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Abstract: We introduce an approach to describe long-time dynamics of multiatomic molecules 

by modulating the Free-Energy-Landscape (FEL) to capture dominant features of the energy-

barrier crossing dynamics of the All-Atom (AA) system. Notably, we establish that the self-

diffusion coefficient of Coarse-Grained (CG) systems can be accurately delineated by 

enhancing conservative force fields with high-frequency perturbations. Using theoretical 

arguments, we show that these perturbations do not alter the lower-order distribution functions, 

thereby preserving the structure of the AA system after coarse-graining. We demonstrate the 

utility of this approach using molecular dynamics simulations of simple molecules in bulk with 

distinct dynamical characteristics with and without timescale separations as well as for 

inhomogeneous systems where a fluid is confined in a slit-like nanochannel. Additionally, we 

also apply our approach to more powerful many-body potentials optimized using Machine 

Learning (ML). 
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1. Introduction 

Molecular Dynamics (MD) simulations have played a pivotal role as a “computational 

microscope1” in probing, understanding and engineering of atomic systems including 

biomolecules2–6, bio-complexes7–10, 2D materials11–13 and other soft-matter systems14–16 of 

utmost practical importance as well as elucidating important biophysical processes and new 

phenomenon inaccessible to experimental measurements. With unprecedented developments 

in hardware and the availability of unprecedented computational resources we find ourselves 

at the dawn of exascale computing where systems with millions17,18 and billions19–21 of atoms 

and also timescales spanning micro to milliseconds22,23  have been made possible with 

distributed computing on specialized hardware. With the desire to breach even larger length 

and timescales in simulations, more efficient approaches to molecular modelling, probing only 

the essential and important aspects of a system have been investigated. One such pivotal 

technique that has emerged is coarse-graining24, offering a powerful approach to modeling 

complex systems and studying their behavior across extended spatiotemporal scales. By 

reducing the degrees of freedom of the fine-grained atomistic system one seeks to model larger 

and more complex systems efficiently at reduced computational cost while also preserving the 

essential/important characteristics of the original system. Some noteworthy examples of 

largescale systems include coarse-grained modelling of SARS-CoV-2 virion25, the silica 

polymerization reaction of million atoms over a microsecond timescale26 and modelling 

transport in a nuclear pore involving around 200 million atoms27. 

Various top-down24,28,29 and bottom-up30–33 coarse-graining methodologies have been devised, 

considering the specific system and the targeted structural, thermodynamic or dynamic 

properties under investigation. Thermodynamic quantities can typically be represented as 

averages in the canonical ensemble and therefore can be derived as conditional averages of the 



   
 

   
 

AA system like the Many-Body Potential of Mean Force (MB-PMF). The CG force-fields can 

then be effectively parameterized to approximate the MB-PMF30–37.  

While such a parameterization can successfully replicate certain experimental observables and 

thermodynamical quantities to some degree, the CG dynamics gets significantly altered and is 

seen to be much faster than the fine-grained atomistic system in most cases. This effect has 

been observed for a wide class of systems38–42 and is typically attributed to reduced friction 

regulated by the “projected dynamics” of the removed degrees of freedom, as delineated in the 

framework by Mori and Zwanzig (MZ)43–45. Moreover, the conservative high-dimensional 

MB-PMF not being faithfully represented by an adequate basis set also leads to an incorrect 

description of the different dynamical timescales due to changes in relative energy-barriers of 

the Free-Energy-Landscape as discussed in the recent review46. These two sources of errors are 

non-trivially related and need to be considered in constructing a dynamically consistent model. 

An interesting theoretical connection between the two has quite recently been discussed in 

ref.47,48.  

Various methods have been developed to realistically model the time evolution of coarse-

grained degrees of freedom, aiming to accurately describe the kinetics of fine-grained 

systems47. The most popular of these methods is the Generalized Langevin Equation (GLE), 

which can be rigorously derived from the Mori-Zwanzig (MZ) formalism. This formalism 

provides an exact model of the time evolution of coarse-grained degrees of freedom using 

appropriate projection operators. However, parameterizing the GLE can be very challenging 

due to the presence of non-conservative friction and random forces that depend on the projected 

trajectory of the removed degrees of freedom, which are not easily simulated49. To address this, 

various approximations have been proposed to make the problem more tractable, leading to the 

widespread use of the GLE in studying several coarse-grained systems50–56. Recent 

advancements57–59 have made considerable progress in accurately obtaining memory kernels 



   
 

   
 

in this context. Apart from GLE several other methods like Time Rescaling Approaches60–63, 

Probabilistic Methods employing Bayesian Theory64, Variational Inference65–67, and Markov-

State-Models68–70,  as well as Structure-Thermodynamic-Kinetic71 relations have also been 

employed to model specific transport properties for a wide class of systems. Although some of 

these methods are heuristic in nature, they have proven to be quite useful in circumventing 

difficulties associated with GLE parameterization for complex systems and have provided a 

more feasible route to approach the problem of modelling the dynamics of CG systems.  

