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The rise of synoptic sky surveys has ushered in an era of big data in time-domain astronomy, making data
science and machine learning essential tools for studying celestial objects. While tree-based models (e.g.
Random Forests) and deep learning models dominate the field, we explore the use of different distance metrics
to aid in the classification of astrophysical objects. We developed DistClassiPy, a new distance metric
based classifier. The direct use of distance metrics is unexplored in time-domain astronomy, but distance-based
methods can help make classification more interpretable and decrease computational costs.

In particular, we applied DistClassiPy to classify light curves of variable stars, comparing the
distances between objects of different classes. Using 18 distance metrics on a catalog of 6,000 variable stars
across 10 classes, we demonstrate classification and dimensionality reduction. Our classifier meets state-of-
the-art performance but has lower computational requirements and improved interpretability. Additionally,
DistClassiPy can be tailored to specific objects by identifying the most effective distance metric for that

classification.

To facilitate broader applications within and beyond astronomy, we have made DistClassiPy open-
source and available at https://pypi.org/project/distclassipy/.

1. Introduction

Over the last few decades, time-domain astronomy has experienced
rapid growth. This growth has been driven by the advent of large-
scale sky surveys like the Sloan Digital Sky Survey (SDSS; York et al.,
2000), the Catalina Real-Time Transient Survey (CRTS; Djorgovski
et al, 2011) and the Zwicky Transient Facility (ZTF; Bellm et al.,
2019) (see Djorgovski et al. 2013 for a comprehensive list of surveys),
and accompanied by advances in computing power and data storage.
Observing billions of astronomical objects over time allows us to de-
tect changes in the night sky that were once impossible to see. The
Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST;
Ivezi¢ et al., 2019), will observe over 37 billion objects over its 10-
year lifespan. However, this opportunity for new discoveries comes
with a data-intensive challenge. Manual classification of all objects is
impossible, so we need machine learning methods to automate the
classification and identification of objects of interest.

Machine learning refers to a class of computer algorithms in which
the computer learns patterns within the data, eliminating the need
for explicit manual programming. Machine learning models can be
deployed for a variety of cases — for e.g, clustering (unsupervised
learning) or for classification and regression tasks (supervised learn-
ing). In the context of large datasets and the need for automation, it
has become essential in modern astronomy. A critical task in time-
domain astronomy is classifying astronomical objects based on how
their brightness changes with time (called light curves), which is well
suited to be performed by machine learning algorithms (see for ex-
ample Eyer and Blake 2002, Thiebaut et al. 2002 and Mahabal et al.
2008; for more recent work see Cabral et al. 2020 and Forster et al.
2021). Because of the irregular sampling of astrophysical light curves,
we generally extract features (such as statistical properties of the data,
best-fit parameters to models, etc.) from the light curves, which are
then fed to a classifier model. However, as the number of features
increase, prediction becomes difficult and computationally expensive,
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Fig. 1. A visualization of 16 (of the 18) distance metrics used throughout this work. Each subplot shows the equidistant loci measuring the distance from the central point (5,5).
The color background denotes the distance values, with labeled contours. Contours differ for each subplot, as the range of values the distance can take varies by metric. To aid
readability, we use a log-scale for the last two metrics — Kulczynski and Additive ChiSq due to high-power elements (in the metric definition) compressing the distance scale.
The Correlation and Maryland Bridge metrics are not visualized here as they require vector inputs, and not 2-dimensional data points (see Appendix A).

and performance typically drops (Bishop, 2006), making dimensional-
ity reduction a requirement. Furthermore, the use of more features may
lead to data abstraction, and impair the interpretability of a model -
resulting in the model behaving like a black-box.

Dimensionality reduction involves mapping the higher-dimensional
data into a lower-dimensional space while ensuring the low-dimensional
representation retains the properties of the original data for predic-
tion.

In a physical space, a distance is a scalar quantity that tells us
how far away two objects are from each other. In a feature space,
the “distance” is inverse to the similarity of the objects. A distance
metric' is the mathematical function or algorithm used to measure
the distance between two points in a space. Using the appropriate
metric and features, we expect that the distance between objects of

1 Also referred to as a distance measure in literature.

the same class should be smaller than between objects from different
classes. These distances can then be used to separate and classify light
curves.

In this paper, we compare the effectiveness of different distance
metrics applied for dimensionality reduction and classification of light
curves. Using a wealth of distances defined in statistics and mathemat-
ics (Cha, 2007; Deza and Deza, 2013; Tschopp and Hernandez-Rivera,
2017), we compiled a list of 18 distance metrics designed for data
analysis, that have been defined in the appendix, and visualized in
Fig. 1. We use these metrics to compare classification performance for
three classification problems, described in Section 5. We also identify
the most important features for each distance metric and classification
task, and analyze the impact of limiting the feature space to these
top features, thus reducing dimensionality and computational cost.
The use of different distance metrics for dimensionality reduction and
subsequent classification is an approach that, to our knowledge, has not
been explored in time-domain astronomy before.
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Fig. 2. An example light curve of a RR Lyrae Type ab (RA = 2.93, Dec = 44.62,
period = 0.55 days), taken from the ZTF DR15. Each light curve consists of a series
of magnitude (brightness) values as a function of time, which in our case is for the
two filters — g and r. The sampling of ZTF is sparse, as common for ground-based
surveys, with visible gaps due to seasonality, and, although this is a periodic variable,
the periodicity is not obvious because of the sampling.

We show that our classifier, DistClassiPy, when used natively
out of the box, offers similar performance to other models commonly
used to classify light curves, but with lower computational costs. In
addition, our model can be tailored according to scientific interests by
knowledgeably selecting the distance and features to use based on a sci-
entific goal and data characteristics, enhancing both the computational
and performance properties of the model. This paper is accompanied
by a Python package, DistClassiPy,” which is our distance metric
classifier built on top of scikit-learn (Pedregosa et al., 2011), in
addition to all code required to reproduce our results in this paper.® We
introduce some of the scientific and technical background in Section 2,
describe our data in Section 3, discuss our approach to dimensionality
reduction in Section 4, then our approach to perform and evaluate the
performance on our classification tasks (Section 5). We describe our
results in Section 6 and conclude in Section 7.

2. Distances in machine learning

The concept of distance is intuitive. It tells us about the degree of
proximity between two objects — the shorter the distance, the closer
the objects. However, the distance depends on the path followed to join
two objects. Because of this, we can have different types of distances,
each calculated differently. Let us first define this mathematically:

Definition 2.1. The distance d between two points, in a set X, is a
function d : X X X — [0, co) that gives a distance between each pair of
points in that set such that, for all x, y, z € X, the following properties
hold:

(1) d(x,y) =0 < x =y (identity of indiscernibles)
(2) d(x,y) = d(y,x) (symmetry)
(3) d(x,y) <d(x,z)+d(z,y) (triangle inequality)

An example of a distance is the Euclidean distance, commonly used
for measuring the distance between physical objects (the “as the crow
flies” distance). A detailed discussion of distance metrics, along with
the definition of each of the 18 metrics we used, are included in the
appendix, Appendices A and B, respectively. Of these 18 distances, 16
are visualized in a 2-dimensional space in Fig. 1.

