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Abstract: We introduce an approach to describe long-time dynamics of multiatomic molecules
by modulating the Free-Energy-Landscape (FEL) to capture dominant features of the energy-
barrier crossing dynamics of the All-Atom (AA) system. Notably, we establish that the self-
diffusion coefficient of Coarse-Grained (CG) systems can be accurately delineated by
enhancing conservative force fields with high-frequency perturbations. Using theoretical
arguments, we show that these perturbations do not alter the lower-order distribution functions,
thereby preserving the structure of the AA system after coarse-graining. We demonstrate the
utility of this approach using molecular dynamics simulations of simple molecules in bulk with
distinct dynamical characteristics with and without timescale separations as well as for
inhomogeneous systems where a fluid is confined in a slit-like nanochannel. Additionally, we
also apply our approach to more powerful many-body potentials optimized using Machine

Learning (ML).
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1. Introduction

Molecular Dynamics (MD) simulations have played a pivotal role as a “computational
microscope'” in probing, understanding and engineering of atomic systems including
biomolecules®®, bio-complexes’!°, 2D materials''™!* and other soft-matter systems'* !¢ of
utmost practical importance as well as elucidating important biophysical processes and new

phenomenon inaccessible to experimental measurements. With unprecedented developments

in hardware and the availability of unprecedented computational resources we find ourselves

17,18 1921

at the dawn of exascale computing where systems with millions'">'® and billions of atoms

and also timescales spanning micro to milliseconds>%

have been made possible with
distributed computing on specialized hardware. With the desire to breach even larger length
and timescales in simulations, more efficient approaches to molecular modelling, probing only
the essential and important aspects of a system have been investigated. One such pivotal
technique that has emerged is coarse-graining®*, offering a powerful approach to modeling
complex systems and studying their behavior across extended spatiotemporal scales. By
reducing the degrees of freedom of the fine-grained atomistic system one seeks to model larger
and more complex systems efficiently at reduced computational cost while also preserving the
essential/important characteristics of the original system. Some noteworthy examples of
largescale systems include coarse-grained modelling of SARS-CoV-2 virion®, the silica

polymerization reaction of million atoms over a microsecond timescale’® and modelling

transport in a nuclear pore involving around 200 million atoms?’.
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Various top-down and bottom-up coarse-graining methodologies have been devised,
considering the specific system and the targeted structural, thermodynamic or dynamic
properties under investigation. Thermodynamic quantities can typically be represented as

averages in the canonical ensemble and therefore can be derived as conditional averages of the



AA system like the Many-Body Potential of Mean Force (MB-PMF). The CG force-fields can

then be effectively parameterized to approximate the MB-PMF3*-7,

While such a parameterization can successfully replicate certain experimental observables and
thermodynamical quantities to some degree, the CG dynamics gets significantly altered and is
seen to be much faster than the fine-grained atomistic system in most cases. This effect has

been observed for a wide class of systems*®*

and is typically attributed to reduced friction
regulated by the “projected dynamics” of the removed degrees of freedom, as delineated in the
framework by Mori and Zwanzig (MZ)**. Moreover, the conservative high-dimensional
MB-PMF not being faithfully represented by an adequate basis set also leads to an incorrect
description of the different dynamical timescales due to changes in relative energy-barriers of
the Free-Energy-Landscape as discussed in the recent review*®. These two sources of errors are

non-trivially related and need to be considered in constructing a dynamically consistent model.

An interesting theoretical connection between the two has quite recently been discussed in

ref. 4748,

Various methods have been developed to realistically model the time evolution of coarse-
grained degrees of freedom, aiming to accurately describe the kinetics of fine-grained
systems*’. The most popular of these methods is the Generalized Langevin Equation (GLE),
which can be rigorously derived from the Mori-Zwanzig (MZ) formalism. This formalism
provides an exact model of the time evolution of coarse-grained degrees of freedom using
appropriate projection operators. However, parameterizing the GLE can be very challenging
due to the presence of non-conservative friction and random forces that depend on the projected
trajectory of the removed degrees of freedom, which are not easily simulated*. To address this,
various approximations have been proposed to make the problem more tractable, leading to the
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widespread use of the GLE in studying several coarse-grained systems Recent

advancements>’ >’ have made considerable progress in accurately obtaining memory kernels



in this context. Apart from GLE several other methods like Time Rescaling Approaches®®%?,

