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Large-scale graph analytics has become increasingly common in areas like social networks, physical sciences,

transportation networks, and recommendation systems. Since many such practical graphs do not fit in main
memory, graph analytics performance depends on efficiently utilizing underlying storage devices. These out-
of-core graph processing systems employ sharding and sub-graph partitioning to optimize for storage while

relying on efficient sequential access of traditional hard disks. However, today’s storage is increasingly based on

solid-state drives (SSDs) that exhibit high internal parallelism and efficient random accesses. Yet, state-of-the-art
graph processing systems do not explicitly exploit those properties, resulting in subpar performance.

In this paper, we develop CAVE, the first graph processing engine that optimally exploits underlying SSD-

based storage by harnessing the available storage device parallelism via carefully selecting graph I/Os that

can be issued concurrently. Thus, CAVE traverses multiple paths and processes multiple nodes and edges

concurrently, achieving parallelization at a granular level. We identify two key ways to parallelize graph

traversal algorithms based on the graph structure and algorithm: intra and inter-subgraph parallelization.

The first identifies subgraphs that contain vertices that can be accessed in parallel, while the latter identifies

subgraphs that can be processed in their entirety in parallel. To showcase the benefit of our approach, we build

within CAVE parallelized versions of five popular graph algorithms (Breadth-First Search, Depth-First Search,

Weakly Connected Components, PageRank, Random Walk) that exploit the full bandwidth of the underlying

device. CAVE uses a blocked file format based on adjacency lists and employs a concurrent cache pool that is

essential to the parallelization of graph algorithms. By experimenting with different types of graphs on three

SSD devices, we demonstrate that CAVE utilizes the available parallelism, and scales to diverse real-world graph

datasets. CAVE achieves up to one order of magnitude speedup compared to the popular out-of-core systems

Mosaic and GridGraph, and up to three orders of magnitude speedup in runtime compared to GraphChi.

CCS Concepts: • Hardware→ External storage; • Information systems→ Data management systems;
Graph-based database models; Information storage systems.
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1 INTRODUCTION

The Rise of Large Graphs. Graphs are natural encoders of interconnected relations that can

be leveraged to analyze many real-world applications. With the unprecedented growth of such
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interconnected data stemming from various applications like machine learning [29], recommen-

dation systems [54], physical sciences [56], and social networks [59], analytics over large graphs

is becoming increasingly popular in both academia and industry [2, 19, 27, 31, 42]. Real-world

graphs often exhibit a vast scale, frequently encompassing millions, or even billions, of nodes

interconnected by several billion edges. The sheer size of these graphs often exceeds the capacity

of main memory, posing a significant challenge for efficient processing. Consequently, specialized

techniques have emerged to address the need for scalable solutions to handle these massive graphs.

State-of-the-art Graph Management Systems. Many scalable systems have been recently

proposed that handle large graphs by distributed processing [14, 21, 29, 31, 44, 61], which come with

unique challenges such as partitioning, load balancing, cluster management, network overhead,

and fault tolerance. On the other hand, single-node systems process large graphs in-memory [50, 51,

55, 58] and achieve scalability through increasing memory size and adding more CPUs. This work

is orthogonal to the aforementioned approaches, however, it can benefit any system that spills

data into storage. For example, our techniques can be applied at the local shard level in distributed

graph management systems to enhance performance. Single-node out-of-core systems (which we

focus on) primarily rely on (i) optimizing data partitioning techniques, (ii) improving memory and

disk locality, and (iii) reducing random I/O to utilize fast sequential I/Os [16, 24, 30, 45, 62]. These

techniques mainly address slow random disk access, which is particularly relevant for traditional

hard disk drives (HDDs). However, the storage layer of data-intensive systems today employs solid-

state disks (SSDs) and non-volatile memory (NVM) devices that have quite different characteristics

than HDDs, which require a careful system redesign to be effectively exploited [36–38].

Modern Storage Devices. SSDs dominate as secondary storage devices, while classical HDDs are

nowadays primarily used for archival storage [47]. SSDs offer fast data access, high chip density,

and low energy consumption by utilizing NAND flash memory as their storage medium [3, 20, 40],

thus eliminating the mechanical overheads of HDDs. Further, SSD internals follows a hierarchical

structure (discussed in §2.1) that creates high internal parallelism, which can be leveraged to

enhance performance [8, 9, 32, 37, 39, 48]. That is, an SSD can perform multiple concurrent I/Os
until its bandwidth is saturated. Following the Parametric I/O model [37], we call this property

concurrency, 𝑘 , which is the number of I/Os the device can perform concurrently without hurting

latency per request. The level of concurrency supported by a device depends on the request type

(read/write), access granularity and on the device internals.

SSD Parallelism for Graph Processing. Graph traversal operations can utilize SSD concurrency

by parallelizing node and edge accesses, effectively distributing the workload across SSD’s parallel

architecture [5]. This idea takes advantage of the availability of multiple paths that can be explored

during graph traversal. However, most out-of-core graph processing systems simply attempt to

better utilize underlying storage devices by reducing random (in favor of sequential) I/O. They do

not aim to aggressively exploit opportunities for concurrent accesses, thus failing to use the full

potential of SSDs. Our goal is to parallelize graph traversal algorithms without changing their core

properties in order to fully utilize the underlying SSD concurrency. We identify two fundamental

approaches to achieve this goal, each tailored to specific scenarios.

• Intra-Subgraph Parallelization: This approach focuses on parallelizing operations within

a single subgraph. This approach is effective when the nodes of a subgraph can be processed

independently. For example, a parallel version of Breadth-First Search (BFS) can follow this

approach since multiple nodes of the same level can be processed independently. The core

integrity of the algorithm can be maintained via communication among the processing units,

result aggregation and synchronization. This approach harnesses the inherent parallelism present

in subgraphs and utilizes modern storage concurrency for faster and more efficient graph traversal.
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Fig. 1. (A) Parallellized version of BFS in CAVE takes fewer iterations to converge. (B) CAVE is upto three orders
of magnitude faster than GraphChi and up to one order of magnitude faster than GridGraph and Mosaic.

• Inter-Subgraph Parallelization: In contrast to the previous approach, inter-subgraph paral-

lelization involves processing multiple subgraphs concurrently. This method is particularly useful

when we can identify that multiple subgraphs can be processed independently. For example, in

the pseudo Depth-First Search algorithm [1], the stack used for traversal can be split into smaller

stacks and processed in parallel by different threads. Multiple threads can then work on different

parts of the graph concurrently, thus traversing multiple branches simultaneously.

In both approaches, the key objective is to maximize the utilization of SSD concurrency, ensuring

that multiple operations can be performed in parallel. We integrate both approaches into a prototype

graph processing system as discussed next.

Our Approach. We build an SSD-aware graph processing system, named CAVE1 that is able to
harness the concurrency of the underlying storage devices via intra/inter-subgraph parallelization.
Specifically, CAVE provides the necessary infrastructure to parallelize graph traversal algorithms

when several independent vertex accesses can be performed in parallel. A prime example is our

Parallel Breadth-First Search (PBFS) implementation that uses intra-subgraph parallelization, which

is outlined in Figure 1(A). The algorithm accesses the next wave of nodes (as we move on a level-

by-level fashion) in parallel since we have already identified the nodes of the next wave while

processing the current one. Figure 1(A) is a high-level overview where we consider a device with

read concurrency 2. Hence, while vertex D, E, F and G are at the same level, only two of them can be

processed in parallel. This leads to a faster response time of the BFS search simply by carefully ex-

ploiting the underlying storage concurrency, resulting in faster convergence within fewer iterations.

CAVE uses a block-based file format based on adjacency lists, ensuring that graph metadata, vertex

information, and edge information are stored in aligned blocks while enabling efficient support

for graph traversal and analytical operations by ensuring optimized data retrieval. Furthermore,

CAVE employs a concurrent cache pool mechanism that enhances locality and ensures thread safety.

Overall, CAVE identifies storage accesses that are independent (thus can be parallelized) based on

the task at hand and performs them concurrently based on the device’s optimal concurrency [37],

i.e., the number of I/O requests the device can handle without compromising latency.

