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Abstract

In this article, we review the literature on statistical theories of neural
networks from three perspectives: approximation, training dynamics, and
generative models. In the first part, results on excess risks for neural net-
works are reviewed in the nonparametric framework of regression. These
results rely on explicit constructions of neural networks, leading to fast con-
vergence rates of excess risks. Nonetheless, their underlying analysis only
applies to the global minimizer in the highly nonconvex landscape of deep
neural networks. This motivates us to review the training dynamics of neu-
ral networks in the second part. Specifically, we review articles that attempt
to answer the question of how a neural network trained via gradient-based
methods finds a solution that can generalize well on unseen data. In par-
ticular, two well-known paradigms are reviewed: the neural tangent kernel
and mean-field paradigms. Last, we review the most recent theoretical ad-
vancements in generative models, including generative adversarial networks,
diffusion models, and in-context learning in large language models from two
of the same perspectives, approximation and training dynamics.
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1. INTRODUCTION

In recent years, the field of deep learning (Goodfellow et al. 2016) has experienced a substantial
evolution. Its impact has transcended traditional boundaries, leading to significant advancements
in sectors such as health care (Esteva et al. 2019), finance (Heaton et al. 2017), autonomous sys-
tems (Grigorescu etal. 2020), and natural language processing (Otter etal. 2020). Neural networks,
the mathematical abstractions of our brain, lie at the core of this progression. Nevertheless, amid
the ongoing renaissance of artificial intelligence (AI), neural networks have acquired an almost
mythical status, spreading the misconception that they are more art than science. It is important
to dispel this notion. While the applications of neural networks may evoke awe, they are firmly
rooted in mathematical principles. In this context, the importance of deep learning theory becomes
evident. Several key points underscore its significance.

1.1. Why Is Theory Important?

In this subsection, we aim to emphasize the importance of understanding deep learning within
mathematical and statistical frameworks. Here are some key points to consider:

1. Deep learning is a dynamic and rapidly evolving field, producing hundreds of thousands
of publications online. Today’s models are characterized by highly intricate network archi-
tectures comprising numerous complex subcomponents (e.g., Transformer; Vaswani et al.
2017). Amidst this complexity, it becomes crucial to comprehend the fundamental prin-
ciples underlying these models, and placing these models within a unified mathematical
framework is essential. Such a framework serves as a valuable tool for distilling the core
concepts from these intricate models, making it possible to extract and comprehend the key
principles that drive their functionality.

2. Applying statistical frameworks to deep learning models allows meaningful comparisons
with other statistical methods. For instance, widely used statistical estimators like wavelet
or kernel methods can prompt questions about when and why deep neural networks might
perform better. This analysis helps us understand when deep learning excels compared with
traditional statistical approaches, benefiting both theory and practice.

3. Hyperparameters, such as learning rate, weight initializations, network architecture choices,
activation functions, etc., significantly influence the quality of the estimated model. Under-
standing the proper ranges for these hyperparameters is essential not only for theorists but
also for practitioners. For instance, in the era of big data, where there are millions of sam-
ples in one dataset, the theoretical wisdom tells us the depth of the network should scale
logarithmically in sample size for the good estimation of compositional functions (see, e.g.,
Schmidt-Hieber 2020).

In this review, we provide an overview of articles that delve into these concepts in mathematical
settings, offering readers specific insights into the topics discussed above. Here, we try to avoid
too many technicalities and make the introductions accessible to as many statisticians as possible.
Some more technical components can be found in the Supplemental Appendix.

1.2. Road Map of the Article

We classify the existing literature on statistical theories of neural networks into three categories,
discussed in Sections 2—4, respectively.

1. Approximation theory: Recently, much work has been done to bridge the approximation
theory of neural network models (Hornik et al. 1989, Mhaskar 1996, Yarotsky 2017,
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Petersen & Voigtlaender 2018, Hanin 2019, Montanelli & Du 2019, Schmidt-Hieber 2020,
Blanchard & Bennouna 2022) and the tools in empirical processes (Van de Geer 2000)
to obtain the fast convergence rates of excess risks in both regression (Schmidt-Hieber
2020, Hu et al. 2021) and classification tasks (T. Hu et al. 2020, Kim et al. 2021) under
nonparametric settings. Approximation theory provides useful perspectives in measuring
the fundamental complexities of neural networks for approximating functions in certain
classes. Specifically, it enables the explicit construction of neural networks for the function
approximations so that we know how the network width, depth, and number of active pa-
rameters should scale in terms of sample size, data dimension, and the function smoothness
index to get good statistical convergence rates. For simplicity, we mainly consider the works
in which the fully connected neural networks are used as the function estimators. These
works include those of Schmidt-Hieber (2020), Kim et al. (2021), Shen et al. (2021), Jiao
etal. (2021), Lu et al. 2021), Imaizumi & Fukumizu (2019, 2022), Suzuki (2018), Suzuki &
Nitanda (2021), Chen et al. (2022a), and Suh et al. (2022) under various problem settings.
Yet, these works assume that the global minimizers of loss functions are obtainable, and
they are mainly interested in the statistical properties of these minimizers without any
optimization concerns. However, this is a strong assumption, given the nonconvexity of
loss functions arising from the nonlinearities of activation functions in the hidden layers.

. Training dynamics: Understanding the landscape of nonconvex loss functions for neural
network models and its impact on their generalization capabilities represents a critical next
step in the literature. However, the nontrivial nonconvexity of this landscape poses signif-
icant challenges for the mathematical analysis of many intriguing phenomena observed in
neural networks. For example, the seminal empirical finding of Zhang et al. (2021) reveals
that neural networks in their experiments trained on a standard image classification train-
ing set (CIFAR-10) can fit the (noisy) training data perfectly and, at the same time, show
respectable prediction performance (see Zhang et al. 2021, figure 1¢). This contradicts the
classic statistical wisdom of the bias—variance trade-off, which states that overfitted mod-
els cannot generalize well. The role of overparametrizations (e.g., Bartlett et al. 2021) on
the nonconvex optimization landscape of neural networks has been intensively studied over
the past few years, and we review the relevant literature in this context. For instance, Jacot
et al. (2018) revealed that the dynamics of highly overparametrized neural networks with
large enough width, trained via gradient descent (GD) in £,-loss, behave similarly to those
of functions in reproducing kernel Hilbert spaces (RKHSs), where the kernel is associated
with a specific network architecture. Many subsequent works study the training dynamics
and the generalization abilities of neural networks in the kernel regime under various set-
tings (Nitanda & Suzuki 2020, Hu et al. 2021). However, due to technical constraints (as
detailed in Section 3.1), networks in the kernel regime fail to explain the essential function-
ality of neural networks—feature learning (Zhong et al. 2016). Another important line of
work focuses on understanding the learning dynamics of neural networks in the mean-field
(MF) regime, where feature learning becomes more explainable. Nonetheless, the analysis
in the MF regime is challenging to generalize to deep networks and requires infinite widths.
Finally, we conclude this section by presenting several approaches that go beyond or unify
the two regimes.

. Generative modeling: In this section, we review the most recent theoretical advancements
in generative models, including generative adversarial networks (GANs), diffusion models,
and in-context learning (ICL) in large language models (LLMs). The works introduced are
based on the philosophies of two paradigms (approximation and training dynamics). Over
the past decade, GANs (Goodfellow et al. 2014) have stood out as a significant unsupervised
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learning approach, known for their ability to learn the data distributions and efficiently sam-
ple the data from them. In this review, we discuss articles that study the statistical properties
of GANs (Arora et al. 2017, Zhang et al. 2018, Bai et al. 2019, Liang 2021, Schreuder et al.
2021, Chen et al. 2022b). Recently, another set of generative models, diffusion models, have
shown superior performance to GAN models in generating impressive qualities of synthetic
data in various data modalities, including image data (Song et al. 2020, Dhariwal & Nichol
2021), tabular data (Kim et al. 2022, Suh et al. 2023), and medical imaging (Miiller-Franzes
et al. 2022). However, given diffusion models’ complex nature and recent introduction to
the community, the theoretical reasons why they work so well remain vague. Lastly, we
review the interesting phenomenon of ICL, which is commonly observed in LLMs. This
refers to the ability of LLMs conditioned on a prompt sequence consisting of examples from
a task (input—output pairs) along with the new query input to generate the corresponding
output accurately. Readers can refer to the nice survey articles of Gui et al. (2021) and Yang
et al. 2024) for detailed descriptions of the methodologies and applications of GANs and
diffusion models in various domains. Dong et al. (2024) provide an overview of ICL that
highlights some key findings and advancements.

In relation to Section 1.1, the advantages of neural networks over classic statistical function
estimators are primarily discussed in Sections 2 and 3 under various problem settings. In Section 3,
we review the work of Yang & Hu (2022), which suggests appropriate parameter initialization
scalings and learning rates for feature learning in large-scale (infinite width) neural networks.

