L)

Check for
updatas

Benchmarking Learned and LSM Indexes for Data Sortedness

Aneesh Raman Andy Huynh
Boston University Boston University
aneeshr@bu.edu ndhuynh@bu.edu
ABSTRACT

Database systems use indexes on frequently accessed attributes to
accelerate query and transaction processing. This requires paying
the cost of maintaining and updating those indexes, which can be
thought of as the process of adding structure (e.g., sort) to an other-
wise unstructured data collection. The indexing cost is redundant
when data arrives pre-sorted, even if only up to some degree. While
recent work has studied how classical indexes like B*-trees cannot
fully exploit the near-sortedness during ingestion, there is a lack of
this exploration on other index designs like read-optimized learned
indexes or write-optimized LSM-trees.

In this paper, we bridge this gap by conducting the first-ever
study on the behavior of learned indexes and LSM-trees when vary-
ing the data sortedness in an ingestion workload. Specifically, we
build on prior work on benchmarking data sortedness on B*-trees
and we expand the scope to benchmark: (i) ALEX and LIPP, which
are updatable learned index designs; and (ii) the LSM-tree engine
offered by RocksDB. We present our evaluation framework and
detail key insights on the performance of the index designs when
varying data sortedness. Our observations indicate that learned in-
dexes exhibit unpredictable performance when ingesting differently
sorted data, while LSM-trees can benefit from sortedness-aware op-
timizations. We highlight the potential headroom for improvement
and lay the groundwork for further research in this domain.

CCS CONCEPTS

« Information systems — Data structures; Data management
systems.

KEYWORDS
Indexing, Data Sortedness, Learned-Indexes, LSM-Trees

ACM Reference Format:

Aneesh Raman, Andy Huynbh, Jingi Lu, and Manos Athanassoulis. 2024.
Benchmarking Learned and LSM Indexes for Data Sortedness. In Inter-
national Workshop on Testing Database Systems (DBTest "24), June 9, 2024,
Santiago, AA, Chile. ACM, New York, NY, USA, 7 pages. https://doi.org/10.
1145/3662165.3662764

1 INTRODUCTION

Data systems often utilize indexing structures on frequently queried
attributes for accelerated query processing to meet the ever-growing

O

This work is licensed under a Creative Commons Attribution International 4.0
License.

DBTest '24, June 9, 2024, Santiago, AA, Chile

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0669-1/24/06

hitps://doi.org/10.1145/3662165.3662764

16

Jingi Lu Manos Athanassoulis
Boston University Boston University
jingilu@bu.edu mathan@bu.edu

demand for real-time analysis of large volumes of data. Typically, in-
dexes establish structure or order to the data by paying an indexing
cost which allows for efficient data access. However, if data arrives
fully sorted or sorted only up to some degree, the cost to create
indexes is entirely redundant. This translates into a performance
bottleneck as modern data requirements entail systems to support
fast data ingestion in addition to offering efficient query processing.

Near-Sortedness in Practice. Several applications often gener-
ate near-sorted data, i.e., data is not entirely ordered but close
to being fully ordered. For example, data tables that have corre-
lated attributes [4], intermediate results of previous join opera-
tions [5], aggregated time series, event-based data such as sensor
failures [16, 41] or naturally generated data such as stock market
prices can all be near-sorted. The degree to which such data is nearly
sorted is characterized by data sortedness and has been widely ex-
plored in sorting and searching algorithms [5, 8, 9, 21, 25, 42].

Are Indexes Sortedness-Aware? When data is available fully
sorted a priori, the index construction cost can be significantly
amortized through bulk loading [1, 11]. However, the prospect
of exploiting intrinsic data sortedness up to any degree during
index construction has yet to be fully solved. Recent efforts pro-
vide a framework for evaluating indexes with a varying degree
of sortedness through the Benchmark on Data Sortedness (BoDS)
and its follow-up work [33, 34], focusing exclusively on B*-trees.
While B*-trees are often used in commercial data systems due
to their balanced read-write performance [10, 20, 27, 28, 30-32],
several write [6, 7, 17, 24, 29] as well as read optimized indexes
exist [12, 15, 22, 35, 43]. In this work, we expand the scope of bench-
marking indexes with near-sorted ingestion workloads by testing
updatable learned indexes and LSM-trees.

Learned indexes [12, 15, 22, 43] aim to replace standard index
traversals with an alternative strategy using a hierarchy of machine
learning models that can inexpensively predict the location of a key
(albeit with an error bound). Though initially proposed as a read-
only index structure because re-training the models is expensive,
recent proposals like ALEX [12] and LIPP [43] provide updatable
index designs, enabling wider adoption. ALEX, for instance, uses a
gapped array layout for its data nodes that distribute extra space
between entries to enable a model-driven insertion policy. Evalua-
tions with random insertions show considerable benefits offered
by ALEX over the B*-tree for mixed read-write workloads as the
index easily adapts to changes in data distribution [12]. However,
ingesting near-sorted data could potentially reduce the advantage
learned indexes hold over B*-trees due to less frequent changes in
data distribution and risks potentially overfitting the model.