2 https://pypi.org/project/distclassipy/
3 https://github.com/sidchaini/LightCurveDistanceClassification
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Distance metrics see their use in a variety of supervised and un-
supervised machine learning algorithms (e.g., k-Nearest Neighbors —
Abu Alfeilat et al. 2019, Nayak et al. 2022 —, Kernel Density Estimation
— He et al. 2013 —, hierarchical clustering — Murtagh and Contreras
2012).

In many machine learning tasks, we do not feed the data directly to
a machine learning model. Instead, we extract or engineer features from
the data and transform them into a new space, to which we will refer
hereafter as the “feature space”. The dimensionality of the feature space
is determined by the number of features, denoted as n. The feature
space itself exists as a real coordinate space, represented as R”. In this
n-dimensional feature space, we can now define a variety of distance
metrics: any function complying with Definition 2.1 is a valid distance
metric. When equipped with a distance metric, the feature space takes
on the characteristics of a metric space (as defined in Definition A.1).
Since the distance value is always a positive real number, we can
easily compare this value for different points even when dealing with
high-dimensional data.

3. Data
3.1. Catalog and raw light curves

Our dataset consists of light curves of variable stars from the Zwicky
Transient Facility (ZTF) Data Release 15 (DR15).* ZTF is a robotic
synoptic facility located at the Palomar Observatory. It scans the sky,
monitoring objects of magnitude,® r <= 20.6 (Bellm et al., 2019). ZTF
observes in three wavelength bandpasses, g, r and i in the optical
wavelength regime. However, the i band has a lower cadence as well
as shallower observations, and so we restrict our data to the g and r
bands. In our dataset, there are on average 382 points in the g band and
674 points in the r band for each light curve, which are collected over
an average of 4.42 years (minimum 0.61 years, maximum 4.64 years,
median 4.47 years).

The original catalog (Chen et al., 2020) consists of 781,602 iden-
tified variable stars in 10 classes (see Table 1) that represent stellar
objects of different nature and that display different observational
properties in the time domain. Examples of light curves in our dataset
are shown in Fig. 2. We will briefly return to the topic of variable
stars classification in Section 5; for a comprehensive review of variable
stars classification and characterization, see Eyer and Mowlavi (2008).
The number of objects in each class in Chen et al. (2020) is heavily
imbalanced, with the catalog containing 369,707 Eclipsing W Ursae
Majoris (EW) variables, but only 1,262 Cepheid (CEP) variables. Models
trained on an imbalanced dataset have a hidden bias due to the relative
frequencies of occurrence which teaches the model that predictions on
minority classes carry a significant risk thus impacting the performance
on these classes (Krawczyk, 2016). Thus, we select a random set of
1,000 objects of each class from Chen et al. (2020)’s dataset to develop
our model. Our raw dataset consists of 10,000 light curves (1,000 for
each of the 10 classes listed in Table 1). After cleaning the data and
dropping outliers (as described in Section 3.3), we are left with 558
objects from each of the ten classes.

In addition to the above data, we also used an entirely “hidden”
set of ~500 new objects for each class as a final test set. The results of
these final performance tests are discussed in Section 7.

3.2. Feature extraction

Since the ZTF is a ground-based telescope, the light curves obtained
are unevenly sampled, sparse, noisy, and heteroskedastic. ~Objects

4 https://irsa.ipac.caltech.edu/data/ZTF/docs/releases/dr15

5 The magnitude scale is a logarithmic brightness scale defined for astro-
physical objects where the brightness of an object with flux F is measured
in magnitudes m as m = —2.5log,,(F/F,) and where F, is an instrumental
normalization factor.
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Fig. 3. The distribution of pairwise Cityblock distances (d.5) between all 558 Cepheid variable stars in our final dataset (class CEP): 155,403 unique pairs of CEP contribute
one point each to this distribution. The left and right panels show the distribution of distances before and after outlier removal respectively. The top panels show a box and
whiskers plot of the same, where the median is marked by a vertical line, the interquartile range by the box, the 10th and 90th percentile by the whiskers. All points beyond these
percentile values (our definition of outlier, see Section 3.3) are plotted individually. In the left plots (before outlier removal) the original distribution spreads out to dcp > 10°
but its extremely sparse past dp > 10° (see insert which zooms into the dc < 10° region, and notice how in the top plot the box and whiskers are indistinguishable). However,
outlier removal leads to a much more compact distribution of pair-wise distances (right) where the distances are contained between 0 < d., < 1,000. Note that, as the distribution
changes after the first cut, the functional definition of outliers does not, thus the tail of the distribution is plotted with individual points in the right-side figure.

from the same class have different noise levels and different magnitudes
based on their distance from the Earth. This extrinsic diversity within a
class makes the direct comparison of light curves difficult. Our scheme
for feature extraction is domain-driven: we select features that measure
expected behaviors of variable stars (e.g., periodicity).

To extract features from the light curves, we use the 1c_class-
ifier module (Jainaga et al.,, 2021) in Python. While the context
of the astrophysical target may be informative (e.g., its coordinates
to indicate if it is likely to be a Galactic or extra-galactic object),
all of 1c_classifier’s features are based only on the light curve
data. Most features (53) are calculated separately for the g and r
passband, while some features (8) are calculated jointly from the g and
r observations. This gives us a total of 114 features for every light curve
in our dataset.

A detailed description of all the features is provided in Sdnchez-Sdez
et al. (2021, see Table 2). Most features are based on common light
curve statistics (e.g. amplitude — based on the difference of highest
and lowest magnitudes), while some are based on parameters obtained
after fitting a model to the light curve (e.g multiband period — the
period is obtained by fitting a periodogram).

3.3. Data cleaning

We remove objects from our dataset for which feature extraction
failed for one or more features. For most classes, this removes 3%-8%
of the objects. However, we find that the classes Mira, CEP, and SR have
a higher fit failure rate for some features like  (Ratio of mean of square
of successive mag differences to light curve variance; refer Kim et al.
(2014, Table 3)) and the Mexican Hat Power Spectra (Arévalo et al.,
2012), thus leaving us with only 640 Miras, 713 CEPs, and 741 SRs.
To keep the dataset balanced, we once again randomly drop objects
from each class such that each class has exactly 600 objects. However,
we do not rebalance the hidden set of data — this is to obtain a more
representative assessment of our model’s performance.

Chen et al. (2020) state that their catalog does not constitute a
robust classification, thus we expect our labels to be noisy and that
there might be outliers in the dataset.

To assess the presence of outliers we calculate the pair-wise dis-
tances with the Cityblock metric in the 114-dimensional feature space

Table 1

The abbreviation code used along with the full class name for the 10 classes of variable
stars used to test our distance metric classifier in this work, along with the original
data size for that class in Chen et al. (2020), and the size after we resampled our data.
Light curves for these classes were obtained from the Zwicky Transient Facility Data
Release 15.

