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Abstract—Solid-state drives (SSDs) have become the dominant
storage technology because of their faster read and write speeds
and superior random access performance. Unlike their ancestor
hard disk drives, SSDs exhibit two distinct characteristics: (i)
read/write asymmetry, where writes are slower than reads, and
(ii) access concurrency, allowing multiple I/O operations to run
simultaneously and fully utilize device bandwidth. Despite these,
most storage-intensive applications are not optimized for SSD
asymmetry and concurrency, often leading to device underuti-
lization. In this thesis, we uncover these crucial SSD properties
and outline how we can better exploit these properties from the
application perspective. First, we augment the traditional I/O
model with the Parametric I/O Model (P1IO), a new storage model
that faithfully represents storage devices by parameterizing
read/write asymmetry (o) and access concurrency (k). Second,
using this novel storage modeling, we propose a new Asymmetry
& Concurrency-aware bufferpool management (ACE) that batches
writes based on device concurrency and performs them in parallel
to amortize the asymmetric write cost while performing parallel
prefetching to exploit the device’s read concurrency. Third, we
further present a Concurrency-aware graph processing engine
CAVE that harnesses the parallelism supported by the underlying
SSD device via concurrent I/Os. CAVE traverses multiple paths
and processes multiple nodes and edges concurrently without
altering the fundamental graph traversal algorithm guarantees.
Overall, our analysis shows that more faithful storage modeling
leads to higher performance and better device utilization.

I. INTRODUCTION

Modern Devices: Concurrency & Read/Write Asymmetry.
Most secondary storage devices today are solid-state disks
(SSDs), with traditional hard-disk drives (HDDs) mainly em-
ployed for archival storage. SSDs adopt NAND flash memory
as the storage medium, eliminating mechanical overheads
associated with HDDs, resulting in advantages such as fast
random access, low energy consumption, and high chip den-
sity [3]. Moreover, because of the hierarchical architecture
of SSD internal, SSDs exhibit a high degree of internal
parallelism that can be utilized to increase performance [2,9].
In other words, for an SSD to fully utilize its bandwidth, it
SSD needs to receive multiple concurrent 1/Os [2]. The exact
level of concurrency (k) depends on the request type and on
the device specifics. On the other hand, due to flash medium
physics, the cost of reading is lower than the cost of writing
which leads to an SSD read/write asymmetry where writes
can be up to one order of magnitude slower than reads [3].

The Parametric I/O Model. These SSD characteristics,
i.e., concurrency (quantified by k) and read/write asymmetry
(quantified by «) have two key implications: (i) careful ex-

«— SOA

<— CAVE

Consider

Concurrency  Concurrency

<
,,,,,,,, P
' CFLRU/C

o

5

= h

] .@ | CFLRU/E

§ DL-CFLRU/
‘!;!) -Add

E Clock Second @

8 Sweep, Chance

Do not address Address a via Address a via
Asymmetry (@) write-avoidance write-amortization

(A) (B)
Fig. 1: (A) ACE addresses asymmetry by exploiting concur-
rency and amortizing writes. (B) The parallellized version of
BFS in CAVE takes fewer iterations to converge.

ploitation of concurrency allows better device utilization, and
(i1) treating reads and writes equally is suboptimal for SSD [9].
This calls for the need for a new I/O model [10] that considers
the device properties. We propose a simple yet expressive
storage model named the Parametric I/O Model (PIO) [9] that
incorporates SSD asymmetry () and concurrency (k), thus,
this richer /O model can accurately capture contemporary
devices. We benchmark several types of state-of-the-art storage
devices to quantify their a and k. Our abstract analysis reveals
that more informed storage modeling leads to better overall
application performance. However, many data-intensive sys-
tems have not been thoroughly redesigned to account for SSD
properties. We identify two use cases where better storage
modeling can enhance performance.