On the other hand, LIPP stores the exact positions of keys within
the data which eliminates model-based predictions during inser-
tions and provides a fallback during lookups if the models are
inaccurate. LIPP overcomes the drawbacks of other learned index
designs by extending the tree structure during updates caused by

https://orcid.org/0009-0001-2164-0109
https://doi.org/10.1145/3662165.3662764
https://doi.org/10.1145/3662165.3662764
https://doi.org/10.1145/3662165.3662764
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3662165.3662764&domain=pdf&date_stamp=2024-06-09

DBTest "24, June 9, 2024, Santiago, AA, Chile

out-of-order entries: K = 4

| HEN IS A B

L=1 T 4L=1%

[+ [s

maximum displacement: L = 6

Figure 1: An example of a near-sorted data collection quanti-
fied by the (K, L)-sortedness metric.

the collision of model predictions and combining it with a dynamic
height adjustment strategy to bound the tree height. Similarly to
ALEX, evaluation of LIPP focused entirely on workloads following
a random insertion order. Thus, LIPP may potentially carry similar
drawbacks to ALEX for near-sorted data; in particular, overfitting
of learned models may have an exacerbated cost as more collisions
may cause expensive dynamic tree adjustments to occur.

Orthogonally, LSM-trees [29] are widely used in modern key-
value stores due to their ability to allow high ingestion rates and
fast reads. To achieve fast data ingestion, LSM-trees buffer writes
in memory, and will periodically flush, merge, and organize data
on storage in logical levels (i.e., compactions) to help amortize the
ingestion cost. Generally, LSM designs—such as RocksDB [14]—are
highly tunable [37] and offer fine-grained control of data move-
ment, the flush and merge policies [23, 36], and the overall layout
of the underlying index. For instance, RocksDB supports partial
compactions [39, 40], where only a subset of files on disk with
overlapping key ranges between logical levels are merged to reduce
write amplification. Partial compactions help RocksDB to support
trivial moves [38], through which files with non-overlapping key
ranges can be directly moved between levels using simple pointer
manipulation and does not require re-writing and merging, and
thus benefits workloads that are highly sorted.

Contributions and Benchmarking Observations. In this work,
we benchmark the performance of updatable learned index designs:
ALEX, LIPP and the state-of-the-art LSM-tree (using RocksDB);
when varying data sortedness. Our evaluation framework puts
together the data generator from BoDS along with adapters to the
different indexes with the helper scripts written in C++ and Python.
We make our framework available online so that it can be easily
extended to incorporate other index designs in the future !. Our
key observations are highlighted as follows:

(1) We establish that any design must be evaluated over varying
degrees of sortedness in the ingestion workload as standard.

(2) Learned indexes can be unpredictable when varying sort-
edness. Particularly, LIPP can be either 4.4 faster or 1.9x
slower than ALEX, depending on data sortedness.

(3) Learned indexes may also overfit their models when learning
data distribution with high data sortedness. We find that LIPP
fails to ingest fully sorted data through sequential writes due
to repeated collisions creating an unbalanced left-deep tree.

(4) LSM-trees benefit from optimizations like trivial moves found
in RocksDB, however, this can be further optimized to ex-
hibit ideal sortedness-awareness. Specifically, when tran-
sitioning between fully sorted to minorly unsorted work-
loads, throughput decreases by ~ 20% while the files trivially
moved are = 5X fewer.

!https://disc.bu.edu/papers/dbtest24-bliss

17

Aneesh Raman, Andy Huynh, Jingi Lu, and Manos Athanassoulis

.Dm Node |:|Vnn
v

]_ ookup

q]
}ij]

(b) LIPP

Figure 2: (a) ALEX follows model-based insertions into the
index. Gapped Arrays in data nodes help amortize write am-
plification caused by shifting keys during ingestions; (b) Ev-
ery node in LIPP contains a bit-vector denoting three entry
types: gap or empty space, data (containing a single entry),
or a link to a child node.

The rest of this paper is structured with §2 covering the relevant
background, §3 discussing our evaluation framework, and §4 show-
ing our key observations.

2 BACKGROUND

In this section, we provide the necessary background on the data
generator from BoDS [33] and the indexes we benchmark.

Benchmark on Data Sortedness (BoDS) [33], provides a frame-
work for evaluation of the performance of data systems when vary-
ing data sortedness in the ingestion workload. The benchmark fea-
tures: (i) a synthetic data generator that creates differently sorted
collections, and (ii) a workload executor that converts the data files
into workloads having reads and writes. The data generator uses an
intuitive (K, L)-sortedness metric, inspired by [5], that quantifies
data sortedness by how many entries are out-of-order and by how
much. The number of out-of-order entries are denoted by K and the
maximum displacement of any out-of-order entry is denoted by L.
Figure 1 shows an example of a near-sorted data quantified using
this metric. Here, the unordered entries are marked by the red boxes,
and their displacements are visualized by the arrows. Note that a
low L signifies local unorderness as entries are displaced closer to
their ideal positions, while a high L points to global unorderness.

