is a submodule.

Proof
We start by proving that we indeed get an action of H;',. The only missing relation
is the commutation relations of the W action and the R action, that is,

yA— 22y =0, yeW,Aett
For (fx) € @ F, we get

Sy =AU V)x =27 fow =27 CAfon) = (f "A)x.
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This completes the proof of the claim that the actions of R and W constitute an action
of Hyy.

The claim that the image of ¢ is H Ff’o-stable is immediate from the formulas
defining the action and the description of the image in Corollary 4.8. O

Remark 5.4
The action of A C W on HY . (F1,,) comes from the action of T(KX) on Fl,.
The action of W C W is more tricky. Recall from Corollary 4.9 that the spaces
HN - (F1.,) are identified for all choices of s via t. So the action of W can be
interpreted as the monodromy action. However, we do not know a way to identify the
BM homology space for various s without the GKM description. So it is easier just
to define the action on the localized BM homology spaces.

The resulting action of H;;o will be called the ECM (equivariant-centralizer-

monodromy) action.

COROLLARY 5.5
The CS action of H;' ; on Dy F commutes with the ECM action of Hy,. Hence,
these actions also commute on H?I)\(/ICX (Fle,).

Proof

The actions of generators are specified in Lemma 5.2 for the CS action and in
Lemma 5.3 for the ECM action. One directly checks that the generators of H/,
commute with the generators of H ri(,o~ O

So HPYex(Fle,) becomes an H) ;- H-bimodule.
Example 5.6

Consider the example of d = 0, where ¥ [,, — W by Example 4.7. The image of ¢ is
just P R that naturally identifies with H;* . The bimodule structure on H Tex (pt)
is that of the regular bimodule, as seen directly from the formulas in Lemmas 5.2 and
5.3.

5.3. Properties of the bimodule

The goal of this section is to prove some properties of the H, d-H{O-bimodule
HN (¥ 1.,) that are analogous to those of the Hy, g-Hpo-bimodule By 4 ¢ in
Lemma 3.7.
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LEMMA 5.7
For d > 0, we have a graded H) ,-linear isomorphism eHTX(CX (Fle,) =
e HXN . (Fle,.,) (Where we shift the gradzng on one of the sides).

Proof
The proof is in several steps.

Step 1. Let B € HPY o (Fle,, ). Set (fx) := 1(B). The condition that § €
e HPN . (Fle,, ) is equivalent to fy = — fx, for all simple Dynkin reflections s.
This follows from Lemma 5.2.

Now let B/ € HPV . (Fle,). Set (f}) = t(B’). Thanks to Lemma 5.2, we have
B € eHPY . (Fle,) if and only if (Yo + dh) fes = (Ya — dh) f; for all simple
Dynkin reflections s = s,.

Step 2. We want to define mutually inverse maps between ¢ (e_ HTX(CX (Fley,y))
and (eHEY .« (¥ I, )). Define the element v € C[t][7] = R by

=[] @+dhn).

a€RT

where we write R™ for the system of positive Dynkin roots. Define an endomorphism
of @ F by

T:(fx) = (gx) = ((ufy). (5.5)

Note that Y is invertible. Also note that v can be viewed as an element of H ¢ hd (see
Proposition 5.1 and Lemma 5.2). From Corollary 5.5 we deduce that Y is H h.o-linear.
The element v has degree |R™| so we can shift the grading and assume Y is graded.
It remains to show that

T(( T><<C>< ($13d+1))) (6H71§1>\</Ic>< (-?led)), (5.6)
Y ((eHPYex (Fley))) C (e HEYex (Fley, ). (5.7)

Step 3. We start by proving (5.6) in this step and the next two. Assume ( fy) €
te—HRY . (F leg41)). We need to check that (gx) € L(eHEY . (Fl.,)). We begin
by checking (gx) € L(HTX(CX (¥1.,)). This will be done using Corollary 4.8 (for both
dandd +1).

We first check (i) for d, that is, that

o [] H( +knm =[(f [T Ca+am) [] H(a+kh)]

a€Rt k=—d a€RT a€Rt k=—d

By (i) applied to d + 1 and the point x in Corollary 4.8, we have
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d
LI JI Ce+kmeRr

aeRt k=—d-1

It remains to show that f, (hence gy) cannot have poles along *o — (d + 1)h for
any positive roots . Note f,, = — fs so it can only have poles along (**« + kh) for
k=—-d—1,...,d.But, fors = sy, (o + kh) = —(*a — kh). So fy indeed has no
pole along (Y« — (d + 1)h). This establishes (i) of Corollary 4.8 for d.

Step 4. Now we need to check that (ii) of Corollary 4.8 holds for (gy):

Resxgkn(gx + &xsp ) =0
forallx e W, e R*,and k = —d, ...d — 1. Note that
*F =*8kF mod *B+kh, VFeR.
In particular,

[] Cot+dany= [] (**#*a+dh) mod B+ kh. (5.8)
aeRt aeRt
Recall that f; has at most simple pole at *8 + k#. It follows that
ResXﬂm(fx [T Ca+dny—fe [T (ke + dh)) —0. (59
aeRt aeRt

Since

Reng.Hcﬁ(fx + fx55,k) =0,

forall B € R and all k = —d,...,d — 1 (this is a part of (ii) of Corollary 4.8) for
d + 1, we deduce from (5.9) that

Resxpkn(gx + 8xsp i) =0

for f and k in the same range. This is exactly (ii) of Corollary 4.8. This finishes the
proof of Y (t(e- HEY o (Fley, ) CLHP < (Fley)).

Step 5. We finally check that €(gx) = (gx), equivalently sg(gx) = (gx) for each
Dynkin simple root 8. This will finish the proof of (5.6).

Using the formula for the Springer action of sg, Lemma 5.2, and the construction
of (gx), we see that the equality sg(gx) = (gx) is equivalent to

Cp—dn( [T Catdn)fe=Cp+dn [] Ca+dhfes (.10

a€RT a€RT

forall x € W.
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Rearranging the factors, we get

(B—dh) [] Catdh)y=—CB+dh) [] (Fa+dh). (5.11)

a€RT a€RT

Since (fx) € t(e- HPY - (Fle,.,)), we have fr = — fis. Combining this with
(5.11), we get (5.10). This finishes the proof of (5.6).

Step 6. Now we check (5.7). Let (gx) € t(eHPM «(Fle,)). Set fr :=
(gx [Tyer+ (P + dR)™1). We need to show that
. fx=—fxs forall x € W and simple Dynkin reflection s;

. and the collection ( fy) satisfies (i) and (ii) of Corollary 4.8 for d + 1.
The first bullet is checked by reversing the argument of Step 5. In the remainder of
the proof we will check the second bullet.

Step 7. We start by checking (i). Note that, by condition (i) for d, g, has at most
simple poles along (*a + kh) fora € R, k = —d,...d — 1. Hence, f; has at most
simple poles along (*a + kh) for @ € RT, k = —d, ...d. This verifies condition (i)
ford + 1.

Step 8. Now we just need to check condition (ii):

Resxgicn(fx + frspi) =0 (5.12)

for B e Rt and k = —(d + 1),...,d. Step 7 implies that f, has no pole along the
roots (*a — (d + 1)h). (5.12) for k = —(d + 1) and all B follows.

Now we establish (5.12) for k = —d.,...,d — 1. The function ([[,cgp+ ("o +
dh))~! has no poles along (*B + kh) for k # d. Using this and (5.8), we easily
deduce (5.12) from condition (ii) of Corollary 4.8 for the collection (gy).

It remains to establish (5.12) for k = d. Note that, by Step 6, fx + fxsz, =
—fxsg — Jxsp_q- S0 (5.12) for k = d follows from the equation for k = —d (with x
replaced with xsg). The latter has been established in the previous paragraph. O

6. Proofs of the main theorems
In this section we will prove Theorems 1.1 and 1.2.

6.1. Isomorphism of deformations
Now we state the main result of this section that implies Theorem 1.1. We write H},
for the isomorphic algebras in Lemma 2.6. Set

hd<o = Bha«o ®cpe C[t*]"0,

HIXC (Fl, )" = HL S (FL.,) Qcirvy CITYIM.
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Both B} ,_, and HL X" (Fl,,)" are graded H} ,-H},-bimodules that are flat over
CI#]. This follows from Section 3.3 for the former bimodule, and from Corollary 5.5

and (2) of Proposition 4.6 for the latter bimodule.

