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Abstract
Motivation: Nucleic acid binding proteins (NABPs) play critical roles in various and essential biological processes. Many machine learning-based 
methods have been developed to predict different types of NABPs. However, most of these studies have limited applications in predicting the types 
of NABPs for any given protein with unknown functions, due to several factors such as dataset construction, prediction scope and features used for 
training and testing. In addition, single-stranded DNA binding proteins (DBP) (SSBs) have not been extensively investigated for identifying novel SSBs 
from proteins with unknown functions.
Results: To improve prediction accuracy of different types of NABPs for any given protein, we developed hierarchical and multi-class models with 
machine learning-based methods and a feature extracted from protein language model ESM2. Our results show that by combining the feature from 
ESM2 and machine learning methods, we can achieve high prediction accuracy up to 95% for each stage in the hierarchical approach, and 85% for 
overall prediction accuracy from the multi-class approach. More importantly, besides the much improved prediction of other types of NABPs, the 
models can be used to accurately predict single-stranded DBPs, which is underexplored.
Availability and implementation: The datasets and code can be found at https://figshare.com/projects/Prediction_of_nucleic_acid_binding_ 
proteins_using_protein_language_model/211555.

1 Introduction
Nucleic acid binding proteins (NABPs), including DNA bind
ing proteins (DBPs) and RNA binding proteins (RBPs), play 
crucial roles in many biological processes, such as DNA repli
cation and repair, transcriptional regulation, alternative splic
ing and translation (Luscombe et al. 2000, Gerstberger et al. 
2014, Hudson and Ortlund 2014). There are two types of 
DBPs, single-stranded DNA (ssDNA) binding proteins (SSBs) 
and double-stranded DNA (dsDNA) binding proteins (DSBs). 
SSBs are mainly involved in DNA recombination, replication 
and repair, and serve as key players in the maintenance of ge
nomic stability, while DSBs participate in transcriptional reg
ulation, DNA cleavage and chromosome packaging (Corona 
and Guo 2016, Lin et al. 2021, Guo and Malik 2022). 
Computational prediction of NABPs has been considered an 
efficient alternative to the expensive and time-consuming ex
perimental methods for functional annotation of the vast 
number of uncharacterized proteins in the protein database.

Many DBP and RBP predictors have been developed so far 
with classical machine learning based models such as Support 
Vector Machine (SVM) and Random Forest (RF), and more 
advanced deep learning approaches including Convolutional 
Neural Network (CNN) using sequence-based features to 
train and test the models (Kumar et al. 2007, Lou et al. 2014, 
Xu et al. 2014, Motion et al. 2015, Chowdhury et al. 2017, 
Qu et al. 2017, Zhang and Liu 2017, Rahman et al. 2018, 

Zheng et al. 2018, Adilina et al. 2019, Ali et al. 2019, Du 
et al. 2019, Hu et al. 2019, Mishra et al. 2019, Wang et al. 
2020, Zhang et al. 2021, Pradhan et al. 2023a,b). Most of 
these predictors only target one type of NABPs, either DBPs 
or RBPs, which limits their application in predicting the types 
of NABPs for proteins without known functions. Recently we 
developed a hierarchical approach and a multi-class ap
proach for prediction of NABP types for any given protein 
using a combination of deep learning methods and a 
sequence-based feature, position specific scoring matrix 
(PSSM) (Wu and Guo 2024). While our DSB/RBP predictor 
outperforms published models and demonstrates a balanced 
prediction between the positive and negative datasets, the 
overall prediction accuracy is modest at 72% for any given 
protein. Moreover, for the first time, we explicitly included 
annotated SSBs as part of the DBPs dataset in that study and 
investigated the prediction accuracy of SSBs and their effect 
on the overall prediction accuracy. We found that the accu
racy for SSBs is only about 40% with over half of them pre
dicted as RBPs (Wu and Guo 2024). In the past several years, 
machine learning models have been developed for classifica
tion between SSBs and DSBs (Wang et al. 2017, Tan et al. 
2019, Ali et al. 2020, Sharma et al. 2021, Manavi et al. 
2023). Based on the dataset developed by Wang et al. (2017), 
the prediction accuracy for SSB/DSB classification ranges 
from 73% to about 83%, with Manavi et al. reported a 
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higher accuracy using a CNN method and evolution-based fea
tures (Manavi et al. 2023). However, these SSB/DSB classifica
tion models assume each input protein is a known DBP. 
Therefore, the usefulness of these methods is limited as we dem
onstrated previously that the major issue is the wrong predic
tion of SSBs as RBPs. To address this issue and to improve the 
prediction accuracy of SSBs, we recently developed an im
proved SSB/DSB classifier as well as a novel SSB/RBP classifier 
(dashed box in Fig. 1A) with a pretrained protein language 
model ESM2 and we demonstrated high prediction accuracy 
for both SSB/DSB and SSB/RBP classifiers (Wu et al. 2024).

