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Abstract

Motivation: Nucleic acid binding proteins (NABPs) play critical roles in various and essential biological processes. Many machine learning-based
methods have been developed to predict different types of NABPs. However, most of these studies have limited applications in predicting the types
of NABPs for any given protein with unknown functions, due to several factors such as dataset construction, prediction scope and features used for
training and testing. In addition, single-stranded DNA binding proteins (DBP) (SSBs) have not been extensively investigated for identifying novel SSBs
from proteins with unknown functions.

Results: To improve prediction accuracy of different types of NABPs for any given protein, we developed hierarchical and multi-class models with
machine learning-based methods and a feature extracted from protein language model ESM2. Our results show that by combining the feature from
ESM2 and machine learning methods, we can achieve high prediction accuracy up to 95% for each stage in the hierarchical approach, and 85% for
overall prediction accuracy from the multi-class approach. More importantly, besides the much improved prediction of other types of NABPs, the
models can be used to accurately predict single-stranded DBPs, which is underexplored.

Availability and implementation: The datasets and code can be found at https://figshare.com/projects/Prediction_of_nucleic_acid_binding_

proteins_using_protein_language_model/211555.

1 Introduction

Nucleic acid binding proteins (NABPs), including DNA bind-
ing proteins (DBPs) and RNA binding proteins (RBPs), play
crucial roles in many biological processes, such as DNA repli-
cation and repair, transcriptional regulation, alternative splic-
ing and translation (Luscombe ez al. 2000, Gerstberger et al.
2014, Hudson and Ortlund 2014). There are two types of
DBPs, single-stranded DNA (ssDNA) binding proteins (SSBs)
and double-stranded DNA (dsDNA) binding proteins (DSBs).
SSBs are mainly involved in DNA recombination, replication
and repair, and serve as key players in the maintenance of ge-
nomic stability, while DSBs participate in transcriptional reg-
ulation, DNA cleavage and chromosome packaging (Corona
and Guo 2016, Lin et al. 2021, Guo and Malik 2022).
Computational prediction of NABPs has been considered an
efficient alternative to the expensive and time-consuming ex-
perimental methods for functional annotation of the vast
number of uncharacterized proteins in the protein database.
Many DBP and RBP predictors have been developed so far
with classical machine learning based models such as Support
Vector Machine (SVM) and Random Forest (RF), and more
advanced deep learning approaches including Convolutional
Neural Network (CNN) using sequence-based features to
train and test the models (Kumar et al. 2007, Lou et al. 2014,
Xu et al. 2014, Motion et al. 2015, Chowdhury et al. 2017,
Qu et al. 2017, Zhang and Liu 2017, Rahman et al. 2018,

Zheng et al. 2018, Adilina et al. 2019, Ali et al. 2019, Du
et al. 2019, Hu et al. 2019, Mishra et al. 2019, Wang et al.
2020, Zhang et al. 2021, Pradhan et al. 2023a,b). Most of
these predictors only target one type of NABPs, either DBPs
or RBPs, which limits their application in predicting the types
of NABPs for proteins without known functions. Recently we
developed a hierarchical approach and a multi-class ap-
proach for prediction of NABP types for any given protein
using a combination of deep learning methods and a
sequence-based feature, position specific scoring matrix
(PSSM) (Wu and Guo 2024). While our DSB/RBP predictor
outperforms published models and demonstrates a balanced
prediction between the positive and negative datasets, the
overall prediction accuracy is modest at 72% for any given
protein. Moreover, for the first time, we explicitly included
annotated SSBs as part of the DBPs dataset in that study and
investigated the prediction accuracy of SSBs and their effect
on the overall prediction accuracy. We found that the accu-
racy for SSBs is only about 40% with over half of them pre-
dicted as RBPs (Wu and Guo 2024). In the past several years,
machine learning models have been developed for classifica-
tion between SSBs and DSBs (Wang et al. 2017, Tan et al.
2019, Ali et al. 2020, Sharma et al. 2021, Manavi et al.
2023). Based on the dataset developed by Wang et al. (2017),
the prediction accuracy for SSB/DSB classification ranges
from 73% to about 83%, with Manavi et al. reported a
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higher accuracy using a CNN method and evolution-based fea-
tures (Manavi et al. 2023). However, these SSB/DSB classifica-
tion models assume each input protein is a known DBP.
Therefore, the usefulness of these methods is limited as we dem-
onstrated previously that the major issue is the wrong predic-
tion of SSBs as RBPs. To address this issue and to improve the
prediction accuracy of SSBs, we recently developed an im-
proved SSB/DSB classifier as well as a novel SSB/RBP classifier
(dashed box in Fig. 1A) with a pretrained protein language
model ESM2 and we demonstrated high prediction accuracy
for both SSB/DSB and SSB/RBP classifiers (Wu et al. 2024).

In this work, we aim to develop models for improving pre-
diction accuracy of different types of NABPs, including SSBs,
for any given protein by taking advantage of the datasets we
generated in our previous study and the powerful protein lan-
guage model ESM2 (Lin et al. 2023). The major differences
between this work and our previous studies lie in two aspects.
Unlike our previous study that evaluated the prediction accu-
racy of SSBs as part of the DBP dataset since the small SSB
dataset is not suitable for deep learning approaches, here we
explicitly train and test SSBs for prediction. In other words, we
predict the types of proteins with either a hierarchical approach
(Fig. 1A) or a multi-class approach that simultaneously predicts
SSBs, DSBs, RBPs, and non-NABPs for any given protein
(Fig. 1B). The other major difference is that we use ESM2, a
protein language model pretrained on a large number of pro-
tein sequences with 15 billion parameters (Lin et al. 2023), to
extract features for training and testing. Protein language mod-
els are trained with deep neural networks for representing each
protein sequence and have shown much improved performance
in different types of bioinformatics studies, such as protein
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Figure 1. Flowchart of the hierarchical (A) and multi-class (B) approaches.
The classifiers in the dashed box are described in a recent study (Wu
et al. 2024).
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structure prediction (Jing et al. 2024, Lin et al. 2023), protein
localization prediction (Luo et al. 2024), structure-based pre-
diction of protein-nucleic acid binding sites (Roche et al. 2024,
Sagendorf et al. 2024), and others (Avraham et al. 2023,
Yeung et al. 2023, Rao et al. 2024).

Applying different types of classic machine learning meth-
ods, including SVM, RF, k-nearest neighbors (KNN), multi-
layer perceptron (MLP), and linear regression (LR), we
demonstrate that the prediction accuracy for each step of the
hierarchical approach can achieve up to 95%, and the overall
prediction accuracy is about 85% for the multi-class ap-
proach. Moreover, similar to our previous studies, each ap-
proach achieves a good prediction balance on different
datasets. With the multi-class approach developed in this
study and the hierarchical approach from this study com-
bined with the SSB/DSB and SSB/RBP classifiers from our re-
cent work (Wu et al. 2024), we can achieve much improved
prediction of NABPs for any given protein.

2 Methods
2.1 Datasets

We used the non-redundant datasets from our recent study for
models training, validation and testing, which consist of 347
SSBs, 4211 DSBs, 5627 RBPs, and 12 899 non-NABPs after re-
moving redundant entries using Cd-hit with a cutoff of 0.4 (Wu
and Guo 2024). For the hierarchical approach, in the first step
of non-NABP/NABP classification, we combined all the SSBs,
DSBs, and RBPs as the NABP set, and randomly selected 79%
non-NABPs as the non-NABP set; in the second step of DBP/
RBP classification, all the SSBs and DSBs are combined as the
DBP group, and 81% RBPs are randomly selected as the RBP
group (Fig. 1A). For the multi-class approach, we used all the
SSBs as the SSB group, randomly selected 8.3% DSBs, 6.2%
RBPs, and 2.7% non-NABPs as the DSB, RBP, and non-NABP
sets, respectively (Fig. 1B). For each prediction, we randomly
selected 70% as the training set, and the remaining 30% as the
testing set. Within the training set, a five-fold cross-validation
strategy was employed to select the best hyperparameters for
each model. To make sure that the prediction performance is
not biased from a specific training/testing split of the dataset,
we carried out 100 independent prediction tests. In each inde-
pendent prediction, the dataset was randomly split into training
(70%) and testing (30%), then the training, validation, and
testing were carried out and the performance values (see
Section 2.4) were recorded. The means and standard deviations
(SDs) were then calculated from these 100 independent tests.

2.2 Features extracted from ESM2

We downloaded the pretrained esm2_t33_650M_URS50D
from ESM2 (Lin et al. 2023) for extracting the embedded fea-
tures. For each protein, we first extracted its tokens using the
pretrained alphabet function from esm2_t33_650M_URS0D,
then derived the per-residue representations using the tokens
of the protein using the trained model with repr_layers equal
to 33. The per-sequence representations were then extracted
by averaging the per-residue representations. For each pro-
tein, the per-sequence representations have the same length, a
vector of 1280 values.

2.3 Machine learning models

Five machine learning models, SVM, MLP, KNN, LR, and
RF were applied for training and testing. Classifiers SVC,
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MLPClassifier, KNeighborsClassifier, LogisticRegression,
and RandomForestClassifier from sklearn (https:/scikit-
learn.org/stable/api/index.html) were used for SVM, MLP,
KNN, LR, and RF, respectively. For each model, we used
GridSearchCV with the default five-fold cross-validation to
tune and select the best hyperparameters. The hyperpara-
meters used in each machine learning model are summarized
in https://github.com/unccguolab/Prediction-of-nucleic-acid-
binding-proteins-using-protein-language-model.

2.4 Evaluation metrics

Five different evaluation metrics were applied to assess the
performance of each model: accuracy (ACC), sensitivity or
recall (SN/REC), specificity (SP), Matthews correlation coef-
ficient (MCC), and F1-Score (F1) (1-6). ACC calculates the
number of correctly predicted cases over the total cases. SN/
REC represents number of correctly predicted positive sam-
ples over the total positive samples. SP is the ratio of the cor-
rectly predicted negative samples over the total negative
samples. F1 considers both false positives and false negatives
while MCC offers more balanced assessment of the overall
performance.

TP+ TN
ACC_TP+FN+TN+FP' (1)
TP

TN
P =N )
MCC — (TN xTP) — (EN x FP) @

/(TP + FN)(TP + FP)(TN + FN)(TN + FP)

TP

PRE = TP (5)
2 x REC xPRE

Fl = REC +PRE (6)

where TP, TN, FP, and FN represent true positive, true nega-
tive, false positive and false negative, respectively.

3 Results
3.1 Hierarchical approach

By applying the features extracted from ESM2 to different
machine learning models, high prediction accuracy is ob-
served in each step of the hierarchical approach. For

prediction between non-NABPs and NABPs (Fig. 1A), all five
models achieve greater than 90% overall prediction accuracy
on the testing datasets with MLP, SVM, and LR having com-
parable and better performance than KNN and RF (Table 1).
MLP (ACC=94.3%, SN=94.37%, SP=94.22%,
MCC=0.886, F1=94.3%) performs slightly better than
SVM and LR. The best performance from the SVM predic-
tion uses a linear kernel as shown in the linked hyperpara-
meters file (see Section 2), which is not surprising since a
simple LR model can achieve similar high prediction accu-
racy. Notably, all three top performing machine learning
models, SVM, MLP, and LR show a balanced sensitivity and
specificity with very low SDs (Table 1).

The performance of each model on individual datasets, in-
cluding non-NABPs and NABPs, has also been evaluated. As
shown in Fig. 2A, except for KNN (88.41% for non-NABPs
versus 94.21% for NABPs), all other models have similar pre-
diction accuracy between non-NABPs and NABPs. The pre-
diction accuracy for each of the three individual types of
NABPs, SSBs, DSBs, and RBPs, was also assessed. Except for
the RF model, the prediction accuracies among these three
different types of NABPs are also comparable with a similar
pattern: DSB has the best prediction accuracy followed by
$SB and RBP (Fig. 2B).

For the DBP/RBP classification step (Fig. 1A), SVM, MLP
and LR are the top performers with SVM having a slightly
better  performance (ACC=95.54%, SN=94.72%,
SP=96.36%, MCC=0.911, F1=95.5%) (Table 1). Similar
to the non-NABP/NABP prediction, each of the three top
models has similar sensitivity and specificity with very small
SDs for DBP/RBP classification (Table 1). RF has the largest
difference between sensitivity (86.71%) and specificity
(93.71%) (Table 1). While there are no non-NABP/NABP
classifiers that we can compare directly, we compared our
SVM-based DBP/RBP classifier with a number of DBP/RBP
predictors that have been published and available for testing
(Kumar et al. 2007, 2011) (Zhang and Liu 2017, Rahman
et al. 2018, Zheng et al. 2018, Zhang et al. 2021, Pradhan
et al. 2023a,b, Wu and Guo 2024). As we reported in our re-
cent study, the negative datasets used in these predictions are
either non-DBP (for DBP predictors) or non-RBP (for RBP
predictors) (Wu and Guo 2024). In other words, the non-
DBP datasets include both non-NABPs and RBPs and the
non-RBP datasets consist of non-NABPs and DBPs. For the
purpose of fair comparisons, we generated the negative data-
sets to mimic the published compositions using the entries
from our newly created dataset and tested the performances
of these programs (Wu and Guo 2024). Table 2 shows that

Table 1. Performance evaluation on testing datasets for the hierarchical approach.®

Classifier Methods ACC (%) SN (%) SP (%) MCC F1 (%)

Non-NABP/NABP SVM 93.79+0.29 94.19+0.44 93.38+0.48 0.876 =0.006 93.81+0.29
MLP 94.30+0.38 94.37£0.84 94.22+0.78 0.886 £0.008 94.30+£0.39
KNN 91.31+0.29 94.21+0.48 88.41+0.58 0.828 +0.006 91.56+0.28
LR 93.30+0.28 93.98 £0.45 92.61+0.48 0.866 =0.006 93.35+0.28
RF 90.35+0.40 91.20+0.64 89.50+0.60 0.807+0.008 90.43+0.40

DBP/RBP SVM 95.54+0.35 94.72 £ 0.67 96.36+0.49 0.911+0.007 95.50+0.36
MLP 95.49+0.36 95.30+0.66 95.68+0.72 0.910+0.007 95.48+0.36
KNN 92.23+0.44 92.95+0.71 91.51+0.70 0.845 +0.009 92.29+0.44
LR 94.82+0.38 93.95+0.74 95.69+0.55 0.897+0.008 94.78 +0.39
RF 90.21+0.44 86.71+0.83 93.71£0.73 0.806 =0.009 89.86+0.48

? The data shown in the table are the means and SDs from 100 independent rounds. The bold numbers represent the best performance in each classifier

and each evaluation approach.
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Figure 2. Prediction accuracy of non-NABP/NABP classification on the testing dataset. (A) Prediction accuracy on the overall, non-NABP and NABP
datasets. (B) Prediction accuracy on the individual SSB, DSB, and RBP datasets.

Table 2. Performance comparison with other DBP/RBP predictors.

Predictors” Prediction types Methods used REC PRE F1 Neg. Set ACC Total ACC
DNAbinder® DBP SVM 0.72 0.5 0.59 0.27 0.49
DPP-PseAAC DBP RF 0.47 0.52 0.49 0.57 0.52
PIDBPred® DBP ADB 0.65 0.75 0.7 0.78 0.71
RNAPred? RBP SVM 0.82 0.57 0.67 0.38 0.6
DeepRBPPred (balance)® RBP CNN 0.88 0.55 0.68 0.28 0.58
DeepRBPPred (unbalance)® RBP CNN 0.76 0.55 0.64 0.38 0.57
RBPLightf RBP LGB 0.72 0.69 0.7 0.67 0.7
DeepDRBP-218 DBP/RBP CNN+LSTM 0.88 0.76 0.81 0.72 0.8
DBP/RBP (our previous study)h DBP/RBP CNN+LSTM 0.81 0.81 0.81 0.82 0.81
DBP/RBP (this study) DBP/RBP SVM 0.95 0.96 0.96 0.95 0.96

* a: Kumar et al. (2007); b: Rahman et al. (2018); c: Pradhan ez al. (2023a, 2023b); d: Kumar ez al. (2011); e: Zheng et al. (2018); f: Pradhan ez al.

(2023a,b); g: Zhang et al. (2021); h: Wu and Guo (2024).
Bold numbers represent the best performance in each category.

our SVM predictor with ESM2 derived feature outperforms
these tested DBP/RBP predictors.

When checking the individual prediction accuracy for
DBPs and RBPs, we found that DBPs and RBPs have similar
prediction accuracy except for the RF model (Fig. 3A), sug-
gesting that these models have good balance between the
DBP and RBP datasets. Between the two different types of
DBPs, the prediction accuracy of SSBs is relatively lower
than that of DSBs from all the five models, especially for RF
with only about 45% prediction accuracy on SSBs (Fig. 3B).
But all four other machine learning models achieve over
81% prediction accuracy, much higher than that (~40%) in

our recently developed deep learning model (Wu and
Guo 2024).

3.2 Prediction of non-NABPs, SSBs, DSBs, and

RBPs with a multi-class approach

We also developed a multi-class approach for prediction of
non-NABPs, SSBs, DSBs, and RBPs simultaneously. As
shown in Fig. 4, similar to the hierarchical approach, the top
three models are SVM, MLP, and LR, which have compara-
ble overall prediction accuracy on the testing datasets with
SVM model having the highest accuracy of 85.15%. KNN
has the lowest overall prediction accuracy at 71.05%. In
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Figure 3. Prediction accuracy of DBP/RBP classification on testing datasets. (A) Prediction accuracy on the overall, DBP, and RBP datasets. (B) Prediction

accuracy on the individual SSB and DSB datasets.
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Figure 4. Prediction accuracy on the overall, non-NABP, SSB, DSB, and RBP testing datasets of the multi-class approach.

addition, compared to other four models, KNN has the larg-
est variations among individual groups, ranging from the
highest 86.43% (SSB) to the lowest 56.59% (non-NABP)
(Fig. 4). One common pattern among all five models is that
SSB has the best prediction accuracy.

For any given protein, the overall prediction accuracy be-
tween the hierarchical and multi-class approaches is quite com-
parable. Since the overall prediction accuracy for each
individual type of proteins in the hierarchical approach is con-
tingent on the previous steps, the overall prediction accuracy for
each type of protein is a joint result from all three steps, non-
NABP/NABP (93.79%), DBP/RBP (95.54%), and SSB/DSB
(95.11% from our recently published report) (Wu et al. 2024).
Therefore, the estimate of the overall prediction accuracy for

each type of protein is about 93.79% X 95.54% x 95.11% =
85.23%, which is very similar to the overall prediction accuracy
of the SVM multi-class approach (85.15%) (Fig. 4). However,
performance on individual types of proteins may be different be-
tween the hierarchical and multi-class approaches. For example,
the prediction of the SSBs has a higher prediction accuracy from
the multi-class SVM approach (90.28%) than that from the hi-
erarchical SVM approach (95.06% x 86.07% X 96.61% =
79.04%). As for DSBs, the prediction accuracy of the multi-
class SVM approach (87.94%) is about 5% higher than the hi-
erarchical SVM approach (92.49% x 95.44% X 93.6% =
82.62%). The third percentage values 96.61% and 93.6%
from the above calculations are adopted from the SSB/DSB clas-
sification model from our recently published work (Wu et al.
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2024). The prediction for non-NABPs and RBPs are the oppo-
site of SSBs and DSBs in which the hierarchical approach has a
better prediction accuracy than the multi-class model.