THEOREM 6.1
We have a graded H}" ;-H} -bimodule isomorphism B} ; _, = H o (Fle)"
Let us explain key ideas of the proof. We use induction on d. Note that ford = 0
both sides are isomorphic to the regular HhA’O—bimodule: for the left-hand side this
follows from the construction in Section 3.3. For the right-hand side the claim follows
from Example 5.6. The case d = 0 is our induction base.
Note that HEY .. (e, )" is flat over CI[t, 7] for the right action; this follows
from (3) of Proposition 4.6. With this in mind, the induction step is based on Lemmas
3.7, 5.7, and the next proposition.

PROPOSITION 6.2

Let d > 0. Let My, be a graded HJ' ;-H} -bimodule that is flat over C[h]. More-
over, assume My, /(h) is torsion-free over C[t]. Any graded G_Hé\’de_-Hr:O-linear
isomorphism

e-Mp = e_B} 4, 6.1)

uniquely extends to a graded H}' ;- H},-linear isomorphism
~. pA
Mp — Bh,d 0"

The proof will be given after a construction and a lemma.

We can view H{', as a filtered algebra (with degh = deg C[t]"* = deg W =0,
degt = 1). Formally, the filtered algebra H ", is obtained as C[/'] ®c[x) H}, ., where
the homomorphism C[h] — C[#/] sends A to A/, but /' is treated as a degree 0 element.
In what follows we write /4 instead of /. Note that the resulting filtration on H FLA . 18
C*-stable (for the C*-action induced by the grading). We have gr H ,fl\ . =H"®CIh].
This follows from the triangular decomposition, C[t*]"°[h] ® CW ® C[{] — H nes
which is an easy consequence of the analogous decomposition for Hy, ..

Set

£/ := Spec(C[t*]"?), YN =N W xew Y, Yy :=Y" x Spec(C[A]).

where we recall that Y = (t @ t*)/W. The scheme Y} is the spectrum of the center
of gr H é\,c because Y is the spectrum of the center of H. So the algebra H ,QC can be
microlocalized to Y.
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Now we recall some basics on the microlocalization. The result of microlocal-
ization of H hA . 1s a sheaf of algebras on Y}/ whose sections are defined on C*-stable
open subsets of YhA (for the C*-action, that is the original action on Y " and is trivial
on Spec(C[h]); we call this the modified C*-action—note that we also have the initial
C*-action for which % has degree 1). It is enough to define sections over principal
open subsets of Y. Pick a homogeneous element f € C[Y;] for the modified C*-
action. Consider the Rees algebra Rp(H g\ ), where h is a variable of degree 1 for
the modified C*-action (and degree O for the initial C*-action). Lift f to a homoge-
neous element f € Rn(H i) Then { % | k >0} is an Ore subset in each quotient
Rn(H}.)/(h"). The localization is easily seen to be independent of the lift £ denote
it by Rh(H,QC)/(h”)[f’l]. This is completely analogous to [ 18, Construction of Ag].
The localizations inherit gradings from the grading on Rn(H}'.)/(h") that comes
from the Rees construction. The graded algebras Rn(H}.)/(h")[f ~1] form a projec-
tive system with respect to n. So we can consider the inverse limit in the category of
graded algebras. Denote this inverse limit by Rn(H . )[f ~1]. Set

Hpp [f~' = Ra(HR )L f ']/ (h=1).

By the construction, the algebra H;) [ f ~1 is filtered, and the filtration is complete
and separated. Also by the construction, the algebra Rn(H.)[f ~1] is flat over C[h].
It follows that

g Hp [f 71 = Ra(HR )71/ () = HM L.

The algebras H}' [ f ~1] form a presheaf of filtered algebras. It is a sheaf because
the filtration is complete and separated and the associated graded presheaf (that of
algebras H”[h][f~!]) is a sheaf. We denote the resulting sheaf of filtered algebras
(with sections on C*-stable open subsets for the modified C*-actions) by H FLA ’cloc
This sheaf is complete and separated with respect to the filtration. Its algebra of global
sections coincides with H;'.: we have a filtered algebra homomorphism H;. —
I'(H }? ’cloc) that is the identity on the associated graded algebras. We note that if f
is homogeneous with respect to the initial C*-action on Hy ., then H [ f 17! inher-
its this action. So H FLA ’CIOC is a C*-equivariant sheaf of filtered algebras for the initial
action.

Now consider a graded H;fl\, d—Hﬁo—bimodule B. We can view it as a filtered
Hg\, d—HhA’O—bimodule by doing the same base change as with the algebra. Consider
the microlocalization B'°° of B, a microlocal filtered sheaf on Y, ., defined similarly
to the H ,? ’cloc. The sections are defined on C*-stable Zariski open subsets, while the
filtration is complete and separated. In particular, the space of sections on any open
C*-stable subset inherits the filtration, and this filtration is complete and separated.
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Note that B' is a sheaf of H," ;}“C—H ;l\ bloc—bimodules. We have an isomorphism B8 —
['(B'°) because Y is an affine scheme (cf [8, Lemma 2.10]).

We note that, similarly to H ;L\ ’CIOC, the sheaf B'°¢ still carries a natural C*-action

that turns it into a C*-equivariant H, ;- H}\3-bimodule (for the initial C*-action).

Set
Y0 = v\ [ x {0} 6.2)

Let B° denote the restriction of 8'°° to (6.2). We get a natural homomorphism B —
r'(89%.

LEMMA 6.3
We have the following properties:
(D For any e_-spherical parameter c, the microlocal sheaves of algebras H ,{L\ ’CO

and e_ Hg\’coe_ are Morita equivalent via the bimodule Hh/\’coe_.

2) For B=B}

hod 0’ the homomorphism B8 — T'(B°) is an isomorphism.

Before we get to the proof, we comment on (2). It is a well-known property
that for a vector bundle on a regular scheme its global sections coincide with the
sections over any open subset whose complement has codimension at least 2. By the
construction, B;; d<0
(2) is a quantum version of the property explained in the previous sentence. And we
need the microlocalization procedure explained before the lemma to make this work

in the quantum setting.

is the global section of a quantization of a vector bundle, and

Proof

Let us prove (1). The claim is equivalent to H};:’Coe_ Hg,c = H,fl\,’co, which, in its turn,
is equivalent to the claim that H,g\,c/H;g\,ce_ H;Q’C is supported on Y ”+in¢ x {0}. First,
the condition that ¢ is e_-spherical is equivalent to the claim that Hy, ./Hp ce— Hp, ¢
is h-torsion. So the support of H}./H} .e— H}' . is contained in Y x {0}. (1) follows
because H/He_H is supported on Y *"&—this is because H is Azumaya over Y ™2
(e.g., this is an easy special case of [17, Theorem 1.7]).

Let us prove (2). Both 8 and I'(8°) come with complete and separated filtra-
tions: the filtration on B was specified in the discussion preceding the lemma, and
it induces a filtration on I'(8?). The homomorphism B — I'(B°) is that of filtered
bimodules. To show that it is an isomorphism, it is enough to check that the associated
graded homomorphism

ar B — grI'(8°) (6.3)
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is an isomorphism. We have gr 8 = B/ _ ) ® C[h] by the construction of the filtration

on B. Also we have a natural inclusion
grT(8% < I'(gr8°), (6.4)
and the composition of (6.3) and (6.4) is the natural homomorphism
gr B8 — I'(gr B%). (6.5)

So, (2) will follow if we show that (6.5) is an isomorphism.
Set

XM=Y xy X, X} :=X"xSpec(C[h]).  Xp*:=Y"" xyn X].

We have
(¢)  the complement to X hA Oin X / has codimension 2.
Note that gr B is the global section of the vector bundle

(P © 0%(d) & ) K Ot

on X, while I'(gr 8°) is the global section of the same vector bundle restricted
to X, N X, % Because of the codimension condition (<), (6.5) is indeed an iso-
morphism. O

Proof of Proposition 6.2
The proof is in several steps.