Abbreviation  Class Name Original class size  Final class size
BYDra BY Draconis 84,697

CEP Cepheid 1610

DSCT Delta Scuti 16,709

EA Eclipsing Algol 49,943 .
EW Eclipsing W Ursae Majoris 369,707 558
Mira Mira 11,879

RR RR Lyrae (Type ab) 32,518

RRc RR Lyrae Type ¢ 13,875

RSCVN RS Canum Venaticorum 81,393

SR Semiregular 119,261

among all classes. We remove the top 10% and bottom 10% of the
distribution to eliminate outliers and misclassifications, as well as
potential duplicates in the ZTF photometry. The process has been
illustrated for the class CEP in Fig. 3(a). We see a prominent peak
centered near 0 and a long tail that extends to 2.13 x 10° in the orig-
inal distribution. After the cuts, the distribution of distances remains
right-skewed, with a long tail. The distribution of pairwise Cityblock
distances for CEPs after outlier removal is also illustrated in Fig. 3(b).
This step is largely robust to the choice of distance metric used (e.g,
the Euclidean and Cityblock metrics lead to datasets with an overlap of
>98%).

Finally, we have a ‘clean’ dataset of 558 objects of each class
mentioned in Table 1.

4. Feature selection and dimensionality reduction

We are up to this point working in a 114-dimensional feature space.
Working in high-dimensional spaces may hinder the performance of
machine learning models due to the “curse of dimensionality” (Bishop,
2006), which leads to a decrease in performance and an increase
in computational complexity. To address this, we further reduce the
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Fig. 4. Correlation between the first two components of a harmonic series fit to each light curve in the r-band. The bottom left panel shows the linear relationship between the
two components, while the remaining two panels illustrate the distribution of the component per class. We find that these two components have a Pearson’s linear correlation
coefficient r = 0.95, and thus choose only Harmonics_mag_1 as part of our feature selection step.

dimensionality of the 114 feature space using a variety of approaches.
We refer to this step as feature selection, because we are selecting a
subset of features from those created in Section 3.2.

4.1. Drop all g-band features

Our data consists of light curves measured in two wavelength
passbands, g and r. We used 1c_classifier to extract the afore-
mentioned features from each band, and from the “multiband” light
curve generated as the difference between the two, which represents
the color of the transient.® Because the multiband features contain
information from both g and r bands, we dropped all g-band features as
a dimensionality reduction step. By removing only g-band features, we
are not removing any information, since it is indirectly contained in the
multiband features derived from both the r and g bands. We chose to
remove g-band features instead of r-band features because ZTF is more
sensitive in the r-band, and also has more observations in the r-band.
This step reduces the dimensionality of the feature space from 114 to
60.

4.2. Dropping flags and number of points

We dropped features that are not physically motivated or are not
well suited to measure distances. These include the number of points in
a light curve,” and flags regarding the success of models fits (because
of the low dynamic nature of their binary values). This removes 16
features.

4.3. Dropping highly correlated features

Features having high correlation (which we measure with Pearson’s
linear correlation coefficient, r) do not add much new information to
the classification. So, for every set of highly correlated features (ie.,
r > 0.9),® we keep only one from that set.

6 Since magnitude is a log scale, the difference of the magnitudes is the
ratio of brightness in the two bandpasses.

7 Note that we already remove light curves with few points to avoid
introducing bias in feature extraction.

8 The threshold 0.9 was empirically found to be suitable to balance the
trade-off between reducing redundancy and retaining informative features.

For example, Fig. 4 shows the correlation between two features
for the case of multi-class classification (see Section 5) — the am-
plitude of the first two components of a harmonic series fit to each
light curve in the r-band, for a subset of our 10 classes. Because this
correlation is high (» > 0.9), we only choose one of these features
(Harmonics_mag_1).

After dropping the features as described above, we are left with
31 of the 114 feature dimensional space. A correlation matrix of the
original 114 features and of the final set of 31 features is shown in
Fig. 5.

5. Classification
5.1. Classification problems

Variable stars, and most stars which vary to some degree, are
classified based on their observational features into classes. Their vari-
ability is generally connected to physical properties such as mass,
metallicity (or chemical composition), age, and environment, with the
goal of understanding their observational properties, including their
variability, as an expression of physical processes within the star (or
star system in the case, for example, of eclipsing binaries). A wealth of
classes have been identified in astrophysical studies (Eyer and Mowlavi,
2008). To demonstrate the potential of our classifier in the classification
of variable stars’ light curves, we examine three typical, progressively
more complex classification scenarios:

1. One vs. Rest Classification: EA, rest’
2. Binary Classification: RSCVN, BYDra
3. Multi-class Classification: CEP, RR, RRc, DSCT

For each classification task, we also run a Random Forest Clas-
sifier (RFC; Breiman, 2001), a well-known machine learning model
which uses ensembles of decision trees models to classify a test object.
We choose RFC as our benchmark comparison because most astro-
physical services use RFC as the (or one of the) classifiers of choice
(e.g. Hinners et al. 2018, Sanchez-Saez et al. 2021, Cheung et al. 2021).
Fig. 6 shows the canonical hierarchical classification scheme for the

9 Note: Rest includes all other classes combined.
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Table 2
An example of the median set for 4 r-band features and 4 classes from the multi-class
classification case. This is just a subsection of the complete data, the full table is

available online at https://github.com/sidchaini/LightCurveDistanceClassification.

Class Fperiod Tamplitude Ra1 Fekew
CEP 3.86 0.25 0.27 -0.16
RR 0.56 0.35 0.45 -0.52
RRc 0.33 0.20 0.15 0.01
DSCT 0.09 0.08 0.17 -0.14
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(b) After feature selection.

Fig. 5. Correlation matrices of our features space before and after dimensionality
reduction for four exemplary labels: CEP, DSCT, RR, RRc (see Table 1 for a definition
of each class), which we use for the multi-class classification problem. Each cell in the
plot represents the Pearson’s linear correlation coefficient, r, between the corresponding
feature on the x and y axis. By definition, the diagonal has a correlation r = 1. No
correlation (r = 0) is mapped to the color white, positive correlation (+ > 0) to shades
of blue, while negative correlation (r < 0) to shades of red. Our original set of 114
features per object (a) is computed using 1c_classifier. These consisted of features
calculated in the r, g, and g—r (multiband) light curves. In (a), the correlation between
features is evident for each class in the block structure of the correlation matrix.
We dropped g-based features, features that are not physically motivated, and finally,
features that have a very high correlation. This leads to the correlation matrices shown
in (b). Our final feature space has 31 features.

ten classes included in our work, based on Eyer and Mowlavi (2008,
Figure 1). Note that this is a physical, rather than a phenomenological
classification, so that, while in general they display marked similar-
ity, proximity in this classification scheme does not necessarily imply
proximity in the photometric feature space.

Our analysis will focus on the more comprehensive multi-class
classification, where we look at four classes of Cepheid-like pulsating
variables: Cepheid (CEP), RR Lyrae Type ab (RR), RR Lyrae Type c
(RRc), and Delta Scuti (DSCT). We discuss in detail these results in
Section 6. But we also report the performance of our method on a
specific binary case and One vs. Rest case for comparison, keeping in
mind that the results obtained when choosing one or two classes may
differ significantly for any other class or class combination. In the One
vs. Rest classification, we isolate Eclipsing Algols (EA) from all other
classes. In the binary classification, we separate two classes of rotating
variables (RS Canum Venaticorum, RSCVN, and BY Draconis, BYDra).
This is a particularly challenging classification because while physically
different, both classes exhibit photometrically similar behaviors, with
variability at the ~ 0.1 — 0.2 mag level, and with varying phase,
magnitude slope, amplitude, and period (Bopp, 1980).

