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Large-scale graph analytics has become increasingly common in areas like social networks, physical sciences,
transportation networks, and recommendation systems. Since many such practical graphs do not fit in main
memory, graph analytics performance depends on efficiently utilizing underlying storage devices. These out-
of-core graph processing systems employ sharding and sub-graph partitioning to optimize for storage while
relying on efficient sequential access of traditional hard disks. However, today’s storage is increasingly based on
solid-state drives (SSDs) that exhibit high internal parallelism and efficient random accesses. Yet, state-of-the-art
graph processing systems do not explicitly exploit those properties, resulting in subpar performance.

In this paper, we develop CAVE, the first graph processing engine that optimally exploits underlying SSD-
based storage by harnessing the available storage device parallelism via carefully selecting graph I/Os that
can be issued concurrently. Thus, CAVE traverses multiple paths and processes multiple nodes and edges
concurrently, achieving parallelization at a granular level. We identify two key ways to parallelize graph
traversal algorithms based on the graph structure and algorithm: intra and inter-subgraph parallelization.
The first identifies subgraphs that contain vertices that can be accessed in parallel, while the latter identifies
subgraphs that can be processed in their entirety in parallel. To showcase the benefit of our approach, we build
within CAVE parallelized versions of five popular graph algorithms (Breadth-First Search, Depth-First Search,
Weakly Connected Components, PageRank, Random Walk) that exploit the full bandwidth of the underlying
device. CAVE uses a blocked file format based on adjacency lists and employs a concurrent cache pool that is
essential to the parallelization of graph algorithms. By experimenting with different types of graphs on three
SSD devices, we demonstrate that CAVE utilizes the available parallelism, and scales to diverse real-world graph
datasets. CAVE achieves up to one order of magnitude speedup compared to the popular out-of-core systems
Mosaic and GridGraph, and up to three orders of magnitude speedup in runtime compared to GraphChi.

CCS Concepts: » Hardware — External storage; » Information systems — Data management systems;
Graph-based database models; Information storage systems.
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1 INTRODUCTION

The Rise of Large Graphs. Graphs are natural encoders of interconnected relations that can
be leveraged to analyze many real-world applications. With the unprecedented growth of such
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interconnected data stemming from various applications like machine learning [29], recommen-
dation systems [54], physical sciences [56], and social networks [59], analytics over large graphs
is becoming increasingly popular in both academia and industry [2, 19, 27, 31, 42]. Real-world
graphs often exhibit a vast scale, frequently encompassing millions, or even billions, of nodes
interconnected by several billion edges. The sheer size of these graphs often exceeds the capacity
of main memory, posing a significant challenge for efficient processing. Consequently, specialized
techniques have emerged to address the need for scalable solutions to handle these massive graphs.
State-of-the-art Graph Management Systems. Many scalable systems have been recently
proposed that handle large graphs by distributed processing [14, 21, 29, 31, 44, 61], which come with
unique challenges such as partitioning, load balancing, cluster management, network overhead,
and fault tolerance. On the other hand, single-node systems process large graphs in-memory [50, 51,
55, 58] and achieve scalability through increasing memory size and adding more CPUs. This work
is orthogonal to the aforementioned approaches, however, it can benefit any system that spills
data into storage. For example, our techniques can be applied at the local shard level in distributed
graph management systems to enhance performance. Single-node out-of-core systems (which we
focus on) primarily rely on (i) optimizing data partitioning techniques, (ii) improving memory and
disk locality, and (iii) reducing random 1/O to utilize fast sequential I/Os [16, 24, 30, 45, 62]. These
techniques mainly address slow random disk access, which is particularly relevant for traditional
hard disk drives (HDDs). However, the storage layer of data-intensive systems today employs solid-
state disks (SSDs) and non-volatile memory (NVM) devices that have quite different characteristics
than HDDs, which require a careful system redesign to be effectively exploited [36-38].

Modern Storage Devices. SSDs dominate as secondary storage devices, while classical HDDs are
nowadays primarily used for archival storage [47]. SSDs offer fast data access, high chip density,
and low energy consumption by utilizing NAND flash memory as their storage medium [3, 20, 40],
thus eliminating the mechanical overheads of HDDs. Further, SSD internals follows a hierarchical
structure (discussed in §2.1) that creates high internal parallelism, which can be leveraged to
enhance performance [8, 9, 32, 37, 39, 48]. That is, an SSD can perform multiple concurrent I/Os
until its bandwidth is saturated. Following the Parametric I/O model [37], we call this property
concurrency, k, which is the number of I/Os the device can perform concurrently without hurting
latency per request. The level of concurrency supported by a device depends on the request type
(read/write), access granularity and on the device internals.

SSD Parallelism for Graph Processing. Graph traversal operations can utilize SSD concurrency
by parallelizing node and edge accesses, effectively distributing the workload across SSD’s parallel
architecture [5]. This idea takes advantage of the availability of multiple paths that can be explored
during graph traversal. However, most out-of-core graph processing systems simply attempt to
better utilize underlying storage devices by reducing random (in favor of sequential) I/O. They do
not aim to aggressively exploit opportunities for concurrent accesses, thus failing to use the full
potential of SSDs. Our goal is to parallelize graph traversal algorithms without changing their core
properties in order to fully utilize the underlying SSD concurrency. We identify two fundamental
approaches to achieve this goal, each tailored to specific scenarios.

o Intra-Subgraph Parallelization: This approach focuses on parallelizing operations within
a single subgraph. This approach is effective when the nodes of a subgraph can be processed
independently. For example, a parallel version of Breadth-First Search (BFS) can follow this
approach since multiple nodes of the same level can be processed independently. The core
integrity of the algorithm can be maintained via communication among the processing units,
result aggregation and synchronization. This approach harnesses the inherent parallelism present
in subgraphs and utilizes modern storage concurrency for faster and more efficient graph traversal.
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Fig. 1. (A) Parallellized version of BFS in CAVE takes fewer iterations to converge. (B) CAVE is upto three orders
of magnitude faster than GraphChi and up to one order of magnitude faster than GridGraph and Mosaic.

o Inter-Subgraph Parallelization: In contrast to the previous approach, inter-subgraph paral-
lelization involves processing multiple subgraphs concurrently. This method is particularly useful
when we can identify that multiple subgraphs can be processed independently. For example, in
the pseudo Depth-First Search algorithm [1], the stack used for traversal can be split into smaller
stacks and processed in parallel by different threads. Multiple threads can then work on different
parts of the graph concurrently, thus traversing multiple branches simultaneously.

In both approaches, the key objective is to maximize the utilization of SSD concurrency, ensuring
that multiple operations can be performed in parallel. We integrate both approaches into a prototype
graph processing system as discussed next.

Our Approach. We build an SSD-aware graph processing system, named CAVE! that is able to
harness the concurrency of the underlying storage devices via intra/inter-subgraph parallelization.
Specifically, CAVE provides the necessary infrastructure to parallelize graph traversal algorithms
when several independent vertex accesses can be performed in parallel. A prime example is our
Parallel Breadth-First Search (PBFS) implementation that uses intra-subgraph parallelization, which
is outlined in Figure 1(A). The algorithm accesses the next wave of nodes (as we move on a level-
by-level fashion) in parallel since we have already identified the nodes of the next wave while
processing the current one. Figure 1(A) is a high-level overview where we consider a device with
read concurrency 2. Hence, while vertex D, E, F and G are at the same level, only two of them can be
processed in parallel. This leads to a faster response time of the BFS search simply by carefully ex-
ploiting the underlying storage concurrency, resulting in faster convergence within fewer iterations.
CAVE uses a block-based file format based on adjacency lists, ensuring that graph metadata, vertex
information, and edge information are stored in aligned blocks while enabling efficient support
for graph traversal and analytical operations by ensuring optimized data retrieval. Furthermore,
CAVE employs a concurrent cache pool mechanism that enhances locality and ensures thread safety.
Overall, CAVE identifies storage accesses that are independent (thus can be parallelized) based on
the task at hand and performs them concurrently based on the device’s optimal concurrency [37],
i.e., the number of I/O requests the device can handle without compromising latency.

To our best knowledge, CAVE is the first graph processing system that is capable of fully exploiting
the available parallelism of the underlying flash-based storage leading to significant performance
improvements. State-of-the-art graph processing systems focus on the design of graph process-
ing/traversal algorithms and the distribution of the work (e.g., partitioning), but not on the specific
characteristics of the underlying hardware and especially storage devices. By building a better

ICAVE: Concurrency-Aware Graph (V, E) system
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understanding of how to efficiently use SSDs, we build a faster (and/or cheaper in the cloud) graph
processing system. Further, one of the key benefits of this approach is that it is applicable in any
graph system that spills data on disk, so it can benefit a wide variety of systems. CAVE’s architecture
is designed to pave the way for developing new parallel graph algorithms that leverage the inherent
concurrency of SSDs for both intra/inter-subgraph parallelization. As our first step, we develop
in CAVE the parallelized versions of five popular graph algorithms. In addition to Breadth-First
Search (BFS), CAVE offers parallelized, SSD-aware versions of Depth-First Search (DFS), Weakly
Connected Components (WCC), PageRank (PR), and Random Walk (RW). We compare the perfor-
mance of CAVE with three popular out-of-core processing systems, GraphChi [24], GridGraph [62]
and Mosaic [30], as they are widely recognized for their efficiency in handling large-scale graphs
in a single machine. Figure 1(B) shows the speedup of CAVE’s BFS compared to these systems for
four datasets (Friendster, Twitter, YouTube, and RoadNet) running on top of our PCIe SSD (details
in §6). We observe that CAVE can be up to three orders of magnitude faster than GraphChi and up
to one order of magnitude faster than GridGraph and Mosaic.

Contributions. Our contributions are as follows:

o We identify the importance of SSD concurrency with respect to graph processing.

o We identify two fundamental ways to parallelize graph traversal operations: intra-subgraph and
inter-subgraph parallelization.

e We propose CAVE, the first SSD-aware graph engine that fully exploits the parallelism of the
underlying SSD storage via concurrent I/O, its novel file structure, and a concurrent cache pool.

o We develop on CAVE the parallelized version of five popular graph algorithms (BFS, DFS, WCC,
PageRank, Random Walk) to showcase that CAVE is flexible enough to implement diverse graph
traversal algorithms.

e We evaluate CAVE against GraphChi, GridGraph and Mosaic where CAVE achieves up to 984x
speedup vs. GraphChi, up to 22X speedup vs. GridGraph and up to 15X speedup vs. Mosaic.

2 BACKGROUND

In this section, we provide the necessary background for SSD concurrency and an overview of the
algorithms we parallelize.

2.1 SSD Concurrency

Flash-based SSDs exhibit inherent internal parallelism due to their architectural design [3, 8, 37]. This
parallelism stems from several factors, including the presence of multiple flash memory chips within
the SSD, each capable of performing read and

. ) R 5 Channel R . Channels are the
write operations independently. Further, each | = most fundamental
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has multiple planes, and each plane consists of | & concurency
blocks where pages reside. Figure 2 shows the
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Parallelization

multiple I/Os are issued in parallel, the flash con-
troller tries to distribute them across different
segments of the device [32, 41, 48], effectively
increasing throughput without hurting latency
(up to a point). The degree of observed concur-
rency varies across devices, and it also depends
on the access type (read/write) [37]. The optimal
concurrency of the device is the number of I/Os needed to saturate the device bandwidth without
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Fig. 2. Internal architecture of an SSD.
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hurting latency. Additionally, modern SSD controllers exploit and manage internal parallelism for
wear-leveling and garbage collection [18, 34]. To sum up, to better exploit SSDs, we need to issue
concurrent I/Os while respecting the device’s characteristics.

2.2 Graph Traversal Algorithms

We now introduce the necessary background for the graph traversal algorithms we use and discuss
the opportunities for parallelization.

Breadth-First Search (BFS). BFS is a graph traversal algorithm that starts from a designated
starting vertex and then explores all neighboring vertices in a level-by-level manner [11]. It begins
by visiting all the immediate neighbors of the starting vertex and then moves on to their neighbors
in subsequent levels. By traversing the graph in a level-wise manner, BFS uncovers the shortest
paths and analyzes the structural properties of the graph.

Since BFS processes nodes in a level-by-level manner, nodes of the same level can be processed

independently (hence concurrently), thus providing an opportunity for parallelizing and, in turn,
harnessing the SSD’s concurrency.
Depth-First Search (DFS). DFS is a widely-used graph traversal algorithm that starts from a
specified vertex and systematically explores as deep as possible along each branch before back-
tracking [13]. This approach involves visiting a vertex and then recursively visiting its unvisited
neighbors until there are no more unvisited vertices. DFS is particularly useful for identifying
cycles, determining connected components, and finding paths between vertices.

While the classical DFS is tricky to parallelize, the pseudo-DFS [1] algorithm offers the opportu-

nity to parallelize by running multiple parallel mini-DFSs. A parallel version of pseudo-DFS can
dynamically split and distribute the vertex stack among multiple threads, allowing concurrent
exploration of different branches of the graph.
Weakly Connected Components (WCC). In an undirected graph, a connected component refers
to a subgraph where every vertex is connected to every other vertex through pathways within the
graph. WCC aims to identify and group together nodes that are weakly connected [22], meaning
they can be reached from each other by traversing the edges regardless of their direction. This
algorithm typically involves traversing the graph using techniques like BFS or DFS to identify the
connected components.

The previous approaches used to exploit SSD concurrency can be used to parallelize WCC.

For example, while using BFS to discover WCCs, each subgraph’s connected components can be
computed concurrently, and the results from different subgraphs can be merged to determine the
weakly connected components.
PageRank (PR). PR is a well-known algorithm to estimate the importance of vertices in graphs,
used by Google to rank webpages on the Internet [7]. It works by evaluating the importance of a
web page based on the number and quality of links pointing to it. The algorithm assigns a numerical
value, known as PR score, to each web page on the Internet and measures the importance of a web
page based on its backlinks and the quality of those links. PR employs an iterative process. Initially,
all pages are assigned an equal PR score. In each iteration, the scores are updated based on the
scores of linking pages. This process continues until PR scores converge or after a certain number
of iterations.

Due to this iterative traversal nature, this algorithm can be parallelized, similar to BFS. Within
each subgraph, PR calculations can be performed concurrently by assigning individual nodes to
threads. They can independently compute PR values for nodes within their respective subgraphs,
leading to efficient parallel execution while preserving the algorithm’s core structure. Finally, each
subgraph’s results should be combined to obtain the overall PR scores.
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Fig. 3. Example of Intra/Inter-Subgraph Parallelization. (A) { B, D, E, F } are at the same level of BFS and are
processed concurrently by 4 threads. (B) As pseudo-DFS progresses, the stack is split into two subgraphs ({ D,
E } and { B, F }), which are processed in parallel by 2 threads.

Random Walk (RW). RW is a probabilistic algorithm in which a walker moves through a network
(graph), taking steps based on random choices [28]. It is used to analyze the network structure and
understand properties such as connectivity and reachability. RW can be viewed as a Markov Chain,
where the probability of transitioning to the next state depends only on the current state.

To accelerate RW, we can divide the graph into manageable subgraphs and simultaneously
explore multiple nodes within these subgraphs. This approach accelerates the exploration and
allows for parallelization of transition probability calculations, making it suitable for estimating
node importance through RWs on vast networks. Further, different subgraphs can be processed in
parallel while accounting for crossing into a different subgraph.

3 PARALLELIZING GRAPH TRAVERSAL

Our main objective is to efficiently parallelize graph traversal operations with out-of-core systems
while maintaining the core properties of the graph algorithms. In this section, we discuss how
to achieve this with intra-subgraph and inter-subgraph parallelization. We present these two
techniques with examples and discuss how they can be seamlessly integrated and leveraged
alongside SSD parallelization.

3.1 Intra-Subgraph Parallelization

For this approach, we identify subgraphs, the nodes of which can be processed independently
so that we can access them in parallel. This means that the processing of one node does not
depend on the result or state of other nodes outside the subgraph. Thus, multiple nodes within
the subgraph can be processed concurrently by different computing units (threads), allowing for
concurrent I/Os, leading to better device utilization. After processing their respective nodes, the
results obtained by each thread are aggregated to produce the final result of the algorithm. This
ensures efficient exploitation of the underlying device which can speed up the execution of graph
traversal operations by processing multiple graph blocks (vertex and edge) in parallel, resulting in
faster convergence.

Example. A prime example of this type of parallelization is a parallel BFS. BFS explores the graph
level by level, where each level represents a set of equidistant vertices from the source vertex.
Since vertices of the same level can be accessed independently of each other, all vertices within the
same level can be processed concurrently, and thus accessed in parallel using multiple threads. A
queue maintains the nodes to be visited next, which are ordered on a per-level basis. Each thread
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dequeues nodes from the shared queue and processes them independently. The edges of each node
are accessed from the underlying SSD concurrently. Figure 3(A) illustrates the application of this
technique for parallelizing the BFS algorithm. Once nodes A and C have been traversed, nodes B,
D, E, and F are all at the same level (a subgraph where nodes are independent), enabling them to be
processed concurrently. Other BFS-based algorithms (e.g., PageRank, WCC) can also be parallelized
with this approach as a building block.

3.2 Inter-Subgraph Parallelization

The subtle difference between Inter-Subgraph and Intra-Subgraph Parallelization is that it identifies
subgraphs that can be independently accessed (like two different branches of DFS) and processes
them in parallel. That way, multiple subgraphs (or paths) can be traversed concurrently, thus
covering the entire graph faster and allowing for faster convergence. The algorithmic correctness
and other properties (like the order of accessing nodes) can be ensured by communication and
synchronization between the threads processing independent subgraphs. This approach is partic-
ularly useful for large-scale graphs that cannot fit entirely in memory or when distributing the
computation across multiple threads.

Example. We now use the pseudo-DFS [1] as an example. In the classical DFS algorithm, a stack
keeps track of the nodes to be explored and maintains the visiting order. In the pseudo-DFS
algorithm, a stack can be split into smaller stacks when its size exceeds a predefined threshold, and
the smaller stacks are processed in parallel. This allows for multiple threads to work on different
subgraphs (paths) concurrently. Figure 3(B) shows an example of this approach. In this example,
after traversing nodes A and C, the stack size grows to four and (assuming this is the threshold) is
split in two. The first stack contains nodes D and E, while the second contains B and F. These smaller
stacks are processed in parallel, leading to two independent graph traversals with the additional
need for communication to avoid crossing from one subgraph (path) to another. Inter-subgraph
parallelization also benefits finding Strongly Connected Components (SCCs) or groups of nodes
within a graph where each node is accessible from every other node in the same group.

3.3 Discussion

Which approach, which data structure? The selection between intra-subgraph and inter-
subgraph parallelization, as well as the choice of data structure depends on the algorithm being
parallelized. For example, in cases where the algorithm involves BFS-like exploration, intra-subgraph
parallelization is the best fit. On the other hand, for algorithms resembling pseudo-DFS or those
focused on connectivity exploration, inter-subgraph parallelization can be more effective since it
allows different subgraphs to be processed concurrently, facilitating quicker convergence. In both
cases, graph traversal is accelerated by overlapping the standard accesses of the original algorithm
with several other accesses that would normally be scheduled for later. Thus, a larger subgraph is
traversed than the original algorithm without altering its key properties.

Parallelizing Essentials. When parallelizing graph traversal algorithms, we need to guarantee the
correctness and the efficiency of the parallel execution. To achieve this, we use result aggregation,
synchronization, and communication mechanisms. In algorithms like PageRank, where the goal is
to calculate rankings, the individual results obtained from different subgraphs or processing units
must be aggregated to calculate the final rankings. Algorithms like DFS require synchronization to
prevent race conditions and maintain the same vertex visiting order and, thus, the core guarantees
of the algorithm. Further, many algorithms need some form of communication between the threads
working on subgraphs (signaling or message passing) to indicate convergence. Minimizing such
communication and synchronization overhead is a key challenge to avoid bottlenecks.
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Fig. 4. Architecture of CAVE comprises block-based file structure (right) and a concurrent cache pool (left)

4 CONCURRENT GRAPH ALGORITHMS

The core idea of our approach is to implement parallel graph algorithms that take advantage
of concurrency at the storage level. Our system, CAVE, identifies and parallelizes independent
1/Os, similar to how out-of-order processors parallelize load and store commands that are not
dependent on each other. This enables parallel graph data processing, allowing multiple nodes
to be accessed simultaneously, thus significantly reducing the number of iterations required. We
carefully tune CAVE to employ the optimal concurrency [37] for the underlying storage devices to
guarantee maximum benefit. To do this, we issue in parallel as many independent I/O operations as
the storage device supports without hurting latency. As a result, graph algorithms in CAVE have
faster convergence and more efficient data accesses. Overall, the work presented in this paper
contributes to the system-level understanding of how to build efficient graph processing systems
that maximize the utilization of the underlying SSD. To demonstrate the benefits of our approach,
we parallelize five of the most common graph traversal algorithms: BFS, WCC, PageRank, Random
Walk, and DFS. In this section, we first provide a quick overview of the physical data layout CAVE
and then discuss the details of the parallel versions of these algorithms.

4.1 CAVE Physical Data Layout

CAVE uses a memory-mapped binary file format, with three main parts: the metadata block, the
vertex block, and the edge block - right part of Figure 4. They are stored using 4KB aligned blocks
to support direct reading and writing from/to the SSDs. All blocks are cached in memory by a cache
pool described in detail in Section 5.

Metadata Block. The metadata block serves as a repository for essential graph information such
as the number of vertices, the total number of blocks, edge blocks, and vertex blocks, each of which
is stored as a 32-bit integer. The remaining space is reserved for future utilization, allowing for
additional usage-specific information to be incorporated when necessary.

Vertex Block. Each vertex block, sized at 4KB, stores information about up to 512 vertices. Within
each vertex, 8 bytes are allocated, encompassing two 32-bit unsigned integers: degree, eb_addr (edge
block index and offset). The low 10-bit of eb_addr represents the offset eb_of fset inside of an edge
block, which just fits its capacity of 1024. The high 22-bit states the index of the edge block eb_idx.
The reading process can start by calculating the appropriate address ((eb_idx - 4KB) + eb_of fset).
Edge Block. To optimize storage and retrieval, we utilize a compact representation of edges. Each
edge is represented by a 4-byte integer denoting the index of the ending vertex. Hence, each edge
block can store up to 1024 edges (adding up to 4KB). The edges of vertices with a degree less
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than 1024 are contained within a single edge block (note that in many datasets, most nodes have
indeed a degree of less than 1024). This ensures efficient single read I/O access, while the starting
index inside the block (eb_of fset) can vary. However, vertices with a degree over 1024 will occupy
multiple edge blocks. In this case, the first block always has an eb_of fset = 0 to simplify the
packing and subsequent reading process. The number of edge blocks per vertex is given by its
degree divided by 1024.

Bin-Packing Edges. Previous practices often stored all edges in a single extensive list, resulting
in inefficient I/O operations when accessing edges of small vertices spanning multiple blocks. To
mitigate this issue and optimize I/O and cache utilization, we approached it as a bin-packing problem.
Edges of small vertices are stored within a single container (block), while larger vertices span
multiple consecutive blocks. We employ an offline first-fit strategy, determining the appropriate
block to insert new vertex neighbors and ensuring efficient packing and retrieval of edge data.
Handling Updates. While CAVE currently does not support graph updates, we consider this as
part of our future work. Currently, we have a very compact representation of vertex and edges.
To handle updates on vertex/edge values (e.g., edge weights, vertex payloads), we need to modify
our file architecture to accommodate these values. For instance, for each edge, we store a vertex
ID using 4 bytes, which would need to be increased to account for additional edge information
like weights. To exploit the write concurrency of the underlying device, updates can be batched
in a memory buffer and applied to the corresponding blocks concurrently (using the appropriate
degree of concurrency when writing). Further, this style of updating (and deleting) can use storage-
resident update components similar to the log-structured merge (LSM) design [35, 46]. In this
case, updates (and deletes) will be buffered in memory and later organized on disk before being
eventually merged with the base data [6]. That way, the update mechanism can exploit both the
good sequential performance and, when merging with the based data, the device concurrency.

4.2 Building Blocks for Parallelizing

ProcessQueue function. In the context of BFS, WCC, PR, and RW algorithms, the parallelization
process is structured as an iterative procedure. Each iteration involves processing a list of vertices
(known as the frontier), accessing the neighbors of each vertex, updating vertex values, and
determining which vertices should be visited in the next iteration, which are stored in the next
queue. This iterative process can be naturally parallelized by having multiple threads working
on individual vertices of the frontier (intra-subgraph parallelization). We achieve this using a
ProcessQueue function, which takes the frontier, a user-defined process function and the device’s
read concurrency k, as parameters. The process function specifies the actions the algorithm should
perform for each vertex and its neighbors. The ProcessQueue function parallelizes at the vertex
level based on the k, value where each thread is responsible for processing a vertex and executes
a getEdge operation to retrieve the edge block from the cache pool. Since each edge block stores
neighbors of multiple vertices, it is possible that an edge block swapped out from the cache will
need to be read again from the disk, especially when the cache size is limited.
ProcessQueueBlock function. To avoid multiple accesses of the same edge blocks, we provide a
new variation that processes data at the granularity of edge blocks to benefit from caching. Initially,
all edge blocks associated with vertices in the frontier are found. Next, each thread is assigned to
work on one of the edge blocks. That block, in turn, may contain (i) the edges of a single vertex
where the execution will be the same as before, or (ii) the edges of multiple vertices where the
processing of those vertices will now be completed with a single I/O. By simultaneously processing
all vertices connected to a specific block, the approach ensures that each edge block is only read
once in each iteration. While this strategy involves some overhead in terms of preprocessing the
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Algorithm 1: Parallelization Building Blocks

1: function PROCEsSSQUEUE(frontier, Func Process, k;)
2: next « 0

3 // Process vertices in parallel with max k, threads

4 for v; in frontier do

5 // Read neighbors from the cache pool

6: neighbors <« GETEDGEs(v;)

7 /] Process vy with its neighbors, get next, queue
8 next, < PROCESS(v;, neighbors)

9 // Merge next, to next

10: mtx.LOCK()

11 next.INSERT(next,)

12: mtx.UNLOCK()

13: end for

14: return next

15: end function

16:

17: function PRoCEssQUEUEBLOCK(frontier, Func Process, k)
18: block_set «— HASHSET()

19: for v; in frontier do

20: block_idx «— GETBLOCKIDX(v;)

21: block_set INSERT (block_idx)

22: block[block_idx].INSERT(v;)

23: end for

24: // next queue of whole frontier

25: next «—

26: /] Process blocks in parallel with max k, threads
27: for block_idx in block_set do

28: /] next queue of this block

29: nexty «— 0

30: block_data <« GeTBLOCK(block_idx)

31 // For each vy associated with this edge block
32: for v, in block[block_idx] do

33: /! Get vy neighbors from this block locally
34: neighbors <« ReapDFromBLock (block_data, vy)
35: next, < PROCESS(v1, neighbors)

36: /] Merge next, in nexty

37: nexty.INSERT(next,)

38: end for

39: mtx.Lock()

40: next.INSERT(nextp)

41: mtx.UNLOCK()

42: end for

43: return next

44: end function
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frontier, it offers the advantage of being minimally impacted by the size of the cache. Further,
the edge block retrieval is performed concurrently, which contributes to its superior runtime
performance. The two building-block algorithms are outlined in Algorithm 1.

Algorithm 2: Parallel Breadth-first Search

1: function BFSPrOCESS(v1, neighbors)

2 next, < @

3 for v, in neighbors do

4 if visited[v,].CAS(False, True) then
5 /1 Add v, to the next queue of v

6 next,.INSERT(03)

7 end if

8 end for

9 return next,

10: end function

11:

12: function PBFS(ug, k)

13: frontier « {uvs}

14: vertices_count <« 0

15: while frontier.size > 0 do

16: next < PROCESSQUEUE( frontier, BFSprocess, k;)
17: // Or call ProcessQueueBlock()

18: vertices_count < vertices_count + frontier.sIZE
19: frontier « next
20: end while
21: return vertices_count

22: end function

4.3 Parallel Breadth-First Search

We develop a parallel BFS (PBFS for short) algorithm using two queues: the frontier queue, which
contains the indices of vertices in the current level, and the next queue, which stores the indices of
the neighbors of vertices in the frontier queue, which correspond to the vertices in the next level.
To leverage parallelism, each vertex in the frontier queue is assigned to a separate thread so that
multiple I/Os can be issued in parallel as shown in Figure 1(A). The complete algorithm is listed
in Alg. 2. For each vertex in frontier, as BFSprocess defines, ProcessQueue will assign threads to
vertices. Each thread accesses the assigned vertex, retrieves the indices of its neighbors, checks and
flags the index of every neighbor as visited, inserts it to next, queue of this vertex, and merges
next, of all vertices to the final next protected by a global lock mtx to prevent data races and ensure
thread safety. The PBFS level of concurrency is controlled by the number of threads, which we tune
according to the optimal concurrency of the SSD. Once all the vertices in the frontier queue have
been processed, the contents of the next queue are copied back to the frontier queue, and the next
queue is cleared. This process is repeated until the frontier queue becomes empty, signifying the
completion of the BFS traversal. We also developed a blocked variant of the frontier processing
that uses the ProcessQueueBlock function. As discussed in §4.2, this approach discovers the edge
blocks of the frontier vertices and allocates threads to edge blocks, parallelizing at the edge block
level while ensuring that each edge block is read only once during an iteration. This results in two
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Algorithm 3: Parallel Weakly Connected Component

function PWCC(k,)
wcce_count «— 0
fori<— O0toN—1do

1:

2

3

4 /! If not flagged

5 if visited[i] = False then
6

7

8

9

/! Call BFS to flag all vertices in this WCC
PBFS(i, ky)
wcce_count «— wcec_count + 1
end if
10: end for
11: return wcc_count
12: end function

benefits: (i) overall runtime improvement since edge blocks are not read multiple times, and (ii)
performance does not depend on cache pool size.

Algorithm 4: Parallel PageRank
1: function PRPROCESS(v;, neighbors)
2: Prnext[v1] < 0
3 for v, in neighbors do
4 /] Sum up last pr value of neighbors
5 PTnext [01] € Plnext [01] +P”[Uz]
6: end for
7
8
9

/] Add damping factor and divide by its degree

PTnext [01] — GETDEGREE(v;)

: return
10: end function

12: function PARALLELPAGERANK(iterations, k;)
13: frontier — {0,1,...,N — 1}
14: fori — 0toN-1do

15: prlil < Gt

16: PTnext [1] < prli]

17: end for

18: while iterations > 0 do

19: PRrROCESSQUEUE( frontier, PRprocess, k)
20: PY < Pruext

21: iterations < iterations — 1
22: end while

23: /| Prepare return value

24: fori—O0toN-1do

25: pr(i] « pr[i] - GETDEGREE(i)
26: end for

27: return pr

28: end function
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4.4 Parallel Weakly Connected Components

Computing WCC entails repeatedly searching from each vertex in the graph. Since we utilize the
adjacency list format, the most efficient approach to compute WCC involves repeatedly applying
the search algorithm starting from each vertex. During the search process, a visited vertex is marked
as true and subsequently avoided in subsequent iterations. We parallelize WCC by performing
multiple concurrent searches using PBFS due to its low overhead and well-established efficiency.
Algorithm 3 lists the algorithm for PWCC.

4.5 Parallel PageRank

We consider the topology approach for PR, which involves updating the PR values (pr) of all vertices
based on the values of their neighbors from the previous iteration (Algorithm 4). Since all vertices
need to be processed in each iteration, the frontier queue always contains the entire list of vertices,
and there is no need for a next queue. Initially, the frontier queue includes all vertices, from vertex
0 to vertex N — 1. In every iteration, the ProcessQueue is called with the desired concurrency to
parallelize each step of the algorithm. For the blocked implementation, the ProcessQueueBlock
function is called. The initial PageRank values, pr[i] and pryex;[i], are assigned as the inverses of
the degrees of their respective vertices v;. It is worth noting that in the original PageRank algorithm,
the initial PageRank value for each vertex is set to 1, and its neighbors are assigned values of

56"9[[2]] . To optimize the computation, we perform this division in advance so it does not need to be

repeatedly calculated by the neighbors in each iteration.

Algorithm 5: Parallel Random Walk

1: function RWPROCEsS(vy, neighbors)
2 /! Randomly selects a neighbor

3 vy < RANDOMSELECT (neighbors)
4 return {v;}

5: end function
6
7
8
9

: function PARALLELRANDOMWALK(K, iterations, k;)
frontier < 0
: visited_count < 0
10: fori <— 0toK —1do

11 // Initialize starting vertices randomly

12: frontier[i] « RanpoM(0,N — 1)

13: end for

14: while iterations > 0 do

15: next < PROCESSQUEUE( frontier, RW process, k)
16: frontier «— next

17: visited_count < visited_count + K

18: iterations < iterations — 1

19: end while

20: return visited_count

21: end function
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Algorithm 6: Parallel Pseudo Depth-first Search

1: function DFSTAsK(stack, k)

2 max_stack_count « k,

3 while stack.size() > 0 do

4 /! Get and pop vertex at the stack top

5 v1 « stack.Top()

6 stack.rop()

7 visited_count < visited_count + 1

8 neighbors <« GETEDGEs(v;)

9 /! Push all unvisited neighbors on stack

10: for v, in neighbors do

11: if visited[v,].CAS(False, True) then

12: stack.PUsH(v,)

13: end if

14: end for

15: /| Check if the stack size is larger than threshold
16: while stack.s1ze() > max_stack_size do

17: if stack_count < max_stack_count then
18: stack_count < stack_count + 1

19: /1 Split the stack and generate new task
20: new_stack, stack < stack.spLrT()

21: ThreadPool.pusu(DFStask, new_stack)
22: end if

23: end while

24: end while

25: stack_count « stack_count — 1

26: end function

27:

28: function PARALLELPSEUDODFS(ug, k;)

29: init_stack «— {vs}

30: visited[vs] < True

31: stack_count « 1

32: visited_count < 0

33: // Push the initial task in the thread pool

34: ThreadPool.pusu(DFStask(init_stack, k;))
35: /] Wait for all tasks to be finished

36: ThreadPool WAITALL()

37: return visited_count

38: end function

4.6 Parallel Random Walk

A single random walk is inherently a serial process and does not significantly benefit from data
concurrency. However, an effective strategy is to run multiple random walks concurrently, which
not only improves the precision of the results but also reduces the overall running time. Initially,
k vertices are randomly chosen from the whole vertex set and put in the frontier queue. In each
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Fig. 5. Example of the Parallel Pseudo DFS algorithm, demonstrating the progression of the stack over time.

iteration, the RW process function randomly selects one of the neighbors for each vertex in frontier
as the successor in the next iteration. Algorithm 5 outlines the complete algorithm.

4.7 Parallel Pseudo Depth-First Search

While DFS is inherently a serialized algorithm, it is possible to enhance its performance by intro-
ducing parallelism through a technique known as unordered or pseudo-DFS [1]. We take inspiration
from this idea, and we incorporate a mechanism to monitor the size of the vertex stack for each
thread in our implementation (Algorithm 6). In the beginning, only one stack is active with the
starting vertex v;. We create a new DFStask with this stack in the thread pool. The DFStask
continuously pops the stack, reads its neighbors, and pushes them into the stack as a normal DFS
does. After visiting the neighbors of a vertex, we check if the size of the stack exceeds a predefined
threshold. If it does, the stack is evenly divided into two smaller stacks, and one of these stacks is
assigned to a new thread for further exploration. Figure 5 illustrates the algorithm, with the right
side of the figure depicting the timeline status of the stack and its splitting. The graph is a snapshot
after time 4, where three threads are working in parallel to process the nodes. This approach allows
each thread to independently perform DFS on its allocated stack and split it when necessary. By
dynamically splitting the stacks in this manner, we achieve increased concurrency during the DFS
traversal. The choice of the threshold value determines the trade-off between concurrency and
thread creation overhead. Setting a smaller threshold allows for higher concurrency but may result
in a larger number of threads being created. On the other hand, a larger threshold reduces the
number of thread creations but may limit the degree of parallelism. The selection of an appropriate
threshold is crucial to strike a balance between concurrency and overhead.

5 IMPLEMENTATION

In this section, we present implementation details of CAVE.

Concurrent Cache Pool. To prevent redundant disk reads, CAVE has a cache pool that stores
recently used edge blocks in main memory and employs a clock eviction policy. This caching
mechanism becomes crucial because an edge block can contain information for multiple small
vertices. It is designed to support concurrent access from multiple threads and enables concurrent
I/O operations. As shown in the left-hand-side of Figure 4, it comprises three key components: a
global lock, a list of slots to store cached blocks, and a cached block map that tracks the mapping
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of cached block IDs to their positions in the list. Each cached slot within the pool has its lock and
a reference counter, while the global lock ensures that only one thread can manipulate the clock
hand and modify the map of cached blocks at a given time, preventing potential conflicts.

When a thread requires a specific block, it first checks the cached block map to determine if it
is already cached. If the block is found, the thread attempts to acquire the associated lock. Upon
successful acquisition, the thread retrieves the content from the block, releases both the global lock
and the block lock, and proceeds with the required operations. However, when the desired block is
not found in the cache, the thread searches for an available or evicted cached block by moving the
clock hand and decrementing the reference counter. Once a suitable cached block is identified, the
thread acquires the lock associated with the cache block, releases the global lock to allow other
threads to enter the cache pool, and initiates the process of loading the data block from the SSD.
With the global lock released, multiple threads can access the cache pool concurrently and initiate
their own I/O operations. After reading the block into the cache slot, the lock is released, making
the block available for subsequent use by other threads.

Note that the global lock is kept for a small duration: either until the cached page is accessed in
memory, or until a block for eviction/loading is identified and locked. After this, the global lock
is released and more threads can enter the cache pool. ¢ ¢

Our experiments show that in I/O-bound scenarios g

this short-lived critical section does not create a bot- g’15’

tleneck. Figure 6 shows the percentage of time that 2101

is spent due to the global lock when running parallel =

BFS in the Friendster dataset (details in §6). The total & 5

lock waiting time remains low even with a high num- o—z 0 003 007 012 020 033 060 34

ber of concurrent I/Os (e.g., around 1.3% of running 1 2 4 8 16 32 64
time for 64 concurrent I/Os), which shows that the # Concurrent I/O

global lock does not create a bottleneck. With its con- Fig. 6. Lock waiting time remains low as we in-
current access support and efficient management of €"éase the number of concurrent 1/Os.

cached blocks, this caching mechanism significantly improves overall performance by minimizing
unnecessary storage accesses.

Codebase. We develop CAVE using C++17, and we leverage its native support for concurrent execu-
tion through the std: : thread functionality. We incorporate the lightweight BS: : thread_pool
library [49] that enhances portability and minimizes overhead. We also use the library parallel
hashmap [43] for the cache pool and ensure high accuracy in our runtime measurements with
chrono:: high_resolution_clock.

I/0 Interface. To have full control over the device, we perform direct I/O using the O_DIRECT
flag so that data is transferred directly from the storage device to main memory, bypassing the
system cache. Our blocked file structure ensures that each access is aligned. This alignment is
further guaranteed by using the aligned_alloc() function whenever new blocks are allocated.
For concurrent I/O, we use pread and pwrite in conjunction with the BS: : thread_pool library,
and we are compatible with both Linux and Windows (leveraging Overlapped I/O for the latter).
Data Files. We developed a custom parser to convert common graph data into our binary file
structure. It accepts standard adjacent list and edge list files in plain text format as input, parses
them, and converts them to our binary file structure.
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6 EVALUATION

We now present the experimental evaluation of CAVE for the five algorithms and compare it with
three storage-optimized graph processing systems GraphChi [24], Mosaic [30] and GridGraph [62]
for multiple datasets and devices.

Experimental Setup. Our experimental server has two Intel Xeon Gold 6230 CPUs, each with
20 cores with virtualization, and with 384GB of main memory. We experiment with three storage
devices: (i) an Optane SSD (375GB P4800X), (ii) an PCIe SSD (1TB PCle P4510), and (iii) a SATA
SSD (240GB SATA S4610). For all three devices, we quantify the read concurrency (k,) through
careful benchmarking (6 for Optane SSD, 60 for PCIe SSD, and 25 for SATA SSD). Unless otherwise
mentioned, we match the number of concurrent I/Os to k, of the corresponding device for optimal
device utilization [37]. All devices were pre-conditioned by sequentially writing on the entire device
three times before running the experiments to ensure stable performance [12]. All experimental
results are averaged over three iterations, and the standard deviation was less than 1%.

Dataset. We use five datasets of different sizes and types from the Stanford Large Network Dataset
Collection [25] and LDBC Graph Analytics Benchmark [17]: Friendster Social Network (FS), Twitter
Social Network (TW), RoadNet Network of PA (RN), LiveJournal Social Network (L]) and YouTube
Social Network (YT). FS is the largest dataset among these, with 65M nodes and 32GB size. We
also experiment with a synthetic dataset (SD) which is generated following the Barabasi-Albert
model [4]. We configured the graph with 50 million vertices, each connected to 25 neighbors,
resulting in a total of 1.25 billion edges. Note that the RN graph is very sparse while the SD graph
is extremely dense. The key properties of the datasets are presented in Table 1.

Table 1. Dataset Description

Dataset Description #Nodes #Edges Diameter Size
FS Friendster Social Network 65M 1.8B 32 32 GB
™ Twitter Social Network 53M 2B 18 28 GB
RN RoadNet Network of PA M 1.5M 786 47 MB
LJ LiveJournal Social Network 5M 69M 16 1GB
YT YouTube Social Network 1.1IM 3M 20 39 MB
SD Synthetic data 50M 1.25B 6 20 GB

Preprocessing time and space requirement. Table 2 presents the preprocessing time and space
requirement of all systems for the FS and TW dataset. CAVE exhibits the lowest preprocessing
time and a reduced space requirement compared to GridGraph and Mosaic. For example, Mosaic’s
preprocessing time and space requirement is 9x and 2x that of CAVE for the FS dataset, respectively.
While GridGraph has a similar preprocessing time to CAVE, its space requirement is 6X that of CAVE.
This efficiency stems from CAVE’s compact file architecture and simple design, contrasting with the
more demanding preprocessing requirements of systems like GridGraph and Mosaic.

Table 2. Preprocessing Time and Space Comparison

Preprocessing Time (s) Data File Size (GB)

System Dataset: FS Dataset: TW Dataset: FS Dataset: TW
GraphChi 819 784 8.3 8.4
GridGraph 55 86 84 75

Mosaic 469 370 27 17

CAVE 52 49 14 13
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Fig. 7. (A) - (F) Performance graph for BFS on our PCle SSD. In general, CAVE outperforms the baselines
GraphChi, GridGraph and Mosaic for all six datasets. Mosaic performs well for the sparse RN dataset.

6.1 Parallel BFS

CAVE Outperforms all baselines. In our first set of experiments, we evaluate the performance of
CAVE, GraphChi, GridGraph and Mosaic as we vary the cache size for all six datasets. Figures 7(A) -
(F) show the performance of the four systems for BFS when the underlying device is the PCle SSD.
We compare using both the blocked and non-blocked variants of the frontier processing to see their
effect on different graphs. Since the datasets have different sizes, the cache value is set accordingly.
The results show that CAVE (both blocked and non-blocked) significantly outperforms GraphChi for
any cache ratio and any dataset. Notably, when the cache ratio is low, CAVE outperforms GraphChi
with a significantly higher speedup due to its better utilization of SSD concurrency.