An intriguing yet underexplored approach involves modulating the Free-Energy-Landscape of 

the coarse-grained system. This method aims to precisely capture the dominant barrier-crossing 

dynamics observed in the fine-grained model, facilitating a realistic depiction of pertinent 

transport properties of interest. This perspective is also supported by the Reaction Rate 

Theory72, which relates the free energy barrier to the residence time, and hence, to dynamics 

of the system. The landscape paradigm has also been successfully used to study important 

phenomena like glass transition73–78 and protein-folding79,80.  

A mathematically rigorous and particularly intriguing result was presented by Zwanzig81 to 

understand protein dynamics, where the potential energy surfaces (PES) are found to be rough. 

Zwanzig proposed a theoretical model of an atom diffusing along a one-dimensional surface, 

consisting of a superposition of a slowly varying smooth part and a high-frequency rough part. 

The findings revealed that the addition of roughness to the originally smooth PES caused a 

significant slowdown in the liquid's diffusion compared to that over the smooth potential. 

Zwanzig’s depiction of the impact of rough energy landscape features on the diffusive 

dynamics of the system holds computational significance in the context of coarse graining. It 

suggests the possibility of modulating diffusive dynamics by introducing high frequency 

landscape features, thereby rendering coarse-grained dynamics more akin to their AA 

counterparts.  



   
 

   
 

We investigate this idea and demonstrate that the diffusive movement of atoms can be 

effectively regulated by introducing high-frequency perturbation to the conservative force field 

as proposed by Zwanzig, allowing us to accurately replicate self-diffusion coefficients 

consistent with those observed in fine-grained systems. By enriching conservative single site 

CG potentials, initially derived for matching low-order distributions such as the RDF, with 

high-frequency potential roughness features, we restore important energy landscape features 

that are otherwise smoothed out through coarse-graining. We showcase the methodology for 

bulk systems with different multiatomic molecules with and without timescale separations. 

Furthermore, we extend the approach to confined systems, such as fluids in slit-like 

nanochannels, where diffusion coefficients exhibit variations along different directions. We 

also demonstrate the utility of this method with flexible ML potentials which capture many-

body effects, particularly applying this approach to two widely used ML potentials: 1) Deep 

Neural Network based “DeepCG” potential82 and 2) Graph Neural Network82–85 (GNN) (see 

Appendix B for the supporting information). 

The remaining sections of the paper are organized as follows: In Section 2.1, we introduce the 

concept of the Free-Energy Landscape to examine how the characteristics of the energy 

landscape influence the diffusive dynamics of an atomic system, and also provide a quantitative 

perspective based on Zwanzig’s model for diffusion in rough potentials. In Section 2.2, we 

present our methodology, which involves perturbing 1) pairwise potentials derived through 

(RE) relative entropy minimization and 2) many-body potentials obtained using ML methods. 

In Section 3 we present and discuss results for both bulk and confined systems featuring 

different multiatomic molecules. 

 

 



   
 

   
 

2. Methods  

 

2.1. Free - Energy - Landscape Picture of CG Dynamics. 

 

 

Figure 1: Visualization of an idealized schematic of a rugged All-Atom landscape (top-left) 

and a smoothened coarse-grained landscape (top-right). The sliced Potential Energy Surface at 

the bottom provides a qualitative representation of high-frequency "rough" features, which can 

be emulated by introducing perturbation to the CG potential. 

Consider a schematic view of the All-Atom and smoothed CG energy landscape as shown in 

Figure 1. The dynamics of a single atom can be thought of as a point traversing along the 3N-

dimensional Potential Energy Surface (PES) with a 3N-dimensional temperature-dependent 

velocity, where N is the total number of atoms in the atomistic system.  A “slice” of such a 

landscape along the atom’s trajectory would reveal different topological features that 

characterize dynamical processes associated with multiple timescales of the AA system.  