In this work, we aim to develop models for improving pre
diction accuracy of different types of NABPs, including SSBs, 
for any given protein by taking advantage of the datasets we 
generated in our previous study and the powerful protein lan
guage model ESM2 (Lin et al. 2023). The major differences 
between this work and our previous studies lie in two aspects. 
Unlike our previous study that evaluated the prediction accu
racy of SSBs as part of the DBP dataset since the small SSB 
dataset is not suitable for deep learning approaches, here we 
explicitly train and test SSBs for prediction. In other words, we 
predict the types of proteins with either a hierarchical approach 
(Fig. 1A) or a multi-class approach that simultaneously predicts 
SSBs, DSBs, RBPs, and non-NABPs for any given protein 
(Fig. 1B). The other major difference is that we use ESM2, a 
protein language model pretrained on a large number of pro
tein sequences with 15 billion parameters (Lin et al. 2023), to 
extract features for training and testing. Protein language mod
els are trained with deep neural networks for representing each 
protein sequence and have shown much improved performance 
in different types of bioinformatics studies, such as protein 

structure prediction (Jing et al. 2024, Lin et al. 2023), protein 
localization prediction (Luo et al. 2024), structure-based pre
diction of protein-nucleic acid binding sites (Roche et al. 2024, 
Sagendorf et al. 2024), and others (Avraham et al. 2023, 
Yeung et al. 2023, Rao et al. 2024).

Applying different types of classic machine learning meth
ods, including SVM, RF, k-nearest neighbors (KNN), multi
layer perceptron (MLP), and linear regression (LR), we 
demonstrate that the prediction accuracy for each step of the 
hierarchical approach can achieve up to 95%, and the overall 
prediction accuracy is about 85% for the multi-class ap
proach. Moreover, similar to our previous studies, each ap
proach achieves a good prediction balance on different 
datasets. With the multi-class approach developed in this 
study and the hierarchical approach from this study com
bined with the SSB/DSB and SSB/RBP classifiers from our re
cent work (Wu et al. 2024), we can achieve much improved 
prediction of NABPs for any given protein.

2 Methods
2.1 Datasets
We used the non-redundant datasets from our recent study for 
models training, validation and testing, which consist of 347 
SSBs, 4211 DSBs, 5627 RBPs, and 12 899 non-NABPs after re
moving redundant entries using Cd-hit with a cutoff of 0.4 (Wu 
and Guo 2024). For the hierarchical approach, in the first step 
of non-NABP/NABP classification, we combined all the SSBs, 
DSBs, and RBPs as the NABP set, and randomly selected 79% 
non-NABPs as the non-NABP set; in the second step of DBP/ 
RBP classification, all the SSBs and DSBs are combined as the 
DBP group, and 81% RBPs are randomly selected as the RBP 
group (Fig. 1A). For the multi-class approach, we used all the 
SSBs as the SSB group, randomly selected 8.3% DSBs, 6.2% 
RBPs, and 2.7% non-NABPs as the DSB, RBP, and non-NABP 
sets, respectively (Fig. 1B). For each prediction, we randomly 
selected 70% as the training set, and the remaining 30% as the 
testing set. Within the training set, a five-fold cross-validation 
strategy was employed to select the best hyperparameters for 
each model. To make sure that the prediction performance is 
not biased from a specific training/testing split of the dataset, 
we carried out 100 independent prediction tests. In each inde
pendent prediction, the dataset was randomly split into training 
(70%) and testing (30%), then the training, validation, and 
testing were carried out and the performance values (see 
Section 2.4) were recorded. The means and standard deviations 
(SDs) were then calculated from these 100 independent tests.