To our best knowledge, CAVE is the first graph processing system that is capable of fully exploiting

the available parallelism of the underlying flash-based storage leading to significant performance

improvements. State-of-the-art graph processing systems focus on the design of graph process-

ing/traversal algorithms and the distribution of the work (e.g., partitioning), but not on the specific

characteristics of the underlying hardware and especially storage devices. By building a better

1CAVE: Concurrency-Aware Graph (V, E) system
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understanding of how to efficiently use SSDs, we build a faster (and/or cheaper in the cloud) graph

processing system. Further, one of the key benefits of this approach is that it is applicable in any

graph system that spills data on disk, so it can benefit a wide variety of systems. CAVE’s architecture
is designed to pave the way for developing new parallel graph algorithms that leverage the inherent

concurrency of SSDs for both intra/inter-subgraph parallelization. As our first step, we develop

in CAVE the parallelized versions of five popular graph algorithms. In addition to Breadth-First

Search (BFS), CAVE offers parallelized, SSD-aware versions of Depth-First Search (DFS), Weakly

Connected Components (WCC), PageRank (PR), and Random Walk (RW). We compare the perfor-

mance of CAVE with three popular out-of-core processing systems, GraphChi [24], GridGraph [62]

and Mosaic [30], as they are widely recognized for their efficiency in handling large-scale graphs

in a single machine. Figure 1(B) shows the speedup of CAVE’s BFS compared to these systems for

four datasets (Friendster, Twitter, YouTube, and RoadNet) running on top of our PCIe SSD (details

in §6). We observe that CAVE can be up to three orders of magnitude faster than GraphChi and up

to one order of magnitude faster than GridGraph and Mosaic.

Contributions. Our contributions are as follows:

• We identify the importance of SSD concurrency with respect to graph processing.

• We identify two fundamental ways to parallelize graph traversal operations: intra-subgraph and

inter-subgraph parallelization.
• We propose CAVE, the first SSD-aware graph engine that fully exploits the parallelism of the
underlying SSD storage via concurrent I/O, its novel file structure, and a concurrent cache pool.

• We develop on CAVE the parallelized version of five popular graph algorithms (BFS, DFS, WCC,

PageRank, Random Walk) to showcase that CAVE is flexible enough to implement diverse graph

traversal algorithms.

• We evaluate CAVE against GraphChi, GridGraph and Mosaic where CAVE achieves up to 984×
speedup vs. GraphChi, up to 22× speedup vs. GridGraph and up to 15× speedup vs. Mosaic.

2 BACKGROUND
In this section, we provide the necessary background for SSD concurrency and an overview of the

algorithms we parallelize.

2.1 SSD Concurrency
Flash-based SSDs exhibit inherent internal parallelism due to their architectural design [3, 8, 37]. This

parallelism stems from several factors, including the presence of multiple flash memory chips within
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Fig. 2. Internal architecture of an SSD.

the SSD, each capable of performing read and

write operations independently. Further, each

memory chip includes multiple dies, each die

has multiple planes, and each plane consists of

blocks where pages reside. Figure 2 shows the

hierarchical architecture of a flash SSD. When

multiple I/Os are issued in parallel, the flash con-

troller tries to distribute them across different

segments of the device [32, 41, 48], effectively

increasing throughput without hurting latency

(up to a point). The degree of observed concur-
rency varies across devices, and it also depends

on the access type (read/write) [37]. The optimal
concurrency of the device is the number of I/Os needed to saturate the device bandwidth without
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hurting latency. Additionally, modern SSD controllers exploit and manage internal parallelism for

wear-leveling and garbage collection [18, 34]. To sum up, to better exploit SSDs, we need to issue

concurrent I/Os while respecting the device’s characteristics.

2.2 Graph Traversal Algorithms
We now introduce the necessary background for the graph traversal algorithms we use and discuss

the opportunities for parallelization.

Breadth-First Search (BFS). BFS is a graph traversal algorithm that starts from a designated

starting vertex and then explores all neighboring vertices in a level-by-level manner [11]. It begins

by visiting all the immediate neighbors of the starting vertex and then moves on to their neighbors

in subsequent levels. By traversing the graph in a level-wise manner, BFS uncovers the shortest

paths and analyzes the structural properties of the graph.

Since BFS processes nodes in a level-by-level manner, nodes of the same level can be processed

independently (hence concurrently), thus providing an opportunity for parallelizing and, in turn,

harnessing the SSD’s concurrency.

Depth-First Search (DFS). DFS is a widely-used graph traversal algorithm that starts from a

specified vertex and systematically explores as deep as possible along each branch before back-

tracking [13]. This approach involves visiting a vertex and then recursively visiting its unvisited

neighbors until there are no more unvisited vertices. DFS is particularly useful for identifying

cycles, determining connected components, and finding paths between vertices.

While the classical DFS is tricky to parallelize, the pseudo-DFS [1] algorithm offers the opportu-

nity to parallelize by running multiple parallel mini-DFSs. A parallel version of pseudo-DFS can

dynamically split and distribute the vertex stack among multiple threads, allowing concurrent

exploration of different branches of the graph.

Weakly Connected Components (WCC). In an undirected graph, a connected component refers

to a subgraph where every vertex is connected to every other vertex through pathways within the

graph. WCC aims to identify and group together nodes that are weakly connected [22], meaning

they can be reached from each other by traversing the edges regardless of their direction. This

algorithm typically involves traversing the graph using techniques like BFS or DFS to identify the

connected components.

The previous approaches used to exploit SSD concurrency can be used to parallelize WCC.

For example, while using BFS to discover WCCs, each subgraph’s connected components can be

computed concurrently, and the results from different subgraphs can be merged to determine the

weakly connected components.

PageRank (PR). PR is a well-known algorithm to estimate the importance of vertices in graphs,

used by Google to rank webpages on the Internet [7]. It works by evaluating the importance of a

web page based on the number and quality of links pointing to it. The algorithm assigns a numerical

value, known as PR score, to each web page on the Internet and measures the importance of a web

page based on its backlinks and the quality of those links. PR employs an iterative process. Initially,

all pages are assigned an equal PR score. In each iteration, the scores are updated based on the

scores of linking pages. This process continues until PR scores converge or after a certain number

of iterations.

Due to this iterative traversal nature, this algorithm can be parallelized, similar to BFS. Within

each subgraph, PR calculations can be performed concurrently by assigning individual nodes to

threads. They can independently compute PR values for nodes within their respective subgraphs,

leading to efficient parallel execution while preserving the algorithm’s core structure. Finally, each

subgraph’s results should be combined to obtain the overall PR scores.
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RandomWalk (RW). RW is a probabilistic algorithm in which a walker moves through a network

(graph), taking steps based on random choices [28]. It is used to analyze the network structure and

understand properties such as connectivity and reachability. RW can be viewed as a Markov Chain,

where the probability of transitioning to the next state depends only on the current state.

To accelerate RW, we can divide the graph into manageable subgraphs and simultaneously

explore multiple nodes within these subgraphs. This approach accelerates the exploration and

allows for parallelization of transition probability calculations, making it suitable for estimating

node importance through RWs on vast networks. Further, different subgraphs can be processed in

parallel while accounting for crossing into a different subgraph.

3 PARALLELIZING GRAPH TRAVERSAL
Our main objective is to efficiently parallelize graph traversal operations with out-of-core systems

while maintaining the core properties of the graph algorithms. In this section, we discuss how

to achieve this with intra-subgraph and inter-subgraph parallelization. We present these two

techniques with examples and discuss how they can be seamlessly integrated and leveraged

alongside SSD parallelization.

3.1 Intra-Subgraph Parallelization
For this approach, we identify subgraphs, the nodes of which can be processed independently

so that we can access them in parallel. This means that the processing of one node does not

depend on the result or state of other nodes outside the subgraph. Thus, multiple nodes within

the subgraph can be processed concurrently by different computing units (threads), allowing for

concurrent I/Os, leading to better device utilization. After processing their respective nodes, the

results obtained by each thread are aggregated to produce the final result of the algorithm. This

ensures efficient exploitation of the underlying device which can speed up the execution of graph

traversal operations by processing multiple graph blocks (vertex and edge) in parallel, resulting in

faster convergence.

