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Abstract Antecedent hydrological conditions are recorded through the evolution of dissolved lithium
isotope signatures (6’Li) by juxtaposing two storm events in an upland watershed subject to a Mediterranean
climate. Discharge and §Li are negatively correlated in both events, but mean §’Li ratios and associated ranges
of variation are distinct between them. We apply a previously developed reactive transport model (RTM) for the
site to these event-scale flow perturbations, but observed shifts in stream 6’Li are not reproduced. To reconcile
the stability of the subsurface solute weathering profile with our observations of dynamic stream &’Li
signatures, we couple the RTM to a distribution of fluid transit times that evolve based on storm hydrographs.
The approach guides appropriate flux-weighting of fluid from the RTM over a range of flow path lengths, or
equivalently fluid residence times. This flux-weighted RTM approach accurately reproduces dynamic storm
6'Li-discharge patterns distinguished by the antecedent conditions of the watershed.

Plain Language Summary Storm events often cause characteristic shifts in stream solute chemistry.
Interpreting these signals offers insight into the water-rock interactions occurring within watersheds. Here, we
use lithium stable isotopes and reactive transport modeling to relate how long water spends in a catchment, or
how deep water infiltrates through a catchment, to the extent of chemical weathering. We show that the first
significant storm after a dry season exports more chemically evolved water, while a wet season storm releases
less evolved, shallower, and younger water. Our results indicate that stream flow 8’ Li in small watersheds offers
a sensitive record of hydrological conditions prior to the storm, reflecting subtle shifts in the efficiency of the
Critical Zone to generate, transport, and ultimately export solutes.

1. Introduction

Upland landscapes are commonly characterized by small drainage areas, short water residence times, and sea-
sonal climatic variability (e.g., Anderson et al., 1997; McCormick et al., 2021; Sullivan et al., 2016; Whittaker
et al.,, 1979). Individual storm concentration-discharge (C-Q) dynamics in these low-order systems exhibit
pronounced responses in stream chemistry (Knapp et al., 2020; Rose et al., 2018), particularly based on the stable
isotope ratios () of weathering-derived solutes (Fernandez et al., 2022; Golla et al., 2022). These factors all
suggest the capacity to interpret stream C-Q and J-Q patterns as an integrated signature of transient environmental
perturbations to upland landscapes (Brantley et al., 2023; Druhan & Benettin, 2023; Fernandez et al., 2022; Golla
et al., 2022; Knapp et al., 2022; Li et al., 2022; Rose et al., 2018).

A recent steady-state reactive transport model (RTM) study (Winnick et al., 2022) indicated characteristically
negative C-Q patterns in water dissolved lithium (Li) concentrations, corresponding to a weaker enrichment of
isotopically heavy Li (lower 6’Li) as discharge increases. This model prediction is empirically supported by a
survey of rivers and streams showing consistent 6’Li variations over seasonal time scales, with lower values
during wet seasons (i.e., shorter water residence times) than in dry seasons (Zhang et al., 2022). Altogether, these
studies illustrate broad-scale differences in stream &' Li-Q dynamics as a lens into the generation and routing of
rock-derived solutes across diverse environments. Here, we seek to extend the utility of this dynamic signal to
event timescales using high-frequency data sets coupled to models capable of functioning beyond steady state
assumptions.

In what follows, we utilize a small, upland catchment subject to a montane Mediterranean climate in southern
France. This setting is ideally suited to produce dynamics in weathering-derived solute exports and associated
6’Li-Q patterns during storm events and across wet and dry antecedent conditions. We employ a previously

GOLLA ET AL.

1 of 11


https://orcid.org/0000-0002-2922-2315
https://orcid.org/0000-0003-4832-1615
https://orcid.org/0000-0003-0200-3988
mailto:golla1@llnl.gov
https://doi.org/10.1029/2024GL109624
https://doi.org/10.1029/2024GL109624
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024GL109624&domain=pdf&date_stamp=2024-09-08

V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2024GL109624

Writing — original draft: Jon K. Golla,
Jennifer L. Druhan

Writing — review & editing: Jon K. Golla,

Julien Bouchez, Jennifer L. Druhan

established, isotope-enabled RTM (Golla, Bouchez, Kuessner, & Druhan, 2024) built for the site to explore the
capacity to produce stream solute and isotope ratio variations at these event to seasonal timescales. We equate
depth in the 1-D vertical weathering profile in the model to characteristic water transit time, which allows us to
expand our RTM into a range of fluid flow paths, reproducing observed dynamics in stream chemistry during
storms across a range of seasons and antecedent conditions. To our knowledge, this study is the first demon-
stration of the capacity for a multi-component RTM coupled to a transient fluid residence time distribution to
reproduce observed event scale riverine C-0-Q dynamics. Our approach offers a new bridge between disparate
hydrological and (bio)geochemical frameworks commonly used to describe solute transport in catchments
(Benettin et al., 2022; Li et al., 2021).

2. Methods

2.1. Site Description

The field site is the small (0.54 km?), upland (1,150-1,450 m.a.s.1.; 18° slope), granitic catchment of Sapine,
covered by European beech (Fagus sylvatica) located on the southern slope of Mont Lozere in the Cévennes
region of the French Massif Central. The catchment is part of the French Critical Zone Observatory network
OZCAR (Observatoires de la Zone Critique: Applications et Recherche; Gaillardet et al., 2018) through the long-
term monitoring program Observatoire HydroMétérologique Cévennes-Vivarais (OHM-CV; Boudevillain
etal., 2011) since the 1980s (https://ohmcv.osug.fr/). Composition of the porphyritic granodiorite bedrock and of
overlying soils are provided in Golla, Kuessner, Reina, et al. (2024). The proximity of the catchment to the
Mediterranean Sea strongly regulates local climate. The annual average temperature is 7°C with mean annual
precipitation of 2,000 mm (Martin et al., 2003), which is partitioned into characteristically dry (typically April—
August) and wet (typically September—March) seasons. Most of this precipitation is concentrated during storm
events in the fall season, typifying the “épisodes cévenols” of the Cévennes region (Marc et al., 2001; Martin
et al., 2003) and delivering heavy rainfall to the site over short intervals of time. For example, 358 mm of pre-
cipitation fell over a span of 30 min during an event in August 1999 (Martin et al., 2003). Response in stream
discharge is immediate and despite such intense and flashy precipitation, runoff is largely routed through sub-
surface flow paths and the occurrence of overland flow is minimal (Durand et al., 1992; Marc et al., 2001; Martin
et al., 2003).

2.2. Storm Discharge Sampling

We focus on two storms in this study, which occurred between November 2—4, 2015 (hereafter referred to as the
“wet season storm”) and October 12-14, 2016 (hereafter referred to as the “dry season storm”) (Figure 1a).
During these events, the creek was sampled at much higher frequency than the supporting long-term geochemical
monitoring effort. The wet season storm was characterized by two rain pulses. Sampling for this event began
during the recession of the first rain pulse and continued across the second storm hydrograph. Samples were taken
hourly through the second pulse, and every 4 hours over the “recovery” period following peak discharge. For the
dry season storm, samples were taken every 4 hours leading up to the start of the storm, every hour from the start
to the height of the storm hydrograph, and every 4 hours over the recover period. Samples were collected using a
Hach Sigma SD900 water sampler deployed a few meters upstream from the gauging station. Water samples were
passed through 0.22-y filters into acid-washed polyethylene bottles within a few hours after collection. An aliquot
was treated with distilled 16-M HNO; to achieve a pH of ~2 for subsequent analysis of cations and isotope ratios.

2.3. Analytical Measurements

Measurements of solute chemistry and lithium isotope ratios were performed using the PARI Analytical Platform
of the Institut de Physique du Globe de Paris (IPGP) following the methods reported in Golla, Bouchez, Kuessner,
and Druhan (2024). Analytical accuracy for solute concentrations are <2% and <4% for major and trace elements,
respectively, and the uncertainty for 5’ Li measurements is expressed as the 95% confidence interval (Text S1 in
Supporting Information S1).

2.4. Reactive Transport Model Development

A full description of the conceptualization, parameterization, and validation of our isotope-enabled RTM for the
Sapine catchment using the CrunchTope software can be found in Golla, Bouchez, Kuessner, and Druhan (2024).
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Figure 1. (a) Time series of rainfall (upper light gray bars) and Sapine stream discharge (lower black line) from July 2015 to
July 2017, encompassing two full water years. Vertical shading indicates the two storms sampled at high frequency reported
in the present study. The wet season (b, green) and dry season (c, orange) storms are individually illustrated with
accompanying observations of lithium isotope ratios (circles) and Li/Na ratios (triangles). Both the 95% confidence interval
calculated from sample replicate measurements and the 2¢ associated with repeat analyses of NASS-6 (Text S1 in
Supporting Information S1) are shown as error bars for §Li.

Briefly, the model was originally developed to describe the present-day geochemical signatures of the local
weathering profile and the Sapine streamflow solute chemistry under ambient (i.e., multi-year average) hydro-
logical conditions. A 20-m domain is used to encompass the transit of water from vertical infiltration through
shallow soil and the deeper vadose zone to lateral drainage and discharge to the small headwater stream driven by
constant meteoric fluid infiltration (Darcy flux of 1.4 m/yr) and solid-phase uplift and erosion (0.0001 m/yr). The
model reaches steady state in ~200,000 years, at which point simulation results show agreement with measured
soil elemental mass depletion, stream solute compositions, Li/Na ratios and 6’Li (Golla, Bouchez, Kuessner, &
Druhan, 2024).

The current study makes an important update to this calibrated and data-validated RTM. We subject the prior
model to transient hydrologic forcing occurring over the much shorter (days - weeks) duration characteristic of
our observed storm events. To allow flow rates to vary smoothly in accordance with measured storm precipitation
and drainage rates, we implement an update to the CrunchTope source code which produces smooth variations in
flow rate with time. Each storm event is run over a duration of 14 days starting from the steady state described in
Golla, Bouchez, Kuessner, and Druhan (2024). This encapsulates 7 days of antecedent conditions, which are
unique to each storm, as well as 7 days of the storm event and recovery period. For the wet season storm
(November 2015), the antecedent conditions include the first storm pulse which occurred prior to sampling
(Figure 1), whereas the antecedent condition for the dry season storm (October 2016) corresponds to a decline in
flow rate. The November 2015 storm occurred during the wet season and multiple peaks are observed over the
hydrograph (Figure 1). These are mimicked through a sequence of two lognormal curves. The October 2016 storm
was the first after a prolonged dry period, and we mimic this antecedent condition using an exponential decline in
flow rate. Following this decay in streamflow, the storm is simulated by a single lognormal curve. All storms are
simulated using the same shape parameters for the lognormal distribution, while the magnitude is varied to
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produce changes in flow through time resembling a short and steep rising limb and a relatively long and gradually
declining falling limb, consistent with the Sapine hydrograph (Figure 1). Further details of the storm parame-
terizations can be found in Text S2 in Supporting Information S1.

3. Results
3.1. Storm Characteristics and Discharge Patterns

Despite the different antecedent conditions of these two storm events (Figure 1), the duration and magnitude of
precipitation are fairly similar. 97 mm of precipitation were delivered over 38 hours during the November 2015
wet-season storm (Figure 1b), whereas a total of 126 mm of rain fell on the catchment over a span of 42 hours in
the dry-season storm (Figure 1c). Resulting event-averaged rainfall rates are 2.6 and 3.0 mm/hr for the wet-season
and dry-season events, respectively.

Although the precipitation characteristics of the two storms are similar, the resulting stream discharge patterns are
significantly different (Figure 1). In the wet season, pre-storm discharge rates were approximately 3.8 x 1072 m?/
s (Figure 1b), whereas in the dry season pre-storm values were much lower, averaging approximately 5.0 x 107*
m?®/s (Figure 1c). This 100-fold difference in pre-storm discharge rates highlights the bimodal nature of the
montane Mediterranean climate which characterizes the Cévennes region. Such distinct antecedent conditions led
to discharge rates in the dry season storm roughly an order of magnitude lower than in the wet season, although the
dry season storm featured higher rainfall rates. Across both storm events, there is minimal to no lag time between
maximum rainfall and peak discharge. This relatively instantaneous response is consistent with observations at
other small, “flashy” catchments (e.g., Anderson et al., 1997; Hooper et al., 1990; McDowell & Likens, 1988).

3.2. Lithium Signatures

For our current purpose, correction for atmospheric inputs is unnecessary given that our RTM directly in-
corporates the geochemical composition of rain water in the upper boundary condition and thus factors the
contribution of this input into the modeled subsurface fluid signatures that ultimately produce streamflow
chemistry. Furthermore, typical rainwater corrections (i.e., assuming a marine signature) to stream chemistry are
not applicable at this site given the strong influence of wet and dry dust deposition (Golla, Bouchez, Kuessner, &
Druhan, 2024).

Sapine stream dissolved Li concentrations for the November 2015 (0.078-0.9 pM) and October 2016 (0.066—
0.094 pM) events (Figure S1 in Supporting Information S1) are consistent with background Li concentrations in
Sapine based on monthly and inter-annual sampling frequencies (0.07-0.14 uM; Golla, Bouchez, Kuessner, &
Druhan, 2024). However, across the storm hydrograph, Li concentrations decrease during the wet season storm
(Figure Sla in Supporting Information S1) and increase during the dry season storm (Figure S1b in Supporting
Information S1). Normalization to Na concentration facilitates comparison of observations to model results given
that the model does not explicitly account for the influence of direct rain input to stream solute concentrations.
The largely monotonic trends in Li concentrations are replaced by a more nuanced pattern of Li/Na ratios that are
closely associated with the storm hydrograph (Figures 1b and 1c). §'Li values recorded during both the wet
season (+21.1%o to +22.5%0) and dry season (4+22.7%o to +25.2%o) storms are generally consistent with values
observed over long-term sampling campaigns (+22.4%o to +24.2%o0; Golla, Bouchez, Kuessner, & Dru-
han, 2024), but the maximum and minimum storm &’Li ratios expand this long-term range. Both storm events
produce an inverse relationship between 6’ Li and discharge (Figures 1b and 1¢). The highest 6Li ratio during the
wet season storm is observed in between the two discharge peaks (Figure 1b) whereas the maximum values during
the dry season event occur in the very early stages of the storm when discharge is still quite low (Figure 1c). The
net decrease in 6'Li from baseflow to peak discharge is larger during the dry season storm (~2.5%o) than the
difference recorded during the wet season storm (~1.4%o).

3.3. Model Results

The initial geochemical conditions of our RTM simulation are provided by the steady state spatial profiles of the
dissolved load across the 1-D, 20-m flow path (Figure 2; Golla, Bouchez, Kuessner, & Druhan, 2024). The
modeled Li/Na starts from the rainwater boundary condition (1.2 pM/mM) and remains relatively steady over the
first ~5 m of the model domain. In tandem across the same 5-m interval, the simulated §’Li begins from a value

GOLLA ET AL.

4of 11

ASURDIT SUOWWO)) ATEAL)) d[qeorjdde oyy Aq pauIdA0S I SA[INIE V() 98N JO I[N 10) ATRIQIT dUIUQ) AS[IAY UO (SUOHIPUOI-PUE-SULId} /W0 Kd1m" A1eiqrjourjuo//:sdny) suonipuo) pue sud [ oy 938 “[$70z/€0/91] U0 Areiqry auruQ) A9JIp “@dueL] dUeIyd0)) Aq $7960 1 T1OFI0Z/6T01 01/10p/wod Kaim:Areiqiourjuo-sqndnSe;/:sdny woiy papeoumo( ‘L1 “bz0T ‘L008FH61



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2024GL109624

(a) Simulated wet season storm (b) Simulated dry season storm
25
0.25 S
é N FA 0.00{ ~~®-o-¢
00 05 16 N\
7 ~o
P -~

T T T T T T T T T T y

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Simulation time, t (days) Simulation time, t (days)
FIu>E weighting, ; FIu>E weighting,
h(t{x; t)) Li/Na (um/mM) & Li (%0 L-SVEC) h(t{x; t))
0.05 1 2 0 20 0.00 0.05

L L L L L

)

-

=
L
el
’
~
\
/

Darcy flux,
q(t) (mm/hr)
o (4 o [$,]
o

i
| %
//
/
7/
4
4

o o

Li/Na (um/mM) & Li (%o L-SVEC)
1 2 0 20 0.00

o
)
y

o
L

stream
observa-
tions

=
o
L

-
(9]
L
L

Flow path distance, x (m)

N
o
L
L

Figure 2. Model results for the wet season (a) and dry season (b) storm simulations. Each set of results consists of a time series
of the model Darcy flux (black dashed line; Equations S3 and S4 in Supporting Information S1) above three vertical spatial
profiles of fluid Li/Na, lithium isotope ratios, and flux weighting (Equation S9 in Supporting Information S1). The first

7 days of the model run correspond to the simulated antecedent hydrological conditions associated with each storm event
while the latter 7 days in the simulation mimic the measured storm event itself (Section 2.4). The set of colored circles in the
Darcy flux time series plot denotes different points in time during the simulation. For the wet season storm, the coloring
highlights the increase (from dark purple to yellow) in flow rates during a given storm pulse. For the dry season, the coloring
illustrates the recession of flow rates (from dark purple to yellow) prior to the storm. Vertical spatial profiles of Li/Na and
6"Li are colored using the same gradient, but these are essentially indiscernible given the lack of variation in the 1-D RTM solute
chemistry. Gray vertical shading of these spatial profiles illustrate the range of stream observations across both storm events.
Note that the simulated spatial profiles during the second storm pulse in the modeled wet season event are identical to those
generated and highlighted from the first storm pulse.

(+10.4%o0) resembling that of the prescribed rainwater boundary condition (+8.6%0) and rapidly reaches the
highest value (~+26%o) across the entire model domain. The Li behavior simulated across this initial section of
the model domain is a result of the balance between dissolution of minerals supplying Li to the solution and the
cumulative formation of kaolinite clay that takes up Li and fractionates its isotopes. Further into the model
domain, Li/Na increases to ~1.7 pM/mM and §'Li decreases to ~+23%o. These trends are associated with the
progressively decreasing extent of secondary clay accumulation and thus a greater effect of primary mineral
dissolution. Subjecting the RTM to variations in water flow associated with both the wet season (Figure 2a) and
dry season (Figure 2b) storms has no discernible effect on the modeled Li/Na or 8’Li fluid ratios across the 1-D
depth profile.

4. Discussion
4.1. Attenuation of Events Along a Flowpath

In our RTM framework, all water takes the same amount of time to transit the domain and hence, for a given flow
rate, discharge is of a single age. The baseflow Darcy flux (1.4 m/yr) and porosity (~10%) allows fluid to transit
the 20-m domain in 1.43 years. At the peak Darcy flux modeled during the wet season storm (9.1 m/yr), this
transit time is still ~80 days. Even if this peak flow rate were maintained for the entire 7-day duration of a storm
event, the fluid infiltrating the domain could only traverse ~1 % of the entire spatial profile (i.e., the first two grid
cells). The short duration of these events, combined with the dilute solute composition of the Sapine catchment
and the typical timescales of reactivity between water and silicate minerals collectively yield model simulations in
which pore water chemistry is insensitive to such short-term perturbations in flow rate. The result is that the
geochemical variations measured in Sapine creek during these two storms (Figure 1) are not a result of changes in
the solute composition of near-surface water due to the storm events. This disconnect between observations and
model results necessitates an alternative model representation of the dynamic storm solute signatures produced in
this upland watershed.
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Piston-like behavior, that is, all fluid moving at a single velocity along a common flowpath, does not characterize
the complexity of many natural watersheds (McGlynn et al., 2003; McGuire & McDonnell, 2006; Sukhija
et al., 2003). In particular, during storm events, small upland catchments are thought to increasingly deviate from
piston flow due to their subsurface heterogeneity (Harman et al., 2010). Rapid attenuation of storm pulses in the
simulated Li depth profiles of our 1-D RTM (Figure 2) further support this inference and suggest that the Li
dynamics observed in the stream must result from event-scale shifts in the way subsurface water is released to
streamflow due to these storms. This may result from alteration in runoff generation pathways (e.g., preferential
flow through fractures and shallow porous layers), an increase in catchment wetness or hydrological connectivity,
and/or a change in the relative contribution of a range of flow paths through the system. As a basic representation
of these complex and coupled flow routing mechanisms, in the following we consider the capacity for (a) a variety
of fluid transit times to contribute to streamflow and (b) dynamics in these fluid transit time distributions (TTDs)
over the course of the storms.

4.2. Stream Chemistry as a Mixture of Flowpaths

TTDs appropriate to upland watersheds are well established in the literature (Benettin et al., 2022; Heidbiichel
et al., 2012; Hrachowitz et al., 2016; McGuire & McDonnell, 2006; Sprenger et al., 2019) and their utility in
describing event-scale C-Q and §-Q patterns is becoming increasingly evident (e.g., Benettin et al., 2017; Fer-
nandez et al., 2022; Torres & Baronas, 2021). Our novel contribution is to connect such fluid TTDs to the
geochemical rigor offered by our multi-component RTM simulations. To do so, we make a simple assumption in
which depth across the 1-D RTM model is converted into corresponding travel times for a given rate of fluid
draining through the profile (Equation S5 in Supporting Information S1). With this translation, we may think of
each of the domain grid cells as the end of an individual flow path with its own characteristic fluid transit time. In
isolation, these flow paths act as independent 1-D domains operating in parallel. Using an appropriate TTD as a
guide, we may then decide how to sample across these flow paths to produce a flux-averaged ensemble of fluid
travel times which contribute to streamflow. From this starting point, the parameters of the TTD may be
reasonably varied such that the behavior of the storm events are described. Doing so allows transient shifts in the
way water is subsampled out of the 1-D RTM domain, guided by the geochemical dynamics observed in Sapine
creek during these storm events. While the dissolved Li signatures within the model domain do not change over
the timescale of an event (Figure 2), the way in which we mix these waters to produce stream chemistry does. We
strongly emphasize that this approach is predicated on the underlying spatial and temporal stability of subsurface
solute and fluid isotope ratio profiles. Where perturbations to the system are of sufficient duration and/or intensity
to alter pore water chemistry, then more advanced RTM approaches are needed (discussed further Supplementary
Text S3 and Figure S3 in Supporting Information S1).

Empirical evidence across multiple catchments suggests TTDs are commonly biased toward young water (i.e.,
short flow paths) but also heavily skewed by a long tail (Godsey et al., 2010; Heidbtichel et al., 2013; Hrachowitz
et al., 2010; Jasechko et al., 2016; Kirchner et al., 2000; McGuire & McDonnell, 2010; Segura et al., 2012). In
keeping with these observations, we apply a simple exponential TTD inherently predisposed to a positively
skewed distribution (Equation S6 in Supporting Information S1; Druhan & Maher, 2017; Fernandez et al., 2022;
Mabher, 2011). The functional form of the TTD is prescribed, but the mean transit time, z(¢), is dynamic following
the behavior of the storm events (Figure 2). The value of 7,45, is ~8.5 months, which already produces a TTD
that is relatively skewed toward the shortest flow paths. In the simulated wet season storm, the changes in TTD
profile with time are identical across the two modeled storm pulses (Figure 2a). As flow increases over the course
of a simulated storm pulse, 7(¢) decreases and the TTD profile skews even further toward short flow paths. At peak
flow, Tp.q = ~6 days. In contrast, the initial TTD profile of the simulated dry season storm first increases from the
SAME Tp0010y StArting point, reaching a value sufficient to cause the TTD profile to approach nearly uniform flux-
weighting of flow paths across the model domain (Figure 2b). The absolute value of this pre-storm .,
(~7,143 years) is essentially arbitrary given that any z(z) > 30 years creates uniform flux-weighting along the
depth profile and hence no further variation in modeled stream solute chemistry or isotope ratios (Figure S5 in
Supporting Information S1). The onset of the subsequent storm causes z(¢) to decrease following TTD behavior
similar to the simulated wet season storm. However, the preference for water from short flow paths is weaker in
this dry season condition as a result of the lower peak discharge rate. This occurs even though approximately the
same total rainfall was received over comparable time intervals for the two storms (Section 3.1; Figure 1).
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Figure 3. Model-data comparison of fluid lithium isotope ratios (a) and Li/Na ratios (b) with flow rate. Measured stream
chemistry (circles and triangles) are plotted against the corresponding discharge of Sapine Creek normalized by the
maximum value of the storm events. Both the 95% confidence interval calculated from sample replicate measurements and
the 20 associated with repeat analyses of NASS-6 (Text S1 in Supporting Information S1) are shown as error bars for &’ Li.
Model results correspond to the flux-weighted fluid lithium compositions (orange line for wet season simulation and green line
for dry season simulation; Equation S10 in Supporting Information S1) and the model Darcy flux is again normalized to the
maximum value. Such normalization to maximum flow rate is to facilitate juxtaposition of model results and observations given
that the dynamic subsurface flow rate in the simulated storm events are parameterized to capture the same order-of-magnitude
variations observed in stream discharge. The shaded regions surrounding these modeled 8’ Li and Li/Na profiles represent the
solution space that captures the range of stream observations considering a plausible range of variation in the Li isotope
fractionation factor and degree of Li partitioning in clay (Golla, Bouchez, Kuessner, & Druhan, 2024). The black arrow in panel
(b) illustrates an inferred trend associated with enhanced dust dissolution during high-discharge conditions (Section 4.2).

The range of RTM depths is subsampled using the storm-driven variations in mean transit time to produce a flux-
weighted solute signature that varies over the storm events (Figure 2). In doing so, dynamics in stream 6’Li are
immediately observable (Figure S2 in Supporting Information S1). In general, this combined TTD-RTM model
produces the characteristically inverse relationship between &’ Li and discharge previously documented in streams
and rivers (Golla et al., 2022; Zhang et al., 2022). This systematic trend is also in agreement with our observations
at Sapine (Figure S2 in Supporting Information S1). The starting 6’Li in both wet and dry season simulations
(+23.6%0) is slightly higher than the piston-flow &’Li value at the base of the 1-D RTM profile (+23.2%0;
Figure 2) due to preferential weighting of somewhat shorter flow paths, where the RTM 6"Li ratio is generally
>+425%o, over the spatial interval between 2.5 and 18 m. When this flux-weighted sampling is subjected to the
behavior of the wet season storm, peak discharge yields a 6'Li of +19.6%. (Figure S2 in Supporting Informa-
tion S1). In the dry season storm, the pre-event low-flow period holds water transit times to longer values even
during the storm, such that §’Li is generally more stable and only produces a minimum of +21.6%o at peak
discharge. Corresponding shifts in flux-weighted Li/Na ratios during the modeled storm simulations are generally
bounded between values of 1.2 and 1.5 pM/mM (Figure S2 in Supporting Information S1). As a result, any
changes in these values that occur during periods of high flow rates are extremely small. This is a result of the
narrow range of Li/Na values produced in the RTM across the spatial domain, which negates changes in the flux-
weighting of water during high flow conditions (Figure 2).

We do not attempt to fit the detailed characteristics of the individual storm §’Li-Q or Li/Na-Q patterns beyond
what is achieved by simply applying an appropriate scaling relationship between z(¢) and flow rate and mapping
the resulting time-varying TTDs onto the 1-D RTM profile. However, direct comparison of the combined model
output to our observations in Sapine creek (Figure 3) are generally quite robust. For this catchment, we find that

7 & (1 + log(%e) ) offers an accurate linkage between variations in discharge and the emergent flux-weighting
of our solute profiles such that the measured data are reproduced with minimum parameterization (see Supple-
mentary Text S4, Equations S7 and S8, and Figure S4 in Supporting Information S1 for detailed explanation).
Both the absolute value and the shift in relation to discharge for Li/Na and §'Li depend on the background
hydrologic conditions preceding a given event. When the catchment is dry, flow paths and fluid transit times are
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relatively long. As flow rates increase from these initial hydrologic conditions, the coupled TTD-RTM accesses
fluid from a more isotopically enriched portion of the spatial profile, resulting in a small (~0.2%o) increase in the
observed 6’Li (Figure 3a). However, when the catchment is already wet, flux-weighted 6’Li ratios are more
biased toward relatively enriched fluid from these shorter flow paths. Pushing the system even further toward
increasingly short fluid travel times guides a preference toward fluid from the shortest fluid flow paths, where
6"Li ratios are strongly influenced by the upper boundary condition with characteristically low values (Golla,
Bouchez, Kuessner, & Druhan, 2024). This produces a sharp decrease in streamflow 8'Li of ~4%o, which is
mirrored by measured values in the stream during the wet season event (Figure 3a).

In comparison to &’Li, the agreement between observations and modeled Li/Na (Figure 3b) is generally good at
low flow conditions, but the behavior during the storms is not as well captured. Sapine streamflow Li/Na shows
an increase with discharge of ~ pM/mM whereas the simulations project a small decrease of ~0.2 pM/mM over
the same range of flow rates. This misfit is likely associated with variability in Saharan dust inputs that influence
local rainwater geochemical composition (Golla, Bouchez, Kuessner, & Druhan, 2024). Variation in the pre-
scribed rainwater upper boundary condition of our RTM can propagate as deep as <5 m (Golla, Bouchez,
Kuessner, & Druhan, 2024), and these short flow paths are heavily weighted in the flux-averaged streamflow
chemistry during intermediate to high discharge events (Figure 2). Even a small enhancement in dust dissolution
(Li/Na = 65 pM/mM; Clergue et al., 2015) during these storm events could create a significant increase in Li/Na.
Such an effect is also consistent with the associated decrease in observed §'Li given the crust-like signature of
Saharan dust (§’Li = +0.7%o; Clergue et al., 2015). Significant solubilization of dust leading to higher solute
concentrations in rainwater has been suggested to occur over brief periods of time as short as 2 hours (Desboeufs
et al., 1999). This is well within the timescales of the observed storms in Sapine (Figure 1). Presently, we lack the
temporal resolution in precipitation samples necessary to account for such boundary condition dynamics in the
model, but the propagation of a more dust-influenced rainwater signature over the course of a storm simulation
would not affect the general trend of decreasing flux-averaged model 6’Li with increasing flow rates (Figure 3a)
since fluid from the <5-m flow paths affected by the boundary condition are already associated with the lowest
57Li values in the model domain (Figure 2).

4.3. Implications for Fluid Routing and Solute Export During Storms

Our coupled TTD-RTM model offers a mechanistic underpinning for the observed variability in streamflow &'Li
(Figure 3) recorded in Sapine creek across both wet and dry season storms. These results demonstrate the
importance of antecedent conditions in subsurface fluid routing during storm events. Under dry conditions,
baseflow is characteristically maintained by relatively long or deep flowpaths as represented in our model by a
more even flux-weighting across various depths in the 1-D RTM profile. This would suggest that dry season
streamflow is composed of fluid that has generally taken longer to drain through the watershed. In comparison,
relatively wet periods of the year route more water into storage, enhance hydrologic connectivity, and generally
sustain higher flow rates. Under such conditions, a higher water table combines with enhanced connectivity to
route more fluid to the stream, and this supply is generally skewed toward shorter flow paths (Figure 2a). From
either starting point, imposing a storm event on the system increases drainage rates and shortens transit times over
a timescale of days to weeks. The corresponding variation in 8'Li during the wet season storm was fairly small
(difference between maximum and minimum values ~1.5%o; Figure 1b) and around distinctly lower values
(average 21.8%o) than those of the dry season (average 24.0%0), because the characteristically longer flow paths
of the drier season sustain higher baseflow §'Li. Furthermore, although the peak discharge of the dry season storm
was ~50% smaller than that of the wet season storm, the corresponding variation in 6’Li across the dry season
event was much larger (difference between maximum and minimum values of ~2.4%o; Figure 1c).

These non-uniform and dynamic responses are a result of the sensitivity of Li isotopes to characteristic weathering
reactions and therefore highlight their utility across variations in discharge and seasonal antecedent conditions
(Golla et al., 2022; Zhang et al., 2022). Therefore, dissolved Li isotope ratios are markers of distinct compart-
ments across a weathering profile, such that the resulting composition of streamflow could be used to infer the
flow path(s) predominantly contributing to drainage (Golla et al., 2021, 2022). The hydrogeochemistry of Sapine
produces a sharp contrast between low-8'Li water in the shallowest, most highly weathered portions of the

subsurface and higher-6’Li water which evolves over longer flow paths across less weathered regolith (Figure 2).
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Although less pronounced, distinctions between intermediate flow paths (2.5 m <x < 12.5 m; 6'Li = 25-26%0)
and longer length scales (>12.5 m; 8'Li = 24-25%0) in the modeled spatial profile are also diagnostic and
discernible within the stream &'Li signatures. Such flow paths characterize sections of the weathering profile
where secondary clay precipitation is increasingly balanced by primary mineral dissolution (Golla, Bouchez,
Kuessner, & Druhan, 2024).

Variations in stream 6’Li as demonstrated here have already been documented in similar upland sites (Golla
et al., 2021, 2022; Zhang et al., 2022). Furthermore, such dynamics have been illustrated in other metal(loid)
isotope systems which are not exclusively fractionated by secondary clay formation. A systematic trend between
Si isotope ratios (6°°Si) and discharge was shown in Sapine Creek for the same dry season storm reported herein,
which should occur as an effect of preferential routing of water from shorter flow paths, as well as the combi-
nation of fractionating pathways associated with clay formation and biological uptake (Fernandez et al., 2022).
Such consistency between isotope systems encourages expansion and use of -Q observations alongside more
common hydrological and biogeochemical (i.e., C-Q) data to better understand the response of the Critical Zone
to transient perturbations such as storms.

5. Conclusions

This study addresses a disconnect between modern multi-component RTMs and the transient hydrological routing
of water hosted in structurally complex catchments during short-term infiltration events. Widely available RTM
software affords a critical capability to represent geochemical structure in both solute and mineral compositions
along a given flowpath. This spatial resolution is necessary to offer a mechanistic underpinning for element-
specific geochemically distinct stores of solutes within the near surface environment. However, in these
frameworks, periodic short-term pulses or declines in long-term average flow rates are rapidly attenuated with
depth into the profile, which prohibits characteristically dynamic storm C-Q and §-Q patterns. Our mapping of a
transient fluid TTD onto structured RTM profiles resolves this issue through a simple space-for-time substitution,
enabling representation of a network of discrete flow paths. Merging of these two frameworks offers a more
appropriate means of representing fluid flow and geochemical reactivity, as called for in recent synthesis papers
(Benettin et al., 2022; Li et al., 2021). Here, this integration highlights the potential of streamflow Li isotope ratios
as a tracer of hydrological routing through catchments during storm events.

Data Availability Statement

This work builds upon previously published data (Golla, Kuessner, et al., 2024) and CrunchTope reactive
transport models developed by Golla, Bouchez, Kuessner, and Druhan (2024). The associated model input and
output files can be accessed on Zenodo (Golla, Bouchez, & Druhan, 2024).
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