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Summary
Connectomics provides essential nanometer-resolution,

synapse-level maps of neural circuits to understand brain activity
and behavior. However, few researchers have access to the
high-throughput electron microscopes necessary to generate
enough data for whole circuit or brain reconstruction. To date,
machine-learning methods have been used after the collection of
images by electron microscopy (EM) to accelerate and improve
neuronal segmentation, synapse reconstruction and other data
analysis. With the computational improvements in processing EM
images, acquiring EM images has now become the rate-limiting
step. Here, in order to speed up EM imaging, we integrate
machine-learning into real-time image acquisition in a single-
beam scanning electron microscope. This SmartEM approach
allows an electron microscope to perform intelligent, data-aware
imaging of specimens. SmartEM allocates the proper imaging time
for each region of interest – scanning all pixels equally rapidly,
then re-scanning small subareas more slowly where a higher
quality signal is required to achieve accurate segmentability, in
significantly less time. We demonstrate that this pipeline achieves
a 7-fold acceleration of image acquisition time for connectomics
using a commercial single-beam SEM. We apply SmartEM to
reconstruct a portion of mouse cortex with the same accuracy as
traditional microscopy but in less time.
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Introduction1

Serial-section Electron Microscopy (ssEM) is widely used to2

reconstruct circuit wiring diagrams in entire brains of small3

animals like C. elegans, Drosophila, and zebrafish (White et al.,4

1986; Witvliet et al., 2021; Xu et al., 2020; Hildebrand et al.,5

2017) and brain regions in mammals (Morgan et al., 2016;6

Kasthuri et al., 2015; Bock et al., 2011; Abbott et al., 2020;7

Lu et al., 2023; Song et al., 2023). Comparing the growing8

numbers of connectomes of animals with different genetic9

backgrounds, life experiences, and diseases will illuminate the10

anatomical nature of learning, memory, and developmental11

plasticity, the nature of brain evolution, as well as the nature12

of anatomical abnormalities that cause neuropathology and13

disease (Kornfeld et al., 2020; Shapson-Coe et al., 2024;14

Loomba et al., 2022; Karlupia et al., 2023; Bidel et al.,15

2023). To achieve wide-scale deployment for comparative16

connectomics, data acquisition and analysis pipelines need to17

become more widely available (Swanson and Lichtman, 2016).18

At present, connectome datasets are mostly acquired by the 19

few laboratories and institutions equipped with specialized and 20

expensive high-throughput electron microscopes such as the 21

TEMCA (Transmission Electron Microscopy Camera Array) 22

or the Zeiss 61- or 91-beam scanning electron microscope 23

(SEM) (Bock et al., 2011; Shapson-Coe et al., 2024). Until 24

recently, dataset acquisition had not been a limiting factor 25

in connectomics (Lichtman et al., 2014). A more significant 26

bottleneck had been data analysis – segmenting serial-section 27

electron micrographs to reconstruct the shape and distribution 28

of nerve fibers, identify synapses, and map circuit connectiv- 29

ity. However, recent improvements in machine-learning and 30

image analysis (Beier et al., 2017; Januszewski et al., 2018; 31

Meirovitch et al., 2019; Sheridan et al., 2023) have dramatically 32

sped data analysis, creating a now urgent need for faster image 33

acquisition. The field needs more electron microscopes to 34

deliver datasets as fast as they can now be analyzed. One 35

way to meet this need is to enable widely-available electron 36

microscopes, like more affordable point-scanning SEMs, to 37

collect connectomic datasets. 38

When using a point-scanning SEM for connectomics, the 39

time budget for image acquisition time is mostly dictated by the 40

dwell time that the electron beam spends on each pixel. In prac- 41

tice, SEM imaging of well-prepared, high-contrast, electron- 42

dense tissue for connectomics usually uses dwell times ⩾∼1000 43

ns/pixel. By comparison, the time spent moving the beam be- 44

tween pixels is negligible; modern SEMs use electrostatic scan 45

generators that deflect the electron beam to any pixel in an im- 46

age (Mohammed and Abdullah, 2018; Anderson et al., 2013). 47

To accelerate a SEM for connectomics, one must reduce the to- 48

tal dwell time over all pixels, but without losing information 49

needed to accurately determine the wiring diagram. 50

For connectomics, the salient measure of image accuracy 51

is neuronal segmentation – being able to correctly identify 52

each neuron’s membrane boundary and to correctly identify 53

each synapse. In standard SEM, image acquisition is done 54

by specifying a fixed homogeneous dwell time for all pixels. 55

The longer the dwell time, the higher the signal-to-noise per 56

pixel, and the more accurate the segmentation. Thus, there 57

is a fundamental trade-off between SEM imaging time and 58

segmentation accuracy. Previous approaches to improving seg- 59

mentation accuracy with rapidly acquired images have involved 60

post-acquisition image processing such as de-noising (Minnen 61

et al., 2021) or “super-resolution”/upsampling (Fang et al., 62
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2021). However, image processing that works entirely after the63