Example. A prime example of this type of parallelization is a parallel BFS. BFS explores the graph
level by level, where each level represents a set of equidistant vertices from the source vertex.

Since vertices of the same level can be accessed independently of each other, all vertices within the

same level can be processed concurrently, and thus accessed in parallel using multiple threads. A

queue maintains the nodes to be visited next, which are ordered on a per-level basis. Each thread
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dequeues nodes from the shared queue and processes them independently. The edges of each node

are accessed from the underlying SSD concurrently. Figure 3(A) illustrates the application of this

technique for parallelizing the BFS algorithm. Once nodes A and C have been traversed, nodes B,

D, E, and F are all at the same level (a subgraph where nodes are independent), enabling them to be

processed concurrently. Other BFS-based algorithms (e.g., PageRank, WCC) can also be parallelized

with this approach as a building block.

3.2 Inter-Subgraph Parallelization
The subtle difference between Inter-Subgraph and Intra-Subgraph Parallelization is that it identifies

subgraphs that can be independently accessed (like two different branches of DFS) and processes

them in parallel. That way, multiple subgraphs (or paths) can be traversed concurrently, thus

covering the entire graph faster and allowing for faster convergence. The algorithmic correctness

and other properties (like the order of accessing nodes) can be ensured by communication and

synchronization between the threads processing independent subgraphs. This approach is partic-

ularly useful for large-scale graphs that cannot fit entirely in memory or when distributing the

computation across multiple threads.

Example.We now use the pseudo-DFS [1] as an example. In the classical DFS algorithm, a stack

keeps track of the nodes to be explored and maintains the visiting order. In the pseudo-DFS

algorithm, a stack can be split into smaller stacks when its size exceeds a predefined threshold, and

the smaller stacks are processed in parallel. This allows for multiple threads to work on different

subgraphs (paths) concurrently. Figure 3(B) shows an example of this approach. In this example,

after traversing nodes A and C, the stack size grows to four and (assuming this is the threshold) is

split in two. The first stack contains nodes D and E, while the second contains B and F. These smaller

stacks are processed in parallel, leading to two independent graph traversals with the additional

need for communication to avoid crossing from one subgraph (path) to another. Inter-subgraph

parallelization also benefits finding Strongly Connected Components (SCCs) or groups of nodes

within a graph where each node is accessible from every other node in the same group.

3.3 Discussion
Which approach, which data structure? The selection between intra-subgraph and inter-

subgraph parallelization, as well as the choice of data structure depends on the algorithm being

parallelized. For example, in cases where the algorithm involves BFS-like exploration, intra-subgraph

parallelization is the best fit. On the other hand, for algorithms resembling pseudo-DFS or those

focused on connectivity exploration, inter-subgraph parallelization can be more effective since it

allows different subgraphs to be processed concurrently, facilitating quicker convergence. In both

cases, graph traversal is accelerated by overlapping the standard accesses of the original algorithm

with several other accesses that would normally be scheduled for later. Thus, a larger subgraph is

traversed than the original algorithm without altering its key properties.

Parallelizing Essentials.When parallelizing graph traversal algorithms, we need to guarantee the

correctness and the efficiency of the parallel execution. To achieve this, we use result aggregation,
synchronization, and communication mechanisms. In algorithms like PageRank, where the goal is

to calculate rankings, the individual results obtained from different subgraphs or processing units

must be aggregated to calculate the final rankings. Algorithms like DFS require synchronization to

prevent race conditions and maintain the same vertex visiting order and, thus, the core guarantees

of the algorithm. Further, many algorithms need some form of communication between the threads

working on subgraphs (signaling or message passing) to indicate convergence. Minimizing such

communication and synchronization overhead is a key challenge to avoid bottlenecks.
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4 CONCURRENT GRAPH ALGORITHMS
The core idea of our approach is to implement parallel graph algorithms that take advantage

of concurrency at the storage level. Our system, CAVE, identifies and parallelizes independent

I/Os, similar to how out-of-order processors parallelize load and store commands that are not

dependent on each other. This enables parallel graph data processing, allowing multiple nodes

to be accessed simultaneously, thus significantly reducing the number of iterations required. We

carefully tune CAVE to employ the optimal concurrency [37] for the underlying storage devices to

guarantee maximum benefit. To do this, we issue in parallel as many independent I/O operations as
the storage device supports without hurting latency. As a result, graph algorithms in CAVE have
faster convergence and more efficient data accesses. Overall, the work presented in this paper

contributes to the system-level understanding of how to build efficient graph processing systems

that maximize the utilization of the underlying SSD. To demonstrate the benefits of our approach,

we parallelize five of the most common graph traversal algorithms: BFS, WCC, PageRank, Random

Walk, and DFS. In this section, we first provide a quick overview of the physical data layout CAVE
and then discuss the details of the parallel versions of these algorithms.

4.1 CAVE Physical Data Layout
CAVE uses a memory-mapped binary file format, with three main parts: the metadata block, the

vertex block, and the edge block – right part of Figure 4. They are stored using 4KB aligned blocks

to support direct reading and writing from/to the SSDs. All blocks are cached in memory by a cache

pool described in detail in Section 5.

Metadata Block. The metadata block serves as a repository for essential graph information such

as the number of vertices, the total number of blocks, edge blocks, and vertex blocks, each of which

is stored as a 32-bit integer. The remaining space is reserved for future utilization, allowing for

additional usage-specific information to be incorporated when necessary.

Vertex Block. Each vertex block, sized at 4KB, stores information about up to 512 vertices. Within

each vertex, 8 bytes are allocated, encompassing two 32-bit unsigned integers:𝑑𝑒𝑔𝑟𝑒𝑒 , 𝑒𝑏_𝑎𝑑𝑑𝑟 (edge

block index and offset). The low 10-bit of 𝑒𝑏_𝑎𝑑𝑑𝑟 represents the offset 𝑒𝑏_𝑜 𝑓 𝑓 𝑠𝑒𝑡 inside of an edge

block, which just fits its capacity of 1024. The high 22-bit states the index of the edge block 𝑒𝑏_𝑖𝑑𝑥 .

The reading process can start by calculating the appropriate address ((𝑒𝑏_𝑖𝑑𝑥 · 4KB) + 𝑒𝑏_𝑜 𝑓 𝑓 𝑠𝑒𝑡).
Edge Block. To optimize storage and retrieval, we utilize a compact representation of edges. Each

edge is represented by a 4-byte integer denoting the index of the ending vertex. Hence, each edge

block can store up to 1024 edges (adding up to 4KB). The edges of vertices with a degree less
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than 1024 are contained within a single edge block (note that in many datasets, most nodes have

indeed a degree of less than 1024). This ensures efficient single read I/O access, while the starting

index inside the block (𝑒𝑏_𝑜 𝑓 𝑓 𝑠𝑒𝑡 ) can vary. However, vertices with a degree over 1024 will occupy

multiple edge blocks. In this case, the first block always has an 𝑒𝑏_𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 0 to simplify the

packing and subsequent reading process. The number of edge blocks per vertex is given by its

degree divided by 1024.

Bin-Packing Edges. Previous practices often stored all edges in a single extensive list, resulting

in inefficient I/O operations when accessing edges of small vertices spanning multiple blocks. To

mitigate this issue and optimize I/O and cache utilization, we approached it as a bin-packing problem.

Edges of small vertices are stored within a single container (block), while larger vertices span

multiple consecutive blocks. We employ an offline first-fit strategy, determining the appropriate

block to insert new vertex neighbors and ensuring efficient packing and retrieval of edge data.

Handling Updates.While CAVE currently does not support graph updates, we consider this as

part of our future work. Currently, we have a very compact representation of vertex and edges.

To handle updates on vertex/edge values (e.g., edge weights, vertex payloads), we need to modify

our file architecture to accommodate these values. For instance, for each edge, we store a vertex

ID using 4 bytes, which would need to be increased to account for additional edge information

like weights. To exploit the write concurrency of the underlying device, updates can be batched

in a memory buffer and applied to the corresponding blocks concurrently (using the appropriate

degree of concurrency when writing). Further, this style of updating (and deleting) can use storage-

resident update components similar to the log-structured merge (LSM) design [35, 46]. In this

case, updates (and deletes) will be buffered in memory and later organized on disk before being

eventually merged with the base data [6]. That way, the update mechanism can exploit both the

good sequential performance and, when merging with the based data, the device concurrency.

4.2 Building Blocks for Parallelizing

ProcessQueue function. In the context of BFS, WCC, PR, and RW algorithms, the parallelization

process is structured as an iterative procedure. Each iteration involves processing a list of vertices

(known as the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ), accessing the neighbors of each vertex, updating vertex values, and

determining which vertices should be visited in the next iteration, which are stored in the 𝑛𝑒𝑥𝑡

queue. This iterative process can be naturally parallelized by having multiple threads working

on individual vertices of the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 (intra-subgraph parallelization). We achieve this using a

𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒 function, which takes the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , a user-defined 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 function and the device’s

read concurrency 𝑘𝑟 as parameters. The 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 function specifies the actions the algorithm should

perform for each vertex and its neighbors. The 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒 function parallelizes at the vertex

level based on the 𝑘𝑟 value where each thread is responsible for processing a vertex and executes

a 𝑔𝑒𝑡𝐸𝑑𝑔𝑒 operation to retrieve the edge block from the cache pool. Since each edge block stores

neighbors of multiple vertices, it is possible that an edge block swapped out from the cache will

need to be read again from the disk, especially when the cache size is limited.

ProcessQueueBlock function. To avoid multiple accesses of the same edge blocks, we provide a

new variation that processes data at the granularity of edge blocks to benefit from caching. Initially,

all edge blocks associated with vertices in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 are found. Next, each thread is assigned to

work on one of the edge blocks. That block, in turn, may contain (i) the edges of a single vertex

where the execution will be the same as before, or (ii) the edges of multiple vertices where the

processing of those vertices will now be completed with a single I/O. By simultaneously processing

all vertices connected to a specific block, the approach ensures that each edge block is only read

once in each iteration. While this strategy involves some overhead in terms of preprocessing the
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Algorithm 1: Parallelization Building Blocks

1: function ProcessQueue(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , Func 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑘𝑟 )

2: 𝑛𝑒𝑥𝑡 ← ∅
3: // Process vertices in parallel with max 𝑘𝑟 threads
4: for 𝑣1 in 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 do
5: // Read neighbors from the cache pool
6: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← GetEdges(𝑣1)
7: // Process 𝑣1 with its neighbors, get 𝑛𝑒𝑥𝑡𝑣 queue
8: 𝑛𝑒𝑥𝑡𝑣 ← Process(𝑣1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
9: // Merge 𝑛𝑒𝑥𝑡𝑣 to 𝑛𝑒𝑥𝑡
10: 𝑚𝑡𝑥.lock()
11: 𝑛𝑒𝑥𝑡 .insert(𝑛𝑒𝑥𝑡𝑣)
12: 𝑚𝑡𝑥.unlock()
13: end for
14: return 𝑛𝑒𝑥𝑡
15: end function
16:

17: function ProcessQueueBlock(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , Func 𝑃𝑟𝑜𝑐𝑒𝑠𝑠 , 𝑘𝑟 )

18: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑒𝑡 ← HashSet()
19: for 𝑣1 in 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 do
20: 𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥 ← GetBlockIdx(𝑣1)
21: 𝑏𝑙𝑜𝑐𝑘_𝑠𝑒𝑡 .Insert(𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥)
22: 𝑏𝑙𝑜𝑐𝑘 [𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥] .Insert(𝑣1)
23: end for
24: // 𝑛𝑒𝑥𝑡 queue of whole 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟
25: 𝑛𝑒𝑥𝑡 ← ∅
26: // Process blocks in parallel with max 𝑘𝑟 threads
27: for 𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥 in 𝑏𝑙𝑜𝑐𝑘_𝑠𝑒𝑡 do
28: // 𝑛𝑒𝑥𝑡 queue of this block
29: 𝑛𝑒𝑥𝑡𝑏 ← ∅
30: 𝑏𝑙𝑜𝑐𝑘_𝑑𝑎𝑡𝑎 ← GetBlock(𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥)
31: // For each 𝑣1 associated with this edge block
32: for 𝑣1 in 𝑏𝑙𝑜𝑐𝑘 [𝑏𝑙𝑜𝑐𝑘_𝑖𝑑𝑥] do
33: // Get 𝑣1 neighbors from this block locally
34: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← ReadFromBlock(𝑏𝑙𝑜𝑐𝑘_𝑑𝑎𝑡𝑎, 𝑣1)
35: 𝑛𝑒𝑥𝑡𝑣 ← Process(𝑣1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
36: // Merge 𝑛𝑒𝑥𝑡𝑣 in 𝑛𝑒𝑥𝑡𝑏
37: 𝑛𝑒𝑥𝑡𝑏 .insert(𝑛𝑒𝑥𝑡𝑣)
38: end for
39: 𝑚𝑡𝑥.lock()
40: 𝑛𝑒𝑥𝑡 .Insert(𝑛𝑒𝑥𝑡𝑏)
41: 𝑚𝑡𝑥.unlock()
42: end for
43: return 𝑛𝑒𝑥𝑡
44: end function
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𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , it offers the advantage of being minimally impacted by the size of the cache. Further,

the edge block retrieval is performed concurrently, which contributes to its superior runtime

performance. The two building-block algorithms are outlined in Algorithm 1.

Algorithm 2: Parallel Breadth-first Search

1: function BFSprocess(𝑣1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

2: 𝑛𝑒𝑥𝑡𝑣 ← ∅
3: for 𝑣2 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
4: if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣2].CAS(False, True) then
5: // Add 𝑣2 to the next queue of 𝑣1
6: 𝑛𝑒𝑥𝑡𝑣 .insert(𝑣2)

7: end if
8: end for
9: return 𝑛𝑒𝑥𝑡𝑣
10: end function
11:

12: function PBFS(𝑣𝑠 , 𝑘𝑟 )

13: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← {𝑣𝑠 }
14: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0

15: while 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 .size > 0 do
16: 𝑛𝑒𝑥𝑡 ← ProcessQueue(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟, 𝐵𝐹𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑘𝑟 )
17: // Or call ProcessQueueBlock()
18: 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑐𝑜𝑢𝑛𝑡 + 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 .size
19: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 𝑛𝑒𝑥𝑡

20: end while
21: return 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠_𝑐𝑜𝑢𝑛𝑡
22: end function

4.3 Parallel Breadth-First Search
We develop a parallel BFS (PBFS for short) algorithm using two queues: the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue, which

contains the indices of vertices in the current level, and the 𝑛𝑒𝑥𝑡 queue, which stores the indices of

the neighbors of vertices in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue, which correspond to the vertices in the next level.

To leverage parallelism, each vertex in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue is assigned to a separate thread so that

multiple I/Os can be issued in parallel as shown in Figure 1(A). The complete algorithm is listed

in Alg. 2. For each vertex in 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 , as 𝐵𝐹𝑆𝑝𝑟𝑜𝑐𝑒𝑠𝑠 defines, 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒 will assign threads to

vertices. Each thread accesses the assigned vertex, retrieves the indices of its neighbors, checks and

flags the index of every neighbor as 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , inserts it to 𝑛𝑒𝑥𝑡𝑣 queue of this vertex, and merges

𝑛𝑒𝑥𝑡𝑣 of all vertices to the final 𝑛𝑒𝑥𝑡 protected by a global lock𝑚𝑡𝑥 to prevent data races and ensure

thread safety. The PBFS level of concurrency is controlled by the number of threads, which we tune

according to the optimal concurrency of the SSD. Once all the vertices in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue have

been processed, the contents of the 𝑛𝑒𝑥𝑡 queue are copied back to the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue, and the 𝑛𝑒𝑥𝑡

queue is cleared. This process is repeated until the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue becomes empty, signifying the

completion of the BFS traversal. We also developed a blocked variant of the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 processing

that uses the ProcessQueueBlock function. As discussed in §4.2, this approach discovers the edge

blocks of the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 vertices and allocates threads to edge blocks, parallelizing at the edge block

level while ensuring that each edge block is read only once during an iteration. This results in two
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Algorithm 3: Parallel Weakly Connected Component

1: function PWCC(𝑘𝑟 )

2: 𝑤𝑐𝑐_𝑐𝑜𝑢𝑛𝑡 ← 0

3: for 𝑖 ← 0 to 𝑁 − 1 do
4: // If not flagged
5: if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑖] = 𝐹𝑎𝑙𝑠𝑒 then
6: // Call BFS to flag all vertices in this WCC
7: PBFS(𝑖, 𝑘𝑟 )

8: 𝑤𝑐𝑐_𝑐𝑜𝑢𝑛𝑡 ← 𝑤𝑐𝑐_𝑐𝑜𝑢𝑛𝑡 + 1
9: end if
10: end for
11: return𝑤𝑐𝑐_𝑐𝑜𝑢𝑛𝑡
12: end function

benefits: (i) overall runtime improvement since edge blocks are not read multiple times, and (ii)

performance does not depend on cache pool size.

Algorithm 4: Parallel PageRank
1: function PRprocess(𝑣1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

2: 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1] ← 0

3: for 𝑣2 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
4: // Sum up last 𝑝𝑟 value of neighbors
5: 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1] ← 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1] + 𝑝𝑟 [𝑣2]
6: end for
7: // Add damping factor and divide by its degree
8: 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1] ← (1−𝑑 )+𝑑 ·𝑝𝑟𝑛𝑒𝑥𝑡 [𝑣1 ]

GetDegree(𝑣1 )
9: return ∅
10: end function
11:

12: function ParallelPageRank(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , 𝑘𝑟 )

13: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← {0, 1, . . . , 𝑁 − 1}
14: for 𝑖 ← 0 to 𝑁 − 1 do
15: 𝑝𝑟 [𝑖] ← 1

GetDegree(𝑖 )
16: 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑖] ← 𝑝𝑟 [𝑖]
17: end for
18: while iterations > 0 do
19: ProcessQueue(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟, 𝑃𝑅𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑘𝑟 )
20: 𝑝𝑟 ← 𝑝𝑟𝑛𝑒𝑥𝑡
21: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 − 1
22: end while
23: // Prepare return value
24: for 𝑖 ← 0 to 𝑁 − 1 do
25: 𝑝𝑟 [𝑖] ← 𝑝𝑟 [𝑖] · GetDegree(𝑖)
26: end for
27: return 𝑝𝑟
28: end function

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 125. Publication date: June 2024.



CAVE: Concurrency-Aware Graph Processing on SSDs 125:13

4.4 Parallel Weakly Connected Components
Computing WCC entails repeatedly searching from each vertex in the graph. Since we utilize the

adjacency list format, the most efficient approach to compute WCC involves repeatedly applying

the search algorithm starting from each vertex. During the search process, a visited vertex is marked

as true and subsequently avoided in subsequent iterations. We parallelize WCC by performing

multiple concurrent searches using PBFS due to its low overhead and well-established efficiency.

Algorithm 3 lists the algorithm for PWCC.

4.5 Parallel PageRank
We consider the topology approach for PR, which involves updating the PR values (𝑝𝑟 ) of all vertices

based on the values of their neighbors from the previous iteration (Algorithm 4). Since all vertices

need to be processed in each iteration, the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue always contains the entire list of vertices,

and there is no need for a 𝑛𝑒𝑥𝑡 queue. Initially, the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue includes all vertices, from vertex

0 to vertex 𝑁 − 1. In every iteration, the 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒 is called with the desired concurrency to

parallelize each step of the algorithm. For the blocked implementation, the 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑄𝑢𝑒𝑢𝑒𝐵𝑙𝑜𝑐𝑘

function is called. The initial PageRank values, 𝑝𝑟 [𝑖] and 𝑝𝑟𝑛𝑒𝑥𝑡 [𝑖], are assigned as the inverses of

the degrees of their respective vertices 𝑣𝑖 . It is worth noting that in the original PageRank algorithm,

the initial PageRank value for each vertex is set to 1, and its neighbors are assigned values of

𝑝𝑟 [𝑖 ]
𝑑𝑒𝑔[𝑖 ] . To optimize the computation, we perform this division in advance so it does not need to be

repeatedly calculated by the neighbors in each iteration.

Algorithm 5: Parallel Random Walk

1: function RWprocess(𝑣1, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

2: // Randomly selects a neighbor
3: 𝑣2 ← RandomSelect(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
4: return {𝑣2}
5: end function
6:

7: function ParallelRandomWalk(𝐾 , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 , 𝑘𝑟 )

8: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← ∅
9: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 0

10: for 𝑖 ← 0 to 𝐾 − 1 do
11: // Initialize starting vertices randomly
12: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 [𝑖] ← Random(0, 𝑁 − 1)
13: end for
14: while iterations > 0 do
15: 𝑛𝑒𝑥𝑡 ← ProcessQueue(𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟, 𝑅𝑊𝑝𝑟𝑜𝑐𝑒𝑠𝑠, 𝑘𝑟 )
16: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 𝑛𝑒𝑥𝑡

17: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 + 𝐾
18: 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 − 1
19: end while
20: return 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡
21: end function
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Algorithm 6: Parallel Pseudo Depth-first Search

1: function DFStask(𝑠𝑡𝑎𝑐𝑘, 𝑘𝑟 )

2: 𝑚𝑎𝑥_𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 ← 𝑘𝑟
3: while 𝑠𝑡𝑎𝑐𝑘.size() > 0 do
4: // Get and pop vertex at the stack top
5: 𝑣1 ← 𝑠𝑡𝑎𝑐𝑘.top()
6: 𝑠𝑡𝑎𝑐𝑘.pop()
7: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 + 1
8: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← GetEdges(𝑣1)
9: // Push all unvisited neighbors on stack
10: for 𝑣2 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do
11: if 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣2] .CAS(𝐹𝑎𝑙𝑠𝑒,𝑇𝑟𝑢𝑒) then
12: 𝑠𝑡𝑎𝑐𝑘.push(𝑣2)
13: end if
14: end for
15: // Check if the stack size is larger than threshold
16: while 𝑠𝑡𝑎𝑐𝑘.size() > 𝑚𝑎𝑥_𝑠𝑡𝑎𝑐𝑘_𝑠𝑖𝑧𝑒 do
17: if 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 < 𝑚𝑎𝑥_𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 then
18: 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 ← 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 + 1
19: // Split the stack and generate new task
20: 𝑛𝑒𝑤_𝑠𝑡𝑎𝑐𝑘, 𝑠𝑡𝑎𝑐𝑘 ← 𝑠𝑡𝑎𝑐𝑘.split()
21: 𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙 .push(𝐷𝐹𝑆𝑡𝑎𝑠𝑘, 𝑛𝑒𝑤_𝑠𝑡𝑎𝑐𝑘)
22: end if
23: end while
24: end while
25: 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 ← 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 − 1
26: end function
27:

28: function ParallelPseudoDFS(𝑣𝑠 , 𝑘𝑟 )

29: 𝑖𝑛𝑖𝑡_𝑠𝑡𝑎𝑐𝑘 ← {𝑣𝑠 }
30: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 [𝑣𝑠 ] ← 𝑇𝑟𝑢𝑒

31: 𝑠𝑡𝑎𝑐𝑘_𝑐𝑜𝑢𝑛𝑡 ← 1

32: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ← 0

33: // Push the initial task in the thread pool
34: 𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙 .push(𝐷𝐹𝑆𝑡𝑎𝑠𝑘 (𝑖𝑛𝑖𝑡_𝑠𝑡𝑎𝑐𝑘, 𝑘𝑟 ))
35: // Wait for all tasks to be finished
36: 𝑇ℎ𝑟𝑒𝑎𝑑𝑃𝑜𝑜𝑙 .WaitAll()
37: return 𝑣𝑖𝑠𝑖𝑡𝑒𝑑_𝑐𝑜𝑢𝑛𝑡
38: end function

4.6 Parallel RandomWalk
A single random walk is inherently a serial process and does not significantly benefit from data

concurrency. However, an effective strategy is to run multiple random walks concurrently, which

not only improves the precision of the results but also reduces the overall running time. Initially,

𝑘 vertices are randomly chosen from the whole vertex set and put in the 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 queue. In each
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Fig. 5. Example of the Parallel Pseudo DFS algorithm, demonstrating the progression of the stack over time.

iteration, the 𝑅𝑊𝑝𝑟𝑜𝑐𝑒𝑠𝑠 function randomly selects one of the neighbors for each vertex in 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟

as the successor in the next iteration. Algorithm 5 outlines the complete algorithm.

4.7 Parallel Pseudo Depth-First Search
While DFS is inherently a serialized algorithm, it is possible to enhance its performance by intro-

ducing parallelism through a technique known as unordered or pseudo-DFS [1]. We take inspiration

from this idea, and we incorporate a mechanism to monitor the size of the vertex stack for each

thread in our implementation (Algorithm 6). In the beginning, only one stack is active with the

starting vertex 𝑣𝑠 . We create a new 𝐷𝐹𝑆𝑡𝑎𝑠𝑘 with this stack in the thread pool. The 𝐷𝐹𝑆𝑡𝑎𝑠𝑘

continuously pops the stack, reads its neighbors, and pushes them into the stack as a normal DFS

does. After visiting the neighbors of a vertex, we check if the size of the stack exceeds a predefined

threshold. If it does, the stack is evenly divided into two smaller stacks, and one of these stacks is

assigned to a new thread for further exploration. Figure 5 illustrates the algorithm, with the right

side of the figure depicting the timeline status of the stack and its splitting. The graph is a snapshot

after time 4, where three threads are working in parallel to process the nodes. This approach allows

each thread to independently perform DFS on its allocated stack and split it when necessary. By

dynamically splitting the stacks in this manner, we achieve increased concurrency during the DFS

traversal. The choice of the threshold value determines the trade-off between concurrency and

thread creation overhead. Setting a smaller threshold allows for higher concurrency but may result

in a larger number of threads being created. On the other hand, a larger threshold reduces the

number of thread creations but may limit the degree of parallelism. The selection of an appropriate

threshold is crucial to strike a balance between concurrency and overhead.

5 IMPLEMENTATION
In this section, we present implementation details of CAVE.

Concurrent Cache Pool. To prevent redundant disk reads, CAVE has a cache pool that stores

recently used edge blocks in main memory and employs a clock eviction policy. This caching

mechanism becomes crucial because an edge block can contain information for multiple small

vertices. It is designed to support concurrent access from multiple threads and enables concurrent

I/O operations. As shown in the left-hand-side of Figure 4, it comprises three key components: a

global lock, a list of slots to store cached blocks, and a cached block map that tracks the mapping
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of cached block IDs to their positions in the list. Each cached slot within the pool has its lock and

a reference counter, while the global lock ensures that only one thread can manipulate the clock

hand and modify the map of cached blocks at a given time, preventing potential conflicts.

When a thread requires a specific block, it first checks the cached block map to determine if it

is already cached. If the block is found, the thread attempts to acquire the associated lock. Upon

successful acquisition, the thread retrieves the content from the block, releases both the global lock

and the block lock, and proceeds with the required operations. However, when the desired block is

not found in the cache, the thread searches for an available or evicted cached block by moving the

clock hand and decrementing the reference counter. Once a suitable cached block is identified, the

thread acquires the lock associated with the cache block, releases the global lock to allow other

threads to enter the cache pool, and initiates the process of loading the data block from the SSD.

With the global lock released, multiple threads can access the cache pool concurrently and initiate

their own I/O operations. After reading the block into the cache slot, the lock is released, making

the block available for subsequent use by other threads.

Note that the global lock is kept for a small duration: either until the cached page is accessed in

memory, or until a block for eviction/loading is identified and locked. After this, the global lock
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Fig. 6. Lock waiting time remains low as we in-
crease the number of concurrent I/Os.

is released and more threads can enter the cache pool.

Our experiments show that in I/O-bound scenarios

this short-lived critical section does not create a bot-

tleneck. Figure 6 shows the percentage of time that

is spent due to the global lock when running parallel

BFS in the Friendster dataset (details in §6). The total

lock waiting time remains low even with a high num-

ber of concurrent I/Os (e.g., around 1.3% of running

time for 64 concurrent I/Os), which shows that the

global lock does not create a bottleneck. With its con-

current access support and efficient management of

cached blocks, this caching mechanism significantly improves overall performance by minimizing

unnecessary storage accesses.

Codebase.We develop CAVE using C++17, and we leverage its native support for concurrent execu-

tion through the std::thread functionality. We incorporate the lightweight BS::thread_pool
library [49] that enhances portability and minimizes overhead. We also use the library parallel

hashmap [43] for the cache pool and ensure high accuracy in our runtime measurements with

chrono:: high_resolution_clock.

I/O Interface. To have full control over the device, we perform direct I/O using the O_DIRECT
flag so that data is transferred directly from the storage device to main memory, bypassing the

system cache. Our blocked file structure ensures that each access is aligned. This alignment is

further guaranteed by using the aligned_alloc() function whenever new blocks are allocated.

For concurrent I/O, we use pread and pwrite in conjunction with the BS::thread_pool library,
and we are compatible with both Linux and Windows (leveraging Overlapped I/O for the latter).

Data Files. We developed a custom parser to convert common graph data into our binary file

structure. It accepts standard adjacent list and edge list files in plain text format as input, parses

them, and converts them to our binary file structure.
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6 EVALUATION
We now present the experimental evaluation of CAVE for the five algorithms and compare it with

three storage-optimized graph processing systems GraphChi [24], Mosaic [30] and GridGraph [62]

for multiple datasets and devices.

Experimental Setup. Our experimental server has two Intel Xeon Gold 6230 CPUs, each with

20 cores with virtualization, and with 384GB of main memory. We experiment with three storage

devices: (i) an Optane SSD (375GB P4800X), (ii) an PCIe SSD (1TB PCIe P4510), and (iii) a SATA
SSD (240GB SATA S4610). For all three devices, we quantify the read concurrency (𝑘𝑟 ) through

careful benchmarking (6 for Optane SSD, 60 for PCIe SSD, and 25 for SATA SSD). Unless otherwise

mentioned, we match the number of concurrent I/Os to 𝑘𝑟 of the corresponding device for optimal

device utilization [37]. All devices were pre-conditioned by sequentially writing on the entire device

three times before running the experiments to ensure stable performance [12]. All experimental

results are averaged over three iterations, and the standard deviation was less than 1%.

Dataset.We use five datasets of different sizes and types from the Stanford Large Network Dataset

Collection [25] and LDBC Graph Analytics Benchmark [17]: Friendster Social Network (FS), Twitter

Social Network (TW), RoadNet Network of PA (RN), LiveJournal Social Network (LJ) and YouTube

Social Network (YT). FS is the largest dataset among these, with 65M nodes and 32GB size. We

also experiment with a synthetic dataset (SD) which is generated following the Barabási–Albert

model [4]. We configured the graph with 50 million vertices, each connected to 25 neighbors,

resulting in a total of 1.25 billion edges. Note that the RN graph is very sparse while the SD graph

is extremely dense. The key properties of the datasets are presented in Table 1.

Table 1. Dataset Description

Dataset Description #Nodes #Edges Diameter Size

FS Friendster Social Network 65M 1.8B 32 32 GB

TW Twitter Social Network 53M 2B 18 28 GB

RN RoadNet Network of PA 1M 1.5M 786 47 MB

LJ LiveJournal Social Network 5M 69M 16 1 GB

YT YouTube Social Network 1.1M 3M 20 39 MB

SD Synthetic data 50M 1.25B 6 20 GB

Preprocessing time and space requirement. Table 2 presents the preprocessing time and space

requirement of all systems for the FS and TW dataset. CAVE exhibits the lowest preprocessing

time and a reduced space requirement compared to GridGraph and Mosaic. For example, Mosaic’s

preprocessing time and space requirement is 9× and 2× that of CAVE for the FS dataset, respectively.
While GridGraph has a similar preprocessing time to CAVE, its space requirement is 6× that of CAVE.
This efficiency stems from CAVE’s compact file architecture and simple design, contrasting with the

more demanding preprocessing requirements of systems like GridGraph and Mosaic.

Table 2. Preprocessing Time and Space Comparison

System Preprocessing Time (s) Data File Size (GB)
Dataset: FS Dataset: TW Dataset: FS Dataset: TW

GraphChi 819 784 8.3 8.4

GridGraph 55 86 84 75

Mosaic 469 370 27 17

CAVE 52 49 14 13
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Fig. 7. (A) - (F) Performance graph for BFS on our PCIe SSD. In general, CAVE outperforms the baselines
GraphChi, GridGraph and Mosaic for all six datasets. Mosaic performs well for the sparse RN dataset.

6.1 Parallel BFS
CAVE Outperforms all baselines. In our first set of experiments, we evaluate the performance of

CAVE, GraphChi, GridGraph and Mosaic as we vary the cache size for all six datasets. Figures 7(A) -

(F) show the performance of the four systems for BFS when the underlying device is the PCIe SSD.

We compare using both the blocked and non-blocked variants of the frontier processing to see their

effect on different graphs. Since the datasets have different sizes, the cache value is set accordingly.

The results show that CAVE (both blocked and non-blocked) significantly outperforms GraphChi for

any cache ratio and any dataset. Notably, when the cache ratio is low, CAVE outperforms GraphChi

with a significantly higher speedup due to its better utilization of SSD concurrency.

For example, Figure 7(A) presents a performance comparison of the four systems for the Friendster

dataset (65M nodes, 32GB size). The figure shows that the non-blocked implementation benefits

from a higher cache size while the blocked implementation remains unaffected by the cache size.

This is due to the design techniques of the blocked implementation, which ensure that all edge

blocks are read only once during an iteration. We observe that GridGraph and Mosaic are faster

than GraphChi, but both CAVE implementations outperform them. Specifically, the blocked version

provides up to 3.4× and 5.6× speedup across various cache sizes against GridGraph and Mosaic,

respectively. The non-blocked variant delivers comparable performance to GridGraph for smaller

cache sizes and up to 5.1× speedup for larger cache sizes while always outperforming Mosaic by a

higher margin. CAVE’s blocked implementation outperforms the other three systems for the TW, LJ

and YT datasets as shown in Figures 7(B), (D) and (E).

CAVE is Well-suited for Sparse Graphs. In Figure 7(C), we see that in a sparse graph with an

unusually high diameter (RN dataset), CAVE performs better than both GraphChi and GridGraph,

but falls short of Mosaic. The non-blocked implementation of CAVE works well for this graph

because, in sparse graphs with lower average degrees where edge blocks can be associated with

multiple vertices, all required edge blocks for an iteration can fit in the cache pool without swapping.

With a sufficiently large cache, the non-blocked variant benefits from multiple threads working
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Fig. 8. (A, B) Performance graph for PBFS on Optane SSD and SATA SSD for the FS dataset. In both devices,
CAVE outperforms the baselines.

on cache data. The figure shows that the blocked implementation (black dashed line) outperforms

both GraphChi and GridGraph while the non-blocked implementation (black solid line) can be up

to 3.8× faster than the blocked one. While CAVE consistently outperforms Mosaic for other datasets,

Mosaic outperforms CAVE for this dataset. This is because Mosaic uses Hilbert-ordered tiles as its
graph representation, which allows to skip lots of empty/unneeded tiles for sparse graphs.

CAVE Provides Good Performance for Dense Graphs. Our synthetic SD dataset is an unusually

dense graph (the diameter is only 6 with 50M nodes and 1.25B edges). In Figure 7(F), we observe

that CAVE outperforms GraphChi and Mosaic. However, CAVE-blocked provides marginal benefit

compared to GridGraph for the SD dataset. The reason behind this is that GridGraph is designed

for dense graphs because its data structures and algorithms are optimized to efficiently handle the

high connectivity and dense nature of such graphs. GridGraph achieves this by utilizing a grid

structure to partition and manage the graph’s data. This approach allows it to optimize memory

usage and reduce access times for dense graph structures. However, CAVE still provides up to 25.4%

faster runtime compared to GridGraph for dense graphs.

Similar Performance Benefit Across All Devices.We now compare CAVE against Mosaic and

GridGraph in the Optane SSD and SATA SSD as we vary the cache size for BFS on the FS dataset.

Figures 8(A) and (B) show that the performance trend of these systems remains similar to the PCIe

SSD (Figure 7(A)). CAVE consistently outperforms both GridGraph and Mosaic. We also observe that

all systems running on the Optane SSD have an overall lower runtime than the PCIe SSD because

of Optane SSD’s faster read performance. In contrast, all systems running on the SATA SSD have a

higher runtime than the PCIe SSD due to the slowness of the SATA SSD.

CAVE Utilizes Concurrent I/Os. To analyze how the concurrent I/O affects the performance when

using various devices and datasets for the algorithms, we now vary the number of concurrent I/Os in
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Fig. 9. As we increase the number of con-
current I/Os, the benefit of PBFS increases
until the device gets saturated.

the blocked PBFS implementation. Since GraphChi, Grid-

Graph or Mosaic do not have the support of varying

concurrent I/Os, we do not include them in this experi-

ment. Figure 9 shows CAVE’s performance graph for the

FS dataset for all three of our devices. The figure shows

that as we increase the number of concurrent I/Os, PBFS’s

runtime decreases until the device becomes saturated. For

example, the SATA SSD gets saturated when using 16-32

concurrent I/Os (red line), which is consistent with the

device’s optimal concurrency value (25). However, if we

issue more concurrent I/Os, performance starts to degrade

because of the thread management overhead while the device is already saturated. The PCIe SSD
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Fig. 10. (A) CAVE performs well across all datasets for PBFS. Only Mosaic has a better performance for the
sparse RN dataset. (B) CPU usage of CAVE remains low showing that its benefit comes from better SSD
utilization. In other words, CAVE is I/O-bound, not CPU-bound.

curve is moved towards higher concurrency, as expected, and Optane SSD has a flatter curve, which

is consistent with prior work [37, 39].

CAVE Excels Across Different Datasets. Figure 10(A) shows CAVE’s speedup vs. GraphChi, Grid-

Graph, and Mosaic for all five datasets with cache size 3% of the dataset when running on the PCIe

SSD. The speedup of CAVE compared to GraphChi, GridGraph, and Mosaic ranges from 7 − 984×,
1.1 − 22×, and 0.1 − 5.2×, respectively. The unusually high speedup compared to GraphChi for the

RN dataset is attributed to the high diameter of the graph, where GraphChi needs an exception-

ally large number of iterations to achieve convergence. GridGraph also takes a high number of

iterations to converge which shows that CAVE can handle graphs with high diameters better than

both GraphChi and GridGraph. Although Mosaic performs the best for this sparse dataset, CAVE
outperforms Mosaic for the other datasets. For dense graphs like SD, GridGraph performs well

because of its grid structure to partition and manage dense graphs, however, CAVE still outperforms

GridGraph.

CAVE’s Benefits Come From Better Storage Utilization. Our profiling shows that CAVE is I/O-
bound (rather than CPU-bound), thus, the performance benefits come from better utilization of

the underlying storage devices. We capture a snapshot of the CPU load and disk bandwidth for

PBFS on the FS dataset in Figure 10(B). The figure shows that CAVE consistently maintains low

CPU utilization, generally below 5%, while the disk bandwidth remains around 100%. To calculate

bandwidth utilization, we divide the observed bandwidth by the maximum device bandwidth

achieved when using the same number of concurrent threads to issue I/Os.

6.2 Parallel WCC, PR & RW
6.2.1 Parallel Weakly Connected Components. Figures 11(A) and (B) present the performance graph

of two CAVE implementations, GraphChi, GridGraph, andMosaic, for weekly connected components

as we vary cache size running on the PCIe SSD device for FS and SD datasets. Similarly to the

PBFS experiments, the runtime of the blocked implementation does not depend on the cache size.

Figure 11(A) shows that CAVE’s blocked implementation achieves up to 44×, 2.2×, and 8.6× speedup
compared to GraphChi, GridGraph and Mosaic for the FS dataset. However, for the SD dataset

in Figure 11(B), GridGraph achieves 1.6× better runtime than CAVE. As mentioned earlier, this is

because the SD dataset is seriously dense which works in favor of GridGraph. For both datasets,

the non-blocked implementation has a higher runtime when the cache size is small. However, the

performance improves as the cache size increases, providing up to 2.5× and 1.2× speedup compared

to GridGraph for the FS and SD datasets for higher cache sizes.
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Fig. 11. (A) Blocked CAVE implementation outperforms other systems for WCC. (B) For dense graphs, Grid-
Graph works well for finding WCC.

FS RN YT LJ SD TW

100

101

102

103

Sp
ee

du
p

37

1.8

7.0

850

22
15

163

3.7
6.7

45

1.6

3.8

22

0.6

7.0

28

0.8

2.5

GraphChi
GridGraph
Mosaic

(A) CAVE’s speedup for PWCC

RN LJ YT
10 1

100

101

102

103

Ru
nt

im
e 

(s
)

1568
629

41 28

1.8

67
29

2.4
5.7

1.5

16

5.9

0.4
0.7

0.1

GraphChi
GraphX
GridGraph
Mosaic
CAVE

(B) Experiment with GraphX and other systems

Fig. 12. (A) CAVE performs well across all datasets for parallel weekly connected component (PWCC). (B)
CAVE outperforms single-node GraphX deployment.

Figure 12(A) presents a summary result of WCC for all five datasets on the PCIe SSD (3% cache

size for each dataset) which shows CAVE can achieve 22 − 850×, 0.6 − 22× and 2.5 − 15× speedup

compared to GraphChi, GridGraph and Mosaic respectively.

Comparison against GraphX. For completeness, we experiment with GraphX [15] that imple-

ments graph-parallel computation by distributing the computation in multiple compute nodes using

a different abstraction while requiring all data in memory. Since CAVE is a single-node out-of-core

system, a direct comparison against a distributed system should be taken with a grain of salt. We

experiment with a single-node deployment of GraphX on our server. Figure 12(B) presents the

runtime of GraphChi, GraphX, GridGraph, Mosaic, and CAVE for three datasets when running

WCC. We observe that CAVE can be up to two orders of magnitude faster than GraphX. Specifically,

CAVE achieves 350×, 19× and 59× speedup compared to GraphX for RN, LJ and YT datasets. It is

worth highlighting that CAVE achieves this superior performance despite GraphX having all data

in memory whereas CAVE only uses 3% memory of the dataset size. We recognize that GraphX is

designed for distributed environments, however, the potential costs associated with distributed

computing, both monetary expenses and the overheads of managing a distributed computing

infrastructure can be significant.

6.2.2 Parallel PageRank. Figures 13(A) - (C) illustrates the performance graph for YT, RN and LJ

datasets in the PCIe SSD. The blocked implementation of CAVE achieves lower runtime than both

GraphChi and GridGraph while achieving comparable performance to Mosaic. The figure shows

that CAVE achieves up to 98× and 3.3× speedup compared to GraphChi and GridGraph, respectively,

for the YT dataset. For the RN dataset shown in Figure 13(B), CAVE’s speedup is up to 170× (3.0×),
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Fig. 13. CAVE achieves lower runtime for PageRank, outperforming GraphChi and GridGraph.
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Fig. 14. (A) Concurrent I/Os improve performance for CAVE’s Random Walk till the device is saturated. (B)
CAVE’s PDFS can attain the maximum benefit of the device by exploiting its optimal concurrency.

while for the LJ dataset shown in Figure 13(C), CAVE achieves 8.2× (1.6×) speedup compared to

GraphChi (GridGraph). Similarly to our previous experiments, the performance of the non-blocked

implementation of CAVE improves as the cache size increases.

6.2.3 Parallel Random Walk. Figure 14(A) shows the representative performance graph of CAVE as

we vary the number of concurrent I/O for the LJ dataset across our three SSDs. The figure shows

that as we increase the number of concurrent I/Os the runtime decreases across all devices. As

expected, we also observe that the Optane SSD is faster than the PCIe SSD and the PCIe SSD is

faster than the SATA SSD. As the number of concurrent I/Os reaches the optimal concurrency of

each device, its runtime is minimized. However, beyond this point, the runtime starts to increase as

the device is saturated, and additional parallelism increases the thread management overhead.

6.3 Parallel pseudo DFS
We now focus on the impact of I/O concurrency on the PDFS algorithm. We generate a list of target

keys at random and run the algorithm to search each key multiple times in a depth-first manner.

Note that GraphChi, GridGraph, Mosaic, and most graph processing systems do not support DFS.

CAVE’s PDFS Exploits Device Concurrency. Figure 14(B) shows the performance of CAVE’s PDFS
as we vary the number of concurrent I/Os for the FS dataset across three devices. We observe that

for all devices, as we increase the number of concurrent I/Os, we have improved runtime until the

device performance plateaus. The figure shows that CAVE’s PDFS achieves 7.7×, 12.6×, 7.6× speedup
on the Optane SSD, SATA SSD, and PCIe SSD. We can also reason about each device’s concurrency

values from the graph as the runtime flattens when the device bandwidth is saturated. The figures
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also show that the fastest device (Optane SSD) has a much lower runtime than the slowest device

(SATA SSD). We observe a similar trend for other datasets. Overall, these experiments show that

CAVE can perform parallel pseudo-DFS while leveraging the underlying SSD concurrency.

7 RELATEDWORK
Many scalable graph processing systems like PowerLyra [10], PowerGraph [14], GraphX [15],

GBase [21], TurboGraph++ [23], Chaos [44], GraphLab [29], Pregel [31], Gemini [61], VC-Tune [63]

can process large graphs in a distributed manner which requires finding optimal partitioning, load-

balancing, fault tolerance, and managing the communication overhead. There are some single-node

shared-memory systems like Ligra [50], GraphMat [51], GRACE [55], Polymer [57], CGraph [58] that

process graphs in memory, and as expected, these systems are highly CPU bound. There are several

popular out-of-core processing systems including GraphChi [24], TurboGraph [16], Graphene [26],

Mosaic [30], X-Stream [45], GridGraph [62], Graspan [52], RStream [53], and FlashGraph [60].

These systems attempt to minimize random disk access while relying on sequential I/O, extensive

preprocessing, and optimal data placement. GraphSSD [33] is a graph-aware SSD framework where

the SSD controller is made aware of the graph data structures stored on the SSD. In contrast to these

approaches, our goal is to develop a general approach for parallelizing graph traversal algorithms

and develop the necessary infrastructure to exploit the underlying SSD concurrency.

8 CONCLUSION
Modern storage devices are characterized by their access concurrency, which needs to be carefully

harnessed to attain maximum benefit from the device. Graph processing systems are a natural

candidate for exploiting this property explicitly, yet, most systems do not consider it, resulting

in device underutilization. We propose CAVE, a concurrency-aware graph processing system de-

signed to leverage the underlying SSD concurrency. CAVE parallelizes independent I/Os through
its concurrent cache pool design, supported by its file structure, enabling the implementation of

storage-aware parallel graph algorithms. We develop the parallelized versions of five popular graph

algorithms in CAVE and compare their performance with three out-of-core systems, GraphChi,

GridGraph, and Mosaic, for multiple datasets and devices. Our evaluation reveals that CAVE achieves
up to three orders of magnitude higher speedup than GraphChi and up to one order of magnitude

higher speedup than GridGraph and Mosaic.
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