   
 

   
 

However, coarse-graining, which reduces the system's degrees of freedom, results in a 

smoothed energy landscape, as illustrated in the sliced CG landscape in Figure 1. This 

perspective has also been widely used for studying protein folding86,87 and discovering 

dominant pathways88 that control the kinetics of the folding process. Another interesting 

application based on this idea has been in describing the diffusive behavior near the glass 

transition temperature73-76.  

While such a qualitative picture of the influence of potential landscape on dynamics is 

intriguing, it fails to quantitatively describe the dependence of the rate of diffusion of atoms on 

the roughness of the landscape.  Zwanzig developed a simplified model to determine such a 

relation by considering the motion of a single particle transversing a 1-D potential comprising 

of a smooth potential 𝑈𝑈0(𝑥𝑥) on top of which a high frequency rough part 𝑈𝑈1(𝑥𝑥) is added so 

that the net potential is 𝑈𝑈(𝑥𝑥) = 𝑈𝑈0(𝑥𝑥) + 𝑈𝑈1(𝑥𝑥). Using the expression for the Mean First-

Passage Time, it was shown that the self-diffusion coefficient can be represented as, 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷0
�𝑒𝑒𝛽𝛽𝑈𝑈1��𝑒𝑒−𝛽𝛽𝑈𝑈1�

(1)   

Here 𝐷𝐷0, 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 denote the diffusion coefficients under the potential 𝑈𝑈0(𝑥𝑥) and 𝑈𝑈(𝑥𝑥) 

respectively. ⟨… ⟩ denotes the local averaging operation along a characteristic length of 

roughness along the 𝑥𝑥-axis. For a perturbation of the form 𝑈𝑈1(𝑥𝑥) = 𝐴𝐴 ∗ cos(𝜔𝜔𝜔𝜔), the expression 

for the averages can be analytically computed in terms of the modified Bessel function 

𝐼𝐼0(𝐴𝐴/𝑘𝑘B𝑇𝑇) so that,  

�𝑒𝑒𝛽𝛽𝑈𝑈1� = �𝑒𝑒−𝛽𝛽𝑈𝑈1� = 𝐼𝐼0 �
𝐴𝐴
𝑘𝑘B𝑇𝑇

� (2) 

At lower temperature, where 𝐴𝐴/𝑘𝑘B𝑇𝑇 is large, the Bessel function can be approximated as an 

exponential. Consequently, the effective coefficient can be re-expressed as, 



   
 

   
 

𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷0 ∗ exp �−
2𝐴𝐴
𝑘𝑘B𝑇𝑇

� (3) 

This elegant formulation highlights the direct influence of the roughness on the diffusion 

coefficient. This expression although simple, has certain limitations and many efforts have 

been made to address these89–92. Nevertheless, this concept remains highly useful from a 

coarse-graining standpoint, because it suggests that by introducing sinusoidal perturbations in 

a potential landscape and altering the barrier depths of these perturbations, one could 

potentially control the diffusive dynamics of a system. Moreover, in Appendix A.1 of the 

supporting information we provide theoretical arguments along with numerical analysis to 

show that such a high-frequency perturbation does not change the low order structure of the 

liquid like the Radial Distribution Function (RDF).  

2.2. Perturbing Conservative Potentials  

 

 

Figure 2: Workflow for parameterizing a coarse-grained potential to match the structure and 

reproduce long-time diffusion of the full atomistic model. We sequentially perform the 

optimization to first derive the interatomic CG potential 𝑢𝑢𝑠𝑠_𝐶𝐶𝐶𝐶  (red arrow) and then optimize 



   
 

   
 

the perturbation 𝜀𝜀𝑟𝑟(𝐴𝐴,𝜔𝜔) which is added (blue arrow) to 𝑢𝑢𝑠𝑠_𝐶𝐶𝐶𝐶 to match the diffusion 

coefficient of the AA system. We start by defining the initial phase space configuration and 

run an MD engine with either a classical-pairwise or a neural network potential. In the structure 

optimization procedure, we compute physical quantities of interest required to compute 

gradients of each loss-functions: 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟, 𝑀𝑀𝑀𝑀𝑀𝑀 (𝑓𝑓𝐴𝐴𝐴𝐴,𝑓𝑓𝐶𝐶𝐶𝐶) and, 𝑀𝑀𝑀𝑀𝑀𝑀 (𝑔𝑔𝐴𝐴𝐴𝐴,𝑔𝑔𝐶𝐶𝐶𝐶), based on the 

methods used to derive 𝑢𝑢𝑠𝑠_𝐶𝐶𝐶𝐶 . Once the gradients are computed, the potential parameters are 

updated using different optimization procedures depending on the coarse-graining method and 

the type of interatomic potential used. The converged potential 𝑢𝑢𝑠𝑠_𝐶𝐶𝐶𝐶  reproduces structure, 

however, it shows accelerated dynamics. To correct dynamics, we perturb 𝑢𝑢𝑠𝑠_𝐶𝐶𝐶𝐶  with 𝜀𝜀𝑟𝑟(𝐴𝐴,𝜔𝜔), 

and carry out a grid search over parameters 𝐴𝐴 and 𝜔𝜔 to find the optimal parameters which 

reproduce the self-diffusion coefficient of the corresponding AA system. 

