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Abstract 
Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs), play important roles 
in essential biological processes. To facilitate functional annotation and accurate prediction of different types of NABPs,many machine 
learning-based computational approaches have been developed. However, the datasets used for training and testing as well as the 
prediction scopes in these studies have limited their applications. In this paper, we developed new strategies to overcome these 
limitations by generating more accurate and robust datasets and developing deep learning-based methods including both hierarchical 
and multi-class approaches to predict the types of NABPs for any given protein. The deep learning models employ two layers of 
convolutional neural network and one layer of long short-term memory. Our approaches outperform existing DBP and RBP predictors 
with a balanced prediction betweenDBPs andRBPs, and aremore practically useful in identifying novel NABPs.Themulti-class approach 
greatly improves the prediction accuracy of DBPs and RBPs, especially for the DBPs with ∼12% improvement.Moreover, we explored the 
prediction accuracy of single-stranded DNA binding proteins and their effect on the overall prediction accuracy of NABP predictions. 

Keywords: RNA binding protein (RBP); single-stranded DNA binding protein (SSB); double-stranded DNA binding protein (DSB); 
convolutional neural network (CNN); long short-term memory (LSTM); multi-class model 

Introduction 
DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs) 
are two different types of nucleic acid-binding proteins (NABPs), 
which play crucial roles in many biological processes, such as 
DNA replication, transcriptional regulation, alternative splicing 
and translation [1–5]. DBPs include double-stranded DNA binding 
proteins (DSBs) and single-stranded DNA binding proteins (SSBs). 
While DSBs are mainly involved in transcriptional regulation, 
DNA cleavage and chromosome packaging, SSBs participate in 
DNA recombination, replication and repair, and serve as key 
players in the maintenance of genomic stability [6–8]. Although 
experimental methods can be used to identify the functions of 
some proteins, it is time-consuming and expensive. In addition, 
there are a large number of uncharacterized proteins in the 
protein sequence database [9–12], making it impossible to char-
acterize and annotate each of them by experimental methods. 
Computational methods, on the other hand, can complement the 
experimental approaches by efficiently predicting the functional 
categories of the unannotated proteins and help narrow the num-
ber down for experimental validations. 

A number of computational methods have been developed 
so far to predict nucleic acid binding proteins from sequences, 

especially for DBP predictions [13–27]. Recently, advanced 
machine learning approaches, such as deep learning, become 
popular in bioinformatics research and have been applied to 
predict DBPs and RBPs [26–33]. However, almost all of these 
methods were trained to predict only either DBPs or RBPs 
and therefore may have limited their applications due to the 
similarities between DBPs and RBPs. For example, DNAbinder 
[18], DPP-PseAAC [23], PlDBPred [30],  and DBPMod [31], using 
support vector machine (SVM), random forest (RF), adaptive 
boosting (ADB), and light gradient boosting (LGB) methods, were 
developed for predicting DBPs. The SVM-based RNAPred [34], 
convolutional neural network (CNN)-based DeepRBPPred [28], 
LGB-based RBPLight [32] and CNN-based RBProkCNN [33] are RBPs  
predictors. For the DBP predictors, DBPs were used as the positive 
datasets with non-DBPs (including both non-NABPs and RBPs) 
as the negative datasets for model training. Similar approach 
for dataset construction and model training was adopted for the 
RBP predictors. Therefore, DBP predictors may predict DBPs with 
relatively high accuracy, but tend to incorrectly predictmany RBPs 
as DBPs, and similarly for the RBP predictors. Recently, Zhang 
et al. [29] developed DeepDRBP-2 L for prediction of both RBPs and 
DBPs using CNN and long short-term memory (LSTM). While the
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prediction accuracy of DBPs by DeepDRBP-2 L is very good, the 
prediction accuracy of RBPs is relatively low. The annotation of 
the datasets based only on GO terms may play a role in the low 
prediction accuracy of RBPs [29]. For example, protein Q9VPT8 is 
annotated as both an RBP and a DBP, a dual function protein, in 
the Swiss-Prot database [35]. However, this protein was classified 
as an RBP in their dataset since the GO term for this protein only 
has GO:0003723 (RNA binding), not GO:0003677 (DNA binding). As 
demonstrated previously by Zaitzeff et al. [36] accurate datasets 
are essential for developing better prediction models. Adding 
to the complexity, there are two types of DBPs, SSBs that bind 
single-stranded DNA and DSBs that bind double-stranded DNA 
while RBPs bind to diverse types of secondary and tertiary RNA 
structures besides single-stranded RNA [37–39]. 

We adopted three strategies to address these issues. Firstly, we 
generated new datasets with a more restricted keyword-based 
selection method for selecting the NABPs. Secondly, we devel-
oped a hierarchical approach using two layers of CNN and one 
layer of LSTM. For our hierarchical approach, the first step is 
the prediction of non-NABPs/NABPs followed by the prediction of 
DBPs/RBPs. Thirdly, even though each of the steps in the hierarchi-
cal approach can achieve >80% prediction accuracy, the actual 
prediction accuracy for DBPs and RBPs for any given protein is 
lower since it is contingent on the first step (non-NABPs/NABPs) 
performance. As such, we developed a multi-class deep learning 
model that predicts non-NABPs, DBPs, and RBPs simultaneously. 
Results show that our hierarchical approach outperforms the 
existing DBPs and RBPs prediction tools with balanced prediction 
accuracy between DBPs and RBPs. The multi-class approach can 
predict DBPs and RBPs more accurately when compared with the 
overall accuracy from the hierarchical approach for any given 
protein, especially for prediction of DBPs,which improved dramat-
ically from 64.7% to 76.6%. 

In this study, we also investigated the prediction accuracy of 
SSBs and their effect on the overall prediction performance of the 
DBPs and RBPs. To our knowledge, this is the first time that SSBs 
are explicitly investigated as part of DBPs and RBPs prediction, 
which can provide guidance in developing models for predicting 
novel SSBs. 

Materials and methods 
Datasets 
We downloaded a total of 484,143 proteins with GO term 
annotations in Swiss-Prot from the UniProt database [35] and  
removed the redundancy of the proteins using a sequence 
identity cutoff of 0.4 with CD-HIT v4.8.1 [40], which resulted 
in a non-redundant (NR) dataset of 65,076 proteins. Similar 
to previous studies, we selected proteins with length between 
40 and 1500 amino acids, which represent 96.5% (62,797) of 
the initial NR dataset (Fig. 1A). The types of NABPs were then 
defined as shown in Table 1. More specifically, if the protein 
file contains all the four keywords ‘DNA’, ‘binding’, ‘single’, 
and ‘strand’, it is annotated as an SSB; if the protein file 
contains all the four keywords ‘DNA’, ‘binding’, ‘double’, and 
‘strand’, or any other four types of descriptions related to 
transcription factors as shown in Table 1,  it is considered as a  
DSB; if the protein has keyword ‘RNA-binding’ or ‘RNA binding’, 
it is defined as an RBP; and finally if it does not contain any 
of the keywords ‘DNA’, ‘RNA’, ‘nucleic acid’, and ‘nucleotide’ 
in its keywords description line, does not contain keyword 
‘binding’ and GO terms ‘GO0003676’, ‘GO0003677’, ‘GO0003723’, 
‘GO0003697’, and ‘GO0003690’ in all its descriptions, it is 

Figure 1.Datasets used in this study.A. The length distribution of the non-
redundant dataset. B. Venn diagram showing the numbers of different 
types of NABPs, including RBPs, DSBs, SSBs and proteins with capabilities 
of binding more than one types of nucleic acids (zoomed-in square 
diagram). 

Table 1. Keywords used for generating each dataset 

Types Keywords 

SSB ‘DNA’+ ‘binding’+ ‘single’+ ‘strand’ 
DSB ‘DNA’+ ‘binding’+ ‘double’+ ‘strand’ 

‘DNA-binding transcription activator activity’ 
‘DNA-binding transcription factor activity’ 
‘DNA-binding transcription repressor activity’ 
‘sequence-specific DNA binding’ 

RBP ‘RNA-binding’ 
‘RNA binding’ 

non-NABP does not contain: 
‘DNA’, ‘RNA’, ‘nucleic acid’, ‘nucleotide’ in keywords and 
‘binding’ in all description and 
GO:0003676, GO:0003677, GO:0003723, GO:0003697, 
GO:0003690 in all description 

considered as a non-NABP. Combing GO terms with keywords for 
non-NABP dataset generation is to maximize the removal of 
potential NABPs from the non-NABP dataset. The above selection 
process resulted in 561 SSBs, 4520 DSBs, 5836 RBPs, and 12,899 
non-NABPs ( Fig. 1B). 

It is well known that some NABPs can bind different types of 
nucleic acids. For example, some proteins can bind both DNA and 
RNA [29]. In our dataset, there are 135 proteins that can bind to 
both RNA and dsDNA, 40 proteins that are annotated as RBPs and 
SSBs, 140 proteins that are capable of binding dsDNA and ssDNA, 
and 34 proteins can bind all three types of nucleic acids (Fig. 1B). 
The NABPs that bind only one type of nucleic acids consist of 347 
SSBs, 4211 DSBs, and 5627 RBPs (Fig. 1B). In this study, we only 
used NABPs with distinct binding type annotations, SSBs, DSBs, 
RBPs, and non-NABPs, for model training and testing. 

Position-specific scoring matrix calculation 
The position-specific scoring matrix (PSSM) of each protein was 
used to train, validate, and test our machine learning models. To 
calculate the PSSM for each protein, psi-blast (2.11.0+) [41] was  
used with an e-value cutoff of 0.001 and three iterations against 
the uniref90 datasets [42]. For each protein, the initial PSSM,a L∗20 
matrix (L: length of the protein), was first transformed as a 20∗L 
matrix. Since the fully connected layer of CNN model requires the 
inputs to be of the same length, zero was added after the original 
PSSM to make all the proteins having the same length (20∗1500). 

CNN model building 
For the deep learning model, a four-layer architecture, which 
consists of one CNN layer, one dropout layer, one max-pooling 
layer, and a second dropout layer, was repeated once (Fig. 2A).
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Figure 2. Deep learning models. A. Flowchart of the CNN model. B. 
Schematic representation of the10-fold cross validation of the training, 
validation and testing datasets. C. Flowchart of the hierarchical approach. 
D. Flowchart of the multi-class approach. 

The process is completed with four more layers, consisting of an 
LSTM layer, one dropout layer, one fully connected layer and an 
activation layer ( Fig. 2A). The CNN model was trained using the 
training and validation datasets with a 10-fold cross validation 
strategy for 100 epochs and the model with the highest validation 
accuracy was saved and tested with the testing datasets (Fig. 2B). 
Since the datasets were randomly selected, the CNN model was 
run for 500 rounds with each random selection to calculate the 
mean and standard deviation (SD) of the prediction accuracy. In 
each approach, we tried different set of parameters for training, 
and the parameters with the best performance were selected for 
the final models. 

Hierarchical prediction approach 
We first developed a hierarchical approach for predicting non-
NABPs, DBPs, and RBPs using the CNN model (Fig. 2C). The first 
step is the prediction between non-NABPs and NABPs. In this step, 
all the SSBs, DSBs, and RBPs in our datasets were combined as the 
NABPs dataset (positive dataset), and 79% of non-NABPs were 
randomly selected as the negative dataset to match the number 
of NABPs positive dataset. The CNN models were trained with 
the following parameters: number of filters = 128, kernel size = 37, 
pooling size = 4, dropout rate = 0.2, LSTM output size = 50, batch 
size = 128. 

The second step of the hierarchical approach is the prediction 
between DBPs and RBPs. In this step, all the SSBs and DSBs in 
the datasets were pooled together as the DBP dataset (positive 
dataset), and 81% of the RBPs were randomly selected as the 
RBP dataset (negative dataset) in order to have the same size of 
the DBP dataset. The parameters used for this step are: number 
of filters = 64, kernel size = 29, pooling size = 6, dropout rate = 0.2, 
LSTM output size = 80, batch size = 16. 

Multi-class approach 
The multi-class approach predicts non-NABPs, DBPs, and RBPs 
simultaneously using the same CNN model architecture (Fig. 2D). 
To make the dataset sizes comparable, all the SSBs and DSBs 

were pooled as the DBP dataset, 81% of the RBPs were ran-
domly selected as the RBP dataset, and 35% of the non-NABPs 
were randomly selected as the non-NABP dataset for each of the 
500 rounds. The parameters for the multi-class approach are as 
follows: number of filters = 64, kernel size = 37, pooling size = 4, 
dropout rate = 0.2, LSTM output size = 60, batch size = 32. 

Prediction without SSBs 
To investigate the effect of SSBs on the prediction accuracy for 
both the hierarchical and multi-class approaches, the SSBs were 
removed from the DBP dataset and the number of RBPs and 
non-NABPs were adjusted accordingly to make sure that each 
dataset has  the same number of proteins.  The same CNN  model  
architecture and parameters for the hierarchical and multi-class 
approaches were applied, respectively. 

Evaluation metrics 
Four metrics were used to evaluate the performance of each 
predictor: Accuracy (ACC), Recall (REC), Precision (PRE), and F1-
Score (F1) (Equations 1–4).ACC calculates the number of correctly 
predicted cases over the total cases. REC represents number of 
correctly predicted positive samples over the total of positive 
samples. PRE is the ratio of the truly predicted positive samples 
over the total positive predictions. F1 is a measure of recall and 
precision, which reflects the overall performance. 

ACC = TP + TN 
TP + FN + TN + FP 

(1) 

REC = 
TP 

TP + FN 
(2) 

PRE = 
TP 

TP + FP 
(3) 

F1 = 
2 ∗ REC ∗ PRE 
REC + PRE 

(4) 

where TP, TN, FP, and FN represent true positive, true negative, 
false positive and false negative, respectively. 

Results 
Prediction of non-NABPs, DBPs, and RBPs with 
the hierarchical approach 
In both non-NABP/NABP and DBP/RBP prediction of the hierar-
chical approach, the mean validation accuracy and the mean 
testing accuracy are comparable with similar standard deviations, 
suggesting that there is no overfitting of the models (Fig. 3 and see 
online supplementary material for a colour version of Table S1). 
For non-NABP/NABP prediction, the overall accuracy in validation 
is 82.3% while in testing is 81.2% (Fig. 3A). In the second step for 
DBP/RBP prediction, the overall validation and testing accuracy 
are 82.8% and 81.4%, respectively (Fig. 3B). When comparing the 
performance of the positive and negative datasets separately, we 
found that the testing accuracy for NABP (83.4%) is higher than 
that for non-NABP (79.1%) in the first step (Fig. 3A). In the second 
step, the testing accuracy for RBP (83.1%) is better than that for 
DBP (79.7%) (Fig. 3B). 

Prediction accuracy of SSBs and DSBs in the DBP 
dataset 
Due to the structural differences between ssDNA and dsDNA, the 
embedding signal of their binding proteins may be different. To 
investigate if there are any differences in performance between
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Figure 3. Accuracy for the validation and testing datasets of the hierarchical approach. A. Overall prediction accuracy and accuracy of non-NABPs and 
NABPs from the non-NABP/NABP prediction model. B. Overall prediction accuracy and accuracy of RBPs and DBPs from the DBP/RBP prediction model. C. 
Prediction accuracy of RBPs, DSBs and SSBs from the non-NABP/NABP prediction model. D. Prediction accuracy of RBPs, DSBs and SSBs from the DBP/RBP 
prediction model. E. Overall prediction accuracy and accuracy of RBPs and DBPs from the DBP/RBP prediction model without SSBs included. 

SSBs and DSBs,we compared the prediction accuracy for SSBs and 
DSBs of DBPs separately. Similar validation and testing accuracy 
of each dataset, RBP, DSB, and SSB, were found in both non-
NABP/NABP and DBP/RBP prediction steps, indicating no bias 
or overfitting towards any of the datasets from the prediction 
models ( Figs. 3C and D, see online supplementary material for 
a colour version of Table S2). In the non-NABP/NABP prediction 
step, the highest testing accuracy was achieved for DSBs (90.1%), 
while the testing accuracy for SSBs and RBPs are 81.3% and 78.4%, 
respectively (Fig. 3C, see online supplementary material for a 
colour version of Table S2). However, in the DBP/RBP prediction 
step, testing accuracy of SSBs (42.3%) is much lower than 
those of the DSBs (82.7%) and RBPs (83.1%) (Fig. 3D, see online 
supplementary material for a colour version of Table S2). In other 
words, in discriminating non-NABPs and NABPs, SSBs achieved 
similar prediction accuracy to those of RBPs and DSBs. The high 
prediction accuracy for SSBs in the first step is not surprising since 
the sequence features from SSBs and non-NABPs are probably 
very different. The low prediction accuracy for SSBs in the second 
step could be a combined result of the small SSB dataset when 
compared to the DSB and RBP datasets and the difficulty of 
differentiating SSBs from RBPs since they both have single 
stranded components. 

To investigate the effect of SSBs on the overall prediction 
accuracy, the SSBs were removed from the DBP dataset for 
the DBP/RBP prediction step. The overall testing accuracy 
increased from 81.4% to 83.4% with a larger improvement 
for the DBPs, from 79.7% to 82.2% while the prediction accu-
racy for RBPs also improves from 83.1% to 84.5% (Fig. 3E, 
see online supplementary material for a colour version of 
Table S1). 

Comparison with existing predictors 
We compared our DBP/RBP prediction model with several pub-
lished DBP, RBP, or DBP/RBP predictors as reported in previous 
studies [18, 23, 28–30, 32, 34]. Since in theseDBP or RBP predictions, 
the negative datasets used are either non-DBP (for DBP predictors) 
or non-RBP (for RBP predictors), which include both non-NABPs 
and either RBPs (for DBP predictors) or DBPs (for RBP predictors), 
for the purpose of fair comparisons, we constructed the negative 
datasets with 455 proteins by combining non-NABPs with either 
DBPs (for RBP predictors) or RBPs (for RBP predictors) with a 
1:1 ratio. The datasets used for each predictor are summarized 
in, see online supplementary material for a colour version of, 
Tables S3–S5.
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Table 2. Comparison of our DBP/RBP predictor with the existing predictors (bold numbers represent the highest values in each 
comparison metric) 

Method PredictionTypes Methods used REC PRE F1 Neg. Set 
ACC 

Total 
ACC 

DNAbinder DBP SVM 0.72 0.50 0.59 0.27 0.49 
DPP-PseAAC DBP RF 0.47 0.52 0.49 0.57 0.52 
PlDBPred DBP ADB 0.65 0.75 0.70 0.78 0.71 
RNAPred RBP SVM 0.82 0.57 0.67 0.38 0.60 
DeepRBPPred (balance) RBP CNN 0.88 0.55 0.68 0.28 0.58 
DeepRBPPred (unbalance) RBP CNN 0.76 0.55 0.64 0.38 0.57 
RBPLight RBP LGB 0.72 0.69 0.70 0.67 0.70 
DeepDRBP-2 L DBP/RBP CNN+LSTM 0.88 0.76 0.81 0.72 0.80 
Hierarchical DBP/RBP DBP/RBP CNN+LSTM 0.81 0.81 0.81 0.82 0.81 

As shown in Table 2, our predictor has the highest overall 
accuracy of 81%, 1% more than the second highest program 
DeepDRBP-2 L (80%) while the prediction accuracy for the other 
predictor’s ranges from 49% to 71%. We would like to note that 
the prediction accuracy reported here for other predictors are 
generally higher than the published accuracy of the predictors, 
probably because our datasets are less ambiguous in terms of 
functional annotations [18, 23, 28, 29, 34]. Not surprisingly, the 
prediction accuracies for PlDBPred [30] and RBPLight [32] reported 
here are lower than the published accuracy since both programs 
were developed and trained for predicting plant DBPs and RBPs. 

Not only does our predictor have the highest overall accuracy, 
but our model also demonstrated a nice balance between recall 
(0.81) and precision (0.81) with a negative set accuracy of 0.82. 
While most of the DBP and RBP predictors have relatively good 
recall (0.65–0.88) except for DPP-PseAAC (0.47), they typically have 
lower precision values and lower accuracy from the negative test-
ing datasets, suggesting that the prediction is biased toward the 
positive dataset (Table 2). For example, DeepRBPPred-balanced 
has the highest recall (0.88) but with a low precision of 0.55, 
indicating a high number of false positive predictions. PlDBPred, 
RBPLight, and DeepDRBP-2 L are programs with relatively good 
precision (0.75, 0.69, and 0.76, respectively) and accuracy of nega-
tive testing datasets (0.78, 0.67, and 0.72, respectively) (Table 2). 

Prediction of non-NABPs, DBPs, and RBPs using a 
multi-class approach 
In the hierarchical approach,while the overall prediction accuracy 
is high from both the non-NABP/NABP step and the DBP/RBP step, 
the actual prediction accuracy for any given protein to be a DBP or 
RBP is the combined result of the two steps,∼81.2%∗81.4%=66.1% 
(Fig. 3A and B, see online supplementary material for a colour 
version of Table S1). Here we develop a new multi-class approach 
for predicting the non-NABPs, DBPs and RBPs simultaneously. 
The results show an overall testing accuracy of 72.7%, and 71.2% 
for non-NABPs, 70.3% for RBPs, and 76.6% for DBPs (Fig. 4A, see  
online supplementary material for a colour version of Table S6). 
These data revealed that, while the prediction accuracy of non-
NABP in the multi-class approach (71.2%) is lower than that in 
the hierarchical approach (79.1%), the prediction accuracy of DBP 
improved dramatically from64.7% (81.2%∗79.7%) to 76.6% and the 
prediction accuracy of RBP improved from 67.5% (81.2%∗83.1%) to 
70.3%. For the purpose of identifying novel DBPs and RBPs, better 
prediction accuracy for DBPs and RBPs is more important than 
that for non-NABPs. 

Similar to the hierarchical approach, we found that the testing 
prediction accuracy for SSB (39.4%) is much lower than DSB 
(79.6%) (Fig. 4B, see online supplementary material for a colour 

Figure 4. Prediction accuracy of the multi-class approach. A. Prediction 
accuracy of the overall, non-NABPs, RBPs and DBPs. B. Accuracy of RBPs, 
DSBs and SSBs. C. Accuracy of the overall, non-NABPs, RBPs and DBPs 
without SSBs included. 

version of Table S2). After removing SSBs from the DBP dataset in 
the multi-class approach, the overall testing accuracy improved 
from 72.7% to 73.9% (Fig. 4C, see online supplementary material
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for a colour version of Table S6).While there is a minimal increase 
of prediction accuracy for RBPs, 70.3% to 70.6%, without SSBs in 
the DBP dataset, the accuracy for DBP increased about 3% (76.6% 
to 79.4%) (Fig. 4C, see online supplementary material for a colour 
version of Table S6). 

Discussion 
NABPs, including DBPs and RBPs, play essential roles in biological 
processes. It is well known that proteins with unknown functions, 
termed ‘the dark matter of the sequence universe’, represent 
a significant fraction of known sequences (20%–50%) [9]. It is 
practically impossible to experimentally characterize whether 
each of them is a DBP or RBP  [9–12]. Therefore, it is of particu-
lar importance to develop efficient computational methods for 
predicting new DNA or RNA binding proteins. Not only can it 
expand the landscape of nucleic acid binding proteins, it can 
also narrow down the cases to a reasonable number for follow-
up experimental validations. There are a number of existing 
computational methods for predicting DBPs and RBPs. However, 
the predictors generally have limited their applications in RBP or 
DBP annotations for any given protein because of the setups of the 
training and testing sets. In addition, the datasets used by these 
methods are not robust enough [43]. 

In this paper, we compiled new non-redundant datasets for 
non-NABPs,DBPs, RBPs,DSBs, and SSBs,withmore accurate anno-
tations.With the advancement of deep learning models,we devel-
oped a hierarchical and a multi-class prediction model, based on 
CNN and LSTM, for more accurate DBP and RBP predictions. We 
demonstrated that our DBP/RBP predictor outperforms other DBP 
and/or RBP prediction tools with a great balance between DBPs 
and RBPs prediction accuracy [18, 23, 28, 29, 34]. More impor-
tantly, our multi-class predictor shows a much better accuracy 
for predicting DBPs or RBPs for any given protein when compared 
with the hierarchical approach. In addition, for the first time (to 
our knowledge), we explicitly included annotated SSBs as part of 
the DBP dataset and investigated the prediction accuracy of SSBs 
and the effect of SSBs on the overall prediction accuracy of DBPs 
and RBPs. The approach is practically useful since the models 
developed in this study can be used to do predictions for any given 
protein such as non-NABP,DBP or RBP.While we employed the up-
to-date Swiss-Prot database with all the reviewed entries and the 
data is big enough for applying deep learning methods,more data 
and novel features will certainly be beneficial for better learning 
and better prediction in the future. 

To investigate if there are any patterns from the wrongly 
predicted proteins, we developed a strategy to compile the correct 
predictions and incorrect predictions. Since we carried out 500-
rounds of tests due to random dataset selection and randomly 
splitting the datasets for training and testing, the proteins that 
are correctly predicted at least 75% of the times are grouped as the 
correctly predicted set while the wrongly predicted set consists 
of the ones having percentage falls under 25%. The numbers of 
the correctly and wrongly predicted proteins from each model 
are shown in, see online supplementary material for a colour 
version of, Table S7.We found that the wrongly predicted proteins 
tend to be longer than the correctly predicted proteins with 
statistically significant differences (see online supplementary 
material for a colour version of Fig. S1). We then investigated the 
GO function enrichment of the wrongly predicted proteins (see 
online supplementary material for a colour version of Fig. S2) [44]. 
The results provide a couple of clues with respect to why some 
proteins are not predicted correctly. For the incorrectly predicted 

non-NABPs, one enriched function is heterocyclic compound 
binding and organic cyclic compound binding (GO:1901363) (see 
online supplementary material for a colour version of Fig. S2 
A and E). The child terms of GO:1901363 include nucleobase 
binding, suggesting the dataset selection process can be more 
refined in the future. Another common feature is from the 
wrongly predicted RBPs that are enriched in functions involved in 
interacting with double-stranded RNA (GO:0003725) (see online 
supplementary material for a colour version of Fig. S2 D and  
G). Since double-stranded RNA has some similarity to double 
stranded DNA, they may have similar binding signals to DBPs and 
can be predicted incorrectly as DBPs. 

In this study, we also demonstrated that SSBs have much 
lower prediction accuracy (∼40%) than DSBs and RBPs in both 
the hierarchical and multi-class models. In other words, more 
than half of the SSBs are incorrectly predicted as RBPs. This has 
important implications in developing methods for SSB predictions 
of proteins with unknown functions. Several programs have been 
developed to classify DSBs from SSBs [43, 45–47]. While the per-
formance is decent for classifying DSB and SSB in these studies, 
their usefulness is limited in applications for annotating SSBs 
for any given protein since these methods and tools take DBPs 
as input. However, as we demonstrated in this study from the 
DBP/RBP prediction step, when RBPs are involved in the dataset, 
the prediction accuracy for SSBs is much lower. Therefore, even 
though high classification accuracy for DBPs can be achieved, 
the overall prediction accuracy for SSB is low when RBPs are in 
the mix. The low SSB prediction accuracy could be combined 
results of two factors, a small SSB dataset and insufficient feature 
representations. New strategies need to be explored for more 
accurate prediction of SSBs for proteins with unknown functions. 

Key Points 
• Robust datasets including separate SSB annotations 

were generated for training and testing the NABP, DBP, 
and RBP predictors. 

• Our hierarchical deep learning model outperforms exist-
ing DBP and RBP predictors with a balanced prediction 
accuracy between DBPs and RBPs. 

• Our multi-class deep learning model shows dramatic 
improvement for DBP and RBP predictions, especially for 
predicting DBPs (∼12% improvement). 

• For the first time, we investigated the prediction accu-
racy of SSBs and their effect on the overall prediction 
accuracy of NABPs, RBPs, and DBPs. 

Supplementary data 
Supplementary data is available at Briefings in Bioformatics online. 
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