Step 1. We are going to produce a homomorphism M — B,ﬁb\, d<o- Consider the
isomorphism

[ A0
€My —e By,

induced by (6.1). Thanks to (1) of Lemma 6.3, this isomorphism gives rise to

MY = B . (6.6)

Note that this isomorphism is C*-equivariant, by the construction. So we have homo-
morphisms

MP — (M) =T (B o) = Bh o

The first homomorphism is the natural one (see the discussion before Lemma 6.3), and
the second is obtained from (6.6) by passing to the global sections, while the third is
the inverse of the isomorphism in (2) of Lemma 6.3. The composed homomorphism
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is graded and H ;9 4-H¢ -bilinear by the construction. We need to show that it is an
isomorphism.

Step 2. Our proof of this is based on the following easy general fact: let M,
N by two Zx-filtered vector spaces. Let ¢ : M — N be an isomorphism mapping
M= — N='foralli.If gro:grM — grN is injective, then it is an isomorphism
(and hence ¢ intertwines the filtrations).

Step 3. We apply the observation of Step 2 to the homomorphism

A
My, — Bh,d<—0

specialized at A = 1. Denote this specialization by ¢. It is an isomorphism by
Lemma 2.10 applied to ¢ = d and is filtered by the construction. To show that gr ¢ is
injective, we recall that My /(h) = gr(My/(h — 1)) is torsion-free over C[t]. By the
assumption of the proposition, gr¢ gives an isomorphism between the sign-invariant
parts. It follows from (1) of Lemma 6.3 that gre is an isomorphism over the local-
izations of the full bimodules to (¥ )™, and, in particular, to its open subscheme
(t/ W)t xyw Y". Since My/hMj, is torsion-free over C[t], we see that gre is
injective.

Thanks to Step 2, this completes the proof. O

Proof of Theorem 6.1
We prove the theorem by induction on d. We have an isomorphism

A ~ BM Freg A
Bp oo = Hrsex (Fley)

by the remark after the theorem. The proof of the theorem is now in several steps.
Step 1. Suppose we already have a graded bimodule isomorphism

B;{L\,deo - HTBl::[(cX (371624)A
for some d > 0. Multiply by € on the left. Thanks to Lemma 3.7, we have a graded

algebra isomorphism e_H;Q dir16- = eHhA’ 4€ and a graded eH hA 4€-Hg,-bimodule

: ; A = A
isomorphism €_Bp ;o —> €B, .

a graded H},-linear isomorphism

On the other hand, by Lemma 5.7, we have

e HP o (Fley, )N — eHEN o (F o) (6.7)

We are not going to check that this isomorphism is also e H hA 4€-linear. Instead, we
will see that it is semilinear with respect to an automorphism of e H r/L\ 4€ given by
conjugation with an invertible element of C[t*]"0.

Step 2. We claim that the homomorphism
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eHp e — Endpp (6B go) (6.8)
is an isomorphism. From Lemma 3.8 we deduce that
€Hp ge — Endg, ,(eBpa«o). (6.9)

Note that By, g« is a finitely generated right H}, o-module. Using this and the fact
that C[t*]"0 is a flat C[t*]-module, we see that (6.9) implies (6.8).
Recall that

A -~ BM A
6Bﬁ,d<—0 — eHpox (Fle,)".

It follows from (6.8) that isomorphism (6.7) becomes eH;fL\, 4€-linear after we twist
one of the actions by a uniquely determined graded C[A]-linear automorphism of
the algebra e H r;\ 4€- We denote this automorphism by {. We claim that there is an
invertible element F € C[t*]" such that ¢ is the conjugation with F.

Step 3. The formula for Y in the proof of Lemma 5.7 implies that T modulo
his C[T*TV]" -linear. It follows that ¢ is the identity modulo . So ¢ = exp(hd),
where 0 is a derivation of e H F’b\ 4€ that has degree —1 with respect to the grading. We
have 0 = %[ f,-] forsome f € eH hA 4 € This follows because every Poisson derivation
of C[Y "] is restricted from a W -equivariant Poisson derivation of C[T*t*"] (cf the
proof of [17, Lemma 2.23]) and hence is inner. Then f € C[t**]" because f has
degree 0. Subtracting a scalar from f we can assume that it lies in the maximal ideal
of C[t**]". Set F := exp( f). Then we can compose (6.7) with the multiplication by
F and achieve that (6.7) is a graded bimodule isomorphism.

Step 4. We now have graded e_H}"; ,  e_-H}",-bimodule isomorphisms

A ~ A ~ BM Ireg N BM g A
€-Bp gi1c0 = €B g0 = €Hryex (Fley)” = e~ Hpyex (Fley, )"

Applying Proposition 6.2 to M = H %‘("CX (¥le,)", which satisfies the assumptions
of that proposition thanks to (3) of Proposition 4.6, we extend the composed isomor-

phism to a graded H}", . |- H},-bimodule isomorphism

A -~ BM A
B av1e0 = Hrxex (Flegi )"

This finishes the proof of the induction step and hence of the theorem. O

COROLLARY 6.4
By, q is flat over C[t][R].

Proof
The bimodule By, 4 is bigraded (Remark 3.6) and, thanks to Theorem 6.1 combined
with Proposition 4.6, B r? 9 is flat over C[t, h]. The claim of the corollary follows. []
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Remark 6.5

In fact, the proof of Theorem 6.1 gives us a characterization of the family of bimodules
By.q for d > 0. Suppose we have another family of finitely generated graded Hj, 4-
Hy}, o-bimodules B,il, 4 satisfying the following conditions:

(1) B,il, 4 is flat over C[h] and B,il’ 4/ (1) is torsion-free over C[t] for all d.

(i) Bf/’l,O is isomorphic to Hp, o as a graded Hp, o-bimodule.
hd+1-
Then the argument of the proof of Theorem 6.1 shows that for all d we have a

(iii) ~ We have an isomorphism of graded right Hp, o-modules €B; , =¢_B

graded Hy, 4-Hp 0-bimodule isomorphism Bf/i, d = By,.q. Moreover, if we require the
isomorphisms in (ii) and (iii) to be bigraded, then we get a bigraded isomorphism
B;i’ d 5 By, 4. In fact, the proof simplifies: { from Step 2 of the proof of Theorem 6.1
is automatically the identity.

6.2. Proof of Theorem 1.2
Recall that we are going to prove that

By ®u Cyiy = HPM(Fle,) ® x Cuiy = C(Ao/(dh + 1)Ao),

where /& denotes the Coxeter number of W, and Ay is the root lattice of g. We write
Cyiy for the 1-dimensional trivial W-module, and we assume that C[t* & t] C H
acts on Cy;y via the specialization to 0, while C[TY x t] C H* acts on Cy;, via the
specialization to (1, 0).

We already know that the dimensions are the same thanks to Theorem 1.1. We
will prove that

By ®p Cuiv — C(Ao/(dh + 1)Ay), (6.10)
dim HPM(F l,,) ® = Ciy < (dh + 1)4™, (6.11)

This will prove Theorem 1.2.
We first establish (6.10).

PROPOSITION 6.6
We have By @ g Cyiy — C(Ao/(dh 4+ 1)Ayg), an epimorphism of W -modules.

This proposition is inspired by [22, Theorem 1.8] and [20, Theorem 1.4].

Proof
Consider the Hy41/,-Hy/p-bimodule Bj, g41/h<1/5. By the construction in Sec-
tion 3.3, this is a C[A]-flat bimodule with

Bha+1/he1/n/hBrd+i/he1/n — Ba, (6.12)
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which is a special case of (3.7). Set

Bavi/he1/h:= Brasi/he1/n/(h—1)Brat1/he1/n- (6.13)

Since B, q+1/n<1/4 is flat over C[A], (6.12) is equivalent to gr By 1/p1/n = Bg.
Recall from Proposition 2.11 that Hg 1,5 has a unique finite dimensional represen-
tation to be denoted by Lg41,5. By that proposition, this representation is isomor-
phic to C(Ao/(dh 4+ 1)Ag) as a W-representation. In particular, Ly, is the trivial
1-dimensional representation of W. The subspaces t,t* C Hy/p act by 0 on Ly,
for example, thanks to the presence of the grading element in H,,j, (see, e.g., (4) in
[19, Section 3.1]). Equip By +1/h<1/n ®H,,, L1/n With the tensor product filtration.
Then we have

By ®n Cuiv = gr(Ba+1/he1/0 ®Hy,, L1/n)-

To show that dim By ® g Cyiy — C(Ao/(dh+ 1)Ay), it is therefore sufficient to show
that

Bat1/he1/n ®Hy,; L1/n = Lata/n- (6.14)

Thanks to Proposition 2.11, (6.14) will follow once we show that By 1/p<1/p is
a Morita equivalence bimodule. We will prove this by induction on d starting with
d =0, where By/p1/n = Hy, and the claim is vacuous.