completion of image acquisition is limited by the amount of64

original information acquired. No technique unambiguously65

“creates” information that was not acquired in the first place.66

Fast, lossy image acquisition can miss critical information that67

precludes accuracy in any subsequent segmentation.68

Our solution to the problem of missing information in an69

initial rapidly acquired image is to immediately recover infor-70

mation during real-time microscope performance. To do this,71

we developed a “smart” SEM pipeline that rapidly identifies72

error-prone regions as well as high-salience regions (such as73

synapses) in every rapidly acquired image, and immediately74

and slowly re-scans only these regions. We define error-prone75

regions as only those that would confer full segmentation ac-76

curacy to a composite image, which is built from the initial77

rapidly acquired image (adequate wherever segmentation is ac-78

curate at short dwell time) and fused with long dwell time re-79

scans (necessary wherever segmentation is error-prone). When80

error-prone and high-salience regions are relatively few in num-81

ber and small in size, re-scanning adds little to the total image82

acquisition time budget while fully restoring segmentation ac-83

curacy. We sought an image acquisition pipeline that achieves84

the accuracy of uniform long dwell time acquisition with nearly85

the speed of uniform short dwell time acquisition.86

We implemented smartness in the pipeline with machine-87

learning algorithms running within SEM computer hardware.88

This pipeline, called SmartEM, can be applied in any context89

where images exhibit high spatial heterogeneity in segmenta-90

tion accuracy as a function of imaging time – a fundamental91

characteristic of brain images where nerve fibers and synapses92

can vary in size and density from region to region. Unavoidable93

spatial heterogeneity in any specimen is why a smart selection94

of which regions to collect at short dwell times and which re-95

gions to re-scan at long dwell times can achieve full segmenta-96

tion accuracy but with much less total dwell time. Applied to97

connectomics, the SmartEM pipeline yields a substantial 7-fold98

speedup for a widely available point-scanning SEM, allowing99

the microscope to be used for connectomics solely by imple-100

menting our machine-learning algorithms in the GPU-equipped101

SEM support computer. Spatial heterogeneity characterizes nu-102

merous SEM applications, and SmartEM can thus be applied to103

speed reconstruction of other specimens in biology, in material104

sciences and in electronic circuit fabrication.105

Results106

Suitability of adaptive dwell times for connectomics107

To establish the rationale for our connectomics pipeline by108

point-scanning SEM – automatically applying short dwell times109

to most brain regions that are “easy” to segment and long dwell110

times to fewer brain regions that are “hard” to segment – we111

quantitatively tested how spatial heterogeneity in representative112

mammalian brain images affects segmentation accuracy with113

different dwell times. To perform these tests, we used a recent114

high-quality sample comprising 94 sections of mouse visual115

cortex (Karlupia et al., 2023). We re-imaged these 94 sections116

at 4 nm pixel resolution using a point-scanning Verios G4 UC117

SEM from Thermo Fisher Scientific and a range of fixed dwell118

times from 25 to 1200 ns/pixel. 119

We note that when these images were originally acquired in 120

a previous study using standard point-scanning SEM, the dwell 121

time was 800 ns/pixel (Karlupia et al., 2023). This dwell time 122

was determined by a “rule-of-thumb” and is close to the 800 123

– 1000 ns/pixel needed for maximal segmentation accuracy for 124

this dataset (Figure 1A, 1B). 125

Our segmentation algorithm – mapping EM images to 126

membrane predictions (EM2MB) followed by a standard 127

watershed transform – provided an objective assessment of 128

segmentation accuracy of images collected with different 129

dwell times. We adapted EM2MB to SEM images taken with 130

different dwell-times (see Supplement). We automatically 131

segmented 256 randomly selected 2000×2000 pixel regions 132

taken from the 94-section sample with different dwell times. 133

Automatic segmentation with ultrafast dwell times (25 ns/pixel) 134

produced frequent merge and split errors compared to auto- 135

matic segmentation of the same regions with overly slow dwell 136

times (1200 ns/pixel) (Figure 1A). As dwell times increased, 137

segmentation errors gradually disappeared. 138

To quantify segmentation accuracy, we calculated the Vari- 139

ation of Information (VI; Meila (2003)) between each automat- 140

ically segmented region at each faster dwell time and the seg- 141

mentation obtained at the slowest dwell time (Figure 1B). Seg- 142

mentation accuracy increased with slower dwell times, and sat- 143

urated at 800-1000 ns/pixel, consistent with the rule-of-thumb 144

practice in choosing the dwell times for connectomics. With 145

>1000 ns dwell times, segmentation accuracy using EM2MB is 146

saturated. At 25 ns/pixel, acquisition speed is 40× faster than 147

at 1000 ns/pixel, but with lower accuracy. 148

Brain tissue is typically heterogeneous in the difficulty of 149

segmentation across image regions (Figure 1C, 1D). Thus, seg- 150

mentation accuracy varied substantially from region to region. 151

For slow dwell times (1000 ns), segmentation accuracy was nar- 152

rowly distributed around small VI, indicating less segmentation 153

errors. For ultrafast dwell times (25 ns), segmentation accuracy 154

was broadly distributed. Some regions exhibited the same low 155

VI with both ultrafast and slow dwell times (“easy” to segment 156

regions). Some regions exhibited drastically higher VI for ul- 157

trafast dwell times than slow dwell times (“hard” to segment 158

regions) (Figure 1C). For each region, we determined the mini- 159

mum dwell time to reach the same segmentation accuracy as the 160

slowest dwell time (see Supplement: Determination of max- 161

imal segmentation quality). We observed a broad distribution 162

of minimum dwell times across pixel regions. Most 2000×2000 163

pixel regions are accurately segmented with dwell times <150 164

ns, but a small number (∼25%) required longer dwell times. 165

Minimum dwell times exhibited a broad-tailed distribution from 166

50 – 1200 ns/pixel (Figure 1D). 167

Challenges in smart microscopy 168

We sought a SmartEM pipeline to identify and adapt to spa- 169

tial heterogeneity in the segmentation accuracy of brain tissue 170

for connectomics when imaged at different dwell times. To im- 171

plement this pipeline with a point-scanning SEM, we needed 172

to solve several challenges. The SEM needs to automatically 173

identify error-prone locations in an initial rapidly acquired brain 174
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Figure 1. The effect of the beam’s dwell time on the ability to segment the EM into neuronal elements. A. Scanning the same EM tile with different dwell times. Short dwell time
scans result in segmentation errors (red squares) that are resolved by longer scans (green squares). Increasing the dwell time improves the segmentation accuracy of short dwell
time images (25 ns/pixel and 75 ns/pixel) but does not improve the segmentation accuracy of sufficiently long dwell time images (800 ns/pixel). B. The segmentation quality of the
same images used in (A) are represented by x markers, alongside the distribution of segmentation qualities of 256 images (scatter and boxes) for 13 dwell times, from 25 ns to
1000 ns, calculated relative to a reference image taken at 1200 ns/pixel. Segmentation error is quantified by variation of information (y-axis). VI drops rapidly with increased dwell
times, saturating with dwell times near 800 ns. Wide distributions indicated by whiskers at each dwell time indicate that some image tiles can be segmented at any dwell time. C.
Segmentation of neuronal tissue has varying quality due to tissue heterogeneity: taking an image at 25 ns could lead to an image that can be segmented at high quality (bottom
image) or low quality (top image), compared to taking the images slowly (at 1000 ns). D. The majority of image regions (greens areas add up to 1.00) can be segmented at faster
dwell times (75 ns to 125 ns), while some regions require longer dwell times (between 400 ns to 800 ns) to reach the segmentation quality criterion. Thus, adapting dwell time for
different regions would save imaging time without reducing segmentation quality.
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Figure 2. Smart microscope challenges. A. An erroneous segmentation of a rapidly
acquired image (25 ns/pixel) with a red arrow indicating the location of a merge error
between two neurons (N1, N2). Slowly acquiring the same image at 1200 ns/pixel
captures the neuronal boundary (middle). The output of the ERRNET neural network
that was trained to predict segmentation errors from EM is shown on the right. Blue
indicates the location where the network predicts a possible merge or a split error.
The yellow outline is a window around the predicted error to provide further context
needed for downstream correction. B. The SEM readily captures any part of an image
at different dwell times, homogeneously at short dwell times (left), homogeneously at
long dwell times (middle), or homogeneously at short dwell times with a sub-region
taken at long dwell times (right). Here, the yellow outline for the long dwell time sub-
region contains a synaptic cleft. C. Predicting neuronal borders from fused EM images
using FUSED2MB.