Bufferpool Management. The component of a database man-
agement system (DBMS) responsible for direct interaction
with storage devices is the bufferpool which serves as the
interface between memory and the underlying storage device.
We address two challenges of state-of-the-art bufferpool man-
agers: (i) existing bufferpool managers often consider that
the underlying devices have no concurrency (k = 1), hence
missing the opportunity to exploit SSD concurrency (Fig-
ure 1A - bottom row: blue, yellow) and (ii) page replacement
policies generally ignore device asymmetry (), instead, they
treat read and write equally (Figure 1A - left column: blue,
green). We propose ACE [11], a new bufferpool manager that
utilizes the device concurrency to bridge the device asymmetry
(Figure 1A - red). Our approach uses asymmetry/concurrency-
aware write-back and eviction policies. The write-back policy
always writes multiple pages concurrently to utilize the write
concurrency of the device, amortizing the high asymmetric
write cost. The eviction policy evicts one or multiple pages



simultaneously from the bufferpool to enable prefetching —
ACE can concurrently prefetch pages to exploit the device’s
read concurrency. A key advantage of ACE is that it can
be integrated with any existing page replacement policy and
prefetching technique with low engineering effort. This al-
lows any existing bufferpool manager to be augmented by
our approach. We integrate ACE with four page replacement
policies (Clock Sweep, LRU, LRU-WSR, CFLRU [4, 13]) and
implement them in PostgreSQL to evaluate ACE’s performance
where we observe ACE can achieve upto 1.5x speedup.
Graph Management. Graph traversal operations can leverage
SSD concurrency by parallelizing node and edge accesses.
While the majority of out-of-core graph processing sys-
tems [5, 16] aim to indirectly harness the storage parallelism
by minimizing random I/O in favor of sequential operations,
they often do not exploit the SSD concurrency. We propose
an SSD-aware graph engine, named CAVE that can harness
the concurrency of the underlying storage devices to traverse
multiple paths in parallel (Figure 1B), which results in faster
convergence within fewer iterations. CAVE employs a novel
block-based file format based on adjacency lists to ensure that
graph metadata, vertex and edge information are stored in
aligned blocks. Furthermore, CAVE uses a concurrent cache
pool to enhance locality and ensure thread safety. We de-
velop in CAVE the parallelized versions of five popular graph
traversal algorithms (BFS, DFS, WCC, PageRank, Random
Walk). We are working on comparing CAVE against with
three popular out-of-core processing systems Mosaic [6],
GridGraph [16], and GraphChi [5]. Early experiments show
that CAVE can be up to three orders of magnitude faster
than GraphChi and up to one order of magnitude faster than
GridGraph for the parallel BFS implementation.
Contributions. Our contributions are as follows:

o We identify SSD read/write asymmetry (o) and concurrency
(k) as key characteristics to exploit to improve performance.

¢ We introduce the Parametric I/O Model (PIO) which
considers both o and k. We show the benefits of these prop-
erties with respect to device utilization and performance.

e We propose ACE, an asymmetry & concurrency-aware
bufferpool manager that utilizes the device’s concurrency.
We implement ACE in PostgreSQL and evaluate its benefit
for four page replacement algorithms.

« We propose CAVE, an SSD-aware graph engine that utilizes
SSD concurrency via concurrent I/O, its novel file structure,
and a concurrent cache pool. We develop parallelized ver-
sion of five graph algorithms in CAVE.

II. THE PARAMETRIC I/O MODEL

We now present the Parametric /O Model (PIO) [9, 10]
that takes read/write asymmetry and concurrency (read and
write) as parameters to enable better algorithm design for
storage-intensive systems.

PIO(M,k,, k., o) assumes a main memory of size M,
and storage of unbounded capacity that has read/write
asymmetry «, and read (write) concurrency k, (k).
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Fig. 2: Speedup is highest for write-intensive workloads and it
depends on the asymmetry for Batchable Writes applications.
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The values of k.., k., and « are either given by the device
manufacturer, or derived by a careful benchmarking process
outlined in our full paper [9]. We classify storage-intensive
applications as batchable writes and batchable reads to reason
about the performance benefits under PIO.

Batchable Writes. This category of applications utilizes the
write concurrency of the device by batching write requests.
For example, let us consider a modified DBMS bufferpool
manager that writes multiple dirty pages concurrently during
an eviction. The application at hand attempts to fully exploit
the device’s write concurrency via concurrent flushing k,, dirty
pages. Fig. 2 shows the speedup following PIO for different
« and k,, values as we change the read/write ratio in the
workload. We notice that the speedup increases with more
concurrent I/Os, which is expected. We also observe that the
gain is highest for a write-intensive workload (Fig. 2A). This
is because the application batches writes and so the benefit
from efficient writing is more pronounced. Furthermore, the
speedup depends on the device asymmetry — the gain is higher
for a device with higher asymmetry.

Batchable Reads. This category of applications represents
situations where concurrent reads can be performed to leverage
read concurrency. As an example, let us consider a graph store
that traverses multiple paths concurrently, i.e., it can process
multiple nodes in parallel and offer faster search time with
the same worst-case guarantees. Fig. 3 shows the speedup of
such an application based on PIO. Like before, the speedup
increases as we increase the number of concurrent I/Os. The
speedup is highest for a read-heavy workload (Fig. 3A), which
shows the benefit of batching reads. However, now the gain
is higher for a device with lower asymmetry.

The above analysis reveals that utilizing SSD concurrency
yields speedup while the degree of performance improvement
depends on the SSD asymmetry and the application type.
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III. ACE BUFFERPOOL MANAGER

Following the PIO Model, we now propose a new Asymme-
try & Concurrency-aware bufferpool management (ACE) [11].

A. An Augmented Bufferpool Design Space

Traditionally, the design space of bufferpool management
primarily includes a page replacement policy and, optionally,
a read-ahead policy. The page replacement policy determines
the sequence for evicting and writing back pages. When the
evicted page is dirty, a write-back is initiated for that page.
Since traditional systems employ a single policy for both
eviction and write-back, they essentially address two distinct
questions with one decision: which page to evict? and which
page to write back? To address this, we introduce a new write-
back policy, decoupling write-backs from eviction (Figure 4).
While maintaining an overall virtual page ordering for eviction
based on the replacement algorithm, we use a slightly different
virtual order for writing back pages, determined by (a) the
replacement algorithm, (b) the page’s dirtiness, and (c) the
write concurrency of the device.

A bufferpool manager can be described by four design
decisions: (i) replacement algorithm, (ii) write-back policy,
(iii) eviction policy, and (iv) read-ahead policy.
Within this augmented design space, the replacement algo-
rithm influences both the write-back and the eviction policies,
albeit in distinct ways. The write-back policy uses the virtual
order of pages defined by the replacement algorithm and the
device’s write concurrency to write-back multiple dirty pages
concurrently. The eviction policy uses the virtual order of
pages defined by the replacement algorithm to evict only clean
pages. The decision regarding the number of pages to evict is
determined by the application, balancing between prioritizing

locality and prefetching or read-ahead policy.

B. Overview of ACE

ACE is comprised of three components: (i) the Evictor,
(ii) the Writer, and (iii) the Reader. The evictor determines
which page(s) to evict, the writer writes-back concurrently
dirty pages and the reader prefetches pages. When a request
for accessing a page P is received, ACE first searches through

the bufferpool. If P is not found and the bufferpool is full, then
(at least) one page has to be evicted. The page replacement
algorithm decides which page will be evicted (termed top
page). If the top page is clean, it is evicted and page P is
fetched. Until this part, ACE behaves like any other state-of-
the-art bufferpool management. However, if the top page is
dirty, ACE proceeds as follows:

o ACE without prefetching: concurrently write n,, dirty
pages and evict a single page.

« ACE with prefetching: concurrently write n,, dirty pages,
evict ne pages, and concurrently prefetch n. — 1 pages.
We tune ACE to use n,, equal to the optimal write concurrency
of the device (k,). We experimentally tested values for n.
between 1 and k,, and we empirically set n. to be also k,,,
because evicting k,. pages hurts locality. This is because, for
most devices, the read concurrency is significantly higher than
the write concurrency (k, >> k,,). ACE can be combined with

any replacement algorithm and prefetching technique.

C. Evaluation

We implement ACE in PostgreSQL 11.5 and evaluate its
benefits when applied with four page replacement policies
(LRU, CFLRU, LRU-WSR, and Clock Sweep) using both a
synthetic benchmark and the standard TPC-C benchmark. Our
in-house experimental server involves three storage devices: (i)
a 375GB Optane P4800X SSD (o = 1.1, k, = 6, ky, = 5), (ii)
a 1TB PCle P4510 SSD (o = 2.8,k, = 80,k, = 8), and
(iii) a 240GB SATA S4610 SSD (a = 1.5, k. = 25,k = 9).
Further, we use a virtualized device from AWS with 1.2TB
capacity and 60000 provisioned IOPS.

ACE Improves Runtime without Any Penalty. This exper-
iment shows that ACE reduces the total workload latency
by up to 32.1% for the PCle SSD that has k, = 8 and
o = 2.8. Figures 5A and B show the execution time for
the baseline algorithms along with their ACE counterparts
with and without prefetching for 2 synthetic workloads in
PostgreSQL. Since ACE policies utilize the device’s write
parallelism, it writes back pages more aggressively, resulting in
better performance. Because of the skewness in the workload,
the prefetching helps to avoid some disk access, resulting
in slightly better performance. We highlight that the latency
improvement observed in these experiments does not come at
any hidden cost. The maximum increase in buffer misses is
0.003%, and the maximum increase in total writes is 0.12%,
thus being negligible. ACE’s gain is higher for the write-
intensive workload (Figure 5B), because for a write-intensive
workload, the benefit of efficient writing is more pronounced.
ACE Excels for TPC-C. We run the standard TPC-C bench-
mark in PostgreSQL for the four replacement policies and
their ACE counterparts. Figure 6 shows the performance gain
of ACE for the TPC-C mix, and for five TPC-C transactions.
ACE achieves good performance gain when integrated with
any page replacement policy. For instance, the speedup of ACE
for the mixed transaction is 1.29x, 1.27x, 1.30x and 1.32x
when implemented with Clock Sweep, LRU, CFLRU, LRU-
WSR, respectively. The highest speedup (1.51x) is gained
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while benefiting the write-heavy transaction the most.

for Delivery, an update-heavy transaction. The performance
results for the TPC-C benchmark validate our observations
from the synthetic benchmark: (i) ACE can gain good perfor-
mance advantages even with a minor proportion of writes in
the workload, (ii) write-heavy workloads exhibit higher gains,
and (iii) flash-friendly policies such as CFLRU and LRU-WSR
outperform other policies. More experiments can be found in
our full paper [11].

IV. CAVE GRAPH MANAGER

We now present a SSD-aware graph processing engine
CAVE that utilizes SSD parallelism via concurrent I/Os.

A. CAVE Physical Data Layout

CAVE adopts a memory-mapped binary file format, com-
prising three main sections: the metadata block, the vertex
block, and the edge block (depicted on the right side of
Figure 7A). These are stored using 4KB aligned blocks to fa-
cilitate direct reading and writing from/to SSDs. The metadata
block functions as a repository for crucial graph information,
including the number of vertices, total blocks, edge blocks,
and vertex blocks, each stored as a 32-bit integer. Each vertex
block, sized at 4KB, stores information about up to 512
vertices. Within each vertex, 8 bytes are allocated, accommo-
dating two 32-bit unsigned integers: degree and eb, 44, (edge
block index and offset). A compact representation of edges
is employed, where each edge is denoted by a 4-byte integer
indicating the index of the ending vertex. Consequently, each
edge block can store up to 1024 edges, totaling 4KB. The
edges of vertices with a degree less than 1024 are consolidated
within a single edge block, ensuring efficient single-read 1/O
access, though the starting index inside the block (eboffset)
may vary. However, vertices with a degree exceeding 1024
occupy multiple edge blocks.

B. Concurrent Graph Traversal Algorithms

The core concept of our approach is the implementation
of parallel graph algorithms that leverage concurrency at the
storage level. CAVE identifies and parallelizes independent
I/Os, akin to how out-of-order processors parallelize load and
store commands that are not dependent on each other. This
facilitates parallel graph data processing, enabling simulta-
neous access to multiple nodes (or edges), thereby reducing
the number of required iterations. To illustrate the advantages
of our approach, we parallelize five common graph traversal
algorithms: BFS, WCC, PageRank, Random Walk, and DFS.
The parallel BFS (PBFS) algorithm utilizes two queues: the
frontier queue containing indices of vertices in the current
level and the next queue storing indices of neighbors of
vertices in the frontier queue, corresponding to vertices
in the next level. To exploit parallelism, each vertex in the
frontier queue is assigned to a separate thread, allowing
multiple I/Os to be issued in parallel as shown in Figure 1(A)).
The level of concurrency in PBFS is controlled by the number
of threads, adjusted according to the optimal concurrency of
the SSD. Building upon the PBES algorithm, we develop
parallel weakly connected components, parallel PageRank,
and parallel Random Walk. Although DFS is inherently a
serialized algorithm, its performance can be enhanced by in-
troducing parallelism through a technique known as unordered
or pseudo-DFS [1]. Inspired by this concept, we incorporate
a mechanism to monitor the size of the vertex stack for each
thread in our PDFS implementation.