In this section, we present our approach to emulate the long-time dynamical behavior along 

with the distribution function of the AA system as shown in Figure 2. Leveraging the 

theoretical discussions outlined in Appendix A.1 of the supporting information, we establish 

that the structure of the coarse-grained system remains unaltered, when subjected to high-

frequency perturbations in the interatomic potential. We introduce sinusoidal perturbations to 

the conservative potential as follows: 

𝑢𝑢𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝐶𝐶𝐶𝐶 = 𝑢𝑢𝑠𝑠_𝐶𝐶𝐶𝐶 + 𝜀𝜀𝑟𝑟(𝐴𝐴,𝜔𝜔) (4) 

where the perturbation can be chosen to be of the form, 

𝜀𝜀𝑟𝑟(𝐴𝐴,𝜔𝜔) = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔𝜔𝜔)/𝜔𝜔 (5) 

𝑢𝑢𝑠𝑠_𝐶𝐶𝐶𝐶  is the interaction potential obtained using methods such as RE minimization, that result 

in a CG system with RDF matching that of the AA system. All the molecules are coarse-grained 

into single beads. The unperturbed CG system is referred to as s-CG throughout the paper. 𝜀𝜀𝑟𝑟 



   
 

   
 

is the perturbation which is a function of interatomic distance 𝑟𝑟 and parameters 𝐴𝐴 and 𝜔𝜔. These 

parameters are optimized to give the right dynamics without varying the structure. Initially, we 

derive the structure-matching (s-CG) pairwise potentials using the RE minimization 

framework, and subsequently, we expand upon this approach to include neural network 

potentials. Our rationale for exploring various interaction potentials, primarily pairwise and 

many-body potentials, is twofold. Firstly, the utilization of simple pairwise potentials allow a 

more fundamental analysis of the impact of perturbations on the s-CG system. This analysis 

would otherwise be challenging with neural network-based potentials due to their high-

dimensional representations. Secondly, by employing machine learning (ML)-based potentials, 

we demonstrate the application of this methodology with force fields acquired through diverse 

optimization procedures. Moreover, these potentials are well-suited for modeling different 

systems targeting various static properties, such as angular distributions, which cannot be easily 

replicated using a simple pairwise basis. 

2.3.a.   Perturbations to Relative Entropy Optimized Pairwise Potentials 

We employ the perturbation strategy to the s-CG interatomic potentials using the RE 

minimization approach35–37,93–95. For a canonical ensemble it can be defined as follows, 

𝑆𝑆rel = 𝛽𝛽⟨𝑈𝑈CG − 𝑈𝑈AA⟩AA − 𝛽𝛽(𝐴𝐴CG − 𝐴𝐴AA) + �𝑆𝑆map �AA (6) 

Where 𝛽𝛽 = 1/𝑘𝑘𝑏𝑏𝑇𝑇 and 𝑘𝑘𝑏𝑏 is the Boltzmann constant. 𝑈𝑈CG/AA and 𝐴𝐴CG/AA are the potential 

energies and configurational part of Helmholtz free energy respectively, and �𝑆𝑆map �AAis the 

entropy of mapping. Numerically minimizing 𝑆𝑆rel maximizes the overlap between the CG and 

AA ensemble, and thus yields CG potentials that accurately reproduce the structure of the fine-

grained atomistic system. By introducing high-frequency perturbations to the RE minimized 

potentials, we show that the faster diffusion of the s-CG model can be corrected, and the long-

time diffusion behavior of the AA system can be captured without disturbing the structure 



   
 

   
 

obtained by the RE minimization procedure. To understand the effect of perturbations defined 

in Equation (5) on the diffusion behavior, we carry out an extensive grid search covering 

different values of 𝐴𝐴 and 𝜔𝜔. By varying the two perturbation parameters, we tune the degree 

of “roughness” that is added to the s-CG landscape, where the optimum values better capture 

the FEL characteristics that get smoothed out during coarse-graining. The grid parameters are 

chosen from the following table:  

Table 1. Range of values of Amplitude and Frequency parameters. 

                     𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎 − 𝑨𝑨𝒎𝒎𝒎𝒎𝒎𝒎  

       (kcal/mol/Å)       

𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎 − 𝝎𝝎𝒎𝒎𝒎𝒎𝒎𝒎 

(Å−𝟏𝟏) 

𝚫𝚫𝑨𝑨 

(kcal/mol/Å) 

𝚫𝚫𝝎𝝎 

(Å−𝟏𝟏) 

              

H2O 0 - 8 0 - 500 0.2 10 

CO2 0 - 10 0 - 400 0.2 10 

CH4 0 - 2 0 - 500 0.1 10 

 

We apply our methodology to two distinct types of systems: liquids in bulk and confinement. 

For bulk systems, we consider a cube of side 4 nm with periodic boundary condition and 

examine three multiatomic molecules at 300K: SPC/F96 water (H2O), carbon dioxide (CO2), 

and methane (CH4). For confinement, we focus on SPC/F water confined within graphene walls 

of size 2.5 nm by 2.5 nm and separated by 8 nm width. Force fields for bonded (bonds and 

angles) and non-bonded interactions are obtained from the GROMOS force-field available in 

the ATB Repository97. The MD simulations were performed in the LAMMPS package in the 

NVT ensemble with a timestep of 1 fs. The temperature was maintained using the Nosé–

Hoover thermostat98. A cutoff of 1.2 nm was used for short range van der Waals and 

electrostatic interactions. The long-range electrostatic interactions were modelled using the 

particle mesh Ewald algorithm with an accuracy value of 10-4. These molecules are selected 



   
 

   
 

based on their distinct dynamical characteristics. Previous studies have shown99,100 that water 

lacks timescale separation, whereas there is a clear separation between the evolution of coarse-

grained degrees of freedom and removed degrees of freedom for CO2. Specifically, in the case 

of H2O, the Velocity Autocorrelation Function (VACF) and Random-Force Autocorrelation 

Function (RACF) decay at a similar rate, whereas for CO2, the VACF decays much faster than 

the RACF. Systems, with and without timescale separations have traditionally been presented 

in studies assessing the validity of various approximations to the GLE. For instance, the 

Markovian assumption invoked to simplify the terms in GLE is known to work well for systems 

with timescale separation and give discrepancies otherwise101,102. Therefore, we demonstrate 

our approach towards SPC/F water, where a clear timescale separation doesn’t exist and show 

that the long-term dynamical properties can be reproduced accurately.  

  

Figure 3: Stochastic force distribution on the Center of Mass for AA (a, c) and s-CG (b, d) 

system for H2O (a, b) and CH4 (c, d). The black line is the mean-force, and the red error bars 

indicate the force variance at a radial distance. 



   
 

   
 

The qualitative evidence of the difference in energy landscape between the AA and s-CG 

landscapes can also be seen by observing the distribution of the force acting on the Center of 

Mass of the AA molecules and the single bead CG atoms as shown in Figure 3a-d. A similar 

force distribution-based analysis has been previously done by ref. 103 to add hydrodynamic 

interactions to the CG model. It can clearly be observed that for water there is a significant 

reduction in the stochasticity of the force in the CG system compared to the AA system after 

the coarse-graining procedure. The AA model for SPC/F water shows significant force 

fluctuations due to a more rugged FEL along which the water molecules travel. In the case of 

CH4, the difference in the distribution of stochastic force is much less compared to SPC/F 

water. We attribute this to the geometry of the CH4 molecule being spherically symmetric, and 

this symmetry is retained even after the coarse-graining process. Similar observations have 

been recently made in ref.104, where the influence of “geometric roughness” has been studied 

on the diffusion behavior of the fine-grained system. Since the AA and s-CG landscape show 

similar characteristic features for CH4, we show that the amount of perturbation needed to 

correct for the dynamics in s-CG system is relatively much smaller than for CO2 and H2O. 



   
 

   
 

      

          

   

Figure 4: Diffusion coefficient loss manifolds (left) and optimum parameters (right) for H2O 

(a, b), CO2 (c, d), and CH4 (e, f), that give the smallest error in diffusion coefficient.  

Figure 4a-f illustrates the diffusion coefficient error manifold and optimal parameters 

(% 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐷𝐷𝐶𝐶𝐶𝐶− 𝐷𝐷𝐴𝐴𝐴𝐴
𝐷𝐷𝐴𝐴𝐴𝐴

) for the three multiatomic molecules. Here 𝐷𝐷𝐴𝐴𝐴𝐴 and 𝐷𝐷𝐶𝐶𝐶𝐶  are the self-

diffusion coefficients computed for the AA and the perturbed CG system using the Einstein 

relation. The optimum parameters plotted on the right in Figure 4 give errors of less than 1% 

for H2O, CO2, and 0.1% for CH4. The loss manifolds describe the combined effect of the 



   
 

   
 

amplitude and frequency of perturbation on the long-time diffusion of the resulting perturbed 

CG model. Moreover, the error manifolds for the three molecules are seen to be very different, 

indicating differences in their dominant FEL barriers that influence the long-time diffusion.  

Next, we implement the methodology for SPC/F water confined in a slit-like graphene 

nanochannel of 8 nm width. The water molecules inside the nanochannel interact with both the 

neighboring water molecules, as well as the walls. Close to the wall, the effect of wall-fluid 

interactions is dominant compared to the fluid-fluid interactions and the value of the first peak 

in density is almost entirely determined by the wall-fluid potential105. As a molecule moves 

away from the wall the fluid-fluid forces start dominating, and the structure starts becoming 

more homogeneous. Such confinement effects cause interesting features not only in the 

structure but also in the transport properties106. Particularly, the diffusion properties along the 

longitudinal and transverse directions happen to be significantly different, where the self-

diffusion coefficient along the unconstrained direction is seen to be higher than the constrained 

direction107. Unlike bulk, the forces on the water molecule can be decomposed into 2 parts, 

wall-fluid and fluid-fluid. Figure 5a-b shows the total and wall-fluid force distribution along 

the width of the nanochannel in the AA confined water system. While the total force shows 

considerable force variation, the wall-fluid force component shows a very small variance along 

the width of the channel. This is due to the specific single site interaction potential of SPC/F 

water with the carbon atoms of the wall. Therefore, for this system the high-frequency 

perturbations are added only to the fluid-fluid component of the s-CG interaction potential. The 

wall-fluid component, which is important for obtaining the correct density in the channel, 

remains unperturbed.  Let 𝑢𝑢𝑠𝑠_𝐶𝐶𝐶𝐶 = 𝑢𝑢𝑊𝑊𝑊𝑊
𝑠𝑠_𝐶𝐶𝐶𝐶 + 𝑢𝑢𝐹𝐹𝐹𝐹𝑠𝑠_𝐶𝐶𝐶𝐶   is the total interaction potential and 

𝑢𝑢𝑊𝑊𝑊𝑊
𝑠𝑠_𝐶𝐶𝐶𝐶 , 𝑢𝑢𝐹𝐹𝐹𝐹𝑠𝑠_𝐶𝐶𝐶𝐶  the corresponding wall-fluid and fluid-fluid components that are 

simultaneously optimized in the RE minimization framework as done in Ref 95. We then perturb 

the fluid-fluid potential without changing the wall-fluid potential so that 𝑢𝑢𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝_𝐶𝐶𝐶𝐶 =



   
 

   
 

 𝑢𝑢𝐹𝐹𝐹𝐹𝑠𝑠_𝐶𝐶𝐶𝐶 + 𝜀𝜀𝐹𝐹𝐹𝐹, where  𝜀𝜀𝐹𝐹𝐹𝐹 is the perturbation made to the RE optimized fluid-fluid interaction 

potential. 

   

Figure 5: a) Total force and b) wall-fluid component of total force distribution for All-Atom 

water confined in a slit-like nanochannel. The black line is the mean-force, and the red error 

bars indicate the force variance at the location. 

2.3.b.   Perturbations to Many-Body Neural Network Potentials 

A) DeepCG derived potentials  

We apply the perturbation strategy to DeePCG82 which is a popular neural-network based 

many-body potential that can be trained on fine-grained atomistic models in a symmetry-

preserving manner. In the DeePCG framework, an atomic configuration is transformed into a 

descriptor, 𝐷𝐷𝑖𝑖, which is expressed as 

𝐷𝐷𝑖𝑖 = �𝐷𝐷𝑖𝑖1, … ,𝐷𝐷𝑖𝑖𝑖𝑖 , …𝐷𝐷𝑖𝑖|𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ|�, 𝑗𝑗 ∈ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ (7) 

Here, 𝐷𝐷𝑖𝑖𝑖𝑖 conveys local atomic information of atom 𝑗𝑗 observed from atom 𝑖𝑖: 𝐷𝐷𝑖𝑖𝑖𝑖 =

{1/𝑅𝑅𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖/𝑅𝑅𝑖𝑖𝑖𝑖2 ,𝑦𝑦𝑖𝑖𝑖𝑖/𝑅𝑅𝑖𝑖𝑖𝑖2 , 𝑧𝑧𝑖𝑖𝑖𝑖/𝑅𝑅𝑖𝑖𝑖𝑖2 }. 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁ℎ indicates the set of neighbors of atom 𝑖𝑖, within the 

cutoff distance, 𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 𝐷𝐷𝑖𝑖 is then fed into four hidden layers that are fully connected layers 

with the hyperbolic tangent activation function. The final layer is a fully connected layer with 

linear activation. This feed forward process can be written as      



   
 

   
 

𝑈𝑈𝑖𝑖 = 𝑊𝑊5𝜓𝜓�𝑊𝑊4𝜓𝜓 �𝑊𝑊3𝜓𝜓 �𝑊𝑊2𝜓𝜓�𝑊𝑊1𝜓𝜓(𝐷𝐷𝑖𝑖)���� (8) 

Here, 𝑊𝑊1, 𝑊𝑊2, 𝑊𝑊3, 𝑊𝑊4, and 𝑊𝑊5 are matrices having the size of |𝐷𝐷| × 128, 128 × 64, 

64 × 32, 32 × 16, and 16 × 1, where |𝐷𝐷| refers to the size of the vectorized descriptor. The 

DeePCG-predicted force, 𝑓𝑓𝐶𝐶𝐶𝐶(𝑅𝑅𝑖𝑖), is computed by taking the derivative of neural network 

output with respect to position. 

𝑓𝑓𝐶𝐶𝐶𝐶(𝑅𝑅𝑖𝑖) = −∇𝑈𝑈𝐶𝐶𝐶𝐶(𝑅𝑅𝑖𝑖) (9) 

The loss function of DeepCG is mean-squared error between predicted CG force and AA 

mean force, which can be written as 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =
1

|ℬ|��𝑓𝑓𝐶𝐶𝐶𝐶(𝑅𝑅𝑖𝑖) − 𝑓𝑓(𝑅𝑅𝑖𝑖)�
2

ℬ

𝑖𝑖

(10) 

where ℬ, 𝑅𝑅𝑖𝑖, 𝑓𝑓𝐶𝐶𝐶𝐶(𝑅𝑅𝑖𝑖), and 𝑓𝑓(𝑅𝑅𝑖𝑖) indicate minibatch, atomic configuration in CG space, 

DeePCG-predicted force, and net force acting on a water molecule for a given atomic 

configuration (𝑅𝑅𝑖𝑖). We use a minibatch size of four and ADAM108 optimizer with the initial 

learning rate being 1e-3 and exponentially reducing down until 1e-6.  

After training the baseline DeePCG model, we conduct a comprehensive grid search, as 

outlined in Section 2.3.a. As shown in Figure 6, the loss manifold for the DeepCG potential 

happens to be qualitatively similar to the loss manifold of RE minimized pairwise potentials as 

shown in Figure 4. However, we observe subtle differences in the spectrum of frequencies 

which result in accurate diffusion behavior for both potentials. For example, the number of 

frequencies corresponding to the same error limit of less than 1% happens to be more for the 

DeepCG potential. Such differences, we believe, are indicative of the changes in relative FEL 

barriers caused by using different basis representations to the actual MB-PMF.  Apart from the 

DeepCG potential, we also train a GNN potential to match the RDF directly using Adjoint-



   
 

   
 

state method83. The details of constructing the GNN potential are presented in Appendix B of 

the supporting information.  

   

Figure 6: Diffusion coefficient loss manifold (left) and optimum parameters (right) 

corresponding to DeepCG potential for water. 

3. Results 

3.1. Structure and long-time dynamics of perturbed potentials. 

We compare the structure and dynamics of the perturbed pairwise potentials optimized using 

the methodology outlined in Section 2.3.a. Pairwise potentials optimized using RE accurately 

reproduce the RDF for H2O, CO2, and CH4, and further perturbing the s-CG potentials, we 

reproduce the long-time diffusion coefficients of these CG systems.  The parameters ω = [100, 

180, 120] Å-1 and 𝐴𝐴 = [2.8, 3.8, 0.4] kcal·mol-1Å-1 are used to perturb H2O, CO2, and CH4 

respectively. The lowest frequencies which give accurate structure and dynamics are chosen 

since lower timestep would be needed if the frequency of perturbation is too high. Figure 7a-b 

shows the comparison between the RDF and MSD of the AA and CG systems. The high-

frequency perturbations added to the s-CG potentials hinder CG diffusion and bring it closer 

to the AA diffusion. For both CH4 and CO2, we see that the s-CG system is significantly 

accelerated, while in the case of CH4 the speed-up is less. As explained in Section 2.3.a, this is 



   
 

   
 

a result of the differences in the force stochasticity/distribution that a molecule experiences as 

it traverses the PES. Consequently, the perturbation needed to correct the dynamics for CH4 is 

significantly smaller than that for H2O and CO2. 