1.3. Existing Surveys on Deep Learning Theory

To our knowledge, there are four existing review articles on deep learning theory (Bartlett et al.
2021, Belkin 2021, Fan et al. 2021, He & Tao 2021). There is overlap in certain subjects covered
by each of the articles, but their main focuses differ. Bartlett et al. (2021) provided a comprehen-
sive and technical survey of statistical understandings of deep neural networks. In particular, they
focused on examining the significant influence of overparametrization in neural networks, which
plays a key role in enabling gradient-based methods to discover interpolating solutions. Fan et al.
(2021) introduced the most commonly employed neural network architectures in practice, such
as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), and training
techniques such as batch normalization and dropout. They also provided a brief introduction to
the approximation theory of neural networks. Like Bartlett et al. (2021), Belkin (2021) reviewed
the role of overparametrization for implicit regularization and benign overfitting, observed not
only in neural network models but also in classic statistical models, such as weighted nearest neigh-
bor predictors. Most notably, they provided intuitions on the roles of the overparametrization of
nonconvex loss landscapes of neural networks through the lens of optimization. He & Tao (2021)
provided a comprehensive overview of deep learning theory, including the ethics and security
problems that arise in data science and their relationships with deep learning theory. We recom-
mend readers review all these articles to gain a comprehensive understanding of this emerging
field. Our article offers a unique and comprehensive survey of the statistical results of neural net-
works, focusing on approximation theory and training dynamics, while also covering generative
models within these two paradigms.

2. APPROXIMATION THEORY-BASED STATISTICAL GUARANTEES

We outline fully connected networks, which are the main object of interest throughout this re-
view. From a high-level perspective, deep neural networks can be viewed as a family of nonlinear
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statistical models that can encode highly nontrivial representations of data. The specific network
architecture (L, p) consists of a positive integer L, called the number of hidden layers, and a width
vector p := (Po, - - -, Pr+1) € NI*2 recording the number of nodes from input to output layers in
the network. A fully connected neural network, 7, is then any function of the form for the input
feature x € X:

fiX >R, x— f(x)=WioW,_1oW,_,...cWx, 1.

where W; € RPi+1*?i is a weight matrix with po = d, pr+1 = 1 and o is the nonlinear activation
function. Here, the activation function plays a key role in the neural network allowing the non-
linear representations of the given data x. Popular examples include rectified linear units (ReLU),
ReLU(x) = max(x, 0), and Sigmoid(x):H%. We omit the bias terms added on the outputs of
preactivated hidden layers for simplicity, but bias terms are needed for universal approximation if
the input data are not appended with a constant entry.

Under this setting, complexity of the networks is mainly measured through the three metrics:
(@) the maximum width, denoted as ppay := max;—o, .., .+1p;; (#) the depth, denoted as L; and (¢) the
number of nonzero parameters, denoted as N Letting |[Wjl|o be the number of nonzero entries
of W; in the jth hidden layer, the final form of the neural network we consider is given by

L
F(L,p,N) :={ fof the form in Equation 1 : Z [Willo <Nt 2.

j=1

In the approximation theoretic literature, the capacity or expressive power of a neural network is
often characterized by the tuple (L, pimay, NV). Let G be a function class where the target function f
belongs. The main question frequently asked is, given the fixed approximation error, ¢, defined as

£:=su inf — fu 3.
ﬂeg FeFTLpN) F =Pl

how does the network architecture (L, pmay, ') scale in terms of ¢? Note the supremum is taken
over the function class G and the infimum is taken over the neural network class F. The distance
between two functions is measured via L, norm.

2.1. Expressive Power of Fully Connected Networks

In this section, we briefly review some important results in the approximation theory of neural
networks. For a more comprehensive review, readers can refer to DeVore et al. (2021).

2.1.1. Approximating functions in G. The specifications of function classes G and F al-
low us to derive many interesting insights on the power of neural networks. For instance,
the celebrated universal approximation theorem states that any continuous functions (i.e.,
G := {continuous functions on R?}) can be approximated by a shallow neural network (i.e., one
hidden layer) with a sigmoid activation function (i.e., F := {shallow neural networks}) at an
arbitrary accuracy (Cybenko 1989; Hornik et al. 1989, 1990). However, achieving a good approx-
imation may require an extremely large number of hidden nodes, which significantly increases
the capacity of F. Barron (1993, 1994) developed an approximation theory for function classes G
with limited capacity, measured by the integrability of their Fourier transform. Interestingly, the
approximation result is not affected by the dimension of input data 4, and this observation matches
with the experimental results that deep learning is very effective in dealing with high-dimensional
data.

Nonetheless, the capacity of G in the work of Barron (1994) is rather limited. Another typ-
ical route of the analysis is to specify the smoothness of function classes. Roughly, smoothness
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refers to the highest order of derivatives that the functions can possess. Notably, Yarotsky (2017)
demonstrated that deep ReLU networks (Equation 1) cannot escape the curse of dimensionality
when approximating functions in the unit ball in Sobolev space. Yarotsky (2017) established that
the order N = O(e~%) is sharp, with matching lower and upper bounds. Petersen & Voigtlaender
(2018) generalized the results to the class of piecewise smooth functions. Later, Schmidt-Hieber
(2020) developed a theory that for any network architecture satisfying the set of conditions on
(L, Prax> N), deep ReLU nets can achieve good approximation rates for functions in Holder classes.
(More details on the technical results of Schmidt-Hieber (2020) are provided in Supplemental
Appendix A.) This should be contrasted with the result of Yarotsky (2017) that proved the exis-
tence of a network with good approximation. Many researchers have been working on considering
either more general (i.e., Besov space) or more specific (i.e., hierarchical compositional function)
function classes G than Holder classes. These considerations have facilitated numerous intriguing
comparisons between classic statistical function estimators and deep neural networks in terms of
their fundamental limits, specifying the second item in Section 1.1.

2.1.2. The benefits of depth. Several studies have shown that the expressive power of deep
neural networks grows with respect to the number of layers (L). Delalleau & Bengio (2011) showed
there exist families of functions that can be represented much more efficiently with a deep network
than with a shallow one (i.e., one with substantially fewer hidden units). In the asymptotic limit
of depth, Pascanu et al. (2014) showed deep ReLU networks can represent exponentially more
piecewise linear functions than their single-layer counterparts, given that both networks have
the same number of nodes. Montufar et al. (2014) proved that a similar result can be derived with
the fixed number of hidden layers. Poole etal. (2016) showed deep neural networks can disentangle
highly curved manifolds in an input space into flat manifolds in a hidden space, while shallow
networks cannot. Mhaskar et al. (2017) demonstrated that deep ReLU networks can approximate
compositional functions with significantly fewer parameters (i.e., ) than shallow neural networks
need in order to achieve the same level of approximation accuracy.

2.1.3. Bounded width. The effects of width on the expressive power of neural networks have
recently been studied (Lu et al. 2017, Hanin 2019, Kidger & Lyons 2020, Park et al. 2020, Vardi
et al. 2022). Lu et al. (2017) showed that the minimal width for universal approximation (de-
noted as Wy,) using ReLU networks with respect to the L; norm of functions from R? — R is
d+1 < wpyin <d+4.Kidger & Lyons (2020) extended the results to L,-approximation of functions
from R? — R°" and obtained wyin < d + dou + 1. Park et al. (2020) further improved wyi, =
max{d + 1, doy}. Universal approximations of narrow networks with other activation functions
were studied by Park et al. (2020), Kidger & Lyons (2020), and Johnson (2018). Note that the
aforementioned works require the depth of networks to be exponential in input dimension with
bounded width, which are the dual versions of the universal approximation of bounded depth
networks from Cybenko (1989) and Hornik et al. (1989, 1990). Interestingly, Vardi et al. (2022)
provided evidence that the width of the networks can be less important than depth for the expres-
sive power of neural nets. They showed that the price for making the width small is only a linear
increase in the network depth, in sharp contrast with the results mentioned earlier on how making
the width small may require an exponential increase in the network depth.

2.2. Statistical Guarantees for Regression Tasks

The natural question is, What are the interpretations or consequences of the results in approxi-
mation theory for deriving statistical guarantees of neural networks under noisy observations? In
this section, we focus on reviewing several important results under regression tasks in this regard.
First, we introduce the settings frequently adopted in statistical learning theory.
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Let X and Y C R be the measurable feature space and output space. We denote as p a joint
probability measure on the product space X x ) and let pr be the marginal distribution of
the feature space X. We assume that the noisy dataset D := {(x;,y;)}._, is generated from the
nonparametric regression model,

vi=f)+e, i=1,2,...,n, 4

where the noise ¢; is assumed to be a centered random variable and E(g;|x;) = 0. Our goal is to
estimate the regression function f,(x) with the given noisy dataset D. Here, it is easy to see that the
regression function f, := E(y|x) is a minimizer of the population risk £(f) under ¢,-loss defined
as

&)= E(x,y>~p[(y - f(X))2]~

However, since the joint distribution p is unknown, we cannot find f, directly. Instead, we solve
the following empirical risk minimization problem induced from the dataset D:

£, = argmin Ep(f) := argmin {EZ(yi—f(x,-))z}. 5.
FeF(LpN) feF@pN) L

Note that the articles referenced in this section always assume the empirical risk minimizer £ is

obtainable, ignoring the optimization process. The function estimator fis structurally regularized

by N in (L, p, V), which is specified below.