image. The SEM needs to immediately re-scan pixel neigh-175

borhoods around error-causing locations to guarantee accurate176

segmentation. After image acquisition, the pipeline needs to ac-177

curately segment composite images built from the initial rapidly178

acquired images fused with re-scanned error-prone regions. We179

review solutions to these challenges that we incorporate in the180

smart microscopy pipeline described below.181

Detecting error-prone regions by an SEM. To identify error-182

prone regions in initial rapidly acquired images, we developed183

a machine learning (ML) algorithm to run on the microscope’s184

support computer. Figure 2A shows a rapidly acquired image185

tile and its segmentation containing a merge error (red arrow186

in left panel); the slowly acquired image tile that would not187

produce an error (middle panel); the prediction of a neural188

network (ERRNET, see below) that identifies error-causing189

locations in the rapidly acquired image (corresponding to cell190

membranes associated with the merge error, highlighted in 191

blue in right panel); and the specification of error-prone region 192

to be re-scanned that would remedy segmentation errors in 193

post-processing (yellow outline in middle and right panels). 194

ERRNET operates in real-time within SEM computer hardware 195

that is equipped with a high-performance GPU, and is much 196

faster than initial image acquisition – per pixel processing for a 197

single commodity GPU is <100 ns/pixel; N GPUs operating in 198

parallel require < 100/N ns/pixel. A related idea where EM 199

acquisition is guided based on uncertainty measures estimated 200

by neural network models was described in Shavit et al. (2021). 201

SEM re-scanning any sub-region. To use the prediction of error- 202

prone regions during real-time SEM operation, we modified the 203

scanning procedure of the microscope to re-scan error-prone 204

regions at slow dwell times right after the fast scan. In addi- 205

tion to re-scanning error-prone regions, neural networks can be 206

trained for data-aware re-scan of additional regions of interest 207

like synaptic clefts for applications in connectomics. Figure 2B 208

depicts data-aware re-scan where the microscope is guided to 209

re-take regions around synaptic clefts that are predicted from an 210

initial fast scan image of a section of mammalian cortex. SEM 211

microscopes with electrostatic scan generators are able to con- 212

duct efficient and rapid re-scan without wasted time in moving 213

the electron beam (Mohammed and Abdullah, 2018; Anderson 214

et al., 2013). When ERRNET and re-scan software are seam- 215

lessly integrated within SEM computer hardware, the total time 216

spent acquiring an image is the total number of pixels × the 217

short initial dwell time plus the total number of re-scanned pix- 218

els × their long dwell time. 219

Segmentation of multi-dwell time images. After image ac- 220

quisition, a smart microscopy pipeline generates a complete 221

rapidly acquired image and set of slowly re-scanned regions 222

of each sample. When pixels from the re-scanned regions are 223

substituted into corresponding locations in initially rapidly 224

acquired images, composite images are produced with pixels 225

of multiple dwell times. Previous segmentation algorithms 226

for connectomics have dealt with a single pre-fixed dwell 227

time (Januszewski et al., 2018; Meirovitch et al., 2019; 228

Sheridan et al., 2023) – these algorithms generalize poorly 229

to homogeneous images taken at different dwell times or to 230

heterogeneous images composed of regions taken at different 231

dwell times. The smart microscopy pipeline demands new 232

algorithms to accurately segment composite images where 233

different regions are obtained at different dwell times. We 234

developed a data augmentation training procedure technique 235

for a neural network with a U-Net (Ronneberger et al., 2015) 236

architecture (FUSED2MB) to accurately detect membranes 237

in an image with heterogeneous dwell times as well as if the 238

image was taken with a single uniformly applied dwell time 239

(see Supplement). Figure 2C shows an example of an image 240

that has multiple dwell times (slow scanning arbitrarily within 241

an S-shaped region surrounded by fast scanning). The predicted 242

membranes by FUSED2MB are unperturbed when crossing 243

between regions taken with different dwell times. 244

Thus, the challenges in building a smart microscopy 245

pipeline are met by extensively using machine learning in both 246
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Figure 3. Traditional versus ML-based image acquisition. A. Traditional microscopes
acquire images without real-time adaptation to the data itself. Acquired images are
often processed off-line using machine learning algorithms that might enhance the ex-
isting information content (e.g. using super resolution, de-noising and in-painting ML
techniques). B. The SmartEM pipeline uses dataset-specific machine learning algo-
rithms to guide image acquisition in real-time to increase information content.