Learned Indexes look to replace index traversals through machine
learning models (e.g., regression models) that can accurately predict
the location of a key in the dataset [12, 22, 43]. They do so by
learning the relationship between the keys and their data positions,
i.e., the data distribution. Using models rather than index traversals
reduces the number of disk accesses and comparisons needed to
lookup data in the index, thus, improving query performance. While
traditionally proposed as read-only structures to avoid expensive re-
training overhead during updates [22], recent efforts have proposed
updatable designs, most notably - ALEX [12] and LIPP [43].

ALEX [12] uses a Recursive Model Index (RMI) that predicts the
position of a key in the data. As with a B*-tree, ALEX builds a
tree structure, however, utilizes a different node structure that can
grow or shrink at different rates. Data nodes in the index use a
gapped array between existing entries in the node, as shown in
Figure 2a. The gapped array reduces the cost of shifting keys for
each insertion as the gaps can directly absorb insertions. Further,

https://disc.bu.edu/papers/dbtest24-bliss

Benchmarking Learned and LSM Indexes for Data Sortedness

DBTest '24, June 9, 2024, Santiago, AA, Chile

—>»] G
1. Inputs + ___ !
Y v v ¥ .
' 2 Generated =] 3. Test File 4. H
s k = B == * D8l
Data Generation : Index Initialization Workload Execution Results i
. ! H ; : .
] E § n- :
: Ll fodel Read F— :
l % Sorted || 1 |—| : Rk
- ' [Model | . FE
e IR === |
5 “SB Mokt | i
1 LsM LIPP ALEX Read Wi o) .
; Toderes -— SQLite & Heatmap | |
Do o o o o o e o A R SR B AR G SR B AR U S R AR U S G AR SR SR S G SR B G G SR B U Am G SR B R AR M SR A SR M G SR G G R G G M R M G e MmO -

Figure 3: Overview of our benchmarking framework

insertions to the index are model-driven, i.e., records are expected
to be closely located to their predicted positions. ALEX also uses
exponential search during lookups that is faster than binary search
when the RMI is highly accurate. As with a learned index, insertions
cause the model’s errors to increase, however, ALEX selectively
retrains the model only when needed with the use of simple cost
models that account for current workload characteristics.

LIPP [43], illustrated in Figure 2b, also uses model-based insertions
for writes to the index, however, with a precise key-to-position
mapping in the index. Unlike ALEX, which shifts entries in case of
collisions in predicted locations by the RMI model, LIPP chooses to
create a new child node linked to the particular position to hold the
keys. This way, multiple keys can be mapped to a single predicted
location without affecting the prediction errors. Each node in LIPP
contains a model, an array of entries, and a bit vector of entry types
(as elements for that node). Each entry type can either be a gap, or
can contain data (a single entry) or be linked to a child node. The
index tightly bounds the tree height with a dynamic, lightweight re-
adjustment strategy to O(logN), where N is the size of the ingested
data. The strategy chooses the appropriate subtree to determine
when and how to readjust and reduce the tree height.

LSM-trees [29] buffer entries in an in-memory component to opti-
mize ingestion before flushing them as sorted runs to the disk. The
sorted runs are later merged with the existing disk components
through a process termed as compaction. The compaction policy can
also be controlled to either eagerly merge (leveling) or lazily merge
(tiering). Modern LSM-tree engines like RocksDB [14] also allow
for partial compactions [13] with different data movement policies.
Textbook LSM-tree designs perform the same amount of merging
and re-writing of data during compactions, even for fully sorted
data. Meanwhile, partial compactions only compact a subset of files
that have overlapping key ranges to reduce write amplification, as
the amount of data re-written during every merge is minimized.
Further, RocksDB also performs trivial moves [38] that are light-
weight pointer manipulations to move SST files from one level
to the other if there are no overlapping key ranges. This reduces
redundant re-writing and merging of files during compactions.

3 BENCHMARK ARCHITECTURE

In this section, we describe our methods and discuss the mechanics
of the benchmark. Figure 3 provides a graphical overview of the
different components of the benchmark.

18

Coordinator. For performance, the benchmark is primarily written
in C++, however, we provide a coordinator that links together data
generation, index initialization, workload execution, and recording
results in Python. Performance numbers and logs are stored in a
SQLite database for easy analysis and plotting after benchmarking.
Data Generation. As we are concerned with sortedness, we choose
to generate data using BoDS [33]. For results shown in this paper,
we generate data files with 500 million 64-bit keys (=~ 4GB). If the
user prefers a different data generation method, we provide hooks
to allow other data generation programs to be integrated.

Index Initialization. Our benchmark integrates with four modern
index designs: three in-memory indexes, the B*-tree, ALEX, and
LIPP, and the modern LSM-tree through RocksDB. We use the
B*-tree from the TLX library, while ALEXand LIPP both provide
source code online [12, 43]. Each data structure is encapsulated in a
C++ wrapper that specifies how each structure preloads, reads, and
writes data. Any index-specific initialization is performed before
benchmarking. Users can integrate other indexes or data structures
into the benchmark by simply adapting the index wrapper.