Suppose we already know that By 1/p«1/5 is a Morita equivalence bimodule.
Since d + 1/ h is e-spherical (see Proposition 2.12), we see that €Bg1/p«1/5 is @
Morita equivalence bimodule between Hy/p, and € Hy 1 1/p«1/n€. It follows from (2)
of Lemma 3.7 that we have a bimodule isomorphism

€ Bat1+1/he1/h = €Bav1/h1/h-

So €_Bgyi1+1/h<1/h is a Morita equivalence bimodule between e_Hgy141/p€—
and Hy/p. But, according to Proposition 2.12, d + 1 + 1/h is e_-spherical, so
Bgii41/h<1/n is also a Morita equivalence bimodule between Hgiq41/, and
Hj,p. This finishes the proof. O

Now we proceed to the upper bound. The proof here is an easy generalization of
a proof due to the first named author joint with Bezrukavnikov, Shan, and Vasserot in
[5, Proposition 2.9], but we include it here for completeness.

PROPOSITION 6.7
We have dim HYEM(}‘led) @px Cuiy < (dh + 1)dmt,
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Proof
The proof is in several steps. Note that it is enough to assume that G is simply
connected and hence W = W4, For example, this follows from the isomorphism
HMM(Flo,) @ = Cyiv = By @ i Cyiy as the right-hand side manifestly depends only
on W.

Step 1. We note that H?M(TF le;) ® Hx Cyiy is nothing else as the space of coin-
variants HB®M(F I, )5 for the action of the affine Weyl group W on HBM(F1,,).
Recall from Proposition 4.6 that the affine Springer fiber ¥ /., has a paving by affine
cells. Each cell is the intersection of ¥ /., with a Schubert cell by [25, Theorem 0.2].
This gives a basis in H®M(F [, d) c0n31st1ng of the fundamental classes of cells.

We will study the action of W on this basis to geta spanning set of H®™M(F 1, )5
with (dh + 1)4mt elements.

Step 2. Let us introduce some notation. In this proof b will denote the Lie algebra
of the Iwahori subgroup B C G(KX). For the Schubert cell Bx*B/B, we denote the
corresponding basis elementin H®™(F1,,) (or HEN . (¥ ) by ¢x. For x € W we
will write *b for Ad(x)b for alift X of x to the normalizer of 7'(K). Also for a T (O9)-
stable subset Z C %[ we use the notation *Z for xZ; this is well- defined. Finally,
we set ey 1= Ad(x)"!(eq). We note that *F 1, , = 5’7122 forall x € W. Finally, for
x € W we will write A x for the corresponding (closed) alcove in tg.

Step 3. For w € W, consider the subvariety ?7[21“’ = Fle, NUx<yBxB/B
of Flg,. It is T x C*-stable. The Borel-Moore homology HpY..(FIZ") C
HB XCX (?led) is spanned by the classes ¢y for x < w as a Hy .« (pt)-module.

The image of HZ) (¥ 15") under ¢ from (5.1) is given by

WHPY e (FIEY)) ={(8))yeiw € (HpYex (Fley)) | 8y #0=y <w}. (6.15)

This follows by applying Proposition 4.3 to the space ¥/ efdw. Further, note that we
have the long exact sequence

s HPNA(FISP) = Hpneo (FIEY) — Hpweo (F le, N BwB) —

where the superscript i indicates the cohomological grading.

Note that odd homology vanishes as all spaces involved have affine pavings and
so the long exact sequence breaks up into short exact sequences. Assembling these
exact sequences for all degrees we get

0= HP(FIZP) - HR o (FIE) - HP o (F ey N BwB) — 0.

Further, by construction ¢,, is mapped to the basis element spanning HEM rxex (Fle, N
BwB). Using the compatibility with the localization map from (6.15) and the
description of the image ¢ in Corollary 4.8, we see that that ¢t (¢y )y = ﬁ where the
product is over all characters y appearing in the 7' x C*-representation ¥ /., N Bw*B.
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Step 4. Pick a simple affine reflection s := s, at a root . We want to get a
necessary and sufficient condition on x for ¢gx = s¢@x + [.0.t. when sx > x in the
Bruhat order. Here “/.0.t.” indicates an Hp . (pt)-linear combination of the ele-
ments ¢, with y < sx in the Bruhat order. We claim that this equality holds if the
cells *(Fl., N BxB/B) and ?leé N BsxB/B are equal. Indeed, if (Fl., N
BxB/B) = fif'le; N BsxB/B, then t(s¢x)sx = L(Psx)sx and SO @sx — @y 1S a
class in HTBl;’[CX (5‘7121”) and thus, by Step 3, a combination of ¢, with y <sx. We
conclude that the equality ¢sx = s@x + [.0.t. also holds in H®M(F1,,).

Note that, for all x, one of *(BxB/B) and BsxB /B contains the other. There-
fore one of the two cells *(F/., N BxB/B) and 37192 N BsxB/B contains the
other. Note that both cells are contracting loci for suitable tori actions. So they coin-
cide if and only if their tangent spaces at their common 7" x C*-fixed point sx are the
same, equivalently, and have the same dimension.

Note that the tangent space of ¥ /., N BxB /B at the fixed point x is T x C*—
equivariantly isomorphic to

bt~ (b
A (6.16)
bN *b
So the tangent spaces of interest are
b= (5*b b4 (b
bt (7h) s(#) 6.17)
bN s*b bN*b
The roots that appear as weights of (6.16) are exactly from
R;fmx( L] ® -rpu || (R_—rS)), (6.18)
1<r<d 0<r<d-1

where we write R;-f for the set of positive affine roots, R™*, R~ for the sets of positive
and negative Dynkin roots, and § for the indecomposable imaginary root. Note that
every element in R;;f \ {«} appears as a weight in one of the spaces in (6.17) if and
only if it appears in the other. On the other hand, —« does not appear as a weight in
the first space and o does not appear as a weight of the second space. It thus follows
that

*(Fley, NBxB/B) = Fl,s N BsxB/B
if and only if
a¢x( || ® -rpu || (R_—rS)). (6.19)

1<r<d 0<r<d-1

Step 5. In particular, if (6.19) holds, the projection of ¢, (for s = s4) to
HBM(F 1, )3 coincides with a linear combination of projections of ¢, with y < sx.
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Consider the equivalence relation on w generated by the relation x — sox for o
satisfying (6.19).

In the next step we will prove that

(*) each equivalence class has a representative x satisfying («;, Ax) > —d and
(o, Aw) =d +1,
where we write o; for the simple Dynkin roots and «¢ for the longest root.

Showing (*) will finish the proof of the proposition because the set of alcoves 4
satisfying (o, A) > —d and (a9, A) < d + 1 forms a poset ideal in the Bruhat order
and has exactly (dh + 1)4m* elements. To see the latter we argue as follows. Shifting
by dp¥ we can instead consider the set of alcoves A’ satisfying («;, A’) > 0 and
(g, A) <d +1+d(h—1)=dh + 1. There are exactly (dh + 1)%™*¢ such alcoves.

Step 6. Fix an equivalence class for the equivalence relation specified in Step 5
and pick a representative x that is minimal with respect to the Bruhat order. To show
(%), it is enough to check that if («;, Ax) < —d, then (6.19) holds for x and «; (and
that the similar claim holds for the affine simple reflection). Indeed, since {(o;, Ax) <
—d <0, we see that s;x is less than x in the Bruhat order, while s;x is equivalent
to x. This will give a contradiction with the choice of x.