guiding image acquisition and image analysis. As illustrated247

in Figure 3, our pipeline differs from previous applications248

of machine learning in electron microscopy, where image249

analysis using neural networks was only used to improve image250

appearance after image acquisition.251

The smart microscopy pipeline252

We built an integrated smart pipeline that meets the above chal-253

lenges, Figure 4A shows an example of our smart microscopy254

pipeline run on a small tile from the mouse cortex dataset255

(Karlupia et al., 2023). The components of the SmartEM are256

outlined in Figure 4B and their design and implementation are257

described below in detail.258

Determining the standard dwell time needed for high accuracy259

segmentation. The goal of the SmartEM pipeline is to reach260

the segmentation accuracy of standard SEM with uniform slow261

scanning, but in much less time. To fairly assess the improve-262

ment of SmartEM over standard SEM, we needed first to deter-263

mine the shortest dwell time for standard imaging that leads to264

accurate segmentation (800 – 1000 ns/pixel in the example in265

Figure 1B).266

We also needed an objective metric for assessing accurate267

segmentation. In the example shown in Figure 1B, the micro-268

scope automatically estimates 800 ns as the minimal dwell time269

needed for accurate segmentation. This estimate was based on270

the output of automatic membrane prediction by a neural net-271

work (Pavarino et al., 2023).272

To accomplish this, we trained a neural network called273

SLOWEM2MB to perform automatic membrane prediction274

using long dwell time images. We acquired a small and diverse275

subset of long dwell time images from random locations in a276

specimen, typically twenty 5×5 µm EM tiles, and performed277

manual segmentation by an expert to create training data for278

SLOWEM2MB.279

Next, we used SLOWEM2MB to train a separate neural net-280

work called EM2MB that was capable of predicting membranes281

with long or short dwell time images. The single-beam SEM al-282

lowed for re-imaging the same regions at different dwell times.283

The single-beam SEM allowed repeatedly re-imaging the same284

region at different dwell times. In this way it was possible to285

guide the microscope to collect a large sample of EM images286

from different random locations in the specimen, using differ- 287

ent dwell times ranging from 25 to 2500 ns/pixel as shown in 288

Figure 4. SLOWEM2MB was applied to the long dwell time 289

image at each location to automatically create segmentations 290

that we could use as “ground truth” to train EM2MB to pre- 291

dict segmentations with long or short dwell time images. Both 292

SLOWEM2MB and EM2MB were implemented using a U-net 293

architecture. 294

SLOWEM2MB and EM2MB calculated the trade-off be- 295

tween pixel dwell time and segmentation accuracy. EM2MB 296

was used to automatically segment all dwell time images (e.g. 297

from 25 to 1000 ns/pixel for the mouse cortex dataset) and com- 298

pare them to a reference automatic segmentation corresponding 299

to the longest dwell time image (e.g. 1200 ns/pixel image). 300

Thus, it was possible to identify the shortest dwell time for 301

which mean accuracy across tiles was not further improved by 302

longer dwell time imaging. This minimum dwell time was de- 303

fined by SmartEM as the required dwell time to achieve agree- 304

ment with ultra-slow dwell time segmentation. 305

Learning to detect error-causing locations in short dwell time 306

images. To further reduce imaging time we adjusted pixel dwell 307

time based on segmentation accuracy. Most image regions can 308

be segmented with full accuracy after scanning with a short 309

dwell time. Additional dwell time is only selected for those 310

regions that require longer imaging to segment properly. This 311

selection was accomplished via a neural network (ERRNET) 312

that learned what regions required longer dwell time after scan- 313

ning whole images with short dwell time. ERRNET learns the 314

features of error-causing locations in raw short dwell time im- 315

ages that produce segmentation differences – erroneous merges 316

or splits – in comparison to long dwell time images. 317

To assemble “ground-truth” to train ERRNET, the micro- 318

scope first takes a large set of images from random locations 319

in the specimen at multiple dwell times (e.g. from 25 to 1200 320

ns/pixel). These images are segmented to distinctly label ev- 321

ery contiguous neuron cross section. Automatic labeling can be 322

done using membrane probabilities, a seeding procedure, and 323

a standard region-growing algorithm such as watershed (Vin- 324

cent and Soille, 1991). Segmented images at all dwell times are 325

compared to reference segmented images taken with the longest 326

dwell time (1200 ns/pixel for the mouse cortex dataset in Fig- 327

ures 1A, 1B, longer than needed for fully accurate segmenta- 328

tion with SLOWEM2MB). To automatically learn segmenta- 329

tion discrepancies between short and long dwell time images, 330

we developed a method to produce a binary error mask that de- 331

fines the morphological differences between two segmented im- 332

ages based on the variation of information (VI) clustering metric 333

(Meila, 2003) (See Supplement for details). We trained ERR- 334

NET to predict error-causing regions in short dwell time im- 335

age as shown in Figure 4. We used the VI metric to detect 336

objects that are morphologically different between segmenta- 337

tions of short and long dwell time images, and then mapped the 338

borders that differ for these objects (described in Supplement) 339

(Meila, 2003). We noted that all segmentation errors in short 340

dwell time images can be repaired (i.e. leading to identical seg- 341

mentation as long dwell time images) by selectively replacing 342

only regions surrounding discrepancy-causing locations in short 343
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between the two predictions is produced. A second network, ERRNET (red) is trained to predict this error map from the membrane predictions of the short dwell time images.
Right: The two trained networks FUSEDEM2MB and ERRNET are used for smart acquisition. First a short scan is performed and the membrane prediction is generated from
FUSEDEM2MB. This prediction serves as an input to ERRNET to generate an error map. The error map is processed and used to guide a long dwell time re-scan. For verification,
the composite image of the two dwell times is segmented.
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dwell time images with corresponding regions taken from long344

dwell time images.345

Detecting error-prone regions in short dwell time images,346

re-scanning, and producing fused images. In real-time opera-347

tion, the SEM microscope must take an initial rapidly acquired348

image, execute ERRNET to detect error-prone locations, define349

a re-scan mask by padding error-prone locations to capture350

enough context to improve segmentation accuracy, and then351

immediately re-scan all error-prone regions using slow dwell352

times.353

Unifying and enhancing images. The final output of the pipeline354

are images where some pixels are captured with slower dwell355

times than others. Although the raw appearance of rapidly cap-356

tured regions (high pixel noise) and slowly captured regions357

(low pixel noise) does not degrade segmentation accuracy, it358

does create visually unappealing contrasts (Figure 3B). To stan-359

dardize the SmartEM image for human interpretation, we also360

built an algorithm that translates the style of the SmartEM im-361

ages to look like standard EM images with homogeneous dwell362

times. A similar technique was described in Shavit et al. (2021,363

2023). This stylized output does not supplant, but is saved in364

addition to, the raw composite SmartEM images. We note that365

stylized images often retain the correct details of the ultrastruc-366

ture seen in homogeneous long dwell time images (Figure S8).367

Technique Evaluation368

We developed our SmartEM pipeline to expedite connectomic369

reconstruction on our widely available point-scanning SEM, the370

Verios G4 UC from Thermo Fisher Scientific. Here, we quanti-371

tatively estimate the practical improvement in quality and speed372

offered by this pipeline for connectomics.373

Improving accuracy. One premise of the smart microscopy374

pipeline is that automatically detecting error-prone regions375

and replacing them with slower dwell time pixels will reduce376

segmentation errors. To attempt to validate this premise, we377

compared the accuracy of a segmentation pipeline trained378

to deal with short dwell time images (FASTEM2MB at 100379

ns/pixel) to a SmartEM pipeline trained to deal with composite380

images made from short and long dwell times (FUSEDEM2MB381

at 100 ns/pixel and 2500 ns/pixel). The performance of these382

networks was compared to the standard segmentation pipeline383

with slow image acquisition (SLOWEM2MB at 2500 ns/pixel).384

For fair comparison, we used the same long dwell time for the385

re-scanning in the smartEM pipeline and for the uniform scan386

in the standard pipeline. We found that using these dwell times,387

SmartEM pipeline is ∼5× faster than the standard segmentation388

pipeline with slow image acquisition and ∼2-3× more accurate389

(based on VI) than the standard pipeline operating quickly (100390

ns/pixel) (Figure S2). Thus, fusing long dwell time pixels into391

a rapidly acquired image can improve segmentation accuracy.392

Another premise of the SmartEM pipeline is that given the393

additional time spent in re-scanning part of an image, the im-394

provement in segmentation accuracy is superior to the improve-395

ment that would be obtained by giving the same amount of extra396

time to a standard pipeline that somewhat more slowly acquires397

all pixels at the same dwell time. To attempt to validate this 398

premise, we used a FastEM pipeline by choosing competitively 399

fast settings for the standard pipeline, with pixels taken homoge- 400

neously at 75 ns. We compared the performance of FastEM with 401

a SmartEM pipeline tuned to take the same average time when 402

combining both the initial scan and the smart re-scan. The ini- 403

tial SmartEM scan dwell time was set to 25 ns, the re-scan dwell 404

time to 200 ns, and a portion of the 12.5% most "error suscepti- 405

ble" regions were adaptively selected per tile for re-scan, so as 406

to provide an exact average of 75 ns/pixel. We compared the 407

variation of information of 64 segmented 2048×2048 pixel im- 408

age tiles of fastEM and SmartEM to a reference slowEM and 409

found that the SmartEM had less error (signed-rank Wilcoxon 410

test; p<0.05, and p<0.025 for N=38 tiles devoid of cell bodies). 411

Estimating speed-up. We considered two scenarios for the 412

large-scale collection of a connectome dataset. The first 413

involves a fixed imaging time budget to acquire a selected data 414

volume at the selected pixel resolution. Here, the task is to 415

intelligently allocate the imaging time to optimize segmentation 416

accuracy. We note that this optimization is not feasible with a 417

standard EM pipeline that would fix the homogeneous dwell 418

time to fill the time budget. The second scenario involves set- 419

ting the pipeline quality according to the quality of a standard 420

EM imaging pipeline. Here, the task is to determine SmartEM 421

parameters that maintain this quality while minimizing the 422

required imaging time per volume. Below we analyze both 423

scenarios. 424

Scenario 1: Optimized accuracy with fixed imaging time 425

budget We fix the total imaging time budget for a given speci- 426

men. From this requirement the pixel dwell time is determined 427

after subtracting overhead factors (such as image focusing, 428

astigmatism correction, and mechanical stage movement) from 429

the total budget. For example, the user might need to image a 430

given specimen – 100×100×100 µm tissue, cut in 30 nm thick 431

sections, imaged at 4 nm spatial resolution – within 5 days 432

of continuous EM operation. These constraints determine the 433

average dwell time per pixel 434

(5 ·24 ·3600 sec)(42 ·30 nm3)
(100µm)3 = 207.36 ns.