Under this setting, the excess risk is an important statistical object measuring the generaliz-
ability of the function estimator ﬁ for unseen data in X'. Mathematically, it can be shown that it
is a difference between population risks of f, and ﬁ (see Wainwright 2019, chapter 13), which is
Ex~py [(ﬁ X) — f,(X))?]. The excess risk can be further decomposed as follows (Suh et al. 2022,
proposition 4.2):

Complexity measure of F

+ (Approximation error)’. 6.

Expy [(HX) = £,(X))] <

In the context of excess risk bounds, it is important to note the trade-off between the approxi-
mation error and the combinatorial complexity measure of a neural network class F. Specifically,
as the network hypothesis space F becomes richer, the approximation results improve. However,

n

increasing the hypothesis space F arbitrarily will eventually lead to an increase in the complexity
measure of F, as described in Equation 6. Researchers (e.g., Bartlett et al. 2019, Schmidt-Hieber
2020) have examined how various complexity measures, including Vapnik-Chervonenkis dimen-
sion (VC-dimension), pseudodimension, and covering number, scale with respect to (L, Pmax, V).
Specifically, these papers proved all three complexity measures increase linearly in V. For achiev-
ing good convergence rates of the excess risks from Equation 6, it is crucial to properly specify
the network architecture [i.e., the choices of (L, pmax, )] that balances the tension between the
complexity of F and approximation error in terms of sample size 7, data dimension 4, and function
smoothness 7 > 0.

2.2.1. Deep sparse ReLU networks versus linear estimators. Among the list of articles to
be discussed, the seminal work of Schmidt-Hieber (2020), which first appeared on arXiv in 2017,
paved the way for providing the statistical guarantees of deep ReLU networks in the sense of
Equation 6. Schmidt-Hieber (2020) demonstrated that sparsely connected deep ReL.U networks
(Equation 2) significantly outperform traditional statistical estimators. Specifically, if the unknown
regression function f, is a composition of functions that are individually estimable faster than
O(n_b% ), then a composition-based deep ReLU network is provably more effective than estima-
tors that do not utilize compositions, such as wavelet estimators. For further discussion, readers
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are directed to Kutyniok (2020), Ghorbani et al. (2020), Shamir (2020), and Kohler & Langer
(2020).

The sparse network structure manifested in A in the article had already been proven to be
impressively effective in the compressed learning literature (Iandola et al. 2016; Han et al. 2015,
2016). The sparsity of networks can be achieved via pruning technique (Han et al. 2015). Iandola
et al. (2016) empirically showed that the pruned CNNs with 50 times fewer parameters achieve
the same accuracy level as AlexNet (Krizhevsky et al. 2012) in image classification tasks, and these
results pave the way for the employment of neural networks in small devices such as smart phones
or smart watches.

In the statistical literature, after the publication of Schmidt-Hieber (2020), several other works
analyzed sparsely connected networks. Imaizumi & Fukumizu (2019) derived the excess risk con-
vergence rate of sparse ReLU neural networks estimating piecewise smooth functions, showing
that deep learning can outperform the classical linear estimators, including kernel ridge regres-
sors, Fourier estimators, splines, and Gaussian processes. (Here, we refer to the estimators as linear
when they are linearly dependent on the outputy.) They pointed out that the discrepancy between
deep networks and linear estimators appears when the target function is nonsmooth. Suzuki (2018)
showed the great adaptiveness of sparse ReLU networks (Equation 2) for the functions in Besov
space, a general function space including Hélder space. Specifically, it also allows functions with
spatially inhomogeneous smoothness with spikes and jumps. Suzuki (2018) mentioned that deep
networks possess strong adaptiveness in capturing the spatial inhomogeneity of functions, whereas
linear estimators are only able to capture the global properties of target functions and cannot cap-
ture the variability of local shapes. Later, Hayakawa & Suzuki (2020) proved the linear estimators
cannot distinguish the function class and its convex hull. This results in the suboptimality of linear
estimators over a simple but nonconvex function class, on which sparsely connected deep ReLU
nets can attain nearly the minimax optimal rate. There also have been efforts (Farrell et al. 2021,
Kohler & Langer 2021) to study the statistical guarantees of densely fully connected networks
without sparsity constraints. However, the rates of excess risk they obtained are suboptimal.

2.2.2. Avoiding the curse of dimensionality. According to the classical result from Donoho
& Johnstone (1998), for estimating functions in the Holder class with smoothness 7 > 0, the
unimprovable minimax convergence rate of excess risk is

inf sup  Ex,, [(£,X) - £,0)] =O<n_2"/z"+d), 7.

fu f,e{Holder)

This rate can be problematic when the data dimension is much larger than the smoothness of
function space. In this case, the convergence rate in Equation 7 becomes quite slow in #. Nonethe-
less, high-dimensional data are often observed in real-world applications. For instance, in the
2012 ImageNet challenge, data were RGB images with a resolution of 224 x 224, which means
d=3 x 224 x 224.Then, the rate in Equation 7 cannot explain the empirical success of deep learn-
ing. Motivated by this, many researchers have putin considerable effort to avoid the d-dependence
in the denominator of the rate in Equation 7.

Several routes exist to avoid the curse. One typical approach is to consider the various types
of function spaces G with various smoothness: mixed-Besov space (Suzuki 2018) and Korobov
space (Montanelli & Du 2019). Another alternative is to impose a structural assumption on the
target function f,,. Such structures include additive ridge functions (Fang & Cheng 2023), com-
posite functions with hierarchical structures (Schmidt-Hieber 2020, Han et al. 2022), generalized
single index models (Bauer & Kohler 2019), and multivariate adaptive regression splines (Kohler
etal. 2022). Another line of work focuses on the geometric structure of the feature space X'. These
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Besov space
@ 1, with spikes/jumps (Suzuki 2018)
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Hélder space @ Nonsmooth f, (Imaizumi & Fukumizu 2019)

: x=1[0,14 . ) T
X : special geometry G fp with structural assumptions (Schmidt-Hieber 2020)

0 G e G Q f, on low-dimensional manifold (Chen et al. 2022a)

G f, on nonsmooth fractal set (Nakada and Imaizumi 2020)

Figure 1

Compared with classical linear estimators (wavelets, kernel ridge regressors, etc.), sparsely connected neural networks are more adaptive
in estimating functions f,, with special structures. The figure illustrates the different settings of function classes G where neural
networks exhibit superior adaptability over classical estimators.

works take the advantage of high-dimensional data having practically low intrinsic dimensional-
ity (Roweis & Saul 2000, Tenenbaum et al. 2000). Under this setting, Nakada & Imaizumi (2020)
showed deep neural networks can achieve a fast rate over a broad class of measures on X, such as
data on highly nonsmooth fractal sets. This should be contrasted with the fact that linear estima-
tors, which are known to be adaptive to intrinsic dimensions, can achieve fast convergence rates
only when the data lie on smooth manifolds. Chen et al. (2022a) showed the adaptiveness of deep
ReL U networks to the data with low-dimensional geometric structures. They were interested in
estimating target function f, in Hélder spaces defined over a low-dimensional manifold M em-
bedded in R?. Figure 1 summarizes the cases on function classes G where neural nets exhibit
superior adaptability over classical estimators.

Recently, Suh et al. (2022) studied deep ReLU networks estimating Holder functions on a
unit sphere and showed that these networks can avoid the curse of dimensionality as function
smoothness increases with the data dimension d, » = O(d). This behavior was not observed in
the aforementioned literature, where X is set as a cube, X := [0, 1]¢. When X is a cube, several
studies (Jiao etal. 2021, Lu et al. 2021, Shen et al. 2021) have attempted to track and reduce the d-
dependence in the constant factor hidden in the big-O notation in Equation 7. Interested readers
are directed to the detailed comparisons of the results from these works presented by Suh et al.
(2022, appendix C).

Note that the aforementioned works are based on the constructions of sparse networks. From
a technical perspective, the sparsity assumption is natural in the sense of Equation 6. Nonethe-
less, as mentioned by Ghorbani et al. (2020), it is still an open question whether the sparsity
(N) is a sufficient complexity measure of F for generalizability, as densely connected networks
are observed more commonly in practice without the regularized penalties. This often leads to
overparametrized networks with huge complexity on F, which does not guarantee good general-
izability in the sense of Equation 6. Given this observation, one popular heuristic argument for
explaining the good generalizability of dense neural nets is the implicit regularization of gradient-
based algorithms; that is, the model complexity is not captured by an explicit penalty but by
the dynamics of the algorithms implicitly. For some special cases (Gunasekar et al. 2018, Ji &
Telgarsky 2019), it has been shown that the gradient-based methods provably find the solutions
of low complexity in the huge parameter space (e.g., a low-rank matrix in matrix estimation
problems). A similar phenomenon has been empirically observed in function estimation prob-
lems via neural networks (Cao & Gu 2019, W. Hu et al. 2020), sparking further research that is
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discussed in the next section. For more in-depth discussions on these issues beyond what is cov-
ered in this review, readers should consult He & Tao (2021, section 3), Neyshabur (2017), and
references therein. Reviews on approximation-based statistical guarantees of neural networks for
classification problems are provided in Supplemental Appendix B due to space limitations.

3. TRAINING DYNAMICS-BASED STATISTICAL GUARANTEES

The literature introduced in Section 2 relies on the assumption that the global minimizer of
the empirical risk, ﬁ in Equation 5, is obtainable. However, due to the nonconvex nature of the
loss function, neural networks estimated using commonly employed gradient-based methods lack
guarantees of finding f,,, which leads to the following natural question: Does the neural network
estimated by gradient-based methods generalize well?

The articles discussed shortly try to answer to the above question. Due to the complex nature
of the problem, most articles we review consider the following shallow neural network (i.e., a
network with one hidden layer) fw(x) with a number of hidden neurons M:

M
fwx) = % Zﬂ,.a(w:x), 8.
r=1

where x € X C R is an input vector, {w, € R?}* are the weights in the first hidden layer, and

{a, € RYL, are the weights in the output layer. Let us denote the pair W := {(4,, w,)}*,. The

network dynamic is scaled with the factor §;. If the network width (M) is small, the scaling fac-

tor has negligible effects on the network dynamics. But for the wide enough networks (i.e., in
the overparametrized setting), the scaling difference yields completely different behaviors in the

dynamics. Given a large enough M, we focus on two specific regimes: the neural tangent ker-
nel (NTK) regime (Jacot et al. 2018, Du et al. 2019) with & = +/M (Section 3.1) and the MF
regime (Mei et al. 2018b, 2019) with & = 1 (Section 3.2). Additionally, we review several works
that try to address the drawbacks of the NTK framework, as well as some that provide unifying
perspectives on these two regimes (Section 3.3).

We focus on reviewing the articles on the ¢,-loss function: Lg (W) = % > ()/,- - fw(x,-))z.
Note that in contrast to Equation 35, structural requirements such as F(L,p,N) are removed.
The model parameter pairs W are updated through the gradient-based methods. Let Wy, be the
initialized weight pairs. Then, we have the following GD update rule with step size n > 0 and
k> 1:

GD : W(k) = W(k—l) - UVWES(W) |W:W(k—1) . 9.

Another celebrated gradient-based method is stochastic GD (SGD). This algorithm takes a
randomly sampled subset (55) of the data D and computes the gradient with the selected samples,
and this significantly reduces the computational burdens in GD. Another frequently adopted al-
gorithm in practice is noisy GD, which adds centered Gaussian noise to the gradient of the loss
function in Equation 9. Adding noise to the gradient helps with the training (Neelakantan et al.
2015) and generalization (Smith et al. 2020) of neural networks.

3.1. Neural Tangent Kernel Perspective

Over the past few years, the NTK (Chizat & Bach 2018, Jacot et al. 2018, Lee et al. 2018, Arora
et al. 2019a) has been one of the most seminal discoveries in the theory of neural networks. The
underpinning of the NTK-type theory comes from the observation that in a wide enough neural
net, model parameters updated by GD stay close to their initializations during the training, so
that the dynamics of the networks can be approximated by the first-order Taylor expansion with
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respect to its parameters at initialization. That is, if we denote the output of a neural network as
fwy,(x) € Rwith input x € A and model parameter Wy, updated at the kth iteration of GD, then
the dynamics of fi, (x) over & > 1 can be represented as follows:

Twey ®) = fwg ®) + (V fiwg, %), Way — W) + o |[Way — Wi l15), 10.
where o(|Wqy — Wy |13) is the small random quantity that tends to 0 as the network width gets
close to infinity, measuring the distance between an updated model parameter and its initialization
in Frobenius norm. Specifically, it can be shown that Wy — W I3 < O(ﬁ) with sufficiently
large M (see, e.g., Du et al. 2018, remark 3.1). In this setting, the right-hand side of Equation 10
is linear in the network parameter W,. As a consequence, training on ¢,-loss with GD leads to
a kernel regression solution with respect to the (random) kernel induced by the feature mapping
¢(x) := Vw, f(x) for all x € X. The inner product of two feature mappings evaluated at two data
points x; and x; is denoted as KM(x;, xj) := (p(x;), p(x;)) forall 1 <i,j < n.

Note that K#)(, ) is a random matrix with respect to the initializations W(y,. It has been shown
to converge to its deterministic limit (M — o0) in probability pointwisely (Jacot et al. 2018, Lee
et al. 2018, Arora et al. 2019a) and uniformly (Lai et al. 2023) over X x X. The limit matrix is
named NTK, denoted as {(K*(x;,x;)} <<, € R"". Hereafter, we write the eigen decomposition
of K®¥ = Z;;] A jvjv;-r, where A; > --- > 1, > 0 with corresponding eigenvectors v; € R”.

3.1.1. Optimization of neural nets in the neural tangent kernel regime. Many articles tackle
the optimization properties of neural networks in the NTK regime. Under the above setting, Du
etal. (2018) proved the linear convergence of training loss of shallow ReL U networks. Specifically,
the authors randomly initialized 4, ~ Unif{—1, +1} and w, ~ A/(0,Z), and trained the w, via GD
with a constant positive step size n = O(1). Here, the linear convergence rate means that the
training loss at the #th GD decays at a geometric rate with respect to the initial training loss,
which is explicitly stated by Du et al. (2018, theorem 4.1) as

A\
IUWMw—yM§<1—ﬁ?>IUWMw—yM- I,

Their result requires the network width M to be on the order of Q(Z—i), and the decay rate is
dependent on the minimum eigenvalue of the NTK, 4,. Here, for the geometric decay rate, 1,
needs to be strictly greater than 0 induced from the data nonparallel assumption (i.e., no two
inputs are parallel).

Afterwards, there have been several attempts to reduce the overparametrization size. One work
we are aware of is Song & Yang (2020) where they used matrix Chernoff bound to reduce the width
size up to M = Q(Z—i) with a slightly stronger assumption than the data nonparallel assumption.
Several subsequent works by Allen-Zhu et al. (2019b), Du et al. (2019), Zou et al. (2018), Wu et al.
(2019), Oymak & Soltanolkotabi (2020), and Suh et al. (2021) extended the results showing the
linear convergence of training loss of deep ReLU networks with L hidden layers. For a succinct
comparison of the overparametrized conditions on M in aforementioned articles, we direct readers
to Zou & Gu (2019, table 1).

3.1.2. Spectral bias of shallow ReLU networks. Motivated by the result in Equation 11, re-
searchers further studied the spectral bias of deep neural networks, investigating why the neural
dynamics learn the lower-frequency components of the functions faster than they learn the higher-
frequency counterparts. The specific results are stated in terms of eigenvalues 1; >, > ... and
corresponding orthonormal eigenfunctions ¢;(-), #2(-), ... of integral operator Lk~ induced by
K*>:

@ﬁm:ﬂwmwmmﬂVﬁﬁm,
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where £2(X) is an L,-space on X. Specifically, Cao et al. (2020) and Bietti & Mairal (2019) pro-
vided the spectral decay rates of (i), for shallow ReLU networks when x is from a unit-sphere
equipped with uniform measure as follows.!

Proposition 1 (Cao etal. 2020, theorem 4.3; Bietti & Mairal 2019, proposition 5). For
the NTK corresponding to a two-layer feed-forward ReLU network, the eigenvalues (1),
satisfy the following:

we = (1), when k£ =0, 1,
wr =0, when k(> 3) is odd,
e = Qmax(k~9"1 d=*-1)),  when k(> 2) is even.

The decay rate is exponentially fast in input dimension d for k¥ >> 4. An interesting benefit of
having a specific decay rate is that we can measure the size of RKHSs induced from the kernel K*.
(We denote this RKHS as 7 for later use.) The slower the decay rate is, the larger the RKHS
becomes, allowing higher-frequency information of function to be included.

With the specified eigendecay rates on g, Cao et al. (2020, theorem 4.2) proved the spec-
tral bias of neural network training in the NTK regime. Specifically, as long as the network is
wide enough and the sample size is large enough, GD first learns the target function along the
eigendirections of NTK with larger eigenvalues, and learns the other components corresponding
to smaller eigenvalues later. Similarly, Hu et al. (2019) showed that GD learns the linear compo-
nent of target functions in the early training stage. But, crucially, they do not require the network
to have a disproportionately large width, and the network is allowed to escape the kernel regime
later in training.

3.1.3. Generalization of neural nets in the neural tangent kernel regime. Here, we re-
view some important works that study the generalizability of Equation 8. To the best of our
knowledge, Arora et al. (2019b) provided the first step in understanding the role of NTK in the
generalizability of neural nets. Specifically, they showed that for M = Q("ZI;’%) and £ > Q( ﬁ),
the ¢;-population loss of fw(k> (x) is bounded by

E[(fivg, 9 — y)?] < o(,/ w) 1.

Observe that the numerator in the bound can be written as y" (K*) 'y := 3., +-(v]'y)’. This
implies the projections v,y that correspond to small eigenvalues A; should be small for good gen-
eralizations on unseen data. This theoretical result is consistent with the empirical finding of
Zhang et al. (2018), who performed empirical experiments on MNIST and CIFAR-10 datasets,
showing that the projections {(v; y)}~, sharply drop for true labels y, leading to the fast conver-
gence rate. In contrast, when the projections are close to being uniform for random labels vy, it
leads to slow convergence (see Zhang et al. 2018, figure 1).

However, the bound of Equation 12 is obtained in the noiseless setting and becomes vacuous
under the presence of noise. In this regard, under the noisy setting (Equation 4), Nitanda & Suzuki
(2020) showed that

E[ll fir, ) — £,00I2,] < Ok 7F7), 13.

"Note that eigenvalues of K* ({r:}2_,) and eigenvalues of Ly [(14)e] are different.

Sub o Cheng



where the target function f, belongs to the subset of H*, and fyy,, is a shallow neural network with
asmooth activation function that approximates ReLLU. Here, the network is estimated via one-pass
SGD (take one sample for gradient update and the samples are visited only once during training),
minimizing ¢,-regularized expected loss. This setting leads to # = . The rate of Equation 13 is
minimax optimal, which is faster than O(ﬁ) from Arora et al. (2019b). It is characterized by two
control parameters, 8 and 7, where B > 1 controls the size of H* and » € [1(/)2, 1] controls the
size of subset of H* where f,, belongs. The bound of Equation 13 has an interesting bias—variance
trade-off between these two quantities B and 7. For large g, the whole space H* becomes small,
and the subspace of H* needs to be as large as possible for the faster convergence rate, and vice
versa.

However, as noted by Hu et al. (2021), the rate in Equation 13 requires the network width M to
be exponential in 7. The work reduced the size of overparametrization to (1) when the network
parameters are estimated by GD. The article proved that the overparametrized shallow ReLU
networks require ¢,-regularization for GD to achieve the minimax convergence rate (’)(n’zzll%I )-
Later, Suh et al. (2021) extended the result to deep ReLU networks in the NTK regime, showing
that £,-regularization is also required for achieving the minimax rate for deep networks.

3.2. Mean-Field Perspective

A MF viewpoint is another interesting paradigm to help us understand the optimization landscape
of neural network models. Recall that neural network dynamics in the MF regime corresponds to
o =1 in Equation 8.

The term mean-field comes from an analogy with mean-field models in mathematical physics,
which analyze the stochastic behavior of many identical particles (Ryzhik 2023). Let us denote
0, := (a,,w,) € R¥*! and 0,(x,6,) := 2,0 (w, x) in Equation 8. Weight pairs {§,}L, are considered
as a collection of gas particles in D-dimensional spaces with D :=d + 1. We consider that there are
infinitely many gas particles, allowing M — oo, which yields the following integral representation
of neural dynamics:

M
1 M—o0
i Z(n(x; 0,) — f(x; p):= /a,,(x; 0)p(do), 14.
r=1
where 6, ~ p for » = 1,..., M. The integral representation of Equation 14 is convenient for the

mathematical analysis as it is linear with respect to the measure p (see, e.g., Bengio et al. 2005).

Under this setting, the seminal work of Mei et al. (2018b) studied the evolution of particles
9® e RP updated by k steps of one-pass SGD (take one sample for the gradient update, and the
samples are visited only once during training) under ¢,-loss. Interestingly, they proved that the
trajectories of the empirical distribution of 8®), denoted as 7} := & M5 o weakly converge to
the deterministic limit p, € P(RP) as ¥ — oo and M — oo. The measure p, is the solution of the
following nonlinear partial differential equation (PDE):

dor = Vo (0 VoW (O; 01)),  WO; pr) :=V(0) +/U(9,9_)pt(d9_), 5.
V(@) = —E{yo.(x; 9)}, U(61,602) = Efo.(x; 01)0.(x; 62)}.

The above PDE describes the evolution of each particle (9,) in the force field created by
the densities of all the other particles. (We provide more descriptions of the above PDE in
Supplemental Appendix C.) Denote R(p;) := E[(y — f(x; p;))*] and let Ry be the empirical
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version of R; then, under some regularity assumptions on the network, we have

—~ 1 M
sup |R(or) — Rat(Bisjon))| < €T Var Vv Zn- D+ log I 16.
0<t<T n

"The conditions for the bound to vanish to 0 are (2) M > D, (b)) n < 3, and (¢) the PDE converges
in T = O(1) iterations. It is interesting to note that the generic ordinary differential equation ap-
proximation requires the step size 7 to be less than the order of the total number of parameters
in the model (n « %), whereas in this setting the step size n < % should be enough. Also,
recall that the number of sample size # is equivalent to the iteration steps & := [ L] of one-
pass SGD with T' = O(1). Then, this means n = O(D) « O(MD) should be enough for a good
approximation. Another notable fact is that, in contrast to the NTK regime, the evolution of
weights 0, is nonlinear, and in particular, the weights move away from their initialization dur-
ing training. Indeed under mild assumptions, we can show that for a small enough step size 7,
limp oo 10% — 0 |13/M = Q(n?) in the MF regime, while sup,., |69 — 6©|3/M = O(n/(Md))
in the N'TK regime (see Bartlett et al. 2021). B

Despite the nice characterizations of SGD dynamics, the bound in Equation 16 still has room
for improvement; the number of neurons M is dependent on the ambient data dimension 4, and
the bound is only applicable to the SGD with short convergence iterations 7 = O(1). A follow-up
work (Mei et al. 2019) has attempted to tackle these challenges. Particularly, they proved that there
exists a constant K that only depends on intrinsic features of the activation and data distribution,
such that with high probability, the following holds:

Tog(M
sup |R(or) — Rat(Birse))| < KeKT' {,/ % +Jd+ log(M)ﬁ}. 17.
0<t<T

A remarkable feature of this bound is that as long as Tn = O(1) and K = O(1), the number of
neurons only needs to be chosen where M > 1 for the MF approximation to be accurate. The
condition Ty = O(1) mitigates the exponential dependence on 7, and the bound does not need
to scale with the ambient dimension 4. Later, researchers from the same group generalized the
result into multi-layer settings (Nguyen & Pham 2023).

3.3. Beyond the Neural Tangent Kernel and Mean-Field Regimes

Despite nice theoretical descriptions on the training dynamics of GD in loss functions, Arora
et al. 2019a), Lee et al. (2018), and Chizat & Bach (2018) empirically found significant perfor-
mance gaps between NTK and actual training in many downstream tasks. For instance, Arora et al.
(2019a) derived the CNN-based convolutional NTK (CNTK) and empirically found 5% ~ 6%
performance gaps between the CNN- and CN'TK-based kernel regressors in image classification
tasks, with CNN performing better. This indicates the potential benefits of finite width in neural
networks.

3.3.1. Beyond the neural tangent kernel regime. These gaps have been theoretically studied
in several articles, including those of Wei et al. (2019), Allen-Zhu & Li (2019), Ghorbani et al.
(2021a), Yehudai & Shamir (2019), and Chizat & Bach (2018). They showed that NTK has worse
generalization guarantees than finite-width neural networks in some settings. For example, Mei
et al. (2018a) demonstrated that training a neural network with one hidden neuron means that it
can efficiently learn a single neuron target function with O(d log d) samples, whereas the corre-
sponding RKHS has a test error that is bounded away from zero for any sample size polynomial
in d (Yehudai & Shamir 2019, Ghorbani et al. 2021b). However, kernel methods often perform
comparably to neural networks in some image classification tasks (Li et al. 2019, Novak et al.
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2020). Ghorbani et al. (2021a) provided a unified framework under spiked covariate models to ex-
plain this divergence, showing that while RKHSs and neural networks perform similarly in certain
stylized tasks, RKHS performance deteriorates under isotropic covariate distributions (e.g., noisy
high-frequency image components), whereas neural networks are less affected by such noise. Wei
et al. (2019) gave an interesting example in which NTK or any kernel methods are statistically
limited, whereas regularized neural networks have better sample complexity. They proved that
there is a Q(d) sample-complexity gap between the regularized neural net and kernel prediction
function for estimating f,(x) = x;x; with x; ~ {1} for x € R%.

The aforementioned works explained the superiority of neural networks over the networks in
the NTK regime under some highly stylized settings. There also has been another line of works (Li
& Liang 2018, Allen-Zhu et al. 2019a, Bai & Lee 2020) to explain how the networks estimated
through gradient-based methods generalize well but, critically, do not rely on the linearization
of network dynamics. Under the distribution-free setting (i.e., no distributional assumptions on
covariates), Allen-Zhu et al. (2019a) provided optimization and generalization guarantees for
three-layer ReLU networks, learning the function classes of three-layer networks with smooth
activation functions. They showed that three-layer ReLU networks can learn a larger function
class than two-layer ReLU networks do. Unlike NTK techniques, their approach allows noncon-
vex interactions across hidden layers, enabling parameters trained by SGD to move far from their
initializations. Motivated from Allen-Zhu et al. (2019a), Bai & Lee (2020) studied the optimiza-
tion and generalization of shallow networks with smooth activation functions o (-) via relating the
network dynamics fw(x) in Equation 8 with second-order (or quadratic) approximations. They ex-
plicitly showed that the sample complexity of the quadratic model is smaller than that of the linear
NTK model in learning some stylized target functions by the factor of O(d). Similarly, relying on
tensor decomposition techniques instead of quadratic approximation, Li & Liang (2018) showed
the separations of shallow ReLU networks and NTK regressors.

3.3.2. Unifying views of neural tangent kernel and mean-field regimes. There have been
several attempts to give a unifying view of the NTK and MF regimes, including that of Chen et al.
(2020). The article is motivated by complementing the cons of both regimes, whose pros and cons
are summarized in Table 1. Chen et al. (2020) showed the two-layer neural networks learned
through noisy GD in MF scaling can potentially learn a larger class of functions than networks in
NTXK scaling can do. One seminal work, that of Yang & Hu (2022), identified a set of scales for
initialized weights and SGD step sizes where feature learning occurs in deep neural networks in
the infinite width limit. They offer a unified framework that encompasses parametrizations in both
the NTK and MF regimes. Feature learning is the core property of neural networks: the ability
to learn useful features out of raw data (Girshick et al. 2014, Devlin et al. 2018) that adapt to the
learning problem. For instance, BERT (bidirectional encoder representations from transformers)
(Devlin et al. 2018) leveraged this property of neural networks for sentence sentiment analysis.

Table 1 Neural tangent kernel versus mean-field regimes

Neural tangent kernel regime Mean-field regime
Pros 1. Same scaling as in practice 1. Does not require 8% to be close to 6©
2. Finite time convergence rate 2. Potentially learns a larger class of functions

3. Generalization bounds

Cons | 1.Requires 6® to be close to 6© 1. Not the same scaling as in practice

2. No finite-time convergence rate

3. No generalization bounds
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Figure 2

Development of the literature (y-axis) on algorithm-based neural network analysis over time (x-axis). In our
view, the ultimate goal (represented as a star) of this line of research is to theoretically demystify feature
learning of neural nets with deep layers and finite widths, closing the gap between theory and practice. Note
that the kernel regressor in the NTK regime does not exhibit feature learning functionality. Abbreviations:
GD, gradient descent; NTK, neural tangent kernel.

Specifically, in the regime where the network width and data size are comparable, Ba et al. (2022)
showed that nontrivial feature learning occurs at the early phase (one gradient step in GD) of
shallow neural network training with a large enough step size. Similarly to Ghorbani et al. (2021a),
Ba et al. (2024) examined the advantages of shallow neural networks with finite width over kernel
methods under the spiked covariance model. Both studies demonstrated that neural networks and
kernel methods benefit from stronger low-dimensional structures (i.e., larger spikes). However,
Ba et al. (2024) focused on gradient-based optimization guarantees, while Ghorbani et al. (2021a)
provided only approximation-based analysis.

Interested readers can find more detailed descriptions on the works by Wei et al. (2019),
Ghorbani et al. (2021a), Bai & Lee (2020), Chen et al. (2020), and Yang & Hu (2022) in
Supplemental Appendixes D and E. In Figure 2, we summarize our own views on the
developments in the literature along this line of research.

4. STATISTICAL GUARANTEES OF GENERATIVE MODELS

In this section, we sequentially explore the statistical literature on three topics: GANSs, diffusion
models, and ICL in LLMs.

4.1. Generative Adversarial Networks

Opver the past decade, GANs (Goodfellow et al. 2014) have stood out as a significant unsupervised
learning approach and are known for their ability to learn the data distribution and efficiently
sample the data from it. The main goal of GANSs is to learn the target distribution X ~ v through
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adversarial training between a discriminator and a generator. Here, the generator takes the input
Z from prior distributions such as Gaussian or uniform (£ ~ ) and the input is push-forwarded
by the transformation map g: Z — g(Z). In the seminal article of Goodfellow et al. (2014), the
distribution of random variable g(2) is referred to as an implicit distribution u. The primary
objective of the generator is to produce synthetic data from p that closely resembles samples from
the target distribution.

The adversarial training between the discriminator and generator is enabled through opti-
mizing the following minimax problem with respect to functions in the generator class G and
discriminator class F:

(g", f*) € arg min arg max {Ezwnf(g(Z)) - IEXWf(X)}. 18.
g€g feF
In practice, the above expectations can be approximated with 7 training data from v and » drawn
samples from . The inner maximization problem in Equation 18 is an integral probability metric
(IPM) (Miiller 1997), which quantifies the discrepancy between two distributions x and v with
respect to a symmetric function class, f € F, then — f € F, with

dr(1,v) = sup { Eeo f @) - Ewa(y)}. 19.
feF

When F is taken to be all 1-Lipschitz functions, djy, (-, -) is the Wasserstein-1 distance; when F
is the class of all indicator functions, drv(-, -) is the total variation (T'V) distance; and when F is
taken as a class of neural networks, dan(, -) is the neural net distance (see Arora etal. 2017). Under
this setting, a generator from G attempts to minimize the IPM between p and v.

4.1.1. Generalization of generative adversarial networks. A question that naturally arises is,
What does it mean for GANS to generalize effectively? Arora etal. (2017) provided a mathematical
definition for generalization in GANs in terms of IPM.

Definition 1. Let 1, and v,, be the empirical distributions of w and v. For some
generalization gap & > 0, if it holds with high probability that

|df(l’t7 \)) - d}—(ﬁmﬁm” =g, 20.

with 7z being polynomially dependentin ¢, then the divergence dz(-, -) between distributions
generalizes.

This means that if the absolute discrepancy between population divergence and empirical di-
vergence of 1 and v can be arbitrarily controlled with z polynomially generated samples, the GAN
generalizes well. The same article proved, under this definition, that GANs cannot generalize with
respect to Wasserstein-1 distance and Jensen-Shannon divergence as # = O(s P°¥®) is required.
But they generalize well with respect to neural net distance with » = O(plog(L) - e=?), where p is
the total number of parameters in the discriminator neural network and L is a Lipschitz constant
of discriminators with respect to parameters.

Nonetheless, as noted by Chen et al. (2022b), Zhang et al. (2018), and Arora et al. (2017),
this result has some limitations: (#) The sample complexity is involved with unknown Lipschitz
constants L of the discriminator. (4) A small neural net distance does not necessarily mean that
two distributions are close (Arora et al. 2017, section 3.4). (¢) Sample complexity is not involved
with the complexity of generator class G under the assumption that the generator can approximate
well enough the target data distribution. (4) No concrete architecture of discriminator networks
is given. Some articles attempted to address the first two limitations (Zhang et al. 2018, Jiang et al.
2018, Bai et al. 2019), and their attempts are nicely summarized by Chen et al. (2022b). In this
review, we discuss works by Chen et al. (2022b) and Liang (2021) that tackle the issues raised in
points ¢ and d concretely through tools from the approximation theory of neural networks.
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4.1.2. Statistical guarantees of generative adversarial networks. Note that the functions
in discriminator and generator classes either can be classical nonparametric regressors (random
forests, local polynomial, etc.) or can be both parametrized by neural networks. Here, we focus on
the latter case, which is more commonly used in practice. Specifically, let us denote F := {f,(:) :
R? — R} as the discriminator class and G := {gy(2) : R” — R} (with m < d) as the generator class,
with @ and 6 being denoted as network parameters of the respective classes, and we are interested
in estimating the parameters by minimizing the following optimization problem:

~

i) € rgmin max (5, .02 - B, £,00) 21,
0:g9€G w:fo€F

where E,, (") [resp. E,()] denotes the empirical expectation with 7 generator samples (resp.

7 training samples).

4.1.3. Summary of Liang (2021). Given that the optimal parameters of generator 6, in
Equation 21 can be obtained, Liang (2021) studied how well the implicit distribution estima-
tor uz, . [i.e., the distribution of the random variable gz (Z)] gets close to the target distribution
v in the TV distance. Under some regularity assumptioﬂs on the architectures of gy and f,,, Liang
(2021, theorem 19) proved the existence of (gs(2), f-,) pairs satisfying the bound

1 1
B (o i) < /dzuogm)(ogm logn) 2,
: m n
In the rate of Equation 22, L and 4 are the depth and width of the generator networks, respectively.
This result allows the very deep network as L < \/(n A m)/log(n V m). It is worth noting that the
generator requires the width of the network to be the same as the input dimension d so that the
invertibility condition on the generator is satisfied. As for the discriminator, it can be constructed

by concatenating two networks that have the same architecture as the one from the generator,
and with the additional two layers (i.e., network f;, has L + 2 layers). The gy and f,, used leaky
ReLU and dual leaky ReLLU as activation functions, respectively, for their invertibility. However,
this invertibility condition is often violated in practical uses of GANSs.

4.1.4. Summary of Chen et al. (2022b). Chen et al. (2022b) subsequently provided more
flexible network architectures for gp and f,, without requiring the invertibility condition on gen-
erator and activation functions (i.e., the authors consider a ReLLU activation function). The article
mainly focuses on three interesting scenarios that impose structural assumptions on the target
distribution v:

1. The target distribution v is assumed to have a o(>0)-Hoélder density p, with respect to
Lebesgue measure in R?, and the density is lower-bounded away from 0 on a compact convex
subset X C R?.

2. The target distribution v is supported on the ¢g-dimensional (¢ < d) linear subspace of the
data domain X C R, where the density function is assumed to be in a-Hélder class.

3. The target distribution v is supported on X' C [0, 1]¢ with ¢-dimensional (7 < d) nonlinear
K-mixture components, where each component’s density function is in «-Hélder class.

In scenario 1, the discriminator class F is assumed to be the B-Holder class for 8 > 1. In
scenarios 2 and 3, F is considered to be a collection of 1-Lipschitz functions. The convergence
rate of the IPM, the depth L, and the maximum widths pn., of the generator and discriminator in
each scenario are summarized in Table 2.

In the scenario 1, the convergence rate cannot avoid the exponential dependence on 4, aligning
with the known minimax lower bound (Tang & Yang 2022). The result in scenario 2 indicates
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Table 2 Summary of depth (L) and width (pmax) of generators (gy) and discriminators (f,,)
and the convergences of integral probability metrics under three specially designed scenarios
in the generative adversarial networks framework

Convergence
Scenario L Pmax rate
. P et B
Scenario 1 g6 O(W logn) O(dn @ DeFTd) O(n~ 75 log2 )
fo O(zﬂ%logn) O(nzé%)
Scenario 2 2 O(2aa+q log ) O(qn @D v d) @(n_le.q logz )
fo O(z4 log) O™ v d)
. 1
Scenario 3 g0 o (% log n) O(Kdn<) O(dn”~ i )
for O(logn +d) O(Wl%)

GAN s can avoid the curse of dimensionality by being adaptive to the unknown low-dimensional
linear structures and achieving faster rates than the parametric rate n~*. However, rather than
the real-world data being centered in the low-dimensional linear subspace, mixture data are more
commonly observed in practice (e.g., MNIST data or images in CIFAR-10). In the scenario 3, the
rate depends linearly on 4 and exponentially on ¢, showing that GANs can capture nonlinear data
structures. The depth L of networks grows logarithmically with sample size . In contrast with
the work of Liang (2021), the widths of networks are not the same as the input dimension d.

4.2. Score-Based Diffusion Models

Score-based diffusion models consist of two processes (Song et al. 2020). The first step, the forward
process, transforms data into noise. Specifically, the score-based diffusion model uses the following
stochastic differential equation (SDE) (Sirkkid & Solin 2019) for data perturbation:

dx = f(x,2)dt + g(#)dW, 23.

where f(x, #) and g(¢) are the drift and diffusion coefficients, respectively, and W, is a standard
Wiener process (a.k.a. Brownian motion) indexed by time ¢ € [0, T]. Here, the fand g functions
are user-specified, and Song et al. (2020) suggest three different types of SDEs for data pertur-
bation: variance exploding, variance preserving, and subvariance preserving. Allowing diffusion
to continue long enough with 7" being sufficiently large, it can be shown that the distribution
of x, converges to some easy-to-sample distributions 7, such as normal or uniform distributions.
Specifically, when f:= —x, and g := +/2, Equation 23 is known as the Ornstein-Uhlenbeck pro-
cess, and it has been proven that p, := Law(x,) — 7, with 7 being normal and exponentially fast in
2-Wasserstein distance (see, e.g., Bakry et al. 2014). However, despite this convergence result, it
is analytically difficult to know the exact form of pr, and it is often replaced by 7 in practice when
starting the reverse process.

The second step, reverse process, is a generative process that reverses the effect of the forward
process. This process learns to transform the noise back into the data by reversing the SDEs in
Equation 23. Through the Fokker—Planck equation of marginal density p,(x) for time # € [ty, T,
the following reverse SDE (Anderson 1982) can be easily derived:

dx = [f(x, t) — g(l‘)2 Vy logp,(x)] dr + g(t)dl/f/t. 24.
Here, the gradient of log p,(x) with respect to the perturbed data x(z) is referred to as a score

function, d¢ in Equation 24 is an infinitesimal negative time step, and di¥, is a Wiener process
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running backward in time, with # 7' — #,. In practice, 7 is usually chosen to be a small number
close to 0, but not too close to 0 to prevent the blow up of the score function. There are various
ways to solve Equation 24—for instance, a discretization scheme such as Euler-Maruyama, or a
theory-driven method such as probability flow (for a more detailed exposition on these methods,
see Song et al. 2020). The papers cited in this article focus on the discretization scheme, and
readers can refer to S. Chen et al. (2023a) for recent theoretical understanding of the probability
flow in the diffusion model.

The score function, Vilogp,(x), is approximated by a time-dependent score-based model
S¢(x(2), #) which is parametrized by neural networks in practice. The network parameter 6 is
estimated by minimizing the following score-matching loss:

0% := arg min By, 71 Exe)x0) Ex0) [k(f)z [So(x(2),2) — Vi log p, (x(2) | X(O))Hi ]7 25.
9

where U[ty, T'] is a uniform distribution over [t, 7], and A(#)(> 0) is a positive weighting func-
tion that helps the scales of matching losses Hsg(x(t),t) — Vi log po (x(2) | x(0)) ”j to be in the
same order over the time 7 € [y, T]. The transition density p,(x(z) | x(0)) is a tractable Gaussian
distribution, and x() can be obtained through ancestral sampling (Ho et al. 2020).

Under this setting, we introduce readers to two lines of attempts to find answers to the
following theoretical questions:

1. Can the diffusion model estimate the target distribution v via the learned score func-
tion? If so, under what conditions on v can we guarantee polynomial convergence in the
generalization error bound &, when measured in terms of TV or Wasserstein distances?

2. Do neural networks well approximate and learn the score functions? If so, how should one
choose network architectures, and what is the sample complexity of learning? Furthermore,
if the data distribution has a special geometric structure, is the diffusion model adaptive to
the structure, like GAN models are?

The main statistical object of interest in these two lines of research is the generalization bound
measuring the distance between target distribution v and estimated distribution iz, from the sam-
ples x,, by solving the reverse SDE in Equation 24. Here, the score function is substituted by
the estimated time-dependent neural network Sy(x(¢), #). The first line of work mainly focuses
on the sampling perspective of the diffusion model, given that we have good estimates of the
score function. The second line of work extends the attention to the score function approxima-
tion through neural networks. Furthermore, under some highly stylized settings, the second line
of work specifies the explicit network structures that give good generalization guarantees.

4.2.1. Attempts to answer question 1. Early theoretical efforts to understand the sampling of
score-based diffusion models suffered either from not being quantitative (De Bortoli et al. 2021,
Liu et al. 2022) or from the curse of dimensionality (Block et al. 2020, De Bortoli 2023). Specifi-
cally, De Bortoli (2023) gave the convergence in the 1-Wasserstein distance for distributions with
bounded support M. This case covers the distributions supported on lower-dimensional man-
ifolds, where guarantees in TV or Kullback-Leibler distance are unattainable as there are no
guarantees that v and 7z, have the same support set. For general distributions, their bounds on
Wi (v, ty) have exponential dependence on the diameter of the manifold M and truncation of the
reverse process # as O(exp(diam(M)? /ty)). For smooth distributions where the Hessian V2log p,
is available, the bound is further improved with a polynomial dependence on #, with the growth
rate of the Hessian as # — 0 being on the exponent.

To the best of our knowledge, Lee et al. (2022) first gave the polynomial guarantees in TV
distance under a L*>-accurate score for a reasonable family of distributions. However, their result
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is based on the assumption that the distribution meets certain smoothness criteria and the log-
Sobolev inequality, which essentially confines the applicability of their findings to distributions
with a single peak. Recently, Lee et al. (2023) and S. Chen et al. (2023b) have tried to avoid the
strong assumptions on the data distributions and to get the polynomial convergence guarantees
under general metrics such as TV or Wasserstein distance. Specifically, Lee et al. (2023) give 2-
Wasserstein bounds for any distributions with bounded support. Contrary to De Bortoli (2023)
and Lee etal. (2022), the results they provide have polynomial complexity guarantees without rely-
ing on the functional inequality on distributions such as log-Sobolev inequality. They further give
TV bounds with polynomial complexity guarantees under the Hessian availability assumption.
Like Lee et al. (2022), under the general data distribution assumption, i.e., the second moment
bound of v and L-Lipschitzness of the score function, S. Chen et al. (2023b) give the polyno-
mial TV convergence guarantee, where only @(%) discretization is needed. Here, ¢ is a TV
generalization error, and 4 is a data dimension.

4.2.2. Attempts to answer question 2. Due to recent theoretical advancements, the list of re-
search attacking the second question is short. M. Chen et al. (2023) proved that the diffusion model
is adaptive to estimating the data distribution supported in a lower-dimensional subspace. They
design a very specific network architecture for S, (x(2), #) with an encoder-decoder structure and a
skip connection. Under a more general setting, Oko et al. (2023) prove that the distribution esti-
mator from the diffusion model can achieve nearly minimax optimal estimation rates. Specifically,
they assume the true density is supported on [—1, 1]%, in the Besov space with a smooth boundary.
The Besov space unifies many general function spaces, such as Hélder, Sobolev, continuous, or
even noncontinuous function classes (also refer to Section 2.2). The result of Oko et al. (2023) is
valid for the noncontinuous function class, and this should be contrasted with the aforementioned
works (Lee et al. 2023, S. Chen et al. 2023b) that assume the Lipschitzness of the score function.
The exact architecture of the score network is also given in the form of Equation 2.

4.3. In-Context Learning in Large Language Models

We provide readers with recent theoretical understandings of the interesting ICL phenomenon
observed in LLMs. This refers to the ability of LLMs conditioned on a prompt sequence consist-
ing of examples from a task (input—output pairs) along with the new query input to generate the
corresponding output accurately. In an example taken from Garg et al. (2022), these models can
produce English translations of French words after being prompted on a few such translations,

e.g.,
maison — house, chat — cat, chien - dog

——
prompt completion

This capability is quite intriguing as it allows models to adapt to a wide range of downstream tasks
on the fly without the need to update the model weights after training. Readers can refer to the
backbone architecture of LLMs (Transformer) in the seminal article of Vaswani et al. (2017).

Toward further understanding ICL, researchers formulated a well-defined problem of learning
a function class F from in-context examples. Formally, let Dy be a distribution over inputs and
Dy be a distribution over functions in . A prompt P is a sequence (x1, f(x1), . . ., Xz, f (%), Xquery)
where inputs (v; and xquery) are drawn independently and identically distributed from Dy and fis
drawn from Dg. In the above example, it can be understood that {(xy, f(x1), 2, f(x2)} := {(maison,
house), (chat, cat)}, Xquery = chien, and f(¥query) = dog. Now, we provide the formal definition of
ICL (Garg et al. 2022).
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Definition 2 (In-context learning (ICL)). Model M, can in-context learn the function
class F up to &, with respect to (Dr, Dy), if it can predict f(¥query) With an average error

EPN("Ivf(xl)a»--axleyf(»’f}g),fquery) [Z (M9 (P)’ f(xquery))] <e, 26.
where £(-, -) is some appropriate loss function, such as the squared error.

Garg et al. (2022) empirically investigated the ICL of the Transformer architecture (Vaswani
et al. 2017) by training the model M, on random instances from linear functions, two-layer
ReLU networks, and decision trees. Specifically, they showed the predictions of Transformers
on the prompt P behave similarly to those of ordinary least squares when the models are trained
on instances from linear function classes F1" := { f | f(x) = w'x, w € R?} for random weights
w ~ N(0,1;). A similar phenomenon was observed for the models trained on sparse linear
functions as the predictions behave like those of lasso estimators.

These nice observations sparked numerous follow-up theoretical studies of ICL on inter-
nal mechanisms (Akyiirek et al. 2023, Dai et al. 2023, Von Oswald et al. 2023), expressive
power (Akyiirek et al. 2023, Giannou et al. 2023) and generalizations (Y. Li et al. 2023). Among
them, Akyiirek etal. (2023) and Von Oswald et al. (2023) investigated the behavior of Transformers
when trained on random instances from F" and showed the trained Transformers’ predictions
mimic those of a single step of GD. They further constructed Transformers that implement such
an update. Zhang et al. (2023) recently explicitly proved that the model parameters estimated via
gradient flow converge to the global minimizer of the nonconvex landscape of population risk
in Equation 26 for learning F". Nonetheless, the results in the article are based on a linear
self-attention layer without softmax nonlinearities and simplified parametrizations. Huang et al.
(2023) subsequently considered the single head attention with softmax nonlinearity and proved
the trained model through GD did indeed in-context learn F" under highly stylized scenarios
(i.e., simplified parameter settings, orthonormal features). Recently, Chen et al. (2024) generalized
the setting to the multi-head attention layer with softmax nonlinearity for ICL multi-task linear
regression problems.

The important work of Bai et al. (2023) showed the existence of Transformers that can imple-
ment a broad class of standard machine learning (ML) algorithms in context, such as least squares,
ridge regression, lasso, and GD for two-layer neural networks. This article goes on to demon-
strate a remarkable capability of a single Transformer: the ability to dynamically choose different
base ICL algorithms for different ICL instances, all without requiring explicit guidance on the
correct algorithm to use in the input sequence. This observation is noteworthy as it mirrors the
way statisticians select the learning algorithms for inferences on model parameters.

5. CONCLUSIONS AND FUTURE TOPICS

In this article, we reviewed the literature studying neural networks, mainly from statistical
viewpoints. In Section 2, we reviewed statistical literature that primarily relies on approximation-
theoretic results of neural networks. This framework allows for interesting comparisons between
neural networks and classical linear estimators in various function estimation settings. Specifi-
cally, neural networks are highly adaptive to functions with special geometric structures, whereas
classical linear estimators are not (see Figure 1). In Section 3, we reviewed literature studying
the statistical guarantees of neural networks trained with gradient-based algorithms. The over-
parametrization of neural networks impacts the landscape of loss functions, streamlining the
mathematical analysis of training dynamics. We discussed training dynamics in two regimes: NTK
and MF. Specifically, we introduced some works that studied how networks in the NTK regime
can offer statistical guarantees under noisy observations. We also introduced attempts to unify

Sub o Cheng



and go beyond these regimes, explaining the success of networks with finite widths. In Section 4,
we reviewed the statistical guarantees of deep generative models (GANs and diffusion models)
for estimating the target distributions. Neural networks form the fundamental backbone of both
frameworks, enabling the adaptive estimation of distributions with specialized structures. Some
statistical works on ICL phenomena observed in LLM are also introduced. However, aside from
these topics, several promising avenues have not yet been covered in this article, and we briefly
review them now.

5.1. Generative Data Science

In modern ML, data are valuable but often scarce and have been referred to as “the new oil,” a
metaphor credited to mathematician Clive Humby. With the rise of deep generative models like
GAN, diffusion models, and LLMs, synthetic data are rapidly filling the void of real data and
finding extensive utility in various downstream applications. For instance, in the medical field,
synthetic data have been utilized to improve patients’ data privacy and the performance of pre-
dictive models for disease diagnosis (Chen et al. 2021). Similarly, structured tabular data are the
most common data modality that requires the employment of synthetic data to resolve privacy
issues (X. Li et al. 2023, Suh et al. 2023) or missing values (Ouyang et al. 2023b). Furthermore,
synthetic data have been at the core of building reliable AI systems, specifically for the promising
fields of fairness (Zeng et al. 2024) and robustness (Ouyang et al. 2023a). Despite the prevalence of
synthetic data in the real world, how to evaluate synthetic data from the dimensions of fidelity, util-
ity,and privacy preservation remains unclear. Specifically, we want to address the following general
questions: (#) How well do the models trained via synthetic data generalize to real unseen data
(e.g., Xu et al. 2024)? (b)) How do artificially generated data perform in the various downstream
tasks, such as classification or regression (e.g., X. Li et al. 2023, Xu et al. 2023) and adversarial
training (e.g., Xing et al. 2022a,b)? (c) How do the synthetic data generated work to satisfy certain
privacy constraints (e.g., differential privacy) (Dwork 2008)?

Addressing these questions systematically requires establishing a new framework of generative
data science, aiming to elucidate the underlying principles behind generative Al. As evidenced
by the above referenced works, this vision is supported by the recent observation that creating
something out of nothing is possible and beneficial through synthetic data generation.

5.2. Kolmogorov-Arnold Networks

As of June 2024, a new type of architecture, the Kolmogorov—Arnold network (KAN) (Liu et al.
2024), has been receiving enormous attention from the ML community. The model is motivated
by the Kolmogorov—Arnold representation theorem (KART) (Hecht-Nielsen 1987), which states
that any continuous and smooth functions on the bounded domain can be represented as compo-
sitions and summations of the finite number of univariate functions. Several papers have explored
the connections between neural networks and the KART due to their similarities in terms of
compositional structure. For instance, readers are directed to Poggio & Girosi (1989), Girosi
& Poggio (1989), Schmidt-Hieber (2021), and references therein. Liu et al. (2024) claim that
KAN outperforms fully connected networks in terms of accuracy and interpretability for func-
tion approximations on their specially designed tasks. Nonetheless, this model definitely requires
further research for better use in the future for both practical and theoretical purposes. From a
practical perspective, KAN’s training time is 10 times slower than fully connected networks, and
the authors only apply the model to small tasks (interested readers can refer to Liu et al. 2024,
section 6). From a theoretical point of view, they claim that KAN avoids the curse of dimensionality
for function approximation, whereas fully connected networks cannot. But this argument requires
further investigation under more rigorous settings with various types of function spaces G.
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