C. Evaluation

We are currently performing our experimental evaluation of
CAVE for the five algorithms against three storage-optimized
graph processing systems Mosaic [6], GridGraph [16], and
GraphChi [5]. We use the same server and storage devices
described in Section III-C. We use four datasets of different
sizes and types from the Stanford Large Network Dataset
Collection: Friendster Social Network (FS), RoadNet Network
of PA (RN), LiveJournal Social Network (LJ) and YouTube
Social Network (YT). FS is the largest dataset among these
with 65M nodes and 32GB size. We also experiment with a
synthetic dataset (SD) which has 50M nodes and 42GB size.
CAVE outperforms GraphChi & GridGraph. Our initial
experimental result is presented in Figure 7B which shows
CAVE'’s speedup compared to GraphChi and GridGraph when
running the PBFS algorithm for all five datasets for a specific
cache size (around 3% for each workload) depending on the
dataset on the PCle SSD device. The speedup of CAVE’s
BFS compared to GraphChi ranges from 7 — 984x while
the speedup compared to GridGraph ranges from 1.1 — 22x.
The high run time for the RN dataset and the unusually high
speedup for this dataset shown in Figure 7B is attributed
to the high diameter of the graph where CAVE excels. For
dense graphs like SD (the diameter is only 6 with S0M nodes
and 1.25B edges), GridGraph performs well because of its
grid structure to partition and manage dense graphs, however,
CAVE still outperforms GridGraph.
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V. RESEARCH PLAN

Short-Term. We are currently in the process of completing
the experimental evaluation of CAVE by comparing it against
three popular out-of-core graph processing systems: Mosaic,
GridGraph, and GraphChi. Our plan includes conducting a
comprehensive study to highlight CAVE’s benefits across vari-
ous datasets, devices, cache sizes, concurrency, and algorithms.
We are also exploring how CAVE can handle graph updates. To
manage updates to vertex/edge values, we intend to modify our
file architecture to accommodate these changes. Implementing
a buffer to batch updates could facilitate concurrent operations,
making use of the device’s write concurrency. Furthermore, for
adding new vertices and edges, we are considering a strategy
similar to the log-structured merge (LSM) [8, 15] paradigm.
Long-Term. In the long term, we plan to adopt the Para-
metric I/O Model for newer SSDs, including computational
SSDs (CSSDs), open-channel SSDs (OCSSDs), and zoned
namespace SSDs (ZNS SSDs). Our goal is to enable on-the-fly
data transformation from stored rows to any column groups
at the storage level via near-storage computation in CSSDs
and OCSSDs that offer processing power that we can lever-
age [12]. We plan to implement a near-data vertical partitioner
directly in these devices by utilizing in-storage custom logic
and reprogrammable logic. We have already worked on this
concept for in-memory systems via Relational Memory [7, 14]
that can provide the optimal layout for any query by exploiting
specialized reprogrammable hardware. Furthermore, we plan
to redefine the design of Log-Structured Merge (LSM) trees to
align with zoned namespace (ZNS) SSDs. ZNS SSDs divide
space into equal-sized zones, enabling fast sequential writes
and flexibility in data placement and garbage collection. We
can leverage these features by (i) treating erase blocks within
SSDs as fragments of a sorted immutable run in LSM trees, (ii)
incorporating host-side garbage collection, and (iii) optimizing
data placement by grouping related data together.

VI. CONCLUSION
Modern solid-state drives are characterized by a read-write
asymmetry and an access concurrency, both of which are
essential to fully utilize the device. We propose a simple
yet expressive parametric I[/O model, termed PIO, that con-
siders the asymmetry («) and concurrency (k) that different
devices may support. Inspired from PIO, we propose ACE, a

e1023

B)
Fig. 7: (A) CAVE’s Architecture: block-based file structure (right side) and concurrent cache pool (left side). (B) CAVE performs
well across all datasets for PBFS, especially for sparse graphs (RN), while, GridGraph is optimized for dense graphs (SD).

novel asymmetry/concurrency-aware bufferpool manager that
batches writes based on device concurrency to amortize the
high asymmetric write cost. ACE works as a wrapper that
can be integrated with any page replacement and prefetching
policy. Further, we propose CAVE, a concurrency-aware graph
processing system designed to leverage the SSD concurrency.
CAVE parallelizes independent I/Os through its concurrent
cache pool design, supported by its file structure, enabling
the implementation of storage-aware parallel graph algorithms.
For both ACE and CAVE, we observe from extensive experi-
mental evaluations that better storage modeling leads to better
device utilization and, ultimately, better performance.
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