We will only consider the case of simple Dynkin roots; the remaining case is
similar.

Assume x = wt? for w € W and B € A. Then (o;, Ay) = (w™ ' (a;), A1 + B);
thus, (o;, Ax) < —d holds if and only if one of the following conditions hold:

. w N a;) € RT and (w™ (), B) < —d — 1
. w™(a;) € R~ and (w™(a;), B) < —d.
(6.19) follows from x~(a;) = w™ (o) + (x (i), B)S. O

Remark 6.8

In our proof of Proposition 6.7 we study the action of simple reflections s(= s4) on
the basis of Schubert cells /., N BxB/B under the assumption that (6.19) holds.
This is enough to give a spanning set of HEM(Fl,,) @ gx Cyuiy with (dh + 1)9mt
elements.

However, showing directly that this spanning set is a basis would involve studying
the action of simple reflections s where (6.19) fails. This is more subtle, as @z, =
s@x + [.0.t. may fail as well.

So the proof of the dimension formula in Theorem 1.2 requires both sides of the
isomorphism of Theorem 1.1.

7. Applications
The goal of this section is to obtain some corollaries of Theorems 1.1 and 1.2 for
d =1, mostly in type A. We will write e for e;.
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7.1. Statements of the results
Until the further notice, g = sl,. Then W = §,,, X is the normalized version of the
Hilbert scheme (of dimension 2n — 2), and 2 is the restriction of Haiman’s Procesi
bundle to X C Hilb,(C?) = X x C2. Let X denote the preimage of X in the isospec-
tral Hilbert scheme; in other words, X is (t® t*) xy X with its reduced scheme struc-
ture. Let ¢ denote the natural finite morphism X — X.Haiman’s n! theorem says that
X is a Cohen—Macaulay scheme, equivalently, ¢ is flat (of degree n!). The bundle
& can be obtained as {+O@ 5. That the bundle we consider coincide with Haiman’s
follows, for example, from the main result of [36].

Set B%" :=I'(P ® L), this is an H®?-module (equivalently, an H -bimodule).
It follows from Haiman’s construction—or the main result of [36]—that =~ P* ®
(1), a (C*)? x Sy-equivariant isomorphism, where the action of (C*)? x S, on
O(1) comes from the isomorphism @ (1) = Pe_. It follows that B*¢" is obtained
from B(:= Bj) by twisting the left S,-action with the sign.

In particular, B*" has an algebra structure; in fact, this is the algebra C[X x x X l.
Our first goal is to describe this algebra structure.

Consider the algebra

B :=C[t® t*] ®cpy) C[t ® t*].

Note that both B*" and B are graded C[t @ t*]®2-algebras.

THEOREM 7.1
Let g = sl,,. We have a graded C[t ® t*]®2-algebra isomorphism B*" =~ B /rad B.

We can also describe the C[t @ t*]-bimodule structure on B*€".

THEOREM 7.2
Let g = sl,,. We have a graded C[t @ t*]-bimodule isomorphism B*#" =~ HeH, where
the latter is viewed as a subbimodule in H.

Remark 7.3

We note that Theorems 7.2, 1.1, and Proposition 3.1 imply [12, Conjecture 3.7].
Namely, their M is He H , the higher cohomology of & ® & vanish thanks to Propo-
sition 3.1, and the claim that B is flat over CJ[t] follows from Corollary 6.4. To our
knowledge the claim that He H is free over C[t] is new.

Now we proceed to prospective applications to the center of the principal block
of the small quantum group. For now we assume that g is an arbitrary simple Lie
algebra—but we still get more complete results in type A.
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Recall the notations Z, GV, TV from the introduction. Also recall that
H(F1,) — Homepg(HEM(F 1), C[t]) (see Remark 4.4). This gives a W-action
on H} (¥ I,) corresponding to the centralizer-monodromy action on HpM(¥1,). The
W -action on Hp(¥1,) gives rise to a W-action on H*(F1)A.

The following conjecture is due to the first named author joint with Bezrukavni-
kov, Shan, and Vasserot in [5, Conjecture A].

CONIJECTURE 7.4

For any semisimple Lie algebra g, there is an algebra isomorphism H* (¥ 1,)» =
ZT" . This isomorphism is W -equivariant, where on the left-hand side we have the
action described above and on the right-hand side the action comes from the identifi-
cation W = Ngv(TY)/TV.

In fact, [5, Theorem 4.12] establishes the existence of a W -equivariant algebra
monomorphism H*(F 1) — Z TY The conjectural part is that this monomorphism
is surjective.

Here is our result on the structure of Z.

THEOREM 7.5

Assume Conjecture 7.4 holds. Then the following claims are true:

(1) For any semisimple Lie algebra g, the dimension of the subalgebra of
Ngv (TV)-invariants in Z is (h 4 1)4mt,

(2)  If g = sy, then the GV -action on Z is trivial. In particular, dimZ = (n +
HrL

Note that (2) confirms a conjecture from [34].

The following result is used to prove Theorems 7.1 and 7.2 as well as (2) of The-
orem 7.5. Consider the 1-dimensional representation Cy of C[t & t*] corresponding
to the point 0 € t & t*.

PROPOSITION 7.6
For g = sl,, we have B ®c[et+] Co = (B Qc[tgt+] Co)e.

7.2. Proposition 7.6 and n! theorem

In this section we prove Proposition 7.6. In fact, we will show that Proposition 7.6 is

equivalent to the n! theorem of Haiman [28]. We need some preparation for the proof.
For a partition u on n, let x,, denote the fixed point in X labeled by p and let &,

denote the fiber of P at x,,. This is a (C*)?-equivariant H-module of dimension n!.

The following is a consequence of the n! theorem (see, e.g., [29, Corollary 5.2.2]).
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(A)  For each u, the head of the H-module $,, is a trivial S,-module.

In fact, more is true. If we use the Bezrukavnikov—Kaledin construction of & as a
definition, then (A) is equivalent to the n! theorem (that, recall, is the claim that X is
Cohen—Macaulay). Indeed, (A) implies the similar claim for all fibers of #. In par-
ticular, & acquires a sheaf of algebras structure. Once we know that the head of each
fiber of P is the trivial 1-dimensional module, we see that the relative spectrum of
embeds into X as a closed subvariety. The embedding is an isomorphism because it
is so over Y ™&. Moreover, the relative spectrum of J is Cohen—-Macaulay because it
is flat (of degree n!) over the smooth variety X .

We will give several equivalent formulations of (A). We will prove that they are
equivalent but will not prove any of them unconditionally, hence getting several equiv-
alent statements of the n! theorem but not its new proof.

Consider the adjoint pair

Loc:=» ®p ®: H—mod = Coh(X): T := Homg, (£, e).

Note that the derived functors LLoc and RT are mutually quasi-inverse equivalences
(see, e.g., [7, Proposition 2.2]).

Note also that we can view every irreducible representation 7 of S, as an irre-
ducible H-module by making t & t* act by 0.

LEMMA 7.7
(A)  is equivalent to the following claim:
(B)  For a nontrivial irreducible representation t of S, we have Loc(t) = 0.

Proof

Let us write C, for the skyscraper sheaf at x,. Then P, = f‘(CCM). Therefore

Homp (z, £;) = Home, (Loc(t),Cy).

So (A) is equivalent to the claim that Homg, (Loc(z),C,) = 0 for all 1 as long
as T # triv. Hence, (B)=(A). To show the implication in the opposite direction, we
must show that for a nonzero (C*)2-equivariant coherent sheaf ¥ on X there is a
partition p such that Homg, (¥, C,,) # 0. The action of (C*)? contains a contracting
1-dimensional subtorus whose fixed points are precisely the points x,, for all p. So if
the fiber ¥, is zero for all i, then every fiber of # is zero. (A)=(B) follows.  [J

To prove Proposition 7.6 we now need to show that (A)<>(B) is equivalent to the
following condition:
(C)  For a nontrivial irreducible representation t of Sj,, we have B ® g, v = 0.
Indeed, (C) is equivalent to the claim of Proposition 7.6.
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In the proof we will need to following lemma.

LEMMA 7.8
We have an isomorphism of endofunctors of D?(H —mod),

RT(LLoc(e)(1)) = B*® ®%; e.