For a standard EM pipeline, 207.36 ns becomes the homo- 435

geneous pixel dwell time. For the SmartEM pipeline, the initial 436

scan and re-scan of all error-prone regions should sum to an av- 437

erage of 207.36 ns/pixel. This average dwell time, which we 438

call effective dwell time, can be achieved with different combi- 439

nations of initial fast dwell time, re-scan slow dwell time, and 440

percentage of re-scanned pixels: 441

Teffective = Tinitial +α ·Tre-scan

where T represents dwell times. 442

For example, an effective average dwell time of 207.6 ns is 443

achieved with an initial dwell time of Tinitial = 100 ns, re-scan 444

rate of α = 5%, and re-scan dwell time of Tinitial = (207.36 − 445

100)/0.05 = 2147.2 ns. These parameter settings correspond to 446

a specific segmentation accuracy (VI) relative to the reference 447

homogeneous long scan image. SmartEM considers a grid of 448
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Figure 5. SmartEM acquisition time. In the first imaging scenario A-C, the imaging time is constrained by a time budget, which for a fixed volume and pixel resolution, provides the
average dwell time (beam time). The task is to intelligently determine the SmartEM parameters that optimize segmentation accuracy. A For every targeted smart time (effective
dwell time) the smartEM parameters that optimize segmentation accuracy are determined, including the standard (homogeneous) dwell time achieving that segmentation accuracy
(y-axis). The longer the smart time is, the longer homogenous time is needed to achieve the same accuracy, with an asymptote around smart dwell time of 200 ns/pixel, equivalent
to a homogeneous dwell time of about 800 ns/pixel. Error bars represent 1 s.d. B The speed up of the curve in A. The maximal speed up is achieved around the inflection point
in A, around 125 ns/pixel - longer smart imaging up to 200 ns/pixel will still improve segmentation accuracy but with smaller speed up. C The data in A and B is shown for a fixed
volume of 1 TB at 4nm per pixel and a slice thickness of 30 nm. D The variation of information of SmartEM compared to slowEM is calculated for each effective dwell time by
optimizing the pipeline’s parameters and the average VI across tiles is depicted. This allow calculating the two dwell times in the SmartEM (blue) versus standard (red) settings
that produce the same accuracy (on average and per tile). E In the second imaging scenario, the quality of the EM is set in advance in terms of a desired dwell time of a standard
pipeline, and the task is to find smart EM parameters that would provide that quality in a minimal amount of imaging time per volume. Maximal information for segmentation is
achieved with around 140 ns/pixel for SmartEM and with around 800-1000 ns/pixel for standard EM.

parameter settings and calculates the Tinitial, Tre-scan and α set-449

tings that produce maximal accuracy (minimal VI) compared450

to the segmentation of reference tiles, while guaranteeing the451

effective dwell time (see Supplement).452

Figure 5A presents the results of parameter optimization453

for different effective dwell times (smart imaging time) and454

image tiles. This optimization links any effective dwell time455

(achieved by optimizing the VI for different Tinitial, Tre-scan) to456

an accuracy-equivalent standard homogeneous dwell time. For457

example, an effective dwell time of 200 ns (blue arrow) already458

attains the maximal quality using a specific set of initial,459

re-scan dwell times, and re-scan rates that are determined per460

tile. This quality is comparable to standard homogeneous scan461

at 800 ns/pixel. 462

Figure 5B depicts the time saved by SmartEM compared to 463

standard microscopy. For the mouse cortex dataset, the maxi- 464

mal saving compared to standard EM is achieved when smart 465

EM is used at an effective dwell time of ∼125 ns/pixel, which 466

corresponds to the inflection point in Figure 5A, leads to an 467

accuracy akin to ∼725 ns/pixel by the standard pipeline. This 468

effective dwell time produces images with nearly maximal pos- 469

sible segmentation accuracy (Figure 1). Figure 5C estimates 470

the time to replicate the accuracy of SmartEM using standard 471

microscopy using 1TB of mouse cortex (where 1 Byte corre- 472

sponds to 1 pixel at 4×4×30 nm3). The SmartEM microscope 473

running for 60 hours of continuous imaging achieves the same 474
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quality as a standard pipeline running for 250 hours.475