5.2. Distclassipy classification algorithm

We use a custom algorithm, which we have named DistClas-
siPy, to classify the light curves. Our method draws inspiration
from the k-Nearest Neighbors (k—NN; (Cover and Hart, 1967; Fix
and Hodges, 1989)) algorithm. In addition to the classification that
k—NN provides, DistClassiPy also offers a quantification of the
uncertainty in the prediction. We have implemented this in Python
using the scikit-learn API (Buitinck et al., 2013).

The detailed training algorithm is outlined in Algorithm 1.

5.2.1. Training

We compute the median and standard deviation for each feature per
class, where we use the median set as a representative for each class.'’
Using the median here also makes our calculations more resilient to
outliers. An illustration of the median values for four representative
features can be found in Table 2. The distance metric is not selected in
the training step.

Algorithm 1: Training Step.

1: for each class C in the training set do
2:  for each feature F in class C do

Calculate the median M g of feature F in class C.

Calculate the standard deviation af, of feature F in class C.
end for
Save the median set {M} and standard deviation set {c€} for
class C.
7: end for

3
4:
5:
6

10 The median and standard deviation can also be replaced by other
statistical measures of central tendency and dispersion.
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Fig. 6. The canonical hierarchy tree for the ten classes included in our work. This is a physical classification, based on Eyer and Mowlavi (2008).
Note: the gray dot represents the objects which belong to none of the other classes, which are not represented in our dataset.
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Fig. 7. How DistClassiPy performance changes for the multi-class classification problem with the number of features used. Here we show our final step in dimensionality
reduction, the Sequential Feature Selection (SFS) process, for two sample distance metrics: Clark (Fig. 7(a)) and Canberra (Fig. 7(b)). The performance of the classifier, measured
as the mean F, score in a 5-fold cross validation run, is shown as a function of the number of features included in the classification (with the standard deviation shown as a filled
area). The SFS algorithm iteratively adds one feature at a time from n=1 to n=31 such that the F, score is maximized at each step. We then select a final set of ny, features
such that ng,, is the lowest number of features whose F, score is within lo of the maximum F; score (denoted by a red vertical line in each panel).

5.2.2. Predicting

Our approach to classifying a test object involves several steps.
First, we select a distance metric and proceed to scale our data. This
scaling is inspired by the Mahalanobis distance (Mahalanobis, 1936):
we generalize the idea of measuring how many standard deviations
away a test object is from the median set for each class calculated in
the training step, for the chosen distance metric.

For each class, we scale both the test object and the class set
by the standard deviation for that class. We then compute the dis-
tance between the test object and the median set in units of standard
deviations.

Once we have calculated all the distances, we identify the predicted
class for the test object as the one for which the object’s distance to the
median is minimum.

The detailed prediction algorithm is outlined in 2.

5.2.3. Scoring
To evaluate the performance of our classifier’s predictions, we use
two different scoring methods. The F, score is given by

F=— e
TP + 1 (FP + FN)

Algorithm 2: Prediction Step.

1: Choose a distance metric.
2: for each test object do
3:  for each class C in the training set do

4: for each feature F in class C do

5: Scale the test object feature by dividing it by ag, which was
calculated in the training step.

6: Scale the median set {Mg} features by dividing them by ag.

7: end for

8: Calculate the distance D between the scaled test object and

the median set {Mg} for class C, scaled by {ag}.
9: Save D for class C.

10: end for
11:  Choose the class Cp, for which the distance D is the smallest.

12:  Assign class Cp;, as the predicted class for the test object.
13: end for

where TP is the number of true positives, FP is the number of false

positives, and FN is the number of false negatives. The higher the
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Fig. 8. DistClassiPy permutation feature importance for the multi-class classification task for all metrics. We only show the importance for features that were selected for the
classification with at least three metrics (see Fig. 9), and all other features are shown in gray. The Period_band_r appears as important for nearly all metrics (but not for the
Maryland Bridge metric, which, as discussed in Fig. 1 and Appendix A, is a vector-based metric). A negative importance (e.g, Psi_Eta_r with Chebyshev) denotes the fact that,
although using the SFS it was selected as one of the top four best features, when using all 31 features, it led to a decrease in performance. The Cosine and Correlation metrics
stand out, with classification importance nearly entirely placed on the GP_DRW_tau_r feature: the relaxation time for a damped random walk model of the light curve, originally

designed in Graham et al. (2017) for quasar classification.

F,, the better the classification. For more than two classes, we take
the average (macro mode) of the F; scores for each class. Because we
consistently maintain class balance, we do not require any weights
when calculating the F, score.

5.3. Classification confidence

First, as is standard in the machine learning community, we assess
the stability of our classification results with cross-validation (Kohavi,
1995): we split our dataset into 5-folds, use four folds as our training
set and one fold as our testing set, and average the five F, scores to
obtain the final score. This assesses the confidence of the result for a
given dataset and the influence of data outliers, but does not provide a
direct measure of the uncertainty associated with the use of a specific
distance metric.

Therefore, we additionally developed three confidence parameters
for use with the classifier. Our goal was to create a distance-based
measure for uncertainty (or confidence) in the classification method,
not just the data. We tested the performance of the following three
distance-derived confidence measures:

« Inverse of total distance: We invert the distance (d) calculated in
the prediction step to give a classification confidence, such that
a low distance value corresponds to a higher confidence value.
Note that this distance is calculated in n dimensions correspond-
ing to the n features, and depends on the metric being used.
Furthermore, it has already been scaled by the standard deviation
during computation (2). Since the distance scales are different

16
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Fig. 9. The top features for the multi-class classification task across all metrics. This
plot shows 15 features that were included in the final set of n,, features for >3
metrics. All but one metric (the Maryland Bridge metric) identified Period_band_r
as important.

for different metrics, this value is only useful for comparison of
confidences among different objects for a given metric. However,
for a given metric, this is very easily interpretable, as something
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Top 15 features for distance classifier - Canberra metric
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Fig. 10. The relative importance of the top 15 features for the multi-class classification task when using the Clark (a) and Canberra metrics (b). The feature importance is
determined by computing the Permutation Feature Importance. For each metric, the top 15 features are shown, although only six and three appear significant (at 3¢, respectively).
Interestingly, the top feature for the Clark metric is Skew_r (the skew of the distribution of brightness values in the r band), which is not selected as important with the Canberra

metric.

having a zero distance would imply an almost infinite confidence.

Inverse of scaled distances: For a given feature (i), we compute
a one-dimensional distance (d;) between the test object and the
median set. Because each feature has a different level of variance,
we then scale it with the standard deviation (¢;) associated with
that feature within the reference class, and then finally invert it.
c 1

scaled = 4~

2,-5—:

Scaling the distances with feature-specific standard deviations, we
can ensure that the resulting confidence value can be compared
across different metrics. However, this distance is not applicable
for all metrics because not all distance metrics are defined in one
dimension.

Kernel Density Estimate (cgxpg) Probability: Kernel Density Esti-
mate (KDE) is a statistical technique to estimate the probability
density from given data (Silverman, 2018). It is given by:

X = X;

Sxpe(x) = ﬁ]zV:K< 7 )7
i=1

where x is the continuous variable over which density is es-
timated, N is the number of data points, ~ is the bandwidth
parameter, x; are the points in the dataset and K is the kernel
function (for which we choose a Gaussian).