Proof
This is standard: the left-hand side is the derived tensor product with

RT(LLoc(H)(1)) = RHomy (P, P(1)).

The right-hand side in the last equation is B*¢". O

Proof of Proposition 7.6

We will show more: that (B) and (C) are equivalent. This will follow if we show that
for an irreducible representation t of S,, we have B*" ® y t = {0} if and only if
Loc(z) = {0}.

Assume first that B*¢" @ y t = {0}. Note that since the algebra H has finite
homological dimension, only finitely many of homologies of LLoc(t) are nonzero.
Pick m large enough so that the homology sheaves H;(LLoc(t))(m) are generated
by their global sections and their higher cohomology groups vanish. By Lemma 7.8,

RI(LLoc(r)(m)) = (B*=")®r™r.

The zeroth homology group of the right-hand side is zero. By our choice of m this
implies that Loc(t) = 0.

Now assume that Loc(t) = 0. By the previous paragraph, for some m we have
(Bs#")®HMmr = (). Let S denote the set of all irreducible S,-representations T such
that B*¢" ® g 7 # {0}. Note that € S if and only if
(*)  t appears in the S, -module B*¢"/B*€"(t @ t*) (where S, acts from the right).
But the H -actions on B%" = I'(# ® &) from the left and from the right are com-
pletely symmetric. So (*) is equivalent to the condition that t appears in B%"/(t &
t*) B*" (where S, acts from the left). The latter condition in its turn is equivalent to
Homg (B%", ) # 0. So we see that € S if and only if t appears in the head of some
H -module of the form B%" ® g t’ (where 1’ is automatically in S). This shows that
T € S if and only if (B*")®H™M1 =£ () for all m.

This finishes the proof of (B) <> (C) and hence shows that the proposition is equiv-
alent to (A), that is, to the n! theorem of Haiman. O
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7.3. Proofs of Theorems 7.1 and 7.2

Proof of Theorem 7.1
Step 1. Here we prove that B%¢" is a reduced algebra. First of all, note that B%" =
I'( ® £) is nothing else but the algebra C[X x x X]. The scheme X x x X is flat and
finite over the Cohen—Macaulay scheme X, hence is Cohen—Macaulay. It is generi-
cally reduced and therefore reduced. The algebra of regular functions on a reduced
scheme is always reduced.

Step 2. Here we produce an algebra homomorphism ¢ : B — B*#"_ This comes
as the pullback of the morphism

Xxx X - (t®tH) xy t®t)

induced by the morphisms X — t@t*, X — Y. Note that ¢ is the unique C[t @ t*]®2-
algebra homomorphism B — B,

Step 3. We show that the homomorphism ¢ : B — B s surjective. This is a
crucial step in the proof that uses Proposition 7.6. Namely, note that both B and
B*2" are finitely generated graded C[t @ t*]®2-modules. Let By and B;®" denote the
specializations of B and B*" to (0,0) € (t & t*)2. We need to show that the induced
algebra homomorphism By — Bg" is surjective. Clearly, By is 1-dimensional. Now
consider B™". This space is acted by S, on the left and on the right. Proposition 7.6
implies that the action from the right is trivial. By symmetry, the action on the left is
trivial as well. By Theorem 1.2, we have B*" @ g Cyiy = sgn ® C(Ao/(n + 1)Ayp).
The space of S,-invariants in the latter module is 1-dimensional. So dim B, = 1 and
our claim follows.

Step 4. It is easy to see that ¢ : B — B*" is an isomorphism over Y ™&. Since
@ 1is surjective and B*" is reduced, we conclude that ¢ induces an isomorphism
B / rad B = B®. This completes the proof of Theorem 7.1. O

Proof of Theorem 7.2
We need to prove that B >~ He_H .

According to [29, Proposition 6.1.5], the C[t & t*]-module T'(P ® @ (1)) is iden-
tified with the ideal J in C[t @ t*] generated by the sgn-invariant polynomials. There-
fore we get a graded bimodule homomorphism

B — HomC[y]((C[t @ t*], J)

from the global sections of the sheaf Hom to the Hom between the global sections.
Composing this with the inclusion J < C[t® t*], we get a bimodule homomorphism

B — Endcyy, 150 ((C[&,X]) =H. (7.1)
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For the latter equality, see, for example, [17, Theorem 1.5]. By the construction, B is
torsion-free as a module over C[Y]. Also over the localization C[t*]*¢ of C[t*] at the
Vandermond determinant, (7.1) becomes an isomorphism. We conclude that (7.1) is
injective. So B is a two-sided ideal in H .

It follows from Theorem 7.1 that the C[t & t*]-bimodule B is generated by a sin-
gle element in degree O that is sign invariant. The corresponding element in I'(# ® &)
is the image of the identity under the inclusion of C[Y] arising from the direct sum-
mand O of > ® &. So the element in B = Homg,, (#, #(1)) we need is described
as the composition £ — O (1) — L (1), where the first map is e_ and the second is
the inclusion of (1) into . The image of this element in H is e_. We conclude that
B>~He_H. Ul

Remark 7.9
By [29, Proposition 6.1.5], we have I'(? ® O(d)) = J<. For the same reason as in
the proof of the proposition, we get By — Homc[y(C[t & t*], J )

7.4. Proof of Theorem 7.5
In the proof we will need the following three lemmas.

LEMMA 7.10
For any g, we have a W -equivariant identification (for the right action)

(H*(F1)*)" = B ®cpee) Co.

Proof

Recall from Theorem 1.1 that we have an H”*-bimodule isomorphism H %“’[(3‘7 [)" =~
B". Also HPM(F 1)/ HPM(Flo)t* = HPM(F[.). Next, we have an identifica-
tion H*(F1,) = HBM(F[,)*; this was discussed in Section 4.1 (in the equiv-
ariant setting). This identification is W—equivariant. It follows that H*(¥1,)" =~
(HBM(F1,)p)*, where the subscript A indicates taking the coinvariants. Note that

HM(F1)p = HM(F 1)/ HBM(F 1)t
The claim of the lemma follows. O

Part (1) of Theorem 7.5 follows from Lemma 7.10 combined with Theorem 1.2.
In the remainder of this section we will prove (2) of Theorem 7.5. Recall that
G = SL, and hence G¥ = PGL,,.

LEMMA 7.11
Let |1 be a highest weight of GV in the center of uc. Let £ denote the order of € and
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recall that it is an odd number. Then we have Ly <2(€ — 1)p in the usual order on
the dominant weights.

Proof

We note that 2({ — 1)p = (£ — 1) )", o« is the maximal weight in u. The action
of the Lusztig form U, on Z factors through the quantum Frobenius epimorphism
to give an action of GV. The pullback inflates the weights £ times. This gives the
required inequality. O

LEMMA 7.12

Let V be an irreducible PGL,,-module with the following property: the action of Sy,
on the weight zero subspace, Vo, is trivial. Then V 2= §2k"(C") or S2k*(C")* for
some k € Z>y.

Proof
In what follows it will be convenient to view V' as a representation of GL,,. Our proof
of the lemma is by induction on 7.

The base is n = 2, where our claim is easy. Now suppose it is proved for n — 1,
we are going to prove it for n. Let u = (i1, ..., 4y ) be the highest weight of V. The
GL,,—1-module with highest weight A = (41, ..., A,—1) occurs in the restriction of V'
if and only if

1AL > U > > A1 > g, (7.2)

And this GL,_;-module intersects the zero weight space for PGL,, if and only if

A+ + Al _ M1+ e+

p— P (7.3)

Clearly, at least one A satisfying (7.2) and (7.3) exists.

Let I be the set of indices i € {1,...,n — 1} such that u; > p;+1. Assume that
|7] > 1. The claim that a solution A to (7.2) and (7.3) satisfies the induction assump-
tion easily implies that one of the following possibilities holds:

(D) Ai =p; foralli el

2) Ai = Wi+1 foralli eI.

Indeed, otherwise we can increase one component of A by 1 and decrease another by
1 so that (7.2) continues to hold. But if A is the highest weight of $2K®*=1(C*~1) or
its dual (up to a twist with a power of the determinant), then the modification is not
of that form.