Scenario 2: Minimizing imaging time with fixed image476

quality In the second scenario a certain volume needs to be477

segmented, and SmartEM is asked to minimize imaging cost.478

Imaging time is not determined in advance, but the quality479

of the smart EM has to meet a quality standard. SmartEM480

needs to acquire the volume in a way that leads to comparable481

segmentation to standard EM but in significantly less time.482

First, the operator determines the dwell time that is needed483

to achieve a specific quality with standard homogeneous484

scanning. This dwell time can be obtained from the SmartEM485

pipeline estimate of a minimum homogeneous dwell time486

(Figure 1). Once the image quality is effectively determined487

by selecting a reference dwell time for uniform scanning,488

SmartEM needs to acquire the volume in a way that leads to489

comparable segmentation accuracy, but in considerably shorter490

time.491

To analyze the expected imaging time of SmartEM in the492

mouse cortex dataset, we first segmented images taken at ho-493

mogeneous dwell times from 25 to 1200 ns uniform dwell times494

from the same areas. We did the same for each image and each495

effective dwell time, where each effective dwell time is derived496

from the maximally accurate parameter set of initial and re-scan497

dwell times and re-scan rate (Figure 5D). In all experiments498

we used the same error detector (ERRNET) and the same neu-499

ral network model to predict membrane from composite images500

(FUSEDEM2MB). To match each standard homogeneous dwell501

time to an effective smart dwell time, we calculated the shortest502

smart dwell time that produces segmentation that is statistically503

indistinguishable from the standard dwell time across tiles (see504

Supplement). Figure 5E depicts the relation between the tar-505

geted standard dwell time and the smart time that yields the506

same accuracy. The highest possible quality of standard EM507

at 1000 ns/pixel (see Figure 1) is attained by a smart effec-508

tive dwell time of ∼140 ns/pixel. This ∼7.1× speed-up from509

standard to SmartEM is achieved by selecting the percentage510

of re-scanned pixels in each image tile, and letting ERRNET511

determine re-scan locations.512

In Figure S9 we tested the speed-up achieved by SmartEM513

when re-scan rates are fixed in advance and only one pair of514

initial and re-scan dwell times are used for imaging. These con-515

straints allow direct comparison of the initial and re-scan dwell516

times that optimize imaging time. As effective dwell time in-517

creases, the time spent on re-scan also increases – the longest518

dwell time for re-scan, with the equivalent segmentation accu-519

racy as uniform dwell time (at 800 ns), is 1000 ns (initial dwell520

time at 200 ns and effective dwell time at 300 ns). Efficiently521

correcting errors in comparison to standard imaging with slower522

dwell times also requires slower re-scan rates. Maximally slow523

re-scan dwell times can be needed even when producing sub-524

optimal segmentation (i.e. faster than 800-1000 ns of homoge-525

nous dwell time). A re-scan dwell time of 2-3× longer than the526

homogeneous dwell time can yield optimal speed up. As the ef-527

fective dwell time is allowed to exceed 500 ns and come closer528

to the homogeneous dwell time, SmartEM no longer requires a529

specific value for the initial scan dwell time (blue curve in Fig-530

ure S9) which becomes an arbitrary choice while the re-scan531

rate is maximal and only the percentage of re-scan is increased 532

to correct remaining errors. 533

Image acquisition with widely available point-scanning 534

SEM is now a limiting factor in connectomics. This evaluation 535

indicates that the SmartEM pipeline can yield >7× speed up 536

compared to standard image acquisition with a point-scanning 537

SEM without compromising quality and, at standard fast 538

acquisition ( 75ns-200ns), smartEM offers better quality. 539

Imaging mouse cortex with SmartEM 540

Figure 6 shows the outcome of SmartEM. A volume of size 541

60×68×3 µm3 (Figure 6A) and a section size 205×180 µm2
542

was imaged at 4 nm pixel resolution. For volume acquisition, 543

we used an initial dwell time of 75 ns/pixel, re-scan of 800 544

ns/pixel, and re-scan rate of 10% providing an effective dwell 545

time of 546

Effective dwell time = 75+0.1 ·800 = 155 ns/pixel.

This average dwell time for SmartEM corresponds to a stan- 547

dard dwell time of ∼1000 ns for traditional microscopy. To test 548

the pipeline on larger sections, we acquired a 205×180 µm2
549

composed of 30×30 individual tiles with the same pixel reso- 550

lution. For the SmartEM parameters, we used an initial dwell 551

time of 75 ns/pixel and a rescan of 600 ns/pixel and a rescan 552

rate of 10% providing an effective dwell time of 553

Effective dwell time = 75+0.1 ·600 = 135 ns/pixel.

As mentioned above, this effective dwell time corresponds 554

to the maximal possible speed up of SmartEM for this dataset, 555

producing images with segmentation quality akin to standard 556

EM at ∼1000 ns/pixel. We depict the segmentation of pipeline 557

outputs in Figure 6B, 6C, 6D using segmentation code that was 558

deployed on the microscope’s support computer using exist- 559

ing tools (Pavarino et al., 2023). This 2-dimensional segmen- 560

tation can be used as input to a 3D-dimensional agglomera- 561

tion algorithm (Karlupia et al., 2023) to produce high quality 562

3-dimensional neuron reconstruction. 563

We also assessed the ability to detect synapses on short 564

dwell time images (from 25 ns to 1000 ns) and applied this 565

detection to the above initial scan of 75 ns/pixel with excellent 566

results that are comparable to slow scan imaging as shown in 567

Figure 6E, 6F, S7. In Figure 6G, 6H we show the ability 568

of SmartEM to detect and exclude regions of no interest, 569

where cytoplasm far from membrane is detected from initial 570

scan, allowing SmartEM to force the skipping of the long 571

dwell time scanning from these regions. In Figure 6I, 6J, S8 572

we demonstrate the ability to translate the fused images to a 573

uniform looking EM tiles with quality akin to long dwell time 574

imaging. 575

Neuronal reconstruction of mouse cortex using 576

SmartEM 577

We tested SmartEM in application to connectomics. Connec- 578

tomics requires accurate agglomeration of 2D cross-sections 579
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Figure 6. Segmentation of a mouse cortex volume using SmartEM. A. Stitched and aligned SmartEM volume of size 60×68×3 µm3. B. Segmentation of SmartEM volume using
FUSEDEM2MB and watershed transform. C. Location of the highlighted region in B with respect to the total volume. D Detailed depiction of segmentation in the boxed region in B
(rotated). E,F. Automatic detection of synapses from short dwell time images. G,H. Automatic detection of regions to be excluded from short dwell time images. I,J. An Image (I)
stylized from a composite dwell times image (J) to appear akin to homogeneous dwell times.
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Figure 7. Neuronal reconstruction of a mouse cortex SmartEM volume taken at an average time of 99 ns/pixel. A. A section showing overlay of fused EM and an automated
neuronal reconstruction, long and short dwell time pixels at 800 ns/pixel (Tre-scan) and 75 ns/pixel (Tinitial), respectively, and a rescan rate of 3% (α). B. A dendrite reconstruction
proofread by an expert (red) achieved by manually itemizing and reconstructing all dendritic spines from the fusedEM image stack. An automated reconstruction (blue) achieves a
high reconstruction rate of the dendritic spines. Arrowheads indicate split errors. C. A rendering of the automated 3D reconstruction of all sections in the dataset. The high quality
of automated reconstruction has sparse merge errors common to current segmentation algorithms.