Workload Execution. When data files are ingested, the data
stream is split up into four distinct execution phases: a preload
phase, a write phase, an interleaved operations phase, and a read
phase. For example, following the benchmark’s default settings, the
preload phase operates on 40% of the input stream, the write phase
40%, and the interleaved operation phase 20%. Lastly, the read phase
defaults to submitting a number of read queries equal in length
to 25% of the input stream. Read keys are generated uniformly at
random from the set of ingested keys. During ingestion, every key
is associated with a randomly generated payload of fixed length.

Preload phase: By default, the preloading phase will call the equiv-
alent insert operation for each entry in the preload stream. How-
ever, certain data structures may have the ability to perform a
bulk load operation. In such instances, the preloading behavior
can be changed to perform specialized bulk loading that is specific
to each data structure. We utilize bulk loading for the preloading
experiments presented in this paper.

Write phase: Once the preloading completes, the index is bench-
marked with a phase of sequentially executed insert operations.

Read phase: The read phase consists of sequentially executed read
operations. Keys generated for the query are selected uniformly at
random from the list of keys already inserted into the data structure.

DBTest '24, June 9, 2024, Santiago, AA, Chile

- 58.00

- 57.75

57.50

57.25

10 25 50 100
1

57.00

56.75

56.50

Bulkload Throughput {MOps)

56.25

56.00

Figure 4: A sample heatmap showing the write throughput
in B*-tree when bulk loading the index.

Interleaved phase: Lastly, the interleaved operation phase com-
bines the read and write phases and randomly selects a uniform
mixture of read and write operations.

Analyzing the Results. Once benchmarking is complete, we pull
performance logs from the SQLite database to produce heatmaps
relating the dimensions of sortedness (K and L) to the preload,
read, or write throughput. A sample heatmap is shown in Figure 4.
By default, the x-axis varies the fraction of out-of-order entries
in the data collection (K) while the y-axis varies their maximum
displacement (L). The bottom left (K=0, L = 0) corresponds to a
fully sorted data collection, while the top right corner (K = 100,
L = 100) corresponds to a fully scrambled data collection. Results
for K = 0 or L = 0 are left blank as any data collection with even
one of the parameters equalling zero are fully sorted. Every cell in
the heatmap corresponds to a particular evaluation metric denoted
by the corresponding color bar label. For example, Figure 4 shows
the observed throughput while pre-loading a B*-tree index. Note
that we exclude detailed analysis of B*-trees in this benchmark as
it has been extensively covered in prior work [33, 34].

4 EXPERIMENTAL EVALUATION

We now present the experiments to evaluate the behavior of dif-
ferent indexes in the presence of variable data sortedness. Note
that we do not aim to compare the three approaches (for example,
the learned indexes are in memory, while RocksDB operates on
storage), rather, we attempt to explore the relative behavior of the
three index designs as we vary data sortedness.

Experimental Setup. Our server is configured with two Intel Xeon
Gold 6230 processors, 384 GB of main memory, a 1 TB Dell P4510
NVMe drive, CentOS 7.9.2009, and a default page size of 4 KB.

4.1 Learned Index

First, we present the results for the read-optimized updatable learned
index structures, namely, ALEX and LIPP.

Index Setup. Both ALEX and LIPP are set up with the default
settings as per their code base [12, 43]. Namely, ALEX is initialized
with a node size of 16MB, and LIPP uses a bitmap width of 1byte.

4.1.1 Bulk Loading. In this experiment, we measure the bulk load
throughput for ALEX and LIPP with varying degrees of sortedness.

19

Aneesh Raman, Andy Huynh, Jingi Lu, and Manos Athanassoulis

(&) ALEX : Bulkload Throughput (MOps) (b) LIPP : Bulkload Throughput (MOps)

[} 8 10 12 20 30 40
100- 7“ 6 6 &5 5 &5 100- 2 12 13 n 12 14 18
50- T 7 6 6 6 & & B0-
25-] 6§ 6 T 25-
glﬂ-] 77T -
5 & 7 7 8
3- &8 8 7 8 7 T &8
1 8 8 7 7 7T T 8

25
50-
100

K(%)

Figure 5: Bulk loading learned indexes with differently sorted
data: (a) ALEX benefits from high data sortedness; (b) LIPP
works better with scrambled data.

ALEX Performs Best With Fully Sorted Data. We observe (from
Figure 5a) that ALEX offers the best throughput when the ingested
data is fully sorted or near-sorted, however, it suffers when both K
and L are high (K > 25% and L > 25%) as the throughput drops by
up to 60%. ALEX bulk loads the tree greedily by recursively parti-
tioning the input stream and deciding independently and locally
each internal node’s fanout. The index picks the optimal fanout
by building a fanout tree for every RMI node and calculating the
expected costs using a cost model to traverse the tree to the data
nodes. Although we bulk load a pre-sorted data stream, the possibil-
ity of picking optimal split points without recomputing the fanout
tree is higher when the input stream itself has high data sorted-
ness. However, we also observe an anomaly of high throughput for
L = 10% and K = 3%, 5%, 10% which requires further investigation
into the internals of the index.