Probabilistic Methods employing Bayesian Theory®*, Variational Inference®

, and Markov-
State-Models®® 7, as well as Structure-Thermodynamic-Kinetic’! relations have also been
employed to model specific transport properties for a wide class of systems. Although some of
these methods are heuristic in nature, they have proven to be quite useful in circumventing

difficulties associated with GLE parameterization for complex systems and have provided a

more feasible route to approach the problem of modelling the dynamics of CG systems.

An intriguing yet underexplored approach involves modulating the Free-Energy-Landscape of
the coarse-grained system. This method aims to precisely capture the dominant barrier-crossing
dynamics observed in the fine-grained model, facilitating a realistic depiction of pertinent
transport properties of interest. This perspective is also supported by the Reaction Rate
Theory’?, which relates the free energy barrier to the residence time, and hence, to dynamics

of the system. The landscape paradigm has also been successfully used to study important
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phenomena like glass transition and protein-folding

A mathematically rigorous and particularly intriguing result was presented by Zwanzig®! to
understand protein dynamics, where the potential energy surfaces (PES) are found to be rough.
Zwanzig proposed a theoretical model of an atom diffusing along a one-dimensional surface,
consisting of a superposition of a slowly varying smooth part and a high-frequency rough part.
The findings revealed that the addition of roughness to the originally smooth PES caused a
significant slowdown in the liquid's diffusion compared to that over the smooth potential.
Zwanzig’s depiction of the impact of rough energy landscape features on the diffusive
dynamics of the system holds computational significance in the context of coarse graining. It
suggests the possibility of modulating diffusive dynamics by introducing high frequency
landscape features, thereby rendering coarse-grained dynamics more akin to their AA

counterparts.



We investigate this idea and demonstrate that the diffusive movement of atoms can be
effectively regulated by introducing high-frequency perturbation to the conservative force field
as proposed by Zwanzig, allowing us to accurately replicate self-diffusion coefficients
consistent with those observed in fine-grained systems. By enriching conservative single site
CG potentials, initially derived for matching low-order distributions such as the RDF, with
high-frequency potential roughness features, we restore important energy landscape features
that are otherwise smoothed out through coarse-graining. We showcase the methodology for
bulk systems with different multiatomic molecules with and without timescale separations.
Furthermore, we extend the approach to confined systems, such as fluids in slit-like
nanochannels, where diffusion coefficients exhibit variations along different directions. We
also demonstrate the utility of this method with flexible ML potentials which capture many-
body effects, particularly applying this approach to two widely used ML potentials: 1) Deep
Neural Network based “DeepCG” potential®? and 2) Graph Neural Network®*®> (GNN) (see

Appendix B for the supporting information).

The remaining sections of the paper are organized as follows: In Section 2.1, we introduce the
concept of the Free-Energy Landscape to examine how the characteristics of the energy
landscape influence the diffusive dynamics of an atomic system, and also provide a quantitative
perspective based on Zwanzig’s model for diffusion in rough potentials. In Section 2.2, we
present our methodology, which involves perturbing 1) pairwise potentials derived through
(RE) relative entropy minimization and 2) many-body potentials obtained using ML methods.
In Section 3 we present and discuss results for both bulk and confined systems featuring

different multiatomic molecules.



2. Methods

2.1. Free - Energy - Landscape Picture of CG Dynamics.

AA PES CG PES
CG Mapping
R = M(r)
§
High roughness Recovered roughness

Figure 1: Visualization of an idealized schematic of a rugged All-Atom landscape (top-left)
and a smoothened coarse-grained landscape (top-right). The sliced Potential Energy Surface at
the bottom provides a qualitative representation of high-frequency "rough" features, which can

be emulated by introducing perturbation to the CG potential.

Consider a schematic view of the All-Atom and smoothed CG energy landscape as shown in
Figure 1. The dynamics of a single atom can be thought of as a point traversing along the 3N-
dimensional Potential Energy Surface (PES) with a 3N-dimensional temperature-dependent
velocity, where N is the total number of atoms in the atomistic system. A “slice” of such a
landscape along the atom’s trajectory would reveal different topological features that

characterize dynamical processes associated with multiple timescales of the AA system.



However, coarse-graining, which reduces the system's degrees of freedom, results in a
smoothed energy landscape, as illustrated in the sliced CG landscape in Figure 1. This

8687 and discovering

perspective has also been widely used for studying protein folding
dominant pathways® that control the kinetics of the folding process. Another interesting
application based on this idea has been in describing the diffusive behavior near the glass

transition temperature’>7°,

While such a qualitative picture of the influence of potential landscape on dynamics is
intriguing, it fails to quantitatively describe the dependence of the rate of diffusion of atoms on
the roughness of the landscape. Zwanzig developed a simplified model to determine such a
relation by considering the motion of a single particle transversing a 1-D potential comprising
of a smooth potential Uy(x) on top of which a high frequency rough part U, (x) is added so
that the net potential is U(x) = Uy(x) + U;(x). Using the expression for the Mean First-

Passage Time, it was shown that the self-diffusion coefficient can be represented as,
— Do
Deff - (eBU1)(e—BU1) (1D

Here Dy, D.fr denote the diffusion coefficients under the potential Uy(x) and U(x)
respectively. (...) denotes the local averaging operation along a characteristic length of
roughness along the x-axis. For a perturbation of the form U; (x) = A * cos(wx), the expression
for the averages can be analytically computed in terms of the modified Bessel function

I,(A/kgT) so that,

A

(e#) = (e=P0) = 1o (1) @

At lower temperature, where A/kgT is large, the Bessel function can be approximated as an

exponential. Consequently, the effective coefficient can be re-expressed as,



2A
Dess = Dy * exp [— kB_T] 3)

This elegant formulation highlights the direct influence of the roughness on the diffusion
coefficient. This expression although simple, has certain limitations and many efforts have
been made to address these®*™2. Nevertheless, this concept remains highly useful from a
coarse-graining standpoint, because it suggests that by introducing sinusoidal perturbations in
a potential landscape and altering the barrier depths of these perturbations, one could
potentially control the diffusive dynamics of a system. Moreover, in Appendix A.l of the
supporting information we provide theoretical arguments along with numerical analysis to
show that such a high-frequency perturbation does not change the low order structure of the

liquid like the Radial Distribution Function (RDF).

2.2. Perturbing Conservative Potentials
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Figure 2: Workflow for parameterizing a coarse-grained potential to match the structure and
reproduce long-time diffusion of the full atomistic model. We sequentially perform the

optimization to first derive the interatomic CG potential ug o (red arrow) and then optimize



the perturbation &,(A4,w) which is added (blue arrow) to us s to match the diffusion
coefficient of the AA system. We start by defining the initial phase space configuration and
run an MD engine with either a classical-pairwise or a neural network potential. In the structure
optimization procedure, we compute physical quantities of interest required to compute
gradients of each loss-functions: S,.;, MSE (fy4, fcc) and, MSE (gaa, 9cc), based on the
methods used to derive ug ¢;. Once the gradients are computed, the potential parameters are
updated using different optimization procedures depending on the coarse-graining method and
the type of interatomic potential used. The converged potential ug s reproduces structure,
however, it shows accelerated dynamics. To correct dynamics, we perturb ug o with £,(4, w),
and carry out a grid search over parameters A and w to find the optimal parameters which

reproduce the self-diffusion coefficient of the corresponding AA system.

In this section, we present our approach to emulate the long-time dynamical behavior along
with the distribution function of the AA system as shown in Figure 2. Leveraging the
theoretical discussions outlined in Appendix A.1 of the supporting information, we establish
that the structure of the coarse-grained system remains unaltered, when subjected to high-
frequency perturbations in the interatomic potential. We introduce sinusoidal perturbations to

the conservative potential as follows:
Upert c6 = Us cc T & (4, ) 4)
where the perturbation can be chosen to be of the form,
& (A, w) = Asin(wr)/w (5)

Ug ¢¢ 1s the interaction potential obtained using methods such as RE minimization, that result
in a CG system with RDF matching that of the AA system. All the molecules are coarse-grained

into single beads. The unperturbed CG system is referred to as s-CG throughout the paper. &,



is the perturbation which is a function of interatomic distance r and parameters A and w. These
parameters are optimized to give the right dynamics without varying the structure. Initially, we
derive the structure-matching (s-CG) pairwise potentials using the RE minimization
framework, and subsequently, we expand upon this approach to include neural network
potentials. Our rationale for exploring various interaction potentials, primarily pairwise and
many-body potentials, is twofold. Firstly, the utilization of simple pairwise potentials allow a
more fundamental analysis of the impact of perturbations on the s-CG system. This analysis
would otherwise be challenging with neural network-based potentials due to their high-
dimensional representations. Secondly, by employing machine learning (ML)-based potentials,
we demonstrate the application of this methodology with force fields acquired through diverse
optimization procedures. Moreover, these potentials are well-suited for modeling different
systems targeting various static properties, such as angular distributions, which cannot be easily

replicated using a simple pairwise basis.
2.3.a. Perturbations to Relative Entropy Optimized Pairwise Potentials

We employ the perturbation strategy to the s-CG interatomic potentials using the RE

minimization approach® 37> For a canonical ensemble it can be defined as follows,
Srel = BUcc = Uan)an — B(Acc = Aan) + (Smap ), (6)

Where f = 1/k,T and kj, is the Boltzmann constant. Ucg/aa and Acg/aa are the potential
energies and configurational part of Helmholtz free energy respectively, and (Smap )AAis the

entropy of mapping. Numerically minimizing S;e; maximizes the overlap between the CG and
AA ensemble, and thus yields CG potentials that accurately reproduce the structure of the fine-
grained atomistic system. By introducing high-frequency perturbations to the RE minimized
potentials, we show that the faster diffusion of the s-CG model can be corrected, and the long-

time diffusion behavior of the AA system can be captured without disturbing the structure



obtained by the RE minimization procedure. To understand the effect of perturbations defined
in Equation (5) on the diffusion behavior, we carry out an extensive grid search covering
different values of A and w. By varying the two perturbation parameters, we tune the degree
of “roughness” that is added to the s-CG landscape, where the optimum values better capture
the FEL characteristics that get smoothed out during coarse-graining. The grid parameters are

chosen from the following table:

Table 1. Range of values of Amplitude and Frequency parameters.

Amin — Amax Wiin — Wmax AA Aw
(kcal/mol/A) | A™D) (kcal/mol/A) | (A71)
H20 0-8 0-500 0.2 10
CO2 0-10 0-400 0.2 10
CHy4 0-2 0-500 0.1 10

We apply our methodology to two distinct types of systems: liquids in bulk and confinement.
For bulk systems, we consider a cube of side 4 nm with periodic boundary condition and
examine three multiatomic molecules at 300K: SPC/F*® water (H,0), carbon dioxide (CO»),
and methane (CH4). For confinement, we focus on SPC/F water confined within graphene walls
of size 2.5 nm by 2.5 nm and separated by 8 nm width. Force fields for bonded (bonds and
angles) and non-bonded interactions are obtained from the GROMOS force-field available in
the ATB Repository®’. The MD simulations were performed in the LAMMPS package in the
NVT ensemble with a timestep of 1 fs. The temperature was maintained using the Nosé—
Hoover thermostat’. A cutoff of 1.2 nm was used for short range van der Waals and
electrostatic interactions. The long-range electrostatic interactions were modelled using the

particle mesh Ewald algorithm with an accuracy value of 10™*. These molecules are selected



based on their distinct dynamical characteristics. Previous studies have shown”!'%° that water
lacks timescale separation, whereas there is a clear separation between the evolution of coarse-
grained degrees of freedom and removed degrees of freedom for CO». Specifically, in the case
of H>O, the Velocity Autocorrelation Function (VACF) and Random-Force Autocorrelation
Function (RACF) decay at a similar rate, whereas for CO», the VACF decays much faster than
the RACF. Systems, with and without timescale separations have traditionally been presented
in studies assessing the validity of various approximations to the GLE. For instance, the
Markovian assumption invoked to simplify the terms in GLE is known to work well for systems
with timescale separation and give discrepancies otherwise!?’192, Therefore, we demonstrate
our approach towards SPC/F water, where a clear timescale separation doesn’t exist and show

that the long-term dynamical properties can be reproduced accurately.
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Figure 3: Stochastic force distribution on the Center of Mass for AA (a, ¢) and s-CG (b, d)
system for H>O (a, b) and CH4 (¢, d). The black line is the mean-force, and the red error bars

indicate the force variance at a radial distance.



The qualitative evidence of the difference in energy landscape between the AA and s-CG
landscapes can also be seen by observing the distribution of the force acting on the Center of
Mass of the AA molecules and the single bead CG atoms as shown in Figure 3a-d. A similar
force distribution-based analysis has been previously done by ref. ' to add hydrodynamic
interactions to the CG model. It can clearly be observed that for water there is a significant
reduction in the stochasticity of the force in the CG system compared to the AA system after
the coarse-graining procedure. The AA model for SPC/F water shows significant force
fluctuations due to a more rugged FEL along which the water molecules travel. In the case of
CHa, the difference in the distribution of stochastic force is much less compared to SPC/F
water. We attribute this to the geometry of the CH4 molecule being spherically symmetric, and
this symmetry is retained even after the coarse-graining process. Similar observations have
been recently made in ref.'", where the influence of “geometric roughness” has been studied
on the diffusion behavior of the fine-grained system. Since the AA and s-CG landscape show
similar characteristic features for CH4, we show that the amount of perturbation needed to

correct for the dynamics in s-CG system is relatively much smaller than for CO> and H>O.
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Figure 4: Diffusion coefficient loss manifolds (left) and optimum parameters (right) for HO

(a, b), CO2 (c, d), and CH4 (e, 1), that give the smallest error in diffusion coefficient.

Figure 4a-f illustrates the diffusion coefficient error manifold and optimal parameters

Dcg—Daa
AA

(Y err = ) for the three multiatomic molecules. Here Dy, and D.; are the self-

diffusion coefficients computed for the AA and the perturbed CG system using the Einstein
relation. The optimum parameters plotted on the right in Figure 4 give errors of less than 1%

for H,O, CO,, and 0.1% for CHas. The loss manifolds describe the combined effect of the



amplitude and frequency of perturbation on the long-time diffusion of the resulting perturbed
CG model. Moreover, the error manifolds for the three molecules are seen to be very different,

indicating differences in their dominant FEL barriers that influence the long-time diffusion.

Next, we implement the methodology for SPC/F water confined in a slit-like graphene
nanochannel of 8§ nm width. The water molecules inside the nanochannel interact with both the
neighboring water molecules, as well as the walls. Close to the wall, the effect of wall-fluid
interactions is dominant compared to the fluid-fluid interactions and the value of the first peak
in density is almost entirely determined by the wall-fluid potential'®. As a molecule moves
away from the wall the fluid-fluid forces start dominating, and the structure starts becoming
more homogeneous. Such confinement effects cause interesting features not only in the
structure but also in the transport properties'*. Particularly, the diffusion properties along the
longitudinal and transverse directions happen to be significantly different, where the self-
diffusion coefficient along the unconstrained direction is seen to be higher than the constrained

direction!?’

. Unlike bulk, the forces on the water molecule can be decomposed into 2 parts,
wall-fluid and fluid-fluid. Figure 5a-b shows the total and wall-fluid force distribution along
the width of the nanochannel in the AA confined water system. While the total force shows
considerable force variation, the wall-fluid force component shows a very small variance along
the width of the channel. This is due to the specific single site interaction potential of SPC/F
water with the carbon atoms of the wall. Therefore, for this system the high-frequency
perturbations are added only to the fluid-fluid component of the s-CG interaction potential. The
wall-fluid component, which is important for obtaining the correct density in the channel,
remains unperturbed. Let us ¢ = u; oq + uff ¢ is the total interaction potential and
uF¢ o6, uFFs c¢ the corresponding wall-fluid and fluid-fluid components that are

simultaneously optimized in the RE minimization framework as done in Ref >>. We then perturb

the fluid-fluid potential without changing the wall-fluid potential so that u"* .., cc =



ufF oc + efF, where €fF is the perturbation made to the RE optimized fluid-fluid interaction
potential.
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Figure S: a) Total force and b) wall-fluid component of total force distribution for All-Atom
water confined in a slit-like nanochannel. The black line is the mean-force, and the red error

bars indicate the force variance at the location.
2.3.b. Perturbations to Many-Body Neural Network Potentials
A) DeepCG derived potentials

We apply the perturbation strategy to DeePCG®* which is a popular neural-network based
many-body potential that can be trained on fine-grained atomistic models in a symmetry-
preserving manner. In the DeePCG framework, an atomic configuration is transformed into a

descriptor, D;, which is expressed as
D; = {Dy, ., Dij, '--DilNeigh|};j € Neigh (7)

Here, D;;j conveys local atomic information of atom j observed from atom i: D;; =

{1/Rij,xij/Ri2j,yij/Ri2j,Zij/Rl-zj}. Neigh indicates the set of neighbors of atom i, within the
cutoff distance, 7¢yio5r. D; 1s then fed into four hidden layers that are fully connected layers

with the hyperbolic tangent activation function. The final layer is a fully connected layer with

linear  activation. This  feed  forward process can  be  written  as



U, =Wsy (Wzﬂl’ <W31/’ (Wzl/’(Wﬂ/’(Di))))) (8)

Here, W;, W,, W5, W,, and W5 are matrices having the size of |D| X 128,128 X 64,
64 %X 32,32 %X 16, and 16 X 1, where | D| refers to the size of the vectorized descriptor. The
DeePCG-predicted force, fq;(R;), is computed by taking the derivative of neural network

output with respect to position.

fee(R) = —=VUcq(R;) 9)

The loss function of DeepCG is mean-squared error between predicted CG force and AA

mean force, which can be written as
B
1 2
Lppce = EZ(fCG(Ri) - f(Ri)) (10)
i

where B, R;, fcc(R;), and f(R;) indicate minibatch, atomic configuration in CG space,
DeePCG-predicted force, and net force acting on a water molecule for a given atomic
configuration (R;). We use a minibatch size of four and ADAM!® optimizer with the initial

learning rate being 1e” and exponentially reducing down until 1.

After training the baseline DeePCG model, we conduct a comprehensive grid search, as
outlined in Section 2.3.a. As shown in Figure 6, the loss manifold for the DeepCG potential
happens to be qualitatively similar to the loss manifold of RE minimized pairwise potentials as
shown in Figure 4. However, we observe subtle differences in the spectrum of frequencies
which result in accurate diffusion behavior for both potentials. For example, the number of
frequencies corresponding to the same error limit of less than 1% happens to be more for the
DeepCG potential. Such differences, we believe, are indicative of the changes in relative FEL
barriers caused by using different basis representations to the actual MB-PMF. Apart from the

DeepCG potential, we also train a GNN potential to match the RDF directly using Adjoint-



state method®®. The details of constructing the GNN potential are presented in Appendix B of

the supporting information.
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Figure 6: Diffusion coefficient loss manifold (left) and optimum parameters (right)

corresponding to DeepCG potential for water.

3. Results

3.1. Structure and long-time dynamics of perturbed potentials.

We compare the structure and dynamics of the perturbed pairwise potentials optimized using
the methodology outlined in Section 2.3.a. Pairwise potentials optimized using RE accurately
reproduce the RDF for H,O, CO», and CH4, and further perturbing the s-CG potentials, we
reproduce the long-time diffusion coefficients of these CG systems. The parameters o =[100,
180, 120] A7 and A = [2.8, 3.8, 0.4] kcal-mol"’ A are used to perturb HO, CO,, and CHa4
respectively. The lowest frequencies which give accurate structure and dynamics are chosen
since lower timestep would be needed if the frequency of perturbation is too high. Figure 7a-b
shows the comparison between the RDF and MSD of the AA and CG systems. The high-
frequency perturbations added to the s-CG potentials hinder CG diffusion and bring it closer
to the AA diffusion. For both CHs and CO>, we see that the s-CG system is significantly

accelerated, while in the case of CH4 the speed-up is less. As explained in Section 2.3.a, this is



a result of the differences in the force stochasticity/distribution that a molecule experiences as
it traverses the PES. Consequently, the perturbation needed to correct the dynamics for CHy is

significantly smaller than that for HoO and CO..
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Figure 7: a) Radial Distribution Function and b) Normalized MSD for AA and CG systems

for HO, CO2 and CHa.

Next, we demonstrate the methodology for inhomogeneous systems, where the RE
minimization approach has previously been used to derive potentials for confined water’>. We
followed the same approach and obtained CG force fields to reproduce the density profile in
the confined channel. It is well known that the self-diffusion of water in confinement is
anisotropic and the self-diffusion coefficients are different for the transverse and longitudinal
direction. Figure 8 compares the density and MSD of the perturbed CG and the AA system

along the transverse and longitudinal directions obtained by perturbing the RE minimized



potentials with parameters, ® =200 A7and A = 4.9 kcal-mol”’ A”". By perturbing the force

field as mentioned in Section 2.3.a, the dynamics is seen to be closer to the AA system.
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Figure 8: a) Density variation, b) Longitudinal and Transverse MSD for AA and CG water in

confinement.

Next, we present the application of the methodology to a many-body potential derived for the
SPC/F water system used earlier. The results illustrated in Figure 9 indicate that, in addition to
accurately replicating the RDF, the DeepCG potential also captures the angular distribution
function (ADF). The ADF describes the probability of finding a particular angle between a
central atom and two neighboring withing a given cutoff radius, thereby providing insights into
angular structure between triplet of atoms. The many-body DeepCG potential allows for more
accurate modeling of the MB-PMF enabling the capture of higher-order correlations that are

often missed by pairwise potentials. By introducing high-frequency perturbations with



parameters o = 230 A and A = 4.0 kcal-mol'A™! to the DeepCG potential, we observe a
correction in the self-diffusion behavior of the s-CG system, bringing its dynamics closer to
that of the All-Atom system. Similar results are obtained for the GNN potential optimized using

Adjoint-state method, as shown in Figure S4 of the supporting information.
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Figure 9: a) Radial Distribution Function, b) Angular Distribution Function and ¢) Mean

Squared Displacement for AA and DeepCG systems.

4. Conclusion

In this study, we explored the idea of perturbing the Free-Energy-Landscape to capture
characteristic features of the fine-grained atomistic system, which are absent in the simplistic
CG force fields that primarily capture average statistical properties like the MB-PMF. The
investigation demonstrated that by perturbing structure-matching CG potentials, we could
reproduce the long-time diffusion behavior of the All-Atom system. We theoretically
established that the gradient of relative entropy between the perturbed CG and the AA system
remains unchanged for sufficiently high-frequency values, thereby ensuring local structure
invariance to such perturbations. The impact of these perturbation parameters in the CG system,
interacting via relative entropy-optimized pairwise potentials, was scrutinized through
molecular dynamics simulations employing an extensive grid search. This exploration unveiled

distinctive features of the energy landscapes of H2O, CO2, and CHg4 thereby allowing us to



optimize the perturbation parameters to match the RDF and self-diffusion coefficients for all
three molecules. Extending our methodology to inhomogeneous systems, we demonstrated the
ability of a perturbed CG system in replicating the density as well as the diffusion of water
molecules parallel and perpendicular to the nanochannel. While pairwise potentials aptly
predict key thermodynamic quantities for most atomic systems, they falter in modelling
situations dominated by multibody effects. Expanding our approach to more potent many-body
potentials, we showcased its compatibility with popular neural network potentials optimized
using different frameworks - specifically, DeepCG and a GNN Potential. The landscape
paradigm thus provides a reasonable approach for parameterizing coarse-grained systems, to

match long-time dynamics through the modeling of prevailing energy-barriers.
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