We thus use this KDE to generate the probability density for each
class given its features. Finally, to calculate the KDE probability
for a test object (x.), we plug its features into the KDE for that
class, and get the confidence for a test object belonging to that

class (cgpg)

cxpE = JKDEXtest)

5.4. Sequential feature selection and classification

We have already reduced our feature space from 114 to 31 features.
To increase the robustness of our method and decrease the compu-
tational cost, we further reduce our dimensionality by selecting the

Top 15 features for Random Forest
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Fig. 11. The top 15 features for a Random Forest Classifier for the multi-class
classification task mentioned in Section 5.1. The feature importance is determined
by computing the Gini Importance (Breiman et al., 1984). We note that none of the
features’ importance is statistically significant.

most effective classification features for each class and each problem.
This process is computationally expensive (as described below) and the
final set of features to be used depends on the metric used and the
classification task. However, this computation can be performed once
for each problem, as we did for the three classifications we explored in
our work. Thereafter, the user of our algorithm can choose the features
that best match their research based on their scientific interest and
object sample, with a net computational gain. Here, we describe our
strategy, and the detailed results are discussed in Section 6.3.

We use the Forward Sequential Feature Selection (SFS) strategy
(Ferri et al., 1994). Forward SFS works by adding one feature at a time:
we start by choosing the single feature that, alone, maximizes our 5-fold
cross-validation F, score. We continue adding features and increasing
the dimensionality of the feature space, each time selecting the next
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Fig. 12. Cross-Validation Results: Confusion matrix of our DistClassiPy model using Clark (left) and Canberra (center) distances (two of the top-performing distance metrics)
compared to the performance of a Random Forest Classifier (right) for the multi-class classification task of Cepheids (CEP), Delta Scuti (DSCT), RR Lyrae ab (RR) and RR Lyrae
¢ (RRc). The respective F, scores are shown in each subplot: all three models achieve comparable performance (F, ~ 92%). Each cell in each plot shows the percentage and the
number of objects corresponding to that combination of label (y) and prediction (x). The diagonal corresponds to correct classifications.

feature that maximizes F,. We use Forward SFS over Backward SFS be-
cause of the high computational requirements of Backward SFS which
make it prohibitive in a high dimensional space. Recursive Feature
Elimination (RFE) is another option for the selection of features, but
RFE requires a built-in feature importance attribute to the model, which
is not implemented at this time in DistClassiPy. A comparison of
the selection performed by RFE, compared to SFS, is left for future
work.
The total number of possible feature combinations are,

n .
No. of combinations = z <n h l)

i=0 1
_n(n+1)
== 2
= O(n?) (3)

With n = 31, we perform a total of 465 calculations for each distance
metric (18) and classification task (3). This provides us with the feature
importance ranking and allows us to track how performance varies
with the number of included features, enabling us to optimize the
dimensionality of our feature space: in each case, we choose a final
set of ng;,, features such that ngy,, is the lowest number of features
whose F; score is within 1o of the maximum F; score. An example of
SES is shown in Fig. 7, for the Canberra and Clark distance metrics in
the multi-class classification case.

The feature importance is measured as the relative permutation
feature importance, an algorithm-agnostic method (originally intro-
duced in random forests; Breiman, 2001) where the importance of a
feature is measured as the drop in performance when the feature is ran-
domly shuffled during testing. Feature importance for the multi-class
classification is shown in Fig. 8 for each distance metric.

In Fig. 9 we show the number of distance metrics (out of our 18
metrics) for which a given feature is selected. The 15 features shown
were important for >3 metrics and are considered as a “super-set”
of important features. We emphasize that the user should select the
most effective distance metric and subset of features, performing a
feature selection such as the one described above, specifically for their
data and classification problem, as the classification goal (e.g., purity
vs completeness in selecting a specific class of objects, vs separating
two specific subclasses, etc.), as well as data quality (including spar-
sity, signal-to-noise ratio, noise property, number of bands, etc.) will
influence the selection of features and ultimate performance of the
model.

The top features for the Clark and the Canberra metrics are shown
in Fig. 10 for the multi-class classification case. For comparison, we also
show the feature importance results of the RFC in Fig. 11. We note that
none of the RFC features’ importance reaches statistical significance.

10

5.5. Random forest classifier

We use a Random Forest Classifier (RFC, Breiman, 2001) as a
benchmark to compare our method. A Random Forest involves training
an ensemble of decision trees, each performing binary decisions on
one feature at a time. This method, therefore, does not leverage or
require the definition of a distance. The RFC was run in the scikit-
learn implementation with the following hyperparameter choices: the
maximum depth was set to 3 to avoid overfitting, the forest was com-
posed of 100 estimators (trees), with bootstrapped samples (to reduce
the variance) and considering \/ﬁ features at each split. As for the
distance-based models, the RFC was run with a 5-fold cross-validation
scheme on the entire dataset.

6. Results

In this section, we report and discuss the performance of our model
(DistClassiPy) and the comparison model (RFC), as well as the
results of our investigation into the classification’s confidence and
feature selection.

6.1. Distclassipy classification performance

The best cross-validation result of our distance metric classifier
(DMC) from DistClassiPy across all distance metrics and feature
subsets for each classification task are as follows: for the Multi-class
Classification, DMC = 92% (RFC = 92%); for the One vs. Rest, DMC =
94% (RFC = 95%; for the Binary classification of rotating stars, DMC =
68% (RFC = 70%. A comprehensive report of the performance of our
model, including the distribution of performance values across different
distance metric and feature selection choices, is presented in Table 3.
The full spreadsheet is available online.!' Confusion matrices for the
multi-class classification task for the distance metric classifier (using
the top two distance metrics: Clark and Canberra) and RFC are shown
in Fig. 12. From these, we see that performance is mostly very similar.
However, for some classes like RR and RRc, the Canberra distance
classifier outperforms the RFC.

Finally, we test our final classifiers on the hidden set introduced in
Section 3.1, which consists of 500 objects, entirely unseen in training.
For each classification, we test the best model (best distance metric and
features subset) on a hidden dataset, first rebalanced and then unbal-
anced, where each class has a representation similar to the fraction of

11 Cross-ValResultsURL
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Summary table of the performance of DistClassiPy for each classification task. The statistics are reported across the selection of distance metrics and feature
subsets. The RFC results are shown for comparison next to the highest distance metric classifier performance for each classification task. The complete set of

results is available online as a spreadsheet here.