For example, Figure 7(A) presents a performance comparison of the four systems for the Friendster
dataset (65M nodes, 32GB size). The figure shows that the non-blocked implementation benefits
from a higher cache size while the blocked implementation remains unaffected by the cache size.
This is due to the design techniques of the blocked implementation, which ensure that all edge
blocks are read only once during an iteration. We observe that GridGraph and Mosaic are faster
than GraphChi, but both CAVE implementations outperform them. Specifically, the blocked version
provides up to 3.4X and 5.6X speedup across various cache sizes against GridGraph and Mosaic,
respectively. The non-blocked variant delivers comparable performance to GridGraph for smaller
cache sizes and up to 5.1X speedup for larger cache sizes while always outperforming Mosaic by a
higher margin. CAVE’s blocked implementation outperforms the other three systems for the TW, L]
and YT datasets as shown in Figures 7(B), (D) and (E).

CAVE is Well-suited for Sparse Graphs. In Figure 7(C), we see that in a sparse graph with an
unusually high diameter (RN dataset), CAVE performs better than both GraphChi and GridGraph,
but falls short of Mosaic. The non-blocked implementation of CAVE works well for this graph
because, in sparse graphs with lower average degrees where edge blocks can be associated with
multiple vertices, all required edge blocks for an iteration can fit in the cache pool without swapping.
With a sufficiently large cache, the non-blocked variant benefits from multiple threads working
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Fig. 8. (A, B) Performance graph for PBFS on Optane SSD and SATA SSD for the FS dataset. In both devices,
CAVE outperforms the baselines.

on cache data. The figure shows that the blocked implementation (black dashed line) outperforms
both GraphChi and GridGraph while the non-blocked implementation (black solid line) can be up
to 3.8X faster than the blocked one. While CAVE consistently outperforms Mosaic for other datasets,
Mosaic outperforms CAVE for this dataset. This is because Mosaic uses Hilbert-ordered tiles as its
graph representation, which allows to skip lots of empty/unneeded tiles for sparse graphs.

CAVE Provides Good Performance for Dense Graphs. Our synthetic SD dataset is an unusually
dense graph (the diameter is only 6 with 50M nodes and 1.25B edges). In Figure 7(F), we observe
that CAVE outperforms GraphChi and Mosaic. However, CAVE-blocked provides marginal benefit
compared to GridGraph for the SD dataset. The reason behind this is that GridGraph is designed
for dense graphs because its data structures and algorithms are optimized to efficiently handle the
high connectivity and dense nature of such graphs. GridGraph achieves this by utilizing a grid
structure to partition and manage the graph’s data. This approach allows it to optimize memory
usage and reduce access times for dense graph structures. However, CAVE still provides up to 25.4%
faster runtime compared to GridGraph for dense graphs.

Similar Performance Benefit Across All Devices. We now compare CAVE against Mosaic and
GridGraph in the Optane SSD and SATA SSD as we vary the cache size for BFS on the FS dataset.
Figures 8(A) and (B) show that the performance trend of these systems remains similar to the PCle
SSD (Figure 7(A)). CAVE consistently outperforms both GridGraph and Mosaic. We also observe that
all systems running on the Optane SSD have an overall lower runtime than the PCle SSD because
of Optane SSD’s faster read performance. In contrast, all systems running on the SATA SSD have a
higher runtime than the PCle SSD due to the slowness of the SATA SSD.

CAVE Utilizes Concurrent I/Os. To analyze how the concurrent I/O affects the performance when
using various devices and datasets for the algorithms, we now vary the number of concurrent I/Os in

the blocked PBFS implementation. Since GraphChi, Grid- 1000
Graph or Mosaic do not have the support of varying __ o i 52\\;5-:2 EigreA))

. o - @ 7501 -
Concurr.ent I/Os, we do no’E include them in this experi- . o CAVE-BFS (Optane)
ment. Figure 9 shows CAVE’s performance graph for the £ 500
FS dataset for all three of our devices. The figure shows §
that as we increase the number of concurrent I/Os, PBFS’s & 2501 - .
runtime decreases until the device becomes saturated. For o, =~ TTo—s—s—a—
example, the SATA SSD gets saturated when using 16-32 1oz ; Cc?nc&?re?wzt |/6c‘)1 128256

concurrent I/Os (red line), which is consistent with the Fig 9. As we increase the number of con-
device’s optimal concurrency value (25). However, if we current 1/0s, the benefit of PBFS increases
issue more concurrent I/Os, performance starts to degrade until the device gets saturated.

because of the thread management overhead while the device is already saturated. The PCle SSD
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Fig. 10. (A) CAVE performs well across all datasets for PBFS. Only Mosaic has a better performance for the
sparse RN dataset. (B) CPU usage of CAVE remains low showing that its benefit comes from better SSD
utilization. In other words, CAVE is I/O-bound, not CPU-bound.

curve is moved towards higher concurrency, as expected, and Optane SSD has a flatter curve, which
is consistent with prior work [37, 39].

CAVE Excels Across Different Datasets. Figure 10(A) shows CAVE’s speedup vs. GraphChi, Grid-
Graph, and Mosaic for all five datasets with cache size 3% of the dataset when running on the PCle
SSD. The speedup of CAVE compared to GraphChi, GridGraph, and Mosaic ranges from 7 — 984X,
1.1 — 22X, and 0.1 — 5.2X%, respectively. The unusually high speedup compared to GraphChi for the
RN dataset is attributed to the high diameter of the graph, where GraphChi needs an exception-
ally large number of iterations to achieve convergence. GridGraph also takes a high number of
iterations to converge which shows that CAVE can handle graphs with high diameters better than
both GraphChi and GridGraph. Although Mosaic performs the best for this sparse dataset, CAVE
outperforms Mosaic for the other datasets. For dense graphs like SD, GridGraph performs well
because of its grid structure to partition and manage dense graphs, however, CAVE still outperforms
GridGraph.

CAVE’s Benefits Come From Better Storage Utilization. Our profiling shows that CAVE is I/O-
bound (rather than CPU-bound), thus, the performance benefits come from better utilization of
the underlying storage devices. We capture a snapshot of the CPU load and disk bandwidth for
PBFS on the FS dataset in Figure 10(B). The figure shows that CAVE consistently maintains low
CPU utilization, generally below 5%, while the disk bandwidth remains around 100%. To calculate
bandwidth utilization, we divide the observed bandwidth by the maximum device bandwidth
achieved when using the same number of concurrent threads to issue I/Os.

6.2 Parallel WCC, PR & RW

6.2.1 Parallel Weakly Connected Components. Figures 11(A) and (B) present the performance graph
of two CAVE implementations, GraphChi, GridGraph, and Mosaic, for weekly connected components
as we vary cache size running on the PCle SSD device for FS and SD datasets. Similarly to the
PBFS experiments, the runtime of the blocked implementation does not depend on the cache size.
Figure 11(A) shows that CAVE’s blocked implementation achieves up to 44X, 2.2X, and 8.6x speedup
compared to GraphChi, GridGraph and Mosaic for the FS dataset. However, for the SD dataset
in Figure 11(B), GridGraph achieves 1.6X better runtime than CAVE. As mentioned earlier, this is
because the SD dataset is seriously dense which works in favor of GridGraph. For both datasets,
the non-blocked implementation has a higher runtime when the cache size is small. However, the
performance improves as the cache size increases, providing up to 2.5x and 1.2X speedup compared
to GridGraph for the FS and SD datasets for higher cache sizes.
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Fig. 11. (A) Blocked CAVE implementation outperforms other systems for WCC. (B) For dense graphs, Grid-
Graph works well for finding WCC.

103

GraphChi 1034
GridGraph
Mosaic

EZE GraphChi
GraphX
GridGraph
102 Mosaic
CAVE

Runtime (s)
=
=2

1079 |\ A i
RN i YT
(A) CAVE’s speedup for PWCC (B) Experiment with GraphX and other systems

Fig. 12. (A) CAVE performs well across all datasets for parallel weekly connected component (PWCC). (B)
CAVE outperforms single-node GraphX deployment.

Figure 12(A) presents a summary result of WCC for all five datasets on the PCle SSD (3% cache

size for each dataset) which shows CAVE can achieve 22 — 850X, 0.6 — 22X and 2.5 — 15X speedup
compared to GraphChi, GridGraph and Mosaic respectively.
Comparison against GraphX. For completeness, we experiment with GraphX [15] that imple-
ments graph-parallel computation by distributing the computation in multiple compute nodes using
a different abstraction while requiring all data in memory. Since CAVE is a single-node out-of-core
system, a direct comparison against a distributed system should be taken with a grain of salt. We
experiment with a single-node deployment of GraphX on our server. Figure 12(B) presents the
runtime of GraphChi, GraphX, GridGraph, Mosaic, and CAVE for three datasets when running
WCC. We observe that CAVE can be up to two orders of magnitude faster than GraphX. Specifically,
CAVE achieves 350X, 19x and 59X speedup compared to GraphX for RN, L] and YT datasets. It is
worth highlighting that CAVE achieves this superior performance despite GraphX having all data
in memory whereas CAVE only uses 3% memory of the dataset size. We recognize that GraphX is
designed for distributed environments, however, the potential costs associated with distributed
computing, both monetary expenses and the overheads of managing a distributed computing
infrastructure can be significant.

6.2.2 Parallel PageRank. Figures 13(A) - (C) illustrates the performance graph for YT, RN and L]
datasets in the PCle SSD. The blocked implementation of CAVE achieves lower runtime than both
GraphChi and GridGraph while achieving comparable performance to Mosaic. The figure shows
that CAVE achieves up to 98X and 3.3x speedup compared to GraphChi and GridGraph, respectively,
for the YT dataset. For the RN dataset shown in Figure 13(B), CAVE’s speedup is up to 170x (3.0X),
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400 2500+
—&— CAVE-RW (SATA) —=— CAVE-DFS (SATA)
3001 —%— CAVE-RW (PCle) 20001 —<— CAVE-DFS (PCle)
@ —o— CAVE-RW (Optane) 0 —e— CAVE-DFS (Optane)
[0} o 15004
£2001 £
€ '€1000-
& 4
1007 500,
0- 04 T T T T \\\\777 T T
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
# Concurrent 1/O # Concurrent 1/0
(A) Dataset: L), Algorithm: Random Walk (B) Dataset: FS, Algorithm: DFS

Fig. 14. (A) Concurrent I/Os improve performance for CAVE’s Random Walk till the device is saturated. (B)
CAVE’s PDFS can attain the maximum benefit of the device by exploiting its optimal concurrency.

while for the L] dataset shown in Figure 13(C), CAVE achieves 8.2x (1.6X) speedup compared to
GraphChi (GridGraph). Similarly to our previous experiments, the performance of the non-blocked
implementation of CAVE improves as the cache size increases.

6.2.3  Parallel Random Walk. Figure 14(A) shows the representative performance graph of CAVE as
we vary the number of concurrent I/O for the LJ dataset across our three SSDs. The figure shows
that as we increase the number of concurrent I/Os the runtime decreases across all devices. As
expected, we also observe that the Optane SSD is faster than the PCle SSD and the PCle SSD is
faster than the SATA SSD. As the number of concurrent I/Os reaches the optimal concurrency of
each device, its runtime is minimized. However, beyond this point, the runtime starts to increase as
the device is saturated, and additional parallelism increases the thread management overhead.

6.3 Parallel pseudo DFS

We now focus on the impact of I/O concurrency on the PDFS algorithm. We generate a list of target
keys at random and run the algorithm to search each key multiple times in a depth-first manner.
Note that GraphChi, GridGraph, Mosaic, and most graph processing systems do not support DFS.
CAVE’s PDFS Exploits Device Concurrency. Figure 14(B) shows the performance of CAVE’s PDFS
as we vary the number of concurrent I/Os for the FS dataset across three devices. We observe that
for all devices, as we increase the number of concurrent I/Os, we have improved runtime until the
device performance plateaus. The figure shows that CAVE’s PDFS achieves 7.7x, 12.6X, 7.6X speedup
on the Optane SSD, SATA SSD, and PCle SSD. We can also reason about each device’s concurrency
values from the graph as the runtime flattens when the device bandwidth is saturated. The figures
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also show that the fastest device (Optane SSD) has a much lower runtime than the slowest device
(SATA SSD). We observe a similar trend for other datasets. Overall, these experiments show that
CAVE can perform parallel pseudo-DFS while leveraging the underlying SSD concurrency.

7 RELATED WORK

Many scalable graph processing systems like PowerLyra [10], PowerGraph [14], GraphX [15],
GBase [21], TurboGraph++ [23], Chaos [44], GraphLab [29], Pregel [31], Gemini [61], VC-Tune [63]
can process large graphs in a distributed manner which requires finding optimal partitioning, load-
balancing, fault tolerance, and managing the communication overhead. There are some single-node
shared-memory systems like Ligra [50], GraphMat [51], GRACE [55], Polymer [57], CGraph [58] that
process graphs in memory, and as expected, these systems are highly CPU bound. There are several
popular out-of-core processing systems including GraphChi [24], TurboGraph [16], Graphene [26],
Mosaic [30], X-Stream [45], GridGraph [62], Graspan [52], RStream [53], and FlashGraph [60].
These systems attempt to minimize random disk access while relying on sequential I/O, extensive
preprocessing, and optimal data placement. GraphSSD [33] is a graph-aware SSD framework where
the SSD controller is made aware of the graph data structures stored on the SSD. In contrast to these
approaches, our goal is to develop a general approach for parallelizing graph traversal algorithms
and develop the necessary infrastructure to exploit the underlying SSD concurrency.

8 CONCLUSION

Modern storage devices are characterized by their access concurrency, which needs to be carefully
harnessed to attain maximum benefit from the device. Graph processing systems are a natural
candidate for exploiting this property explicitly, yet, most systems do not consider it, resulting
in device underutilization. We propose CAVE, a concurrency-aware graph processing system de-
signed to leverage the underlying SSD concurrency. CAVE parallelizes independent I/Os through
its concurrent cache pool design, supported by its file structure, enabling the implementation of
storage-aware parallel graph algorithms. We develop the parallelized versions of five popular graph
algorithms in CAVE and compare their performance with three out-of-core systems, GraphChi,
GridGraph, and Mosaic, for multiple datasets and devices. Our evaluation reveals that CAVE achieves
up to three orders of magnitude higher speedup than GraphChi and up to one order of magnitude
higher speedup than GridGraph and Mosaic.
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