(see Figure 7A) into 3D reconstruction of neuron volumes580

and synapses (see Figure 7C). We asked whether the quality581

of aligned SmartEM fused images supports automated recon-582

struction and proofreading with comparable performance to583

traditional imaging. We used competitive SmartEM parameters584

to acquire a mouse cortex volume with average dwell time of585

99 ns/pixels (initial long dwell time: 75 ns/pixel; rescan long586

dwell time: 800 ns/pixel; rescan rate 3%) and a lightweight 3D587

segmentation algorithm (see Supplement: Segmentation and588

neuronal reconstruction). We assessed the quality of resulting589

SmartEM image volume with automated reconstruction of fine590

processes and expert manual annotation (Figure 7B).591

Reconstruction of dendritic spines. Connectomes can con-592

tain “split” errors (fragmenting the volume of one cell) or593

“merge” errors (joining the volume of two cells). To bench-594

mark SmartEM performance, we studied a challenging and595

significant problem: split errors in the 3D reconstruction of596

dendritic spines. Spines are the fine processes that protrude597

from dendrites and contain synapses. We used automated598

3D agglomeration to reconstruct all neurons inside the cortex599

volume (Figure 7C, see Supplement). We randomly selected600

three dendrites (see Figure 7B). We counted spines that were601

fully automatically reconstructed without split errors and spines602

with split errors. Expert human annotators verified every603

correct reconstruction and verified that every split error was604

correctable with proofreading. The percentage of correct spines605

was approximately 58%, 53% and 75% in the three dendrites.606

The combined percentage of correct spines was 65%, compa-607

rable to the rate of correct spine capture in recent automated 608

reconstruction of human cortex (67%) (Shapson-Coe et al., 609

2024). 610

Discussion 611

The future and flexibility of SmartEM 612

Data analysis for connectomics is rapidly becoming faster, 613

easier, and cheaper thanks to rapid improvements in machine- 614

learning and the broadening availability of cloud-based tools 615

and computational power. Data acquisition speed is now 616

becoming a bottleneck, rate-limited by the availability and 617

speed of microscope hardware. High-throughput electron 618

microscopes, like the Zeiss multibeam SEM, are not commonly 619

available. This SmartEM pipeline – because it is entirely 620

implemented in accessory computer hardware – can make 621

existing, widely available point-scanning SEMs usable for 622

connectomics with modest cost and modification. 623

The implementation of the three tools of the SmartEM 624

pipeline are designed so they can be altered depending on use 625

case from user to user or preparation to preparation. 626

Tool 1 allows an SEM to identify error-prone regions in any 627

rapidly acquired image, but this concept can be implemented 628

with different underlying component algorithms. As described 629

above, Tool 1 is built by training the ERRNET neural network 630

to detect error-prone regions on the basis of segmentation dif- 631

ferences that arise with fast and slow dwell times. Training the 632

ERRNET network allows a choice about what segmentation al- 633

gorithm to use to train the network. We used our recently devel- 634
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oped two-dimensional segmentation algorithm (Pavarino et al.,635

2023; Karlupia et al., 2023), but different laboratories will likely636

have their own preferred segmentation algorithms. ERRNET637

can be trained with any reliable segmentation algorithm. Be-638

cause ERRNET is trained before image acquisition, the speed639

or performance of the segmentation algorithm used to train ER-640

RNET has no effect on pipeline performance. Tool 2 allows641

an SEM to perform the slow re-scan of any region within an642

initially rapidly acquired image in real-time during microscope643

operation. This slow scan can be done with any point-scanning644

SEM with electrostatic scan generators that deflect the electron645

beam to any pixel in an image much faster than the fastest dwell646

time per pixel (>25 ns) (Mohammed and Abdullah, 2018; An-647

derson et al., 2013). Electrostatic scan generators are common648

to modern SEM systems built by most manufacturers. Tool 3649

that performs segmentation of multi-dwell time images is used650

off-line after image acquisition. The method that we imple-651

mented to train Fused2MB can be extended to other segmen-652

tation algorithms that work with fixed dwell times. Users could653

adapt their own segmentation algorithms to work with the multi-654

dwell time images that emerge from the SmartEM pipeline.655

Diverse use cases for SmartEM656

The underlying concept of SmartEM with a point-scanning657

SEM can improve the efficiency and accuracy of image acqui-658

sition in any context where it makes sense to adapt the time659

spent on different regions, much like the human eye, which660

rapidly captures most of a visual scene with low-resolution661

(non-foveal) imaging and dwells on selected parts of the visual662

image to remove ambiguity with high-resolution (foveal)663

imaging (Thorpe et al., 1996). Point-scanning SEM is used in664

materials science and manufacturing to assess samples that vary665

in the spatial density of information content. Any application666

where regions of high information content can be predicted (but667

not accurately reconstructed) with an initial rapidly acquired668

image can benefit from immediate re-scan of those regions,669

guided by our SmartEM approach. Imaging approaches that670

take advantage of electron beam sensitive materials, such671

as cryo-EM would benefit from the selective re-scanning of672

SmartEM. The objects of interest that are sparsely distributed673

in the specimen, such as a specific mixture of molecules, will674

be identified from the rapid initial scan and slowly re-scanned.675

Here, we focused on re-scanning for connectomics to676

capture information in error-prone regions with respect to677

neuronal segmentation. But re-scanning could also be used678

to capture information that is salient in other ways. As679

we showed, we can also perform re-scanning to selectively680

capture high-quality images of every chemical synapse in a681

connectome, thereby providing high-quality morphological682

reconstructions of salient structures in an image volume in683

addition to resolving the problem of error-prone regions, while684

still providing substantial pipeline speedup. SmartEM can be685

adapted to other applications in cell biology or pathology by686

recognizing and re-scanning other sparse cellular structures of687

interest (e.g., mitochondria and other organelles).688

The SmartEM pipeline can not only be “taught” to capture689

the most salient features of an image, but can also be used to690

neglect regions without interest. In most connectomics of larger 691

brains, nearly all objects in the field of view will be neural struc- 692

tures. But in small invertebrates, neural tissue might constitute 693

only a small part of the field of view. The C. elegans nerve 694

ring (brain) is <10% of the total volume of the body, and wraps 695

around the pharynx. Any two-dimensional brain section of the 696

C. elegans nervous system will also include substantial non- 697

neural tissue. To date, connectomic datasets have been acquired 698

by carefully designating the region-of-interest for each image. 699

The SmartEM pipeline may simplify and speed image acquisi- 700

tion by allowing the microscope to spend the time budget for 701

each image section on neurons instead of non-neuronal tissue 702

without needing the user to laboriously specify each region of 703

interest. 704

Adaptability of SmartEM for other microscopes and 705

other applications 706

Tape-based serial-section sample collection, where specimens 707

are stored permanently and can be re-imaged at any time, is 708

suited to SmartEM because any information that is lost dur- 709

ing imaging can be recovered. When specimens are imaged 710

for the purpose of connectomics, the SmartEM pipeline might 711

gloss over features that might eventually be of interest to other 712

scientists for other applications (e.g., cell biology). Because 713

serial-sections stored on tape can be safely archived for years, 714

they can be revisited at any time. 715

Instead of collecting serial sections on tape, one can use 716

block face imaging with serial tissue removal. One block face 717

approach, Focused Ion Beam SEM (FIB-SEM), has distinct ad- 718

vantages over tape-based serial-section sample collection, in- 719

cluding thinner tissue layers (4-8 nm) and better preservation of 720

image alignment (Knott et al., 2008). The principal disadvan- 721

tage of FIB-SEM has been the slow pace of traditional point- 722

scanning SEM with >1000 ns dwell times. This can be prob- 723

lematic when the microscope is used to collect extremely large 724

specimens, and must be continuously operational for days or 725

weeks without technical glitch. However, a FIB-SEM that im- 726

plements the SmartEM pipeline would be able to operate much 727

faster, increasing the likelihood of capturing an entire specimen 728

in single long runs. SmartEM is expected to provide greater 729

speed up on block face imaging because the imaging component 730

is a larger part of the entire acquisition pipeline compared to 731

serial-section SEM. Similar benefits will be obtained with other 732

block face imaging approaches such as Serial Block Face SEM 733

(SBF-SEM) where a diamond knife slices the specimen (Denk 734

and Horstmann, 2004). The downside of block face approaches, 735

whether with traditional imaging or the SmartEM pipeline, is 736

that each section is destroyed by ablation after being imaged, 737

forbidding revisiting the sample to capture any information that 738

was inadvertently lost. 739

Improvements for SmartEM 740

The performance of this software pipeline that runs in real- 741

time during microscope operation should improve further as 742

machine learning algorithms perform segmentation of rapidly 743

acquired images more accurately, a trend that can be expected 744

as more imaging is performed to generate training data for neu- 745

Meirovitch et al. | SmartEM 12

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2023.10.05.561103doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.05.561103
http://creativecommons.org/licenses/by-nc/4.0/


746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

ral networks and as neural networks themselves improve over 
time. We expect gradual improvement in how rapid the ini-
tial rapid image acquisition can be, and gradual improvement in 
how many error-prone regions need to be re-scanned. A further 
order-of-magnitude improvement in the SmartEM pipeline may 
make point-scanning SEM systems comparably fast as more ex-
pensive multibeam systems. We note that current multibeam 
SEM systems cannot be sped up with this SmartEM strategy, 
because their multiple beams are coordinated and cannot be in-
dependently controlled, a fundamental requirement of this ap-
proach.