The prediction accuracy for non-NABPs is 93.38% based on
the hierarchical SVM model (Fig. 2A) while the accuracy from
the multi-class SVM model is only 80.93% (Fig. 4). For predic-
tion of RBPs, the hierarchical model results in an overall accu-
racy of 89.12% (92.49% X 96.36%) (Figs. 2B and 3B) while
the prediction accuracy is 81.45% from the SVM multi-class
method (Figure 4). Therefore, depending on the purpose of
applications, if the main goal is to predict novel SSBs or DSBs
from proteins with unknown functions, the multi-class model is
a better choice than the hierarchical approach.

4 Discussion

Although both DBP/RBP predictors and SSB/DSB predictors
based on machine learning methods have been developed, the
assumption that the target protein is either an NABP for
DBP/RBP classification or a DBP for SSB/DSB classification
makes these models less practically useful when a protein
without any known functions is given. Therefore, a more
practical approach is to develop programs that can accurately
predict the different types of NABPs for any given protein.
Our previously developed hierarchical and multi-class
approaches for prediction of NABPs for any given protein
without known function achieve an overall accuracy of about
72% (Wu and Guo 2024). Though they perform better com-
pared to the published models, there is still room to improve.

In general, the performance of a machine learning model
depends on three major factors, the datasets for training and
testing, features used for training and testing, and machine
learning models. The prediction accuracy seems to reach the
limit when using the traditional sequence features such as
PSSM and Hidden Markov Model (HMM) profiles. In our
recent development of SSB/DSB and SSB/RBP classifiers, we
also explored the addition of a structural feature, the pre-
dicted protein secondary structure types from DeepCNF
(Wang et al. 2016). We demonstrated that even though the
structural feature can help increase the prediction accuracy,
the improvement is incremental at 2%-4% while the feature
from protein language model ESM2 alone increases the per-
formance dramatically (Wu et al. 2024). Protein language
models learn from diverse sequences spanning the evolution-
ary tree and have proven to be powerful tools for sequence
design, variant effect prediction, function and binding site
prediction, and structure prediction (Avraham et al. 2023,
Lin et al. 2023, Yeung et al. 2023, Jing et al. 2024, Luo et al.
2024, Rao et al. 2024, Roche et al. 2024, Sagendorf et al.
2024). Different protein language models have been devel-
oped in the past several years, including Bidirectional
Encoder Representations from Transformers (BERT) and
ProteinBert, a universal deep-learning model of protein se-
quence and function, pretrained on ~106M proteins (Devlin
et al. 2019). While ProteinBert performs well in representing
features for any given protein (data not published), since it
uses both sequences and GO annotations to pretrain models,
it is not suitable for protein function prediction. ESM2, an
evolutionary-scale predictor, on the other hand, only uses
protein sequences for training (Lin ef al. 2023). A recent
study revealed the power of the protein language model
ESM2 on protein-nucleic acid binding site prediction (Roche
et al. 2024). The ablation study demonstrated that without
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ESM2, there is a big drop of prediction performance.
However, discarding both of the evolutionary features, PSSM
and MSA (for multiple sequence alignment), only results in a
very small decrease of performance (Roche et al. 2024).

To improve the prediction accuracy, in this study we devel-
oped a hierarchical approach and a multi-class approach by ex-
ploring features from ESM2 and the newly developed datasets
from our group. By applying the features from ESM2, our ma-
chine learning models, especially SVM, MLP, and LR achieve
very high prediction accuracy, up to 95% for each step of the
hierarchical approach and 85% for the multi-class approach,
suggesting an overall prediction accuracy increase of 13%
(85% versus 72%) over the non-ESM2 predictions for any
given proteins without known functions. By comparing the
overall prediction accuracy from the hierarchical and the multi-
class approaches, we found that the multi-class SVM model is
suitable for predicting novel SSBs and DSBs with higher accu-
racy while the hierarchical method can predict non-NABPs and
RBPs better than the multi-class approach.
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