Multi-class Binary One-vs-rest
DistClassiPy RFC DistClassiPy RFC DistClassiPy RFC
Max 92 92 68 70 94 95
75 Percentile 91 66 93
F, Score (%) 50 Percentile 90 65 93
25 Percentile 82 64 90
Min 75 62 89
Max 20 25 17
75 Percentile 7 3 5
No. of features 50 Percentile 4 3 4
25 Percentile 4 2 2
Min 1 1 1

objects in the initial dataset. We confirmed the model performance for
all three classification tasks, and found the results to be mostly within
1o expectations from our cross-validation results for the rebalanced
dataset. With the best distance metric selected on the cross-validated
data, for each classification task the performance on the hidden set
is F; = 93% with the Clark metric on the multi-class classification
(1881 objects), F; = 68% with the Euclidean metric on the binary
classification (1000 objects) and F; = 92% with the Kulczynski metric
for the One vs. Rest classification (976 objects; Section 5). For the
unbalanced dataset, the performances change slightly. In the multi-class
classification, the unbalanced dataset contains 494 RR, 253 DSCT, 210
RRc, 24 CEP. The performance of the Canberra-based model improves
slightly from F, = 91% to F; = 93%, while the performance of the
Clark-based model drops to F; = 86% from 92%. This is primarily
due to confusion between the RR and RRc classes, which are the most
common labels. However, for comparison, the RFC performance drops
significantly more, from F, = 92% to F; = 76%. In the imbalanced
One vs. Rest classification, the performance drops by a few points,
from F, 93% (with Euclidean distance) to F; = 90%. Similarly,
the RFC performance drops from F; = 95% to F; = 89%. The binary
classification is naturally balanced with 500 BYDra and 480 RSCVN.

The reader should however be reminded that our classification is
based on the labels found in Chen et al. (2020) and that while Chen
et al. (2020) use DR2 ZTF data, our work is based on data from DR15.
A possible implication, since DR2 data contains fewer points per light
curve, is that label noise contributes to apparent inaccuracy in our
scores.

The complete set of results is available online as a spreadsheet.'2.
The confusion matrices for the multi-class classification of the hidden
set are displayed in Fig. 13 for the Clark and Canberra metric.

For the remainder of the discussion, we will focus solely on the
multi-class classification task.

6.2. Computational requirements

To understand how the computational time scales with dataset size
and feature dimensions, we monitored the total time taken for training
and prediction for different numbers of data points and features using
synthetic data generated with scikit—-1learn — the specifications for
our hardware and software are outlined in Appendix C. We compared
the timings of DistClassiPy using the metrics Canberra and Clark.
It is worth noting that the Canberra metric is implemented in the
scipy.spatial.distance package, and we thus expect it to be
computationally optimized. On the other hand, the Clark metric is not
available within Scipy (to our knowledge) and we coded it ourselves:
we expect it may be sub-optimal in terms of computational costs. The
timings of an RFC with 100 trees is also tracked. We ran each method
five times, and report the mean here. Our results are illustrated in
Fig. 14 and Fig. 15.
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We find that DistClassiPy is remarkably scalable and shows
minimal computation times even for large and high-dimensional datasets.
Even when dealing with a dataset size of 10,000 objects and 500
features, the computation times for DistClassiPy remain as low
as 0.0677 + 0.0016 seconds (Canberra) and 0.1538 + 0.0023 seconds
(Clark) compared to 14.3563 + 0.4978 seconds for RFC. These make
DistClassiPy very suitable for current and future astrophysical
surveys, with increasing sample sizes (e.g., the Vera C. Rubin LSST is
expected to characterize 17B stars, many of which are variable to the
depth limit of the survey, and 48B astrophysical objects altogether).

Finally, DistClassiPy and RFC utilize a comparable amount of
RAM (the distance metric classifier utilized 574.5+4.8 MiB compared to
RFC’s 568.4 + 16.3 MiB on our machine.'® for the dataset having 10,000
objects and 500 features) during training, as per our tests using the
Python package memory_profiler.

In conclusion, DistClassiPy performs comparably to the RFC
(state-of-the-art), while being faster and utilizing a comparable amount
of memory.

We now look at other assets that DistClassiPy can offer us to
help understand classification — confidence and robustness.

6.3. Feature importance

We find that whether a feature is important or not depends not only
on the classification task, but also the distance metric being used. In
other words, each metric has features with which it works best, and
often, these features differ for different metrics. We show in Fig. 16 how
the important features change for the multi-class classification task for
three metrics — Canberra, Clark, and Soergel.

This flexibility allows for the distance metric classifier to be adapted
to the specific research goal and resources. In a scenario for a particular
classification task, if some features are easier or faster to calculate than
others, one could use DistClassiPy with a distance metric which is
the most optimal for these features.

6.4. Confidence of the distance metric classification

In Section 5.3, we introduced three different confidence methods
with the goal of measuring the classification reliability for each metric.
Here, we compare these three methods. The question we ask is -
does a confident prediction imply a correct prediction? Although it is
difficult to answer this in absolute, we can instead employ the following
strategy: we treat the confidence as a pseudo-probability, and then
see what the performance would be if we used this probability as a
class prediction (instead of the distance metric classifier). Finally, we

12 HiddenSetResultsURL
13 Note: These numbers are meant for comparison when run on our machine
whose specifications are given in Appendix C
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Fig. 13. Hidden Set Results: Confusion matrices (as in Fig. 12) for our DistClassiPy model on the hidden set using Clark (left) and Canberra (right) distances for the multi-class
classification task of Cepheids (CEP), Delta Scuti (DSCT), RR Lyrae ab (RR), and RR Lyrae ¢ (RRc). Both Clark and Canberra perform more than 1 ¢ better than their scores from

cross-validation (91.99% +0.61% and 91.22% + 1.38%, respectively).

evaluate the F| score for the prediction for each of the three confidence
methods Fig. 17. We note that, because the first confidence method,
¢y is just 1/d, where d is the distance metric classifier distance, this
prediction is the same as the DistClassiPy prediction.

The F, scores for predictions from the method ¢, is the most
reliable, and works well for all distance metrics (72% < F,, <
91%). ckpg slightly outperforms the ¢, method for a few metrics (e.g.,

12

Wave-Hedges), but dramatically fails for some others (e.g., Maryland-
bridge). However, all of the metrics for which cgpr underperforms
( Flews < 64%) are the lowest five performers overall, while for all
others Fy . > 87%. Meanwhile, scores for cgcq1eq are the poorest for all
distance metrics. Based on this we conclude that, although the simplest,
the confidence parameter ¢, is a more reliable indicator of overall
classification confidence and we thus use ¢, in DistClassiPy.
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Fig. 14. Top: A visual comparison of computational times between our method, DistClassiPy and RFC as a function of the dataset size (number of objects; y-axis) and number
of features (x-axis). For all plots, the computational costs of fitting the model on the training data and predicting on the testing data (not including preprocessing) are evaluated on
the entire dataset five times, and the results shown are the average over these five iterations. The area of each circle is proportional to the computational time required for training
and generating the predictions. We see that DistClassiPy is always faster than RFC (with 100 trees), and the difference is even more prominent in larger datasets. Bottom: A
comparison of computational times (in seconds) between DistClassiPy and RFC as a function of variable dataset size and number of features. We see that DistClassiPy is
always at least an order of magnitude faster than RFC (with 100 trees), even when using custom metrics (e.g. Clark) which are not in-built in SciPy (like, e.g., Canberra).

An interesting point to note is that, unlike the probabilistic outputs
from something like RFC, our distance metric classifier with ¢, does not
assume a fixed confidence level shared across all classes. The distance
metric classifier does not impose a strict boundary on how far away a
test object can be, and we suspect this may be useful for dealing with
outliers and anomalies. However, this is not something we will explore
in this work, and we end our discussion on confidences.

6.5. Robustness of the distance metric classification

We are interested in determining the robustness of our classifier —
how well does our classifier perform with different types of data? We
split the test set into batches, splitting the data by a given feature’s
distribution into four quantiles, ensuring that each quantile contains
an equal number of objects. Then, we evaluate the accuracy for each
quantile separately, only using the final set of features from the SFS
(Section 4). Since this accuracy is now a measure of robustness, we
call it the robustness score. This method is applied to all features from
our “super-set” (as derived in Fig. 9). For the multi-class classification
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task, robustness scores for the Clark and Canberra metric have been
visualized as a heatmap in Fig. 18. We note that, although all features
in the “super-set” of the 15 best features are not used by the classifier
itself, we still use them to split our quantiles, before dropping the
unused feature based on the distance metric. This helps us compare
the robustness for different metrics.

In addition to obtaining the robustness scores for a given distance
metric across all features, we can also compare the robustness of
all distance metrics across a given feature. In Fig. 19, we look at
the robustness score for the multi-class classification task across all
the 18 distance metrics when splitting our test data based on Pe-
riod_band_r (the r-band period, which is one of the most important
features for the multi-class classification, as we saw earlier in Fig. 9).

The performance for different quantiles of the r-band period varies
for different distance metrics. For example, the Jaccard metric provides
a highly accurate prediction (99%) for objects having short r-band
periods (such that they belong in Quantile 1), but not so much (81%j;
Q4) for objects with a long period (from Quantile 4). Conversely, the
Meehl metric has a low accuracy (82%; Q1) for objects with shorter
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Fig. 15. The computational time of DistClassiPy using the Canberra and Clark metrics (top and bottom rows respectively) as a function of sample size using 100 features

(left plots) and of number of features using 1000 objects (right plots).
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Fig. 16. How feature importance changes for three different distance metrics (Can-
berra, Clark, and Soergel) in the multi-class classification. Each of these metrics has a
similar performance, but there is only one feature that is common among all of them:
Period_band_r — the r-band period.

periods, but has some of the best performance (93%; Q4) for objects
with longer periods. The fact that performance for different quantiles
varies for different metrics may have remarkable implications. This can
enable a dynamic approach for classification - when a test object is
discovered, a different distance metric might be suitable based on what
values its features have. This dynamism is something that cannot be
achieved with traditional classifiers.
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6.6. Interpretability

One more key advantage that DistClassiPy offers is better
interpretability compared to methods like RFC and Neural Networks.
When a test object is classified using the distance metric classifier, we
know exactly what features are being used (unlike some deep learning
methods), and we also know which features are more important. Fur-
thermore, the decision making process is also fairly straightforward,
unlike an RFC, whose constituent trees often have arbitrary decision
boundaries. The distance metric classifier essentially finds the class to
which the test object is “closest”, in a scaled feature-space. This can
also be directly visualized for lower dimensions for a given metric
space, and this may play a significant role in understanding a particular
classification.

7. Conclusions

Time series classification is a non-trivial problem in machine learn-
ing. In ground-based astronomy, light curve classification is even more
challenging due to the sparsity and heteroscedasticity of the data.
We developed a distance metric classifier DistClassiPy that uses
distance metrics computed on features derived from light curves. Tested
on multiple classification tasks, our classifier produces results compara-
ble to other state-of-the-art feature-based methods like Random Forest
Classifiers (RFCs), with F; = 92% and F, = 94% on a multi-class and
a One vs. Rest classification respectively. We achieve a performance
of F| = 68% on a particularly challenging binary classification that
attempts to separate RSCVN and BYDra, two star types that exhibit
photometrically similar and highly variable behaviors (Bopp, 1980),
and for which, too, the RFC performance is comparable F; = 70%.
This cross-validated performance was confirmed by running the model
on a “hidden” dataset completely unseen in training and that, unlike
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Fig. 17. Here, we compare the effectiveness of three confidence methods mentioned
in Section 5.2.3 for our 18 metrics, for the multi-class classification task. We do this by
treating our confidences as a pseudo-probability, and then using this pseudo-probability
for predicting a test object. Finally, we calculate the accuracy for each method using
these predictions, which has been plotted above. This accuracy score helps tell whether
a confident prediction is an accurate prediction. From this plot, we see that cg,q and
ckpg are ineffective methods, and we thus choose ¢, as the confidence method for
DistClassiPy.

the original dataset, is not rebalanced to have an even representation
of all classes. For all three classification tasks, we confirm the perfor-
mance obtained in cross-validation testing: F|, = 93%,92%, and 68%
respectively for the multi-class, One vs. Rest, and binary classification.

At the same time, DistClassiPy is faster, more interpretable,
and suited to be tailored to specific science goals with additional
performance enhancements and computational advantages. In our tests,
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it performed 50x faster than RFC on small datasets (10 features by
100 objects), and over 150x faster on larger datasets (500 features by
10,000 objects) demonstrating impressive scalability properties. The
dynamism in the distance metrics allows for a choice suited to the
available features and the test particle’s characteristics within the fea-
ture space. Finally, because the features are a result of domain-sensitive
dimensionality reduction, the user can leverage relevant knowledge in
the context of the problem.

DistClassiPy is made available to the users as open-source code.
The package is accessible through PyPI'* with the goal of broadening
its potential applications not only in astronomy but also in other
classification scenarios across various fields.

In future work, we plan to extend DistClassiPy to transient
classification, explore its use for anomaly detection, and test more
distance metrics, including metrics typically reserved for comparison
of statistical distributions, e.g., Earth Mover’s Distance, Bhattacharya
distance.
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Fig. 18. Robustness scores for the multi-class classification task, with the distance metric classifier using the Clark (Fig. 18(a)) and Canberra metrics (Fig. 18(b)). The robustness
score is calculated by splitting our test set into quantiles, and then evaluating the classification accuracy for each quantile. Note that, although each quantile is used to split
the dataset, only a subset of these features are actually used in the classification (boldfaced). We still include all features from the super-set of features for the quantile split, to
better compare performance for different metrics. For e.g., although the Canberra metric (b) performs better in general, Clark metric (a) performs better with objects having larger
periods (quantile 4, top row). The color maps limits for Fig. 18 and Fig. 19 have been cut to the range [65,100] to increase the readability of differences in performance, but
both models presented in this figure perform better than 78% at any quantile with any feature.
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Fig. 19. Robustness for objects with different periodicity (Period_band_r) for the multi-class classification task with the distance metric classifier. The r-band period is the
most important feature for most metrics. We compare how robust each of our metrics is to this feature. This figure is designed like Fig. 18. For variables having a shorter period
(and belonging to Quantile 1), the Jaccard metric gives the most accurate classification. On the other hand, for variables with a longer period (and belonging to Quantile 4), the

Meehl metric gives the most accurate classification.
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Appendix A. Distance: A mathematical perspective

Earlier, in the paper, we defined the distance as:

Definition 2.1. The distance d between two points, in a set X, is a
function d : X X X — [0, o) that gives a distance between each pair of
points in that set such that, for all x, y, z € X, the following properties
hold:

(1) d(x,y) =0 < x =y (identity of indiscernibles)
(2) d(x,y) = d(y,x) (symmetry)
(3) d(x,y) <d(x,z)+d(z,y) (triangle inequality)

From the three axioms in Definition 2.1, another condition (non-
negativity) can be shown to hold:

Corollary.

d(x,y) 2 0,forall x,ye X (A1)
Example. The Euclidean distance between two points in R? is an
example of a distance. Similarly, we can define a distance between any
set of points such that Definition 2.1 is satisfied.

Definition A.1. A metric space (X, d) is a set X equipped with a metric
d.

Example. The 2-dimensional R? plane with the Euclidean distance is
an example of a metric space. Similarly, we can also define metrics on
matrices, functions, sets of points or any other mathematical object as
long as it satisfies Definition A.1.

Now, we note the difference between the terms distance and distance
metric (often shortened to just metric).

Definition A.2. The term metric refers to the way to calculate the
distance between any two elements of the set. Meanwhile, the term
distance refers to the scalar value obtained after using a particular
metric on a pair of elements in the set.

Example. The Euclidean metric for R? is given by
d= \/ (x5 — x1)? + (y5 — y1)?, while the Euclidean distance between the
points (0,0) and (1, 1) is given by d = /2.

Appendix B. List of metrics

We used the following metrics for all distance calculations in this
paper. For a detailed description of each metric, see Deza and Deza
(2013).

1. Euclidean metric:

Z(U,-—u,-)2

The Euclidean metric is the most widely used metric and repre-
sents the length of the shortest straight line between two points
in a multidimensional space.

2. Cityblock metric:

d(u,v) = (B.1)

(B.2)

d(u,v) = z |v,- —u,-‘

The Cityblock metric gives the shortest path between 2 points if
we restrict movement to the grid. Named after the grid layout of
cities, this is the shortest distance for a taxi to traverse between
two places. It is also known as the Manhattan metric.
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. Bray-Curtis metric:

Z|“i _Ui|

d(u,v) Z |M,- " Ul-|
The Bray—Curtis metric is commonly used in Ecology and Bi-
ology, and denotes the dissimilarity in the (biological) species
composition of two sites.

(B.3)

. Canberra metric:

d(u,v) = Z —|ui _ Ui|

(B.4)
|;] + [vi]

The Canberra metric is a weighted version of the Cityblock
metric, with a denominator that is slightly different from the
Bray—Curtis metric. The form of the denominator makes this
metric sensitive to points that are closer to the origin.

. Chebyshev metric:

d(u,v) = max(|u,- - U,-l) (B.5)

The Chebyshev metric is also known as the chessboard metric.
It represents the minimum number of moves needed by the King
chess piece to move from one point to another.

. Clark metric:

(B.6)

1
2\ 2
1 U —U;
d(u,v) = <;Z <|“i|+|Ui|> >

The Clark metric is a variation of the Euclidean metric, but with
a normalizing factor similar to the Canberra metric.

. Cosine metric:

d(u,v) =
Y (=) - (v - )
VE (=) =) {3 (0= 0)- (0~ 0)

The Cosine metric is based on the cosine similarity, which de-
pends only on the angle between the two vectors in the feature
space, and not their magnitude.

(B.7)

. Hellinger metric:

2

u; U;
d(u,v) =412 — —4/= B.8
(u,v) Z<\/ﬁ \/ﬁ> (B.8)
The Hellinger metric is a metric that is commonly used to
compare two probability distributions but can also be used with
numeric data.

. Jaccard metric:

2
(Z Ui = Ui)
Tup + Lo} - Tuw,
The Jaccard metric is based on the Jaccard similarity coefficient,
which is a measure of similarity between 2 sets. The similarity

coefficient can be converted into a distance.
Lorentzian metric:

d(u,v) = (B.9)

dw,v)= Y In(1+[u, - v,]) (B.10)

Because the Lorentzian metric is given by a natural log, it is
more sensitive to changes when the input vector is small, but
less sensitive to changes when the input vector is large.
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11. Meehl metric:

2

duwvy= Y (=0, =ty +0,y) (B.11)
1<i<n—1

The Meehl metric mixes terms from consecutive dimensions,

thus making the ordering of the dimensions significant.

12. Soergel metric:

2 |u; = vy
Y max {u;, v, }
The Soergel metric is another modified version of the Cityblock
metric but has only a max term in the denominator. Note that the
summation is performed independently on the numerator and

denominator before division.
13. Wave-Hedges metric:

d(u,v) = 2

The Wave-Hedges metric is a slight modification of the Soergel
metric, where the summation is done after division.
14. Kulczynski metric:

2 |’41 - Uil
¥ min {u;, v, }
The Kulczynski metric is similar to the Soergel metric, with the
difference that its denominator consists of a minimum instead of

a maximum.
15. Additive Symmetric y metric:

d(u,v) = (B.12)

M (B.13)
max {u;, v; } '

d(u,v) = (B14)

2
(u; — v) (u; +v;)
u;v;

dw,v) =% (B.15)
The additive symmetric y*> metric is a form of a weighted
Euclidean metric, where terms between the two vectors are
mixed.

16. Correlation metric:
(i—a)-(G-0)
Gi = DI, I@ = D)l
The Correlation metric is based on the Pearson correlation coef-

ficient between 2 vectors.

17. Maryland Bridge metric:

d _ 1 Xuwo,  Xuwu

(u,v)—l—z Zu2 + sz

1 1
The Maryland Bridge metric is based on the Maryland Bridge
similarity. This metric does not satisfy axiom 3 (triangle inequal-
ity) in Definition 2.1 and it is therefore not a distance metric.
However, it has been used in literature, particularly in the field
of genomics to measure similarity between genomes (Mirkin and
Koonin, 2003). Thus, it is included as a utility in our package.

18. Motyka metric:

Y max {u;, v, }
2 (i +v;)
The Motyka metric has a summation term in the denominator,
which acts as a scaling factor of the maximum term in the
numerator. This metric does not satisfy axiom 1 (identity of
indiscernibles) in Definition 2.1 (and it is not positive defined).
However, it is a metric that commonly appears in the literature
when measuring similarity between data, so it is included as a

utility in our package.

d@@, By =1- (B.16)

(B.17)

d(u,v) = (B.18)

Appendix C. Hardware and software specifications

The results described in this work, including the computational time
estimates, were produced on machines with the hardware specifications
reported in Table C.4. The Python libraries and corresponding versions
used in this work are given in Table C.5.
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Table C.4
Hardware Information.
Specification Details
Processor ARM
CPU Apple M1 Pro
Physical cores 8
Total cores 8
RAM 16 GB
Operating System Darwin 23.1.0
Machine arm64
Platform mac0S-14.1.1-arm64-arm-64 bit
Table C.5
Software and Versions.
Library Version Reference
Python 3.12.2 Van Rossum and Drake (2009)
DistClassiPy 0.1.5 Chaini et al. (2024)
NumPy 1.26.4 Harris et al. (2020)
Pandas 2.2.1 Wes McKinney (2010),
The pandas development team (2020)
scikit-learn 1.4.1.postl  Pedregosa et al. (2011)
SciPy 1.12.0 Virtanen et al. (2020)
statistical-distances 0.9.1 Zielezinski (2023)
matplotlib 3.8.3 Hunter (2007)
JSON 2.0.9 Pezoa et al. (2016)
tqdm 4.65.0 Casper da Costa-Luis et al. (2024)
seaborn 0.13.2 Waskom (2021)
mlxtend 0.23.1 Raschka (2018)
Jupyter 4.1.2 Kluyver et al. (2016)
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