 

Figure 7: a) Radial Distribution Function and b) Normalized MSD for AA and CG systems 

for H2O, CO2 and CH4. 

Next, we demonstrate the methodology for inhomogeneous systems, where the RE 

minimization approach has previously been used to derive potentials for confined water95. We 

followed the same approach and obtained CG force fields to reproduce the density profile in 

the confined channel. It is well known that the self-diffusion of water in confinement is 

anisotropic and the self-diffusion coefficients are different for the transverse and longitudinal 

direction.  Figure 8 compares the density and MSD of the perturbed CG and the AA system 

along the transverse and longitudinal directions obtained by perturbing the RE minimized 



   
 

   
 

potentials with parameters,  ω = 200 Å-1 and 𝐴𝐴 = 4.9 kcal·mol-1Å-1. By perturbing the force 

field as mentioned in Section 2.3.a, the dynamics is seen to be closer to the AA system. 

 

Figure 8: a) Density variation, b) Longitudinal and Transverse MSD for AA and CG water in 

confinement. 

Next, we present the application of the methodology to a many-body potential derived for the 

SPC/F water system used earlier. The results illustrated in Figure 9 indicate that, in addition to 

accurately replicating the RDF, the DeepCG potential also captures the angular distribution 

function (ADF). The ADF describes the probability of finding a particular angle between a 

central atom and two neighboring withing a given cutoff radius, thereby providing insights into 

angular structure between triplet of atoms. The many-body DeepCG potential allows for more 

accurate modeling of the MB-PMF enabling the capture of higher-order correlations that are 

often missed by pairwise potentials. By introducing high-frequency perturbations with 



   
 

   
 

parameters ω = 230 Å-1 and 𝐴𝐴 = 4.0 kcal·mol-1Å-1 to the DeepCG potential, we observe a 

correction in the self-diffusion behavior of the s-CG system, bringing its dynamics closer to 

that of the All-Atom system. Similar results are obtained for the GNN potential optimized using 

Adjoint-state method, as shown in Figure S4 of the supporting information. 

  

Figure 9: a) Radial Distribution Function, b) Angular Distribution Function and c) Mean 

Squared Displacement for AA and DeepCG systems. 

4. Conclusion 
 

In this study, we explored the idea of perturbing the Free-Energy-Landscape to capture 

characteristic features of the fine-grained atomistic system, which are absent in the simplistic 

CG force fields that primarily capture average statistical properties like the MB-PMF. The 

investigation demonstrated that by perturbing structure-matching CG potentials, we could 

reproduce the long-time diffusion behavior of the All-Atom system. We theoretically 

established that the gradient of relative entropy between the perturbed CG and the AA system 

remains unchanged for sufficiently high-frequency values, thereby ensuring local structure 

invariance to such perturbations. The impact of these perturbation parameters in the CG system, 

interacting via relative entropy-optimized pairwise potentials, was scrutinized through 

molecular dynamics simulations employing an extensive grid search. This exploration unveiled 

distinctive features of the energy landscapes of H2O, CO2, and CH4 thereby allowing us to 



   
 

   
 

optimize the perturbation parameters to match the RDF and self-diffusion coefficients for all 

three molecules. Extending our methodology to inhomogeneous systems, we demonstrated the 

ability of a perturbed CG system in replicating the density as well as the diffusion of water 

molecules parallel and perpendicular to the nanochannel. While pairwise potentials aptly 

predict key thermodynamic quantities for most atomic systems, they falter in modelling 

situations dominated by multibody effects. Expanding our approach to more potent many-body 

potentials, we showcased its compatibility with popular neural network potentials optimized 

using different frameworks - specifically, DeepCG and a GNN Potential. The landscape 

paradigm thus provides a reasonable approach for parameterizing coarse-grained systems, to 

match long-time dynamics through the modeling of prevailing energy-barriers.  
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