LIPP Performs Best with Local Unsortedness. We observe in
Figure 5b that LIPP offers a significantly higher throughput (at
least = 1.5 better) when data is locally out-of-order (L < 25%).
The index is largely unaffected by local unsortedness (small values
of L) and its throughput is comparable to ingesting fully sorted
data. In fact, even when all entries are out of order (K = 100%) but
L < 25%, LIPP has its highest ingestion rate. Bulk loading in LIPP
starts by creating a Fastest Minimum Conflicting Degree (FMCD)
model for every node, which is used to insert subsequent entries.
If conflicting entries are mapped to the same location, the index
collects them and recursively builds partial subtrees to remap their
positions correctly. Therefore, the bulk loading performance can
be correlated to the number of times the index recursively builds
partial subtrees during conflicts. When L is low, the data is more
densely packed, making it easier to pick the optimal split points
with minimum conflicts during bulk loading. This even holds for
K = 100 as the FMCD algorithm can build an accurate linear model
with minimized conflicts due to well-distributed data. Overall, with
local unsortedness, we expect LIPP to be better equipped to densely
pack nodes during bulk loading.

4.1.2 Writes. Next, we report our observations when measuring
the performance of sequential insertions for both ALEX and LIPP
in Figure 6. Note that we execute the sequential insertions after the
pre-loading phase (after bulk loading each index).

Benchmarking Learned and LSM Indexes for Data Sortedness

al ALEX : Write Thr ut MOps
P
2.0

(b) LIPP : Write Throughput (MOps)
3.0 a5 0 5 10 15

25

=1
=

= 00-

(%)

Figure 6: Ingestion Performance of learned indexes in stable-
state: (a) ALEX offers better throughput when ingesting data
with high sortedness; (b) LIPP performs better when the
displacement of unordered entries (L) is larger for a fixed K.

ALEX is Unpredictable When Varying Sortedness. We observe
in Figure 6a that ALEX offers the best throughput when ingest-
ing data with low K and L (< 10%). The indexing effort during
stable-state ingestions is expected to be dominated by finding the
correct insertion position in the gapped array (through exponential
search in case of incorrect predictions). When the ingested data
is highly sorted, entries in the data node are likely to be densely
packed, leaving long contiguous runs followed by huge terminal
gaps, similar to a B*-tree. In this case, exponentially searching for
the correct gap is easier, and we believe this is a reason for the
higher throughput. On the other hand, ALEX also performs well
when all entries in the input stream are out-of-order but have low
or moderate displacement (L < 50%). In this case, a lower L implies
fewer contiguous runs of entries in the data node (leaving more
gaps), which may reduce incorrect predictions. The performance
degrades as we increase L, and ALEX exhibits its worst throughput
for scrambled data (K = 100, L = 100).

LIPP Offers Better Write Throughput for Higher L. Contrary
to pre-loading, we observe from Figure 6b that LIPP performs the
best, by up to 8x, when the ingested data has fewer unorder entries
(K < 10%) but are displaced further away from their ideal positions
(L > 25%). The insertion cost in LIPP comes from the readjustment
strategy that may trigger recalibrations of the model. Generally,
for a fixed K, an input stream with a higher L offers a better sam-
ple exposing a wider range of entries (i.e., higher data resolution)
than one with a low L value. Naturally, the model is better trained
to handle conflicts when it is exposed to a coarser sample with
a wider domain (compared to a biased fine-grained sample), thus
requiring fewer re-adjustments or recalibrations. Further, low L in
ingested data leads to dense packed nodes during index creation
(as we observe in §4.1.1, which triggers more conflicts in the se-
quential write phase. Meanwhile, LIPP already performs additional
effort in minimizing conflicts during index creation that pays off by
leaving considerable gaps to absorb future insertions, and hence,
the contradictory trend.

LIPP Fails to Sequentially Write Fully Sorted Data. We also
observe in our benchmark that LIPP’s current design fails to ingest
fully sorted data, denoted by a —1 throughput in Figure 6b. Our
investigation reveals that performing sequential writes with fully
sorted data produces too many conflicting model predictions. In

20

DBTest '24, June 9, 2024, Santiago, AA, Chile

(a) ALEX : Read Throughput (MOps) (b) LIPP : Read Throughput (MOps)
18 0 22 0 10 0 30 40

w oo o
[- B =1

=
=
K

(%)

Figure 7: Lookup performance (existing queries) of the
learned indexes: (a) Overall, ALEX offers a stable lookup per-
formance; (b) Lookups in LIPP are faster when L is higher.

turn, this creates a deep subtree that fails to balance itself even with
the re-adjustment strategy, causing the index to collapse.

LIPP vs. ALEX. As both systems are in memory, and we use the
same setup to compare those systems in prior work [43], we can
report that we corroborate that LIPP has about 2.5X higher insert
throughput (see the K=100%, L=100% points in Figure 6), however,
we uncover a much more interesting comparison. Depending on
the data sortedness LIPP can be from 4.4x faster all the way to
1.9% slower than ALEX. Lastly, LIPP surprisingly fails to insert
fully sorted data. Overall, we argue that the benchmarking analysis
varying data sortedness should be an evaluation standard for all
new index designs moving forward.