Summary
All components needed to implement the SmartEM pipeline 
on the ThermoFisher Verios G4 UC will be provided as 
open source software. The basic conceptual workflow o f the 
SmartEM pipeline is adaptable to other microscope platforms.

Code Availability
Machine learning software and all models will be made avail-
able upon publication on a public repository and are currently 
available on request.
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FastEM2MB borders

SlowEM2MB borders Information 
Discrepancy(Net1,Net2)

TRAIN

VI

Figure S1. The discrepancy between segmentation with long dwell time (using
SLOWEM2MB) and short dwell time (using FASTEM2MB) is defined based on VI. VI
is the sum of individual error terms contributed by each object in the two segmented
images. The most variable objects are flagged. Image processing is used to delin-
eate specific borders that appear in only one segmented image. Yellow represents
segmented objects that are uniquely predicted in the long dwell time image. Red rep-
resents segmented objects that are uniquely predicted in the short dwell time image.
A neural network (ERRNET) is trained to predict all red and yellow discrepancies only
using short dwell time images. This is possible because variation occurs where mem-
brane predictors are uncertain and often with typical, at times biologically implausible,
membrane prediction.

Supplemental Information909

Segmenting composite images910

The smart microscope should be able to analyze images911

composed from multiple dwell times (see Figures 1C, 2B, 2C,912

4A, 6A-6D). We tested whether replacing error-prone regions913

in a short dwell time image with regions taken from long dwell914

time images improves segmentation outcomes. Figure S2915

depicts the segmentation outcome of a short dwell time image916

taken at 100 ns/pixel segmented with a dedicated 100 ns917

network FASTEM2MB (S2A,S2E), and by FUSEDEM2MB918

(S2B,S2F). The segmentation quality of these networks are919

similar (top panel; VI=0.025 and VI=0.022). In most scenarios,920

the network trained to deal with fused EM (FUSEDEM2MB)921

produces better results than networks trained to handle a fixed922

dwell time, even if the input to the two networks consists of923

a single homogeneous dwell time. Figures S2C, S2G depict924

the segmentation of an image where the error-prone regions925

were detected by an error detector and replaced with long926

dwell time pixels (2500 ns). The error level is typically and927

substantially cut by ∼ 3-4 ×. The 2500 ns reference image928

and its segmentation are shown in Figures S2D, S2H. All error929

estimates based on VI shown in Figure S2 are presented as the930

sum of the merge error term and split error term.931

Imaging procedure932

The SEM is automated to acquire acquire images of individual933

tiles of every specimen section that are eventually stitched and934

aligned to form a total image volume Figure 4. The microscope935

navigates through multiple specimen sections held on tape and936

defines every specimen region of interest (S-ROI). Each S-ROI937

is captured at high spatial resolution by multi-tile acquisition. 938

To identify the S-ROI and automate stage position and rota- 939

tion control, we used SEM Navigator, a custom interface akin 940

to earlier WaferMapper software (Hayworth et al., 2014). The 941

list of S-ROIs is exported into a text file, which is subsequently 942

processed by the SmartEM pipeline (coded in Python/Matlab) 943

using the Thermo Fisher Scientific Autoscript (Thermo Fisher 944

Scientific, 2018) package. The SmartEM pipeline controls the 945

Verios (Thermo Fisher Scientific, 2020) microscope, moves to 946

S-ROI and individual tile positions, controlling the entire acqui- 947

sition sequence. 948

For all image acquisitions, we used the Verios UHR (Ul- 949

tra High Resolution) imaging mode with 4nm/pixel spatial res- 950

olution and ∼ 4 mm working distance. Image contrast was 951

obtained using a back-scattered electron detector with 2000 V 952

stage bias. The initial short dwell time scan was obtained using 953

the full frame acquisition Autoscript interface. The subsequent 954

long dwell time re-scan utilized the standard interface of Auto- 955

script patterning 956

To optimize image quality and tuning time for both 957

short movements between neighboring tiles and long move- 958

ments neighboring sections, we customized sequences of 959

various autofunctions. These autofunctions included auto- 960

contrast/brightness (ACB), auto-focus (AF), auto-stigmation 961

(AS), auto-focus/stigmation (AFS), and auto-lens (AL) 962

alignment. 963

Because we used different interfaces for the initial short 964

dwell time scan and long dwell time re-scan, an additional 965

alignment procedure was necessary to achieve pixel-resolution 966

precision in the re-scan. The basic system configuration for the 967

re-scan acquisition is described in Potocek (2021). 968

When the re-scan long dwell time was shorter than ∼ 500 969

ns/pixel, an unavoidable artifact due to limited system response 970

of the electron deflection system occurred at the edge of re-scan 971

regions. We excised this artifact by omitting a 1-pixel boundary 972

from every re-scan region. 973

Segmentation quality metric 974

To compare the segmentation quality of different samples we 975

used a variation of information (VI) metric (Meila, 2003). 976

In principle all comparisons that we made in this study can 977

be accomplished with other metrics of segmentation quality 978

as long as they can be applied to 2-dimensional images. We 979

expect the choice of segmentation metric to have little effect 980

as long as any metric assesses similar topological attributes 981

as VI (i.e., whether objects are split or merged). Our im- 982

plementation of the VI running on CPU/GPU is available at 983

https://pypi.org/project/python-voi/. 984

Using VI to build ERRNET. To train the error detectors we 985

needed to locate the specific regions that contribute to the 986

largest segmentation differences between image pairs, which is 987

not provided by the VI metric. VI combines split and merge 988

errors. The two error measures are defined by comparing the 989

entropy of three segmented images (Meila, 2003), S1 ∈ LN
1 , 990

S2 ∈ LN
2 and S1 × S2 ∈ LN

1 × LN
2 for two N -pixel labeling 991

(instance segmentation) S1 and S2 that needs to be compared, 992

where the Ls represents the sets of pixel labels. The segmented 993
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Figure S2. Composite EM images fusing short and a long dwell time regions are better segmented compared to short dwell time images. We tested whether replacing error-prone
regions harms the ability to segment. Composite images tend to be segmented with dramatically higher accuracy. Error of the instance segmentation is assessed in terms of the
Variation of Information (VI) compared to the segmented reference image, where VI is composed of a merge and split error terