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Abstract

Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles
in essential biological processes. To facilitate functional annotation and accurate prediction of different types of NABPs, many machine
learning-based computational approaches have been developed. However, the datasets used for training and testing as well as the
prediction scopes in these studies have limited their applications. In this paper, we developed new strategies to overcome these
limitations by generating more accurate and robust datasets and developing deep learning-based methods including both hierarchical
and multi-class approaches to predict the types of NABPs for any given protein. The deep learning models employ two layers of
convolutional neural network and one layer of long short-term memory. Our approaches outperform existing DBP and RBP predictors
with a balanced prediction between DBPs and RBPs, and are more practically useful in identifying novel NABPs. The multi-class approach
greatly improves the prediction accuracy of DBPs and RBPs, especially for the DBPs with ~12% improvement. Moreover, we explored the
prediction accuracy of single-stranded DNA binding proteins and their effect on the overall prediction accuracy of NABP predictions.
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Introduction

DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs)
are two different types of nucleic acid-binding proteins (NABPs),
which play crucial roles in many biological processes, such as
DNA replication, transcriptional regulation, alternative splicing
and translation [1-5]. DBPs include double-stranded DNA binding
proteins (DSBs) and single-stranded DNA binding proteins (SSBs).
While DSBs are mainly involved in transcriptional regulation,
DNA cleavage and chromosome packaging, SSBs participate in
DNA recombination, replication and repair, and serve as key
players in the maintenance of genomic stability [6-8]. Although
experimental methods can be used to identify the functions of
some proteins, it is time-consuming and expensive. In addition,
there are a large number of uncharacterized proteins in the
protein sequence database [9-12], making it impossible to char-
acterize and annotate each of them by experimental methods.
Computational methods, on the other hand, can complement the
experimental approaches by efficiently predicting the functional
categories of the unannotated proteins and help narrow the num-
ber down for experimental validations.

A number of computational methods have been developed
so far to predict nucleic acid binding proteins from sequences,

especially for DBP predictions [13-27]. Recently, advanced
machine learning approaches, such as deep learning, become
popular in bioinformatics research and have been applied to
predict DBPs and RBPs [26-33]. However, almost all of these
methods were trained to predict only either DBPs or RBPs
and therefore may have limited their applications due to the
similarities between DBPs and RBPs. For example, DNAbinder
[18], DPP-PseAAC [23], PIDBPred [30], and DBPMod [31], using
support vector machine (SVM), random forest (RF), adaptive
boosting (ADB), and light gradient boosting (LGB) methods, were
developed for predicting DBPs. The SVM-based RNAPred [34],
convolutional neural network (CNN)-based DeepRBPPred [28],
LGB-based RBPLight [32] and CNN-based RBProkCNN [33] are RBPs
predictors. For the DBP predictors, DBPs were used as the positive
datasets with non-DBPs (including both non-NABPs and RBPs)
as the negative datasets for model training. Similar approach
for dataset construction and model training was adopted for the
RBP predictors. Therefore, DBP predictors may predict DBPs with
relatively high accuracy, but tend to incorrectly predict many RBPs
as DBPs, and similarly for the RBP predictors. Recently, Zhang
et al. [29] developed DeepDRBP-2 L for prediction of both RBPs and
DBPs using CNN and long short-term memory (LSTM). While the
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prediction accuracy of DBPs by DeepDRBP-2 L is very good, the
prediction accuracy of RBPs is relatively low. The annotation of
the datasets based only on GO terms may play a role in the low
prediction accuracy of RBPs [29]. For example, protein Q9VPTS is
annotated as both an RBP and a DBP, a dual function protein, in
the Swiss-Prot database [35]. However, this protein was classified
as an RBP in their dataset since the GO term for this protein only
has GO:0003723 (RNA binding), not GO:0003677 (DNA binding). As
demonstrated previously by Zaitzeff et al. [36] accurate datasets
are essential for developing better prediction models. Adding
to the complexity, there are two types of DBPs, SSBs that bind
single-stranded DNA and DSBs that bind double-stranded DNA
while RBPs bind to diverse types of secondary and tertiary RNA
structures besides single-stranded RNA [37-39].

We adopted three strategies to address these issues. Firstly, we
generated new datasets with a more restricted keyword-based
selection method for selecting the NABPs. Secondly, we devel-
oped a hierarchical approach using two layers of CNN and one
layer of LSTM. For our hierarchical approach, the first step is
the prediction of non-NABPs/NABPs followed by the prediction of
DBPs/RBPs. Thirdly, even though each of the steps in the hierarchi-
cal approach can achieve >80% prediction accuracy, the actual
prediction accuracy for DBPs and RBPs for any given protein is
lower since it is contingent on the first step (non-NABPs/NABPs)
performance. As such, we developed a multi-class deep learning
model that predicts non-NABPs, DBPs, and RBPs simultaneously.
Results show that our hierarchical approach outperforms the
existing DBPs and RBPs prediction tools with balanced prediction
accuracy between DBPs and RBPs. The multi-class approach can
predict DBPs and RBPs more accurately when compared with the
overall accuracy from the hierarchical approach for any given
protein, especially for prediction of DBPs, which improved dramat-
ically from 64.7% to 76.6%.

In this study, we also investigated the prediction accuracy of
SSBs and their effect on the overall prediction performance of the
DBPs and RBPs. To our knowledge, this is the first time that SSBs
are explicitly investigated as part of DBPs and RBPs prediction,
which can provide guidance in developing models for predicting
novel SSBs.

Materials and methods
Datasets

We downloaded a total of 484,143 proteins with GO term
annotations in Swiss-Prot from the UniProt database [35] and
removed the redundancy of the proteins using a sequence
identity cutoff of 0.4 with CD-HIT v4.8.1 [40], which resulted
in a non-redundant (NR) dataset of 65,076 proteins. Similar
to previous studies, we selected proteins with length between
40 and 1500 amino acids, which represent 96.5% (62,797) of
the initial NR dataset (Fig. 1A). The types of NABPs were then
defined as shown in Table 1. More specifically, if the protein
file contains all the four keywords ‘DNA’, ‘binding’, ‘single’,
and ‘strand’, it is annotated as an SSB; if the protein file
contains all the four keywords ‘DNA’, ‘binding’, ‘double’, and
‘strand’, or any other four types of descriptions related to
transcription factors as shown in Table 1, it is considered as a
DSB; if the protein has keyword ‘RNA-binding’ or ‘RNA binding’,
it is defined as an RBP; and finally if it does not contain any
of the keywords ‘DNA’, ‘RNA’, ‘nucleic acid’, and ‘nucleotide’
in its keywords description line, does not contain keyword
‘binding’ and GO terms ‘GO0003676’, ‘GO0003677’, ‘GO0003723’,
‘GO0003697’, and ‘GO0003690" in all its descriptions, it is
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Figure 1. Datasets used in this study. A. The length distribution of the non-
redundant dataset. B. Venn diagram showing the numbers of different
types of NABPs, including RBPs, DSBs, SSBs and proteins with capabilities
of binding more than one types of nucleic acids (zoomed-in square
diagram).

Table 1. Keywords used for generating each dataset

Types Keywords
SSB ‘DNA’ + ‘binding’ + ‘single’ + ‘strand’
DSB ‘DNA’ + ‘binding’ + ‘double’ + ‘strand’

‘DNA-binding transcription activator activity’
‘DNA-binding transcription factor activity’
‘DNA-binding transcription repressor activity’
‘sequence-specific DNA binding’

RBP ‘RNA-binding’
‘RNA binding’
non-NABP does not contain:

‘DNA’, ‘RNA’, ‘nucleic acid’, ‘nucleotide’ in keywords and
‘binding’ in all description and

G0O:0003676, GO:0003677, GO:0003723, GO:0003697,
GO:0003690 in all description

considered as a non-NABP. Combing GO terms with keywords for
non-NABP dataset generation is to maximize the removal of
potential NABPs from the non-NABP dataset. The above selection
process resulted in 561 SSBs, 4520 DSBs, 5836 RBPs, and 12,899
non-NABPs (Fig. 1B).

It is well known that some NABPs can bind different types of
nucleic acids. For example, some proteins can bind both DNA and
RNA [29]. In our dataset, there are 135 proteins that can bind to
both RNA and dsDNA, 40 proteins that are annotated as RBPs and
SSBs, 140 proteins that are capable of binding dsDNA and ssDNA,
and 34 proteins can bind all three types of nucleic acids (Fig. 1B).
The NABPs that bind only one type of nucleic acids consist of 347
SSBs, 4211 DSBs, and 5627 RBPs (Fig. 1B). In this study, we only
used NABPs with distinct binding type annotations, SSBs, DSBs,
RBPs, and non-NABPs, for model training and testing.

Position-specific scoring matrix calculation

The position-specific scoring matrix (PSSM) of each protein was
used to train, validate, and test our machine learning models. To
calculate the PSSM for each protein, psi-blast (2.11.0+) [41] was
used with an e-value cutoff of 0.001 and three iterations against
the uniref90 datasets [42]. For each protein, the initial PSSM, a L*20
matrix (L: length of the protein), was first transformed as a 20xL
matrix. Since the fully connected layer of CNN model requires the
inputs to be of the same length, zero was added after the original
PSSM to make all the proteins having the same length (20%1500).

CNN model building

For the deep learning model, a four-layer architecture, which
consists of one CNN layer, one dropout layer, one max-pooling
layer, and a second dropout layer, was repeated once (Fig. 2A).
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Figure 2. Deep learning models. A. Flowchart of the CNN model. B.
Schematic representation of thel0-fold cross validation of the training,
validation and testing datasets. C. Flowchart of the hierarchical approach.
D. Flowchart of the multi-class approach.

The process is completed with four more layers, consisting of an
LSTM layer, one dropout layer, one fully connected layer and an
activation layer (Fig. 2A). The CNN model was trained using the
training and validation datasets with a 10-fold cross validation
strategy for 100 epochs and the model with the highest validation
accuracy was saved and tested with the testing datasets (Fig. 2B).
Since the datasets were randomly selected, the CNN model was
run for 500 rounds with each random selection to calculate the
mean and standard deviation (SD) of the prediction accuracy. In
each approach, we tried different set of parameters for training,
and the parameters with the best performance were selected for
the final models.

Hierarchical prediction approach

We first developed a hierarchical approach for predicting non-
NABPs, DBPs, and RBPs using the CNN model (Fig. 2C). The first
step is the prediction between non-NABPs and NABPs. In this step,
all the SSBs, DSBs, and RBPs in our datasets were combined as the
NABPs dataset (positive dataset), and 79% of non-NABPs were
randomly selected as the negative dataset to match the number
of NABPs positive dataset. The CNN models were trained with
the following parameters: number of filters = 128, kernel size =37,
pooling size=4, dropout rate=0.2, LSTM output size =50, batch
size=128.

The second step of the hierarchical approach is the prediction
between DBPs and RBPs. In this step, all the SSBs and DSBs in
the datasets were pooled together as the DBP dataset (positive
dataset), and 81% of the RBPs were randomly selected as the
RBP dataset (negative dataset) in order to have the same size of
the DBP dataset. The parameters used for this step are: number
of filters =64, kernel size =29, pooling size =6, dropout rate=0.2,
LSTM output size =80, batch size =16.

Multi-class approach

The multi-class approach predicts non-NABPs, DBPs, and RBPs
simultaneously using the same CNN model architecture (Fig. 2D).
To make the dataset sizes comparable, all the SSBs and DSBs
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were pooled as the DBP dataset, 81% of the RBPs were ran-
domly selected as the RBP dataset, and 35% of the non-NABPs
were randomly selected as the non-NABP dataset for each of the
500 rounds. The parameters for the multi-class approach are as
follows: number of filters=64, kernel size=37, pooling size=4,
dropout rate=0.2, LSTM output size =60, batch size=32.

Prediction without SSBs

To investigate the effect of SSBs on the prediction accuracy for
both the hierarchical and multi-class approaches, the SSBs were
removed from the DBP dataset and the number of RBPs and
non-NABPs were adjusted accordingly to make sure that each
dataset has the same number of proteins. The same CNN model
architecture and parameters for the hierarchical and multi-class
approaches were applied, respectively.

Evaluation metrics

Four metrics were used to evaluate the performance of each
predictor: Accuracy (ACC), Recall (REC), Precision (PRE), and F1-
Score (F1) (Equations 1-4). ACC calculates the number of correctly
predicted cases over the total cases. REC represents number of
correctly predicted positive samples over the total of positive
samples. PRE is the ratio of the truly predicted positive samples
over the total positive predictions. F1 is a measure of recall and
precision, which reflects the overall performance.

TP+ TN
ACC= PN TN PP ()
TP
= TN
TP
TP PP
Pl 2 %« REC % PRE
REC + PRE

REC

PRE =

where TP, TN, FP, and FN represent true positive, true negative,
false positive and false negative, respectively.

Results

Prediction of non-NABPs, DBPs, and RBPs with
the hierarchical approach

In both non-NABP/NABP and DBP/RBP prediction of the hierar-
chical approach, the mean validation accuracy and the mean
testing accuracy are comparable with similar standard deviations,
suggesting that there is no overfitting of the models (Fig. 3 and see
online supplementary material for a colour version of Table S1).
For non-NABP/NABP prediction, the overall accuracy in validation
is 82.3% while in testing is 81.2% (Fig. 3A). In the second step for
DBP/RBP prediction, the overall validation and testing accuracy
are 82.8% and 81.4%, respectively (Fig. 3B). When comparing the
performance of the positive and negative datasets separately, we
found that the testing accuracy for NABP (83.4%) is higher than
that for non-NABP (79.1%) in the first step (Fig. 3A). In the second
step, the testing accuracy for RBP (83.1%) is better than that for
DBP (79.7%) (Fig. 3B).

Prediction accuracy of SSBs and DSBs in the DBP
dataset

Due to the structural differences between ssDNA and dsDNA, the
embedding signal of their binding proteins may be different. To
investigate if there are any differences in performance between
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Figure 3. Accuracy for the validation and testing datasets of the hierarchical approach. A. Overall prediction accuracy and accuracy of non-NABPs and
NABPs from the non-NABP/NABP prediction model. B. Overall prediction accuracy and accuracy of RBPs and DBPs from the DBP/RBP prediction model. C.
Prediction accuracy of RBPs, DSBs and SSBs from the non-NABP/NABP prediction model. D. Prediction accuracy of RBPs, DSBs and SSBs from the DBP/RBP
prediction model. E. Overall prediction accuracy and accuracy of RBPs and DBPs from the DBP/RBP prediction model without SSBs included.

SSBs and DSBs, we compared the prediction accuracy for SSBs and
DSBs of DBPs separately. Similar validation and testing accuracy
of each dataset, RBP, DSB, and SSB, were found in both non-
NABP/NABP and DBP/RBP prediction steps, indicating no bias
or overfitting towards any of the datasets from the prediction
models (Figs. 3C and D, see online supplementary material for
a colour version of Table S2). In the non-NABP/NABP prediction
step, the highest testing accuracy was achieved for DSBs (90.1%),
while the testing accuracy for SSBs and RBPs are 81.3% and 78.4%,
respectively (Fig. 3C, see online supplementary material for a
colour version of Table S2). However, in the DBP/RBP prediction
step, testing accuracy of SSBs (42.3%) is much lower than
those of the DSBs (82.7%) and RBPs (83.1%) (Fig. 3D, see online
supplementary material for a colour version of Table S2). In other
words, in discriminating non-NABPs and NABPs, SSBs achieved
similar prediction accuracy to those of RBPs and DSBs. The high
prediction accuracy for SSBsin the first step is not surprising since
the sequence features from SSBs and non-NABPs are probably
very different. The low prediction accuracy for SSBs in the second
step could be a combined result of the small SSB dataset when
compared to the DSB and RBP datasets and the difficulty of
differentiating SSBs from RBPs since they both have single
stranded components.

To investigate the effect of SSBs on the overall prediction
accuracy, the SSBs were removed from the DBP dataset for
the DBP/RBP prediction step. The overall testing accuracy
increased from 81.4% to 83.4% with a larger improvement
for the DBPs, from 79.7% to 82.2% while the prediction accu-
racy for RBPs also improves from 83.1% to 84.5% (Fig.3E,
see online supplementary material for a colour version of
Table S1).

Comparison with existing predictors

We compared our DBP/RBP prediction model with several pub-
lished DBP, RBP, or DBP/RBP predictors as reported in previous
studies [18, 23,28-30, 32, 34]. Since in these DBP or RBP predictions,
the negative datasets used are either non-DBP (for DBP predictors)
or non-RBP (for RBP predictors), which include both non-NABPs
and either RBPs (for DBP predictors) or DBPs (for RBP predictors),
for the purpose of fair comparisons, we constructed the negative
datasets with 455 proteins by combining non-NABPs with either
DBPs (for RBP predictors) or RBPs (for RBP predictors) with a
1:1 ratio. The datasets used for each predictor are summarized
in, see online supplementary material for a colour version of,
Tables S3-S5.
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Table 2. Comparison of our DBP/RBP predictor with the existing predictors (bold numbers represent the highest values in each

comparison metric)

Method PredictionTypes Methods used

REC PRE F1 Neg. Set Total

ACC ACC

DNAbinder DBP SVM
DPP-PseAAC DBP RF

PIDBPred DBP ADB
RNAPred RBP SVM
DeepRBPPred (balance) RBP CNN
DeepRBPPred (unbalance) RBP CNN
RBPLight RBP LGB
DeepDRBP-2 L DBP/RBP CNN+LSTM
Hierarchical DBP/RBP DBP/RBP CNN +LSTM

0.72 0.50 0.59 0.27 0.49
0.47 0.52 0.49 0.57 0.52
0.65 0.75 0.70 0.78 0.71
0.82 0.57 0.67 0.38 0.60
0.88 0.55 0.68 0.28 0.58
0.76 0.55 0.64 0.38 0.57
0.72 0.69 0.70 0.67 0.70
0.88 0.76 0.81 0.72 0.80
0.81 0.81 0.81 0.82 0.81

As shown in Table 2, our predictor has the highest overall
accuracy of 81%, 1% more than the second highest program
DeepDRBP-2 L (80%) while the prediction accuracy for the other
predictor’s ranges from 49% to 71%. We would like to note that
the prediction accuracy reported here for other predictors are
generally higher than the published accuracy of the predictors,
probably because our datasets are less ambiguous in terms of
functional annotations [18, 23, 28, 29, 34]. Not surprisingly, the
prediction accuracies for PIDBPred [30] and RBPLight [32] reported
here are lower than the published accuracy since both programs
were developed and trained for predicting plant DBPs and RBPs.

Not only does our predictor have the highest overall accuracy,
but our model also demonstrated a nice balance between recall
(0.81) and precision (0.81) with a negative set accuracy of 0.82.
While most of the DBP and RBP predictors have relatively good
recall (0.65-0.88) except for DPP-PseAAC (0.47), they typically have
lower precision values and lower accuracy from the negative test-
ing datasets, suggesting that the prediction is biased toward the
positive dataset (Table 2). For example, DeepRBPPred-balanced
has the highest recall (0.88) but with a low precision of 0.55,
indicating a high number of false positive predictions. PIDBPred,
RBPLight, and DeepDRBP-2 L are programs with relatively good
precision (0.75, 0.69, and 0.76, respectively) and accuracy of nega-
tive testing datasets (0.78, 0.67, and 0.72, respectively) (Table 2).

Prediction of non-NABPs, DBPs, and RBPs using a
multi-class approach

In the hierarchical approach, while the overall prediction accuracy
is high from both the non-NABP/NABP step and the DBP/RBP step,
the actual prediction accuracy for any given protein to be a DBP or
RBP is the combined result of the two steps, ~81.2%%81.4% =66.1%
(Fig. 3A and B, see online supplementary material for a colour
version of Table S1). Here we develop a new multi-class approach
for predicting the non-NABPs, DBPs and RBPs simultaneously.
The results show an overall testing accuracy of 72.7%, and 71.2%
for non-NABPs, 70.3% for RBPs, and 76.6% for DBPs (Fig. 4A, see
online supplementary material for a colour version of Table S6).
These data revealed that, while the prediction accuracy of non-
NABP in the multi-class approach (71.2%) is lower than that in
the hierarchical approach (79.1%), the prediction accuracy of DBP
improved dramatically from 64.7% (81.2%x%79.7%) to 76.6% and the
prediction accuracy of RBP improved from 67.5% (81.2%+%83.1%) to
70.3%. For the purpose of identifying novel DBPs and RBPs, better
prediction accuracy for DBPs and RBPs is more important than
that for non-NABPs.

Similar to the hierarchical approach, we found that the testing
prediction accuracy for SSB (39.4%) is much lower than DSB
(79.6%) (Fig. 4B, see online supplementary material for a colour
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Figure 4. Prediction accuracy of the multi-class approach. A. Prediction
accuracy of the overall, non-NABPs, RBPs and DBPs. B. Accuracy of RBPs,
DSBs and SSBs. C. Accuracy of the overall, non-NABPs, RBPs and DBPs
without SSBs included.

version of Table S2). After removing SSBs from the DBP dataset in
the multi-class approach, the overall testing accuracy improved
from 72.7% to 73.9% (Fig. 4C, see online supplementary material
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for a colour version of Table S6). While there is a minimal increase
of prediction accuracy for RBPs, 70.3% to 70.6%, without SSBs in
the DBP dataset, the accuracy for DBP increased about 3% (76.6%
to 79.4%) (Fig. 4C, see online supplementary material for a colour
version of Table S6).

Discussion

NABPs, including DBPs and RBPs, play essential roles in biological
processes. It is well known that proteins with unknown functions,
termed ‘the dark matter of the sequence universe’, represent
a significant fraction of known sequences (20%-50%) [9]. It is
practically impossible to experimentally characterize whether
each of them is a DBP or RBP [9-12]. Therefore, it is of particu-
lar importance to develop efficient computational methods for
predicting new DNA or RNA binding proteins. Not only can it
expand the landscape of nucleic acid binding proteins, it can
also narrow down the cases to a reasonable number for follow-
up experimental validations. There are a number of existing
computational methods for predicting DBPs and RBPs. However,
the predictors generally have limited their applications in RBP or
DBP annotations for any given protein because of the setups of the
training and testing sets. In addition, the datasets used by these
methods are not robust enough [43].

In this paper, we compiled new non-redundant datasets for
non-NABPs, DBPs, RBPs, DSBs, and SSBs, with more accurate anno-
tations. With the advancement of deep learning models, we devel-
oped a hierarchical and a multi-class prediction model, based on
CNN and LSTM, for more accurate DBP and RBP predictions. We
demonstrated that our DBP/RBP predictor outperforms other DBP
and/or RBP prediction tools with a great balance between DBPs
and RBPs prediction accuracy [18, 23, 28, 29, 34]. More impor-
tantly, our multi-class predictor shows a much better accuracy
for predicting DBPs or RBPs for any given protein when compared
with the hierarchical approach. In addition, for the first time (to
our knowledge), we explicitly included annotated SSBs as part of
the DBP dataset and investigated the prediction accuracy of SSBs
and the effect of SSBs on the overall prediction accuracy of DBPs
and RBPs. The approach is practically useful since the models
developed in this study can be used to do predictions for any given
protein such as non-NABP, DBP or RBP. While we employed the up-
to-date Swiss-Prot database with all the reviewed entries and the
data is big enough for applying deep learning methods, more data
and novel features will certainly be beneficial for better learning
and better prediction in the future.

To investigate if there are any patterns from the wrongly
predicted proteins, we developed a strategy to compile the correct
predictions and incorrect predictions. Since we carried out 500-
rounds of tests due to random dataset selection and randomly
splitting the datasets for training and testing, the proteins that
are correctly predicted atleast 75% of the times are grouped as the
correctly predicted set while the wrongly predicted set consists
of the ones having percentage falls under 25%. The numbers of
the correctly and wrongly predicted proteins from each model
are shown in, see online supplementary material for a colour
version of, Table S7. We found that the wrongly predicted proteins
tend to be longer than the correctly predicted proteins with
statistically significant differences (see online supplementary
material for a colour version of Fig. S1). We then investigated the
GO function enrichment of the wrongly predicted proteins (see
online supplementary material for a colour version of Fig. S2) [44].
The results provide a couple of clues with respect to why some
proteins are not predicted correctly. For the incorrectly predicted

non-NABPs, one enriched function is heterocyclic compound
binding and organic cyclic compound binding (GO:1901363) (see
online supplementary material for a colour version of Fig. S2
A and E). The child terms of GO:1901363 include nucleobase
binding, suggesting the dataset selection process can be more
refined in the future. Another common feature is from the
wrongly predicted RBPs that are enriched in functions involved in
interacting with double-stranded RNA (GO:0003725) (see online
supplementary material for a colour version of Fig. S2 D and
G). Since double-stranded RNA has some similarity to double
stranded DNA, they may have similar binding signals to DBPs and
can be predicted incorrectly as DBPs.

In this study, we also demonstrated that SSBs have much
lower prediction accuracy (~40%) than DSBs and RBPs in both
the hierarchical and multi-class models. In other words, more
than half of the SSBs are incorrectly predicted as RBPs. This has
important implications in developing methods for SSB predictions
of proteins with unknown functions. Several programs have been
developed to classify DSBs from SSBs [43, 45-47]. While the per-
formance is decent for classifying DSB and SSB in these studies,
their usefulness is limited in applications for annotating SSBs
for any given protein since these methods and tools take DBPs
as input. However, as we demonstrated in this study from the
DBP/RBP prediction step, when RBPs are involved in the dataset,
the prediction accuracy for SSBs is much lower. Therefore, even
though high classification accuracy for DBPs can be achieved,
the overall prediction accuracy for SSB is low when RBPs are in
the mix. The low SSB prediction accuracy could be combined
results of two factors, a small SSB dataset and insufficient feature
representations. New strategies need to be explored for more
accurate prediction of SSBs for proteins with unknown functions.

Key Points

e Robust datasets including separate SSB annotations
were generated for training and testing the NABP, DBP,
and RBP predictors.

¢ Our hierarchical deep learning model outperforms exist-
ing DBP and RBP predictors with a balanced prediction
accuracy between DBPs and RBPs.

e Our multi-class deep learning model shows dramatic
improvement for DBP and RBP predictions, especially for
predicting DBPs (~12% improvement).

e For the first time, we investigated the prediction accu-
racy of SSBs and their effect on the overall prediction
accuracy of NABPs, RBPs, and DBPs.

Supplementary data

Supplementary data is available at Briefings in Bioformatics online.
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