Replacing V' with V* if necessary we can assume that (1) holds. Also if i ¢ I,
then A; = w; (= (i4+1). So we have A; = u; foralli =1,...,n — 1. From (7.3) we
deduce
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S S
n—- .
n—1
Together with pu; > .-+ > pu,, this implies u; = --- = u,, a contradiction with

|[1]>1.

So |I| = 1 meaning that u has two different entries. Since A is the highest weight
of §2K=1(C"=1) or its dual, this implies that 7 = {1} or I = {n —1}, which, in turn,
easily implies the claim of the lemma. O

Proof of (2) of Theorem 7.5

Recall that we have a W-equivariant isomorphism H*(¥1,)% 5 zr by Conjec-
ture 7.4. Using Lemma 7.10 combined with Proposition 7.6, we see that S,, acts triv-
ially on Z Y, By Lemma 7.12, all irreducible summands of the PGL,-module Z are
of the form §2%”(C") or S2k*(C")*. But for k > 0, the highest weights u of these
modules do not satisfy the inequality of Lemma 7.11. It follows that Z is a trivial
PGL,,-module, implying the claim of the theorem. O

Appendix. Springer action on H2Y . (¥1.,)
P. BOIXEDA ALVAREZ, I. LOSEV, and O. KIVINEN
In this Appendix we include some of constructions and proofs for Section 5.

A.l. Reminder on the affine Springer action
In this section we recall the generalities on the affine Springer action. We use the
notation from Section 4.2.

The action of W4 was constructed in [41, Section 5.4]. To construct the operators
corresponding to simple affine reflections we introduce certain auxiliary spaces. For a
parahoric subgroup BB of G(K) containing *B, we can consider the partial affine flag
variety

FI® =G(X)/P.

Using this space, we can introduce the affine Springer fibers in the partial flag variety
FI¥:

FI}Y :={gPeFl|Ad(g) "eq € Lie(P)}.

Now we introduce certain stacks. To do this we need some notation. Let L be
the standard Levi subgroup of 3. Let By, denote the image of ®5 in L; this is a Borel
subgroup of L. We write [, by, for the Lie algebras of these groups.
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With this notation, we have a Cartesian diagram

Fle, — br/ByL

l v l . (A1)

FIF — /L

The map 5‘712 — [/L sends g*B to the image of Ad(g) 'e; and Lie(p) — L.
The map ¥ 1., — by /By is defined in a similar way.

Note that we have the following canonical isomorphisms of objects in the T x
C*-equivariant derived category:

(12)x (@51, ,) = (12)(q1(Co, 18,)) = 45(11)«(Co, /B, )-

Using these isomorphisms we can define the action of W% on H ?iﬂcx (Fle,) (see
[41] and [47, Construction 7.1.3]). Namely, fix a simple affine reflection s € W4. If
s is a reflection in the Weyl group Wy, of L, then we can define an action of s on
(1)« (Cys, /B, ) via the usual finite dimensional Springer correspondence. This gives

rise to an action of s on

(m2)x(@71,,) = 45(T)(Co, /B, ) (A2)

Since ¢; and ¢, are T' x C*-equivariant, we get an action of s on H?Efcx (Fle,) (via
pushforward of the left-hand side of (A.2) to the point). This action of s is independent
on the choice of L. To check that the actions of the simple affine reflections satisfy the
braid relations, it is enough to consider two simple reflections at a time, which reduces
to the finite case, because any two simple reflections lie in Wy, for some choice of 3.

To extend the W9-action on HEV .. (¥1,,) to an action of W, recall that W =
(A/Ao) x W4. We note that A/Ag acts on F/. This action is constructed as fol-
lows. Take a lift of 7 € A/Ao C W to 7 in the normalizer of 7'(X) and define the
map I — F1 by g8 — gnB. This is well defined as the lift of any element of
(A/Ao) C W normalizes B and the map is independent of the chosen lift. From the
definition of ¥/, , see, for examnple, (4.3), it follows that this action preserves F [, .
So we get an action of A/Ag on HPY - (Fl,).

Recall that we write R for H .~ (pt) and F for Frac(R).

LEMMA A.1

(1) The actions of W® and A /Ao give an action of the affine Weyl group W on
B (Fle,).

2) This W -action is by R-linear automorphisms.
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3) The action of w preserves the homological grading on R.

Proof
(1) follows from [50, Theorem 3.3.3] or [47, Theorem 7.1.5].
(2) is a direct consequence of the construction.

(3) follows from the construction of the action in [47, Construction 7.13, 7.14].
O

Remark A.2
In this remark we recall a classical description of the connected components of ¥/
and ¥/,

The connected components of the affine flag variety ¥/ are in a natural bijec-
tion with 7r1(G). Namely, recall the decomposition W= (A/Ao) x W4, The union
of Schubert cells corresponding to the left W¢-orbits in w give the connected com-
ponents. The group A/Ag acts on 1 as recalled above in this section. This action
induces a simply transitive action on the set of components.

Let G be the simply connected cover of the derived subgroup (G, G) C G. Its
extended affine Weyl group is W¢. In fact, ¥ [ is isomorphic to any of the connected
components of /. To see this, note that we have a natural map Flg — Flg.
This map is injective because the kernel of G — G is contained in the center and
thus contained in any Iwahori subgroup. The image contains precisely the 7 -fixed
points given by W¢. The ‘B-orbits coincide with the orbits of the pro-unipotent radical
of 8. Thus we see the image is precisely one connected component of /. Since all
connected components are isomorphic via the A /A g-action the result follows.

Moreover, the action of A/Ag preserves ¥ [.,. The embedding ¥l — ¥ lg
restricts to an embedding of the Springer fibers associated to e4. This embedding real-
izes the Springer fiber for G as a connected component of the Springer fiber for G. It
follows that every connected component of ¥ /., for G is identified with the Springer
fiber of e; for G.

A.2. Springer action vs localization
The goal of this section is to prove Lemma A.5, which is the hard part of Lemma 5.2.
Recall that we write ¢ for the localization homomorphism

HP o (Fle,) — EDF.
W

In the proof we will need an explicit description of im: for SL,. We identify
7 with WSLz via 2m — t™%, 2m + 1 — t™%s, where « is the finite simple root of
SL, and s is the corresponding simple reflection. Let y be the basis element in t*
corresponding to the simple root. So R = C[y, A].
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Pick an element r € {0, ...,d}. For k,m € Z set

r

SO =TT+ G +m+i—1h). (A.3)

i=1

We then define elements

b = (bt )eez € PCTy. h)
Z

for r, k as above as follows. For r = 0, we set bg (= 8k.¢, the Kroneker delta. For
ref{l,...,d},definemeZ,e€{0,1} by £ =k 4+ 2m + € and set

bi g = (=" (};) (™ (A4)

LEMMA A.3

Let G = SL,. Then L(H7]§I)‘(/I(CX (Fle,)) C @D, C(y, k) has a basis over Cly, h] given
by by where

. eitherk =0,1andr =0,...d — 1

. orr=dandk €Z.

Proof
The elements b,ﬁ are indeed in im¢: condition (i) of Corollary 4.8 is immediate, while
condition (ii) is straightforward.

Now we check that the elements b; for r, k as in the statement of the lemma span
that C[y, h]-module im¢. Pick (gz) € imt.

Replacing (gy) with its sum with a linear combination of the elements bl‘f we can
assume that (g ) is supported between 0 and 2d — 2. To see this, assume that g, # 0
for some r < 0 and let k be the minimal such number r. Then the entry g4 can have at
most the same singularities as 1/ fkd’(o) by Corollary 4.8 and so is a multiple of this.
Hence we can subtract a multiple of b,f from (g ), such that the index of the minimal
nonzero entry is bigger than k. Thus by induction we can assume that for all negative
k we have g = 0.

A similar argument works for nonzero entries of (g ) for k > 2d — 2. Here the
inequality k > 2d — 2 comes from the fact that b,‘f has support exactly between k and
k 4+ 2d — 1. So, subtracting the elements b,‘f for k > 0 from (g,) doesn’t change the
condition that g, = 0 for r < 0. So we can assume that g #0=0<k <2d — 2.