4.1.3 Reads. Next, we report observations for lookups in Figure 7.

ALEX Offers Comparable Read Performance. We observe from
Figure 7a that the point lookup performance of ALEX is largely
comparable for any degree of sortedness in the ingestion workload.
However, lookups are slightly (up to 10%) faster for higher unsorted-
ness (both K and L > 25%). Lookups traverse the internal nodes by
using the predictive models until they reach a data node, where an
exponential search may be required to find the accurate position of
the key. When the fraction of unordered entries in the ingested data
is low, we risk potentially overfitting the model during ingestions,
which can result in inaccurate predictions. Overall, ALEX’s lookup
performance is driven by the accuracy of the model.

Lookups in LIPP Depend on Data Sortedness. Likewise, we
observe in Figure 7b that LIPP’s lookup performance benefits from
a larger displacement (L) of entries in the ingested data. We believe
this is a result of exposing the model to unbiased coarser samples
during index construction that, in turn, improves accuracy.

4.2 LSM-trees

We now explore the sortedness-awareness of the state-of-the-art
LSM-tree engine in RocksDB [14]. Here, we perform sequential
writes to the system for every data collection and present our results
in Figure 8 and Figure 9.

RocksDB Setup. We default RocksDB to the following settings;
compaction style set to kCompactionStyleLevel, compaction priority
to kMinOverlappingRatio, buffer size 40MB, and size ratio 4.

DBTest '24, June 9, 2024, Santiago, AA, Chile

1 1 1 1 1
100

o 1 3 5 i % 50
K (%)

Figure 8: RocksDB offers better performance when ingesting
data with high sortedness.

RocksDB Benefits from High Data Sortedness. We observe
from Figure 8 that the LSM-tree in RocksDB offers the best through-
put when the ingested data is fully sorted, and its performance
gradually deteriorates as the data sortedness decreases. Particu-
larly, we find that the system’s write throughput highly depends
on L, with its performance slowing down by up to 1.7 as the
displacement of unordered entries in the workload increases. An
LSM-tree works best when it is able to capture any lack of sort-
edness within its in-memory buffer so that its flushed sorted runs
have unique ranges. Thus, a higher degree of sortedness results in
lower indexing and merging effort during compactions.

Compactions Increases as Sortedness Decreases. Further, we
observe from Figure 9a that the number of compactions performed
increases as the sortedness in the ingestion workload decreases.
In fact, RocksDB performs up to 2.7X more compactions when
ingesting scrambled data (K = 100, L = 100). Note that we report the
cumulative number of compactions performed during the ingestion
cycle for a specific data collection. As sortedness decreases (increase
in either K or L), the number of overlapping key ranges among
the sorted runs in every level of the tree significantly increases,
resulting in an increase in the number of compactions.

Trivial Moves Benefit from High Data Sortedness. Figure 9b
shows that RocksDB performs more trivial moves with higher data
sortedness, maximizing the metric when ingesting fully sorted
data. Trivial moves enable the system to avoid unnecessary re-
writing and merging (i.e., compactions) when moving files with
non-overlapping ranges between levels through simple pointer ma-
nipulation. When the data sortedness is high, more non-overlapping
files exist, thus, a higher number of trivial moves is performed.

Trivial Moves are Significantly Affected by Even Minor Lack
of Sortedness. We also see from Figure 9b that the number of trivial
moves significantly reduces as we slightly reduce sortedness in the
data. For example, while RocksDB performs 524 trivial moves when
ingesting fully sorted data (K = 0, L = 0), the number of trivial
moves executed (96) are = 5.5X fewer, with K = 1%, L = 1%. This is
because the in-memory buffer in the LSM tree is not designed to
exploit sortedness, and is entirely flushed once full to make space
for future insertions. By doing so, RocksDB misses the opportunity
to absorb any lack of sortedness in the subsequent buffer cycle,
which is very likely to occur when ingesting near-sorted data. This
results in overlapping key ranges among the sorted runs, which
prohibits them from being eligible for trivial moves and, instead,

21

Aneesh Raman, Andy Huynh, Jingi Lu, and Manos Athanassoulis

() Number of Compactions

(b} Files Trivially Maved
-B00 -200
£- £- W o ¥ o4 % oa
- w0 3- L 178
- - 0 8 6 150
= GO0
& =R =R 125
E R w0 100
&= &= .
75
- 400 —~ -
i
) - B
f . f . . ao0 ' ' ' f . f . .
wog ¥ B § =N R = §
K (%)

Figure 9: (a) Compactions increase as data sortedness de-
creases; (b) More trivial moves are executed when ingesting
data with high sortedness.

must undergo compactions. We point out that LSM systems like
RocksDB can benefit by partially flushing the buffer to better capture
near-sortedness, like the SWARE paradigm [34].

Other LSM-designs. RocksDB benefits from optimizations like
partial compactions [39, 40] that enable trivial moves [38] to lever-
age data sortedness during ingestion; however, not all LSM-engines
implement these features—e.g., AsterixDB [2, 3] perform full-level
compactions. In such systems, we expect the LSM-tree to perform
redundant effort -repeatedly sort-merging and re-writing data. Ad-
ditionally, most LSM-engines have customized tuning knobs that
alter performance; while tuning LSM-engines has been widely stud-
ied [18, 19, 26], identifying the optimal tuning for exploiting near-
sortedness requires further investigation.

5 CONCLUSION

Indexes establish order to otherwise unstructured incoming data
to facilitate efficient queries. When data arrives nearly-sorted, the
indexing effort is redundant. While prior work explores the ability
of classical B*-trees to exploit data sortedness to improve ingestion
performance, we extend the benchmarking to modern index designs
like updatable learned indexes and LSM-trees. We summarize our
key takeaways from our experimental analysis as follows:

(1) Benchmarking index ingestion performance while varying
data sortedness should be a new standard.

(2) Sortedness drives performance benefits of learned indexes.
Specifically, ingestion in LIPP can be anywhere between
4.4x faster to 1.9 slower than ALEX when varying data
sortedness in the workload.

(3) LSM-trees by design can absorb some degree of sortedness
due to sort-merging during compactions.

(4) The ability of LSM-trees to exploit trivial moves significantly
degrades (by = 5x) even when inducing minor unsortedness,
leaving potential for further optimizations (e.g., partially
flushing the buffer) to bridge the performance gap.

Overall, we highlight the need for a wider analysis of index perfor-
mance when varying data sortedness. This paper lays the ground-
work for further exploration and potential opportunities for im-
provement in current state-of-the-art index designs.

ACKNOWLEDGMENTS

This work was funded by NSF grant 11S-2144547, a Facebook Faculty
Research Award & a Meta gift.

Benchmarking Learned and LSM Indexes for Data Sortedness

REFERENCES

[1] Daniar Achakeev and Bernhard Seeger. 2013. Efficient Bulk Updates on Multi-
version B-trees. Proceedings of the VLDB Endowment 6, 14 (2013), 1834-1845.

[2] Wail Y. Alkowaileet, Sattam Alsubaiee, and Michael J. Carey. 2020. An LSM-based
Tuple Compaction Framework for Apache AsterixDB. Proceedings of the VLDB
Endowment 13, 9 (2020), 1388—1400.

[3] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander Behm,
Vinayak R. Borkar, Yingyi Bu, Michael J. Carey, Inci Cetindil, Madhusudan Chee-
langi, Khurram Faraaz, Eugenia Gabrielova, Raman Grover, Zachary Heilbron,
Young-Seok Kim, Chen Li, Guanggiang Li, Ji Mahn Ok, Nicola Onose, Pouria
Pirzadeh, Vassilis]. Tsotras, Rares Vernica, Jian Wen, and Till Westmann. 2014.
AsterixDB: A Scalable, Open Source BDMS. Proceedings of the VLDB Endowment
7, 14 (2014), 1905-1916.

[4] Manos Ath oulis and Anastasia Ailamaki. 2014. BF-Tree: Approximate Tree
Indexing. Proceedings of the VLDB Endowment 7, 14 (2014), 1881-1892.

[5] SagiBen-Moshe, Yaron Kanza, Eldar Fischer, Arie Matsliah, Mani Fischer, and Carl
Staelin. 2011. Detecting and Exploiting Near-Sortedness for Efficient Relational
Query Evaluation. In Proceedings of the International Conference on Database
Theory (ICDT). 256-267.

[6] Michael A. Bender, Martin Farach-Colton, William Jannen, Rob Johnsomn,

Bradley C. Kuszmaul, Donald E. Porter, Jun Yuan, and Yang Zhan. 2015. An

Introduction to Be-trees and Write-Optimization. White Paper (2015).

Gerth Stolting Brodal and Rolf Fagerberg. 2003. Lower Bounds for External

Memory Dictionaries. In Proceedings of the Annual ACM-SIAM Symposium on

Discrete Algorithms (SODA). 546-554.

Svante Carlsson and Jingsen Chen. 1992. On Partitions and Presortedness of

Sequences. In Acta Informatica, Vol. 29. 267-280.

[9] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin] Levandoski,
James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store
with In-Place Updates. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data. 275-290.

[10] CouchDB. [n.d.]. Online reference. http:/couchdb.apache.org/ ([n.d.]).

[11] Jochen Van den Bercken and Bernhard Seeger. 2001. An Evaluation of Generic
Bulk Loading Techniques. In Proceedings of the International Conference on Very
Large Data Bases (VLDB). 461-470.

[12] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Han-
tian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, David B
Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned Index. In
Proceedings of the ACM SIGMOD International Conference on Management of Data.
969-984.

[13] Siying Dong, Mark Callaghan, Leonidas Galanis, Dhruba Borthakur, Tony Sa-
vor, and Michael Strum. 2017. Optimizing Space Amplification in RocksDB.
In Proceedings of the Biennial Conference on Innovative Data Systems Research
(CIDR).

[14] Facebook. 2021. RocksDB. httpsy//github.com/facebook/rocksdb (2021).

[15] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim
Kraska. 2018. A-Tree: A Bounded Approximate Index Structure. CoRR abs/1801.1
(2018).

[16] Nikolaus Glombiewski. 2023. Robust Stream Indexing. Ph. D. Dissertation. Philipps-
Universitit Marburg.