2.2 Features extracted from ESM2
We downloaded the pretrained esm2_t33_650M_UR50D 
from ESM2 (Lin et al. 2023) for extracting the embedded fea
tures. For each protein, we first extracted its tokens using the 
pretrained alphabet function from esm2_t33_650M_UR50D, 
then derived the per-residue representations using the tokens 
of the protein using the trained model with repr_layers equal 
to 33. The per-sequence representations were then extracted 
by averaging the per-residue representations. For each pro
tein, the per-sequence representations have the same length, a 
vector of 1280 values.

2.3 Machine learning models
Five machine learning models, SVM, MLP, KNN, LR, and 
RF were applied for training and testing. Classifiers SVC, 

Figure 1. Flowchart of the hierarchical (A) and multi-class (B) approaches. 
The classifiers in the dashed box are described in a recent study (Wu 
et al. 2024).
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MLPClassifier, KNeighborsClassifier, LogisticRegression, 
and RandomForestClassifier from sklearn (https://scikit- 
learn.org/stable/api/index.html) were used for SVM, MLP, 
KNN, LR, and RF, respectively. For each model, we used 
GridSearchCV with the default five-fold cross-validation to 
tune and select the best hyperparameters. The hyperpara
meters used in each machine learning model are summarized 
in https://github.com/unccguolab/Prediction-of-nucleic-acid- 
binding-proteins-using-protein-language-model.

2.4 Evaluation metrics
Five different evaluation metrics were applied to assess the 
performance of each model: accuracy (ACC), sensitivity or 
recall (SN/REC), specificity (SP), Matthews correlation coef
ficient (MCC), and F1-Score (F1) (1–6). ACC calculates the 
number of correctly predicted cases over the total cases. SN/ 
REC represents number of correctly predicted positive sam
ples over the total positive samples. SP is the ratio of the cor
rectly predicted negative samples over the total negative 
samples. F1 considers both false positives and false negatives 
while MCC offers more balanced assessment of the overall 
performance. 

ACC ¼
TP þ TN

TP þ FN þ TN þ FP
: (1) 

SN RECð Þ ¼
TP

TP þ FN
: (2) 

SP ¼
TN

TN þ FP
: (3) 

MCC ¼
TN × TPð Þ � ðFN × FPÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FNÞðTP þ FPÞðTN þ FNÞðTN þ FPÞ

p : (4) 

PRE ¼
TP

TP þ FP
: (5) 

F1 ¼
2 × REC × PRE

REC þ PRE
: (6) 

where TP, TN, FP, and FN represent true positive, true nega
tive, false positive and false negative, respectively.

3 Results
3.1 Hierarchical approach
By applying the features extracted from ESM2 to different 
machine learning models, high prediction accuracy is ob
served in each step of the hierarchical approach. For 

prediction between non-NABPs and NABPs (Fig. 1A), all five 
models achieve greater than 90% overall prediction accuracy 
on the testing datasets with MLP, SVM, and LR having com
parable and better performance than KNN and RF (Table 1). 
MLP (ACC ¼ 94.3%, SN ¼ 94.37%, SP ¼ 94.22%, 
MCC ¼ 0.886, F1 ¼ 94.3%) performs slightly better than 
SVM and LR. The best performance from the SVM predic
tion uses a linear kernel as shown in the linked hyperpara
meters file (see Section 2), which is not surprising since a 
simple LR model can achieve similar high prediction accu
racy. Notably, all three top performing machine learning 
models, SVM, MLP, and LR show a balanced sensitivity and 
specificity with very low SDs (Table 1).

The performance of each model on individual datasets, in
cluding non-NABPs and NABPs, has also been evaluated. As 
shown in Fig. 2A, except for KNN (88.41% for non-NABPs 
versus 94.21% for NABPs), all other models have similar pre
diction accuracy between non-NABPs and NABPs. The pre
diction accuracy for each of the three individual types of 
NABPs, SSBs, DSBs, and RBPs, was also assessed. Except for 
the RF model, the prediction accuracies among these three 
different types of NABPs are also comparable with a similar 
pattern: DSB has the best prediction accuracy followed by 
SSB and RBP (Fig. 2B).

For the DBP/RBP classification step (Fig. 1A), SVM, MLP 
and LR are the top performers with SVM having a slightly 
better performance (ACC ¼ 95.54%, SN ¼ 94.72%, 
SP ¼ 96.36%, MCC ¼ 0.911, F1 ¼ 95.5%) (Table 1). Similar 
to the non-NABP/NABP prediction, each of the three top 
models has similar sensitivity and specificity with very small 
SDs for DBP/RBP classification (Table 1). RF has the largest 
difference between sensitivity (86.71%) and specificity 
(93.71%) (Table 1). While there are no non-NABP/NABP 
classifiers that we can compare directly, we compared our 
SVM-based DBP/RBP classifier with a number of DBP/RBP 
predictors that have been published and available for testing 
(Kumar et al. 2007, 2011) (Zhang and Liu 2017, Rahman 
et al. 2018, Zheng et al. 2018, Zhang et al. 2021, Pradhan 
et al. 2023a,b, Wu and Guo 2024). As we reported in our re
cent study, the negative datasets used in these predictions are 
either non-DBP (for DBP predictors) or non-RBP (for RBP 
predictors) (Wu and Guo 2024). In other words, the non- 
DBP datasets include both non-NABPs and RBPs and the 
non-RBP datasets consist of non-NABPs and DBPs. For the 
purpose of fair comparisons, we generated the negative data
sets to mimic the published compositions using the entries 
from our newly created dataset and tested the performances 
of these programs (Wu and Guo 2024). Table 2 shows that 

Table 1. Performance evaluation on testing datasets for the hierarchical approach.a

Classifier Methods ACC (%) SN (%) SP (%) MCC F1 (%)

Non-NABP/NABP SVM 93.79 ± 0.29 94.19 ± 0.44 93.38 ± 0.48 0.876 ± 0.006 93.81 ± 0.29
MLP 94.30 ± 0.38 94.37 ± 0.84 94.22 ± 0.78 0.886 ± 0.008 94.30 ± 0.39
KNN 91.31 ± 0.29 94.21 ± 0.48 88.41 ± 0.58 0.828 ± 0.006 91.56 ± 0.28
LR 93.30 ± 0.28 93.98 ± 0.45 92.61 ± 0.48 0.866 ± 0.006 93.35 ± 0.28
RF 90.35 ± 0.40 91.20 ± 0.64 89.50 ± 0.60 0.807 ± 0.008 90.43 ± 0.40

DBP/RBP SVM 95.54 ± 0.35 94.72 ± 0.67 96.36 ± 0.49 0.911 ± 0.007 95.50 ± 0.36
MLP 95.49 ± 0.36 95.30 ± 0.66 95.68 ± 0.72 0.910 ± 0.007 95.48 ± 0.36
KNN 92.23 ± 0.44 92.95 ± 0.71 91.51 ± 0.70 0.845 ± 0.009 92.29 ± 0.44
LR 94.82 ± 0.38 93.95 ± 0.74 95.69 ± 0.55 0.897 ± 0.008 94.78 ± 0.39
RF 90.21 ± 0.44 86.71 ± 0.83 93.71 ± 0.73 0.806 ± 0.009 89.86 ± 0.48

a The data shown in the table are the means and SDs from 100 independent rounds. The bold numbers represent the best performance in each classifier 
and each evaluation approach.
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our SVM predictor with ESM2 derived feature outperforms 
these tested DBP/RBP predictors.

When checking the individual prediction accuracy for 
DBPs and RBPs, we found that DBPs and RBPs have similar 
prediction accuracy except for the RF model (Fig. 3A), sug
gesting that these models have good balance between the 
DBP and RBP datasets. Between the two different types of 
DBPs, the prediction accuracy of SSBs is relatively lower 
than that of DSBs from all the five models, especially for RF 
with only about 45% prediction accuracy on SSBs (Fig. 3B). 
But all four other machine learning models achieve over 
81% prediction accuracy, much higher than that (�40%) in 

our recently developed deep learning model (Wu and 
Guo 2024).

3.2 Prediction of non-NABPs, SSBs, DSBs, and 
RBPs with a multi-class approach
We also developed a multi-class approach for prediction of 
non-NABPs, SSBs, DSBs, and RBPs simultaneously. As 
shown in Fig. 4, similar to the hierarchical approach, the top 
three models are SVM, MLP, and LR, which have compara
ble overall prediction accuracy on the testing datasets with 
SVM model having the highest accuracy of 85.15%. KNN 
has the lowest overall prediction accuracy at 71.05%. In 

Figure 2. Prediction accuracy of non-NABP/NABP classification on the testing dataset. (A) Prediction accuracy on the overall, non-NABP and NABP 
datasets. (B) Prediction accuracy on the individual SSB, DSB, and RBP datasets.

Table 2. Performance comparison with other DBP/RBP predictors.

Predictors� Prediction types Methods used REC PRE F1 Neg. Set ACC Total ACC

DNAbindera DBP SVM 0.72 0.5 0.59 0.27 0.49
DPP-PseAACb DBP RF 0.47 0.52 0.49 0.57 0.52
PlDBPredc DBP ADB 0.65 0.75 0.7 0.78 0.71
RNAPredd RBP SVM 0.82 0.57 0.67 0.38 0.6
DeepRBPPred (balance)e RBP CNN 0.88 0.55 0.68 0.28 0.58
DeepRBPPred (unbalance)e RBP CNN 0.76 0.55 0.64 0.38 0.57
RBPLightf RBP LGB 0.72 0.69 0.7 0.67 0.7
DeepDRBP-2Lg DBP/RBP CNNþLSTM 0.88 0.76 0.81 0.72 0.8
DBP/RBP (our previous study)h DBP/RBP CNNþLSTM 0.81 0.81 0.81 0.82 0.81
DBP/RBP (this study) DBP/RBP SVM 0.95 0.96 0.96 0.95 0.96

� a: Kumar et al. (2007); b: Rahman et al. (2018); c: Pradhan et al. (2023a, 2023b); d: Kumar et al. (2011); e: Zheng et al. (2018); f: Pradhan et al. 
(2023a,b); g: Zhang et al. (2021); h: Wu and Guo (2024).
Bold numbers represent the best performance in each category.
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addition, compared to other four models, KNN has the larg
est variations among individual groups, ranging from the 
highest 86.43% (SSB) to the lowest 56.59% (non-NABP) 
(Fig. 4). One common pattern among all five models is that 
SSB has the best prediction accuracy.

For any given protein, the overall prediction accuracy be
tween the hierarchical and multi-class approaches is quite com
parable. Since the overall prediction accuracy for each 
individual type of proteins in the hierarchical approach is con
tingent on the previous steps, the overall prediction accuracy for 
each type of protein is a joint result from all three steps, non- 
NABP/NABP (93.79%), DBP/RBP (95.54%), and SSB/DSB 
(95.11% from our recently published report) (Wu et al. 2024). 
Therefore, the estimate of the overall prediction accuracy for 

each type of protein is about 93.79% × 95.54% × 95.11% ¼
85.23%, which is very similar to the overall prediction accuracy 
of the SVM multi-class approach (85.15%) (Fig. 4). However, 
performance on individual types of proteins may be different be
tween the hierarchical and multi-class approaches. For example, 
the prediction of the SSBs has a higher prediction accuracy from 
the multi-class SVM approach (90.28%) than that from the hi
erarchical SVM approach (95.06% × 86.07% × 96.61% ¼

79.04%). As for DSBs, the prediction accuracy of the multi- 
class SVM approach (87.94%) is about 5% higher than the hi
erarchical SVM approach (92.49% × 95.44% × 93.6% ¼

82.62%). The third percentage values 96.61% and 93.6% 
from the above calculations are adopted from the SSB/DSB clas
sification model from our recently published work (Wu et al. 

Figure 3. Prediction accuracy of DBP/RBP classification on testing datasets. (A) Prediction accuracy on the overall, DBP, and RBP datasets. (B) Prediction 
accuracy on the individual SSB and DSB datasets.

Figure 4. Prediction accuracy on the overall, non-NABP, SSB, DSB, and RBP testing datasets of the multi-class approach.
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2024). The prediction for non-NABPs and RBPs are the oppo
site of SSBs and DSBs in which the hierarchical approach has a 
better prediction accuracy than the multi-class model.

The prediction accuracy for non-NABPs is 93.38% based on 
the hierarchical SVM model (Fig. 2A) while the accuracy from 
the multi-class SVM model is only 80.93% (Fig. 4). For predic
tion of RBPs, the hierarchical model results in an overall accu
racy of 89.12% (92.49% × 96.36%) (Figs. 2B and 3B) while 
the prediction accuracy is 81.45% from the SVM multi-class 
method (Figure 4). Therefore, depending on the purpose of 
applications, if the main goal is to predict novel SSBs or DSBs 
from proteins with unknown functions, the multi-class model is 
a better choice than the hierarchical approach.

4 Discussion
Although both DBP/RBP predictors and SSB/DSB predictors 
based on machine learning methods have been developed, the 
assumption that the target protein is either an NABP for 
DBP/RBP classification or a DBP for SSB/DSB classification 
makes these models less practically useful when a protein 
without any known functions is given. Therefore, a more 
practical approach is to develop programs that can accurately 
predict the different types of NABPs for any given protein. 
Our previously developed hierarchical and multi-class 
approaches for prediction of NABPs for any given protein 
without known function achieve an overall accuracy of about 
72% (Wu and Guo 2024). Though they perform better com
pared to the published models, there is still room to improve.

In general, the performance of a machine learning model 
depends on three major factors, the datasets for training and 
testing, features used for training and testing, and machine 
learning models. The prediction accuracy seems to reach the 
limit when using the traditional sequence features such as 
PSSM and Hidden Markov Model (HMM) profiles. In our 
recent development of SSB/DSB and SSB/RBP classifiers, we 
also explored the addition of a structural feature, the pre
dicted protein secondary structure types from DeepCNF 
(Wang et al. 2016). We demonstrated that even though the 
structural feature can help increase the prediction accuracy, 
the improvement is incremental at 2%–4% while the feature 
from protein language model ESM2 alone increases the per
formance dramatically (Wu et al. 2024). Protein language 
models learn from diverse sequences spanning the evolution
ary tree and have proven to be powerful tools for sequence 
design, variant effect prediction, function and binding site 
prediction, and structure prediction (Avraham et al. 2023, 
Lin et al. 2023, Yeung et al. 2023, Jing et al. 2024, Luo et al. 
2024, Rao et al. 2024, Roche et al. 2024, Sagendorf et al. 
2024). Different protein language models have been devel
oped in the past several years, including Bidirectional 
Encoder Representations from Transformers (BERT) and 
ProteinBert, a universal deep-learning model of protein se
quence and function, pretrained on �106M proteins (Devlin 
et al. 2019). While ProteinBert performs well in representing 
features for any given protein (data not published), since it 
uses both sequences and GO annotations to pretrain models, 
it is not suitable for protein function prediction. ESM2, an 
evolutionary-scale predictor, on the other hand, only uses 
protein sequences for training (Lin et al. 2023). A recent 
study revealed the power of the protein language model 
ESM2 on protein-nucleic acid binding site prediction (Roche 
et al. 2024). The ablation study demonstrated that without 

ESM2, there is a big drop of prediction performance. 
However, discarding both of the evolutionary features, PSSM 
and MSA (for multiple sequence alignment), only results in a 
very small decrease of performance (Roche et al. 2024).

To improve the prediction accuracy, in this study we devel
oped a hierarchical approach and a multi-class approach by ex
ploring features from ESM2 and the newly developed datasets 
from our group. By applying the features from ESM2, our ma
chine learning models, especially SVM, MLP, and LR achieve 
very high prediction accuracy, up to 95% for each step of the 
hierarchical approach and 85% for the multi-class approach, 
suggesting an overall prediction accuracy increase of 13% 
(85% versus 72%) over the non-ESM2 predictions for any 
given proteins without known functions. By comparing the 
overall prediction accuracy from the hierarchical and the multi- 
class approaches, we found that the multi-class SVM model is 
suitable for predicting novel SSBs and DSBs with higher accu
racy while the hierarchical method can predict non-NABPs and 
RBPs better than the multi-class approach.

Conflict of interest
None declared.

Funding
This work was supported by the National Institutes of 
Health [R15GM132846 to J.G.]; and by the National Science 
Foundation [DBI-2051491 to J.G.].

Data availability
The datasets and code can be found at https://figshare.com/ 
projects/Prediction_of_nucleic_acid_binding_proteins_using_ 
protein_language_model/211555.

References
Adilina S, Farid DM, Shatabda S. Effective DNA binding protein pre

diction by using key features via Chou's general PseAAC. J Theor 
Biol 2019;460:64–78.

Ali F, Ahmed S, Swati ZNK et al. DP-BINDER: machine learning model for 
prediction of DNA-binding proteins by fusing evolutionary and physico
chemical information. J Comput Aided Mol Des 2019;33:645–58.

Ali F, Arif M, Khan ZU et al. SDBP-Pred: prediction of single-stranded 
and double-stranded DNA-binding proteins by extending consensus 
sequence and K-segmentation strategies into PSSM. Anal Biochem 
2020;589:113494.

Avraham O, Tsaban T, Ben-Aharon Z et al. Protein language models 
can capture protein quaternary state. BMC Bioinformatics 2023; 
24:433.

Chowdhury SY, Shatabda S, Dehzangi A. iDNAProt-ES: identification 
of DNA-binding proteins using evolutionary and structural features. 
Sci Rep 2017;7:14938.

Corona RI, Guo JT. Statistical analysis of structural determinants for 
protein-DNA-binding specificity. Proteins 2016;84:1147–61.

Devlin J, Chang M, Lee K, et al. BERT: pre-training of deep bidirec
tional transformers for language understanding. In: Proceedings of 
NAACL-HLT 2019. Minneapolis, Minnesota: Association for 
Computational Linguistics, 2019, 4171–86.

Du X, Diao Y, Liu H et al. MsDBP: exploring DNA-Binding proteins 
by integrating multiscale sequence information via Chou's Five-Step 
rule. J Proteome Res 2019;18:3119–32.

Gerstberger S, Hafner M, Tuschl T. A census of human RNA-binding 
proteins. Nat Rev Genet 2014;15:829–45.

6                                                                                                                                                                                                                                          Wu et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/5/1/vbaf008/7965125 by U

N
C

 C
harlotte user on 25 February 2025

https://figshare.com/projects/Prediction_of_nucleic_acid_binding_proteins_using_protein_language_model/211555
https://figshare.com/projects/Prediction_of_nucleic_acid_binding_proteins_using_protein_language_model/211555
https://figshare.com/projects/Prediction_of_nucleic_acid_binding_proteins_using_protein_language_model/211555


Guo J-T, Malik F. Single-stranded DNA binding proteins and their 
identification using machine learning-based approaches. 
Biomolecules 2022;12:1187.

Hu S, Ma R, Wang H. An improved deep learning method for predict
ing DNA-binding proteins based on contextual features in amino 
acid sequences. PLoS One 2019;14:e0225317.

Hudson WH, Ortlund EA. The structure, function and evolution of 
proteins that bind DNA and RNA. Nat Rev Mol Cell Biol 2014; 
15:749–60.

Jing X, Wu F, Luo X et al. Single-sequence protein structure prediction 
by integrating protein language models. Proc Natl Acad Sci USA 
2024;121:e2308788121.

Kumar M, Gromiha MM, Raghava GP. Identification of DNA-binding 
proteins using support vector machines and evolutionary profiles. 
BMC Bioinformatics 2007;8:463.

Kumar M, Gromiha MM, Raghava GP. SVM based prediction of 
RNA-binding proteins using binding residues and evolutionary in
formation. J Mol Recognit 2011;24:303–13.

Lin M, Malik FK, Guo JT. A comparative study of protein-ssDNA 
interactions. NAR Genom Bioinform 2021;3:lqab006.

Lin Z, Akin H, Rao R et al. Evolutionary-scale prediction of atomic- 
level protein structure with a language model. Science 2023; 
379:1123–30.

Lou W, Wang X, Chen F et al. Sequence based prediction of DNA- 
binding proteins based on hybrid feature selection using random 
Forest and Gaussian Naive Bayes. PLoS One 2014;9:e86703.

Luo Z, Wang R, Sun Y et al. Interpretable feature extraction and dimen
sionality reduction in ESM2 for protein localization prediction. 
Brief Bioinform 2024;25:bbad534.

Luscombe NM, Austin SE, Berman HM et al. An overview of the struc
tures of protein-DNA complexes. Genome Biol 2000;1:REVIEWS001.

Manavi F, Sharma A, Sharma R et al. CNN-Pred: prediction of single- 
stranded and double-stranded DNA-binding protein using convolu
tional neural networks. Gene 2023;853:147045.

Mishra A, Pokhrel P, Hoque MT. StackDPPred: a stacking based pre
diction of DNA-binding protein from sequence. Bioinformatics 
2019;35:433–41.

Motion GB, Howden AJM, Huitema E et al. DNA-binding protein pre
diction using plant specific support vector machines: validation and 
application of a new genome annotation tool. Nucleic Acids Res 
2015;43:e158.

Pradhan UK, Meher PK, Naha S et al. PlDBPred: a novel computational 
model for discovery of DNA binding proteins in plants. Brief 
Bioinform 2023a;24:bbac483.

Pradhan UK, Meher PK, Naha S et al. RBPLight: a computational tool 
for discovery of plant-specific RNA-binding proteins using light gra
dient boosting machine and ensemble of evolutionary features. Brief 
Funct Genomics 2023b;22:401–10.

Qu Y-H, Yu H, Gong X-J et al. On the prediction of DNA-binding pro
teins only from primary sequences: a deep learning approach. PLoS 
One 2017;12:e0188129.

Rahman MS, Shatabda S, Saha S et al. DPP-PseAAC: a DNA-binding 
protein prediction model using Chou's general PseAAC. J Theor 
Biol 2018;452:22–34.

Rao B, Yu X, Bai J et al. E2EATP: fast and High-Accuracy Protein-ATP 
binding residue prediction via protein language model embedding. 
J Chem Inf Model 2024;64:289–300.

Roche R, Moussad B, Shuvo MH et al. EquiPNAS: improved protein- 
nucleic acid binding site prediction using protein-language-model- 
informed equivariant deep graph neural networks. Nucleic Acids 
Res 2024;52:e27.

Sagendorf JM, Mitra R, Huang J et al. Structure-based prediction of 
protein-nucleic acid binding using graph neural networks. Biophys 
Rev 2024;16:297–314.

Sharma R, Kumar S, Tsunoda T et al. Single-stranded and double- 
stranded DNA-binding protein prediction using HMM profiles. 
Anal Biochem 2021;612:113954.

Tan C, Wang T, Yang W et al. PredPSD: A gradient tree boosting ap
proach for single-stranded and double-stranded DNA binding pro
tein prediction. Molecules 2019;25:98.

Wang J, Zheng H, Yang Y et al. PredDBP-Stack: prediction of DNA- 
Binding proteins from HMM profiles using a stacked ensemble 
method. Biomed Res Int 2020;2020:7297631.

Wang S, Peng J, Ma J et al. Protein secondary structure prediction using 
deep convolutional neural fields. Sci Rep 2016;6:18962.

Wang W, Sun L, Zhang S et al. Analysis and prediction of single- 
stranded and double-stranded DNA binding proteins based on pro
tein sequences. BMC Bioinformatics 2017;18:300.

Wu S, Guo J-T. Improved prediction of DNA and RNA binding 
proteins with deep learning models. Brief Bioinform 2024; 
25:bbae285.

Wu S, Xu J, Guo J-T. Prediction of single-stranded DNA binding pro
teins with protein language model. In: 2024 IEEE International 
Conference on Bioinformatics and Biomedicine. Lisbon, Portugal: 
IEEE, 2024, 257–62.

Xu R, Zhou J, Liu B et al. enDNA-Prot: identification of DNA-binding 
proteins by applying ensemble learning. Biomed Res Int 2014; 
2014:294279.

Yeung W, Zhou Z, Li S et al. Alignment-free estimation of sequence 
conservation for identifying functional sites using protein sequence 
embeddings. Brief Bioinform 2023;24:bbac599.

Zhang J, Chen Q, Liu B. DeepDRBP-2L: a new genome annotation pre
dictor for identifying DNA-Binding proteins and RNA-Binding pro
teins using convolutional neural network and long Short-Term 
memory. IEEE/ACM Trans Comput Biol Bioinform 2021; 
18:1451–63.

Zhang X, Liu S. RBPPred: predicting RNA-binding proteins from se
quence using SVM. Bioinformatics 2017;33:854–62.

Zheng J, Zhang X, Zhao X et al. Deep-RBPPred: predicting RNA bind
ing proteins in the proteome scale based on deep learning. Sci Rep 
2018;8:15264.

© The Author(s) 2025. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics Advances, 2025, 00, 1–7
https://doi.org/10.1093/bioadv/vbaf008
Original Article

Prediction of NABPs using protein language model                                                                                                                                                            7 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/5/1/vbaf008/7965125 by U
N

C
 C

harlotte user on 25 February 2025


	Active Content List
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	Conflict of interest
	Funding
	Data availability
	References