Now using b,’c fork =0,1and r =0,...d — 1, we can continue reducing the
support and using conditions (i) and (ii) of Corollary 4.8 to ensure the maximal entries
are indeed multiples of those of the b, we are considering. Indeed if (gx) is supported
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between 0 and 2r — e, € € {0,1} and 0 <r <d — 1, then g,,_ has at most the
singularities of 1/ flrl(: ) by the conditions of Corollary 4.8.

It follows that the elements blz for k, r as described in the statement of the lemma
span the R-module im .

To check that our elements are linearly independent (hence form a basis) we use
a partial order on Z. Consider the partial order given by
. k<rif0>k>r,
. k<rif2d—-1<k<r,
. and0<1=<---<2d —2=<kforallk ¢{0,...,2d —2}.

For each element b; with r, k as in the statement of the lemma, there is a unique
maximal £(= £(by)) in the poset order such that b; ; # 0, namely,

k if k <0,

Lby) =

k k+2r—1 else.
It is clear that (k,r) — K(b,i) identifies the set r, k in the statement of the lemma with
Z. Now we use induction on the above partial order to show that the elements b;_are
linearly independent. ([

Remark A.4

For a general semisimple rank 1 group G, we have a similar basis for each connected
component of ¥/ as described in Remark A.2. In that basis we use the polynomials
fkr’(m) replacing y with the unique root o € t* C R of G. Indeed, the 1-dimensional
T x C*-orbit all have characters « + kh, where k € Z and « is the positive root of G.
Each connected component of the affine Springer fiber for G is isomorphic to the one

for SL, by Remark A.2. Then the same proof as for the SL, case gives a similar basis.

LEMMA A.5
We have
dh XS —dh
t(sP)x = x_t(,B)x + Tl(ﬁ)x5~ (A.5)
o o
Proof

Our proof is in several steps.

Step 1. Recall that the Springer action is by R-linear automorphisms and pre-
serves the degrees by Lemma A.1.

Step 2. Let B € H?g{cx (¥l.,) and let s be a simple affine reflection. In this step
we will prove that, for every x € W, the element ¢(s8)x only depends on ¢(8)x and
t(B)xs- To do this we describe the localization morphism in terms of maps of sheaves.
We use the notation from the construction of the Springer action in Section A.1.
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For an arbitrary parahoric 8 (including 98), let i denote the inclusion

*((}‘123)”“) - Fl,,.

By adjunction applied to
B!

O xcx - l%.w?led ’

we get a morphism of sheaves
B

iy (wmerdxq;x) - ogl,, (A.6)

in the T x C*-equivariant derived category. The localization map
BM T'xC*
Hrgex(Fl,[ ") — HYo (Fle,)

is obtained from (A.6) by passing to cohomology.
The same construction as in Section A.l establishes an action of the Weyl group
W, of L on

(7-[2)*1.33(60”2—1((flz}:l)Tx(CX))‘ (A7)

Note that the > space 7, Y(F1, a,)TX(C ) decomposes as the disjoint union of subspaces

indexed by w / WL so that the subspace indexed by x Wy, contains exactly the fixed

points labeled by the elements from xW},. This decomposition is compatible with

Cartesian diagram (A.1). Hence this decomposition yields the decomposition of (A.7)

into the direct sum with summands indexed by w / Wr.Each summand is Wy -stable.
Note that (A.6) factors as

LB B
Ly (a)f'lg;ixcx) — (a)nzfl((?‘l:ji])TxCX)) - a)ﬁlgd .
The induced maps in cohomology,
HPN o (FIC) > P (3 (FIE)TCT)) > HPY o (F Le,).

become an isomorphism after inverting some characters by a direct analog of
Lemma 4.1 for ind-varieties.

Apply the last observation to the minimal Levi subgroup corresponding to the
reflection s. Consider the classes of the points x and xs in HTX(CX (F ZZJXCX). The
subspace (over F) in the localization of HEM Txex (T L(F l )TX(C )) spanned by their
images is s-stable. Therefore the same conclusion is true if we consider the images in
the localization of H. 7]§l>\</[<cx (¥Fle,). This claim is equivalent to the claim of that ((sf)
only depends on ¢(f8)x and t(B)xs.
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Step 3. For x € W consider the element a* := (Ox,y)yeiw € D F. where we
recall that 8y , is the Kroneker delta. Note that in a* € im(, one can see this, for
example, from Corollary 4.8. Then the element s(a*) has the following properties:
1)) s(a*) = Ay xa® + Ay xsa™® for some Ay x,Axxs € F. This follows from
Step 2.

(II)  Ax,x, Ax,xs are homogeneous of degree 0. This is because a” is of degree 0
for all y and the Springer action preserves the grading (Step 1).

(M) oAy x, "Ax xs are linear functions. Indeed, from (i) of Corollary 4.8 it fol-
lows that “w Ay x, "¢ Ay xs € R. Now our claim follows from (II).

(IV)  Ax,x + Ax xs has no pole so is an element of C. This follows from (IIT) and
condition (ii) of Corollary 4.8.

(V)  The elements oAy x, “¢(Ax,xs — 1) are divisible by h. This follows from
sa® = a** modulo h, which is a consequence of [24, Section 14.4].

Combining (IIT), (IV) and (V), we see that

zh Yo —zh

Axx:_ Axxs:
9 xa’ b xa

(A.8)

for some z € C. Note that we have ((s8)x = Ax xt(8)x + Axs,xt(B)xs. So the lemma
amounts to showing that z = d.

Step 4. We will use the case of SL, for the computation of the elements Ay
and Ay ys. For an affine root B let B be the projection of B to t*. Equivalently, A
is the unique root such that 8 = ,3 + k& for some integer k, where, recall that &
is the indecomposable imaginary root. Set 8 := *«. Let T[; C T denote the kernel

of B viewed as a homomorphism 7 — C*. We write Wﬁ for the subgroup of w
generated by the reflection sg and tB" . Note that 177 is the affine flag variety of
the semisimple rank 1 subgroup Gg := Zg (Tﬁ) given by considering orbits of the
loop group of G,g at pomts W C #1. The connected components of 5/ T are labeled
by the cosets Wﬂ \ W. Each component is isomorphic to the affine flag variety of
SL, and contains the 7 -fixed points labeled by points in the corresponding coset.
A similar decomposition holds for ¥/, f : it is the union of connected components
labeled by Wj \ W.

Now we can localize HEY ... (¥ l.,) at all characters that do not vanish on Ty,
which includes y + ki for y € Rt \ {8} and k € Z, but not *a + k# for any k.
By the ind-variety analog of Lemma 4.2, this localized BM homology is naturally
isomorphic to the same localization of

T
HpYex (Flef
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So the localization H. TEI;ACX (¥1.,) breaks up as the direct sum of copies of the local-
ized Borel-Moore homology of ¥, (Gg), the equivalued unramified affine Springer
fiber for the semisimple rank 1 group Gg.

Step 5. Recall that the Springer action of W on H o (Fl,,) is R-linear
(Step 1). So it lifts to the localization considered in Step 4. Consider the con-

nected component in ¥ leTf whose T'-fixed points are the coset WBx. Note that
ng = Wﬁxs because B = *a. It follows that the summand in the localization of
HY (¥ 1.,) corresponding to this component is fixed by the Springer action of
s. Lemma A.3, or, more precisely, its generalization discussed in Remark A.4 give
a basis in the summand we consider. Note that there is a unique element k € Z
such that the basis element b,‘f of this summand is O at xs and nonzero at x. Then
s(b,‘f) will only have singularities along the affine root hyperplanes *o + ph with
p € Z. Further, by the description of the basis in Lemma A.3, we have (b,‘f )x = %
for f:= (Yo —h)(*a —2h)--- (Yo — d k).

Note that (s(b]‘f))xs = Ax,xs% and (s(b]‘f))w =0 for all w of the form
X8SoS ..., where so := t~%s. It thus follows that Ay .s/f only has singularities
along “o,..., "o + (d — 1)h. Since *aAx xs is a linear polynomial, we see that
Ay xs 18 proportional to

Yo —dh
Xo :
We apply (V) to see that
Yo —dh
Ax’xs = xi (A9)
o
This implies the claim of the lemma by the last sentence of Step 3. O
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