[17] Goetz Graefe. 2003. Sorting And Indexing With Partitioned B-Trees. In Proceedings
of the Biennial Conference on Innovative Data Systems Research (CIDR).

[18] Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis.
2022. Endure: A Robust Tuning Paradigm for LSM Trees Under Workload Uncer-
tainty. Proceedings of the VLDB Endowment 15, 8 (2022), 1605-1618.

[19] Andy Huynh, Harshal A. Chaudhari, Evimaria Terzi, and Manos Athanassoulis.
2024. Towards flexibility and robustness of LSM trees. The VLDB Journal (2024),
1-24.

[

7

[

—

22

DBTest '24, June 9, 2024, Santiago, AA, Chile

[20] Stratos Idreos and Mark Callaghan. 2020. Key-Value Storage Engines. In Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data.
2667-2672.

[21] Donald E. Knuth. 1997. The art of computer progr ing, Volume I: Fund tal
Algorithms (3rd Edition). Addison-Wesley.

[22] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the ACM SIGMOD
International Conference on Management of Data. 489-504.

[23] Andrew Kryczka. 2020. Compaction Styles.
hitps:/github.com/facebook/rocksdb/blob/gh-pages-old/talk s/2020-07-17-
Brownbag-Compactions.pdf (2020).

[24] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for New Hardware Platforms. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE). 302-313.

[25] Heikki Mannila. 1985. M es of Presorted and Optimal Sorting Algorithms.
IEEE Transactions on Computers (TC) 34, 4 (1985), 318-325.

[26] Dingheng Mo, Fanchao Chen, Sigiang Luo, and Caihua Shan. 2023. Learning to
Optimize LSM-trees: Towards A Reinforcement Learning based Key-Value Store

for Dynamic Workloads. CoRR abs/2308.0 (2023).
[27] MongoDB. 2023. Online reference. hitpy/www mongodb.com/ (2023).

[28] MySQL. 2023. MySQL. httpsy/wwwmysgl.com/ (2023).

[29] Patrick E. O'Neil, Edward Cheng, Dieter Gawlick, and Elizabeth]J. O'Neil. 1996.
The log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351-385.

[30] Oracle. 2018. Introducing Oracle Database 18c. White Paper (2018).

[31] PostgreSQL. 2023. PostgreSQL: The World's Most Advanced Open Source Rela-
tional Database. https:/www.postgresgl.org (2023).

[32] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database Management Systems.
McGraw-Hill Higher Education, 3rd edition.

[33] Aneesh Raman, Konstantinos Karatsenidis, Subhadeep Sarkar, Matthaios Olma,
and Manos Athanassoulis. 2022. BoDS: A Benchmark on Data Sortedness. In
Performance Evaluation and Benchmarking - TPC Technology Conference (TPCTC).
17-32.

[34] Aneesh Raman, Subhadeep Sarkar, Matthaios Olma, and Manos Athanassoulis.
2023. Indexing for Near-Sorted Data. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE). 1475-1488.

[35] Jun Rao and Kenneth A. Ross. 2000. Making B+-trees Cache Conscious in Main
Memory. In Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. 475-486.

[36] RocksDB. 2020. Leveled Compaction. https:/github.com/facebook/rocksdb/wiki/Leveled-

Compaction (2020).

[37] RocksDB. 2021. RocksDB Tuning Guide.
https:/github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide (2021).

[38] RocksDB. 2022. RocksDB Trivial Move.

https://github.com/facebook/rocksdb/wiki/Compaction-Trivial-Move (2022).

[39] Subhadeep Sarkar and Manos Athanassoulis. 2022. Dissecting, Designing, and Op-
timizing LSM-based Data Stores. In Proceedings of the ACM SIGMOD International
Conference on Management of Data. 2489-2497.

[40] Subhadeep Sarkar, Dimitris Staratzis, Zichen Zhu, and Manos Athanassoulis. 2021.
Constructing and Analyzing the LSM Compaction Design Space. Proceedings of
the VLDB Endowment 14, 11 (2021), 2216-2229.

[41] Marc Seidemann, Nikolaus Glombiewski, Michael Korber, and Bernhard Seeger.
2019. ChronicleDB: A High-Performance Event Store. ACM Transactions on
Database Systems (TODS) 44, 4 (10 2019).

[42] Peter Van Sandt, Yannis Chronis, and Jignesh M. Patel. 2019. Efficiently Searching
In-Memory Sorted Arrays: Revenge of the Interpolation Search?. In Proceedings
of the ACM SIGMOD International Conference on Management of Data. 36-53.

[43] Jiacheng Wu, Yong Zhang, Shimin Chen, Yu Chen, Jin Wang, and Chunxiao Xing.
2021. Updatable Learned Index with Precise Positions. Proceedings of the VLDB
Endowment 14, 8 (2021), 1276-1288.

	Abstract
	1 Introduction
	2 Background
	3 Benchmark Architecture
	4 Experimental Evaluation
	4.1 Learned Index
	4.2 LSM-trees

	5 Conclusion
	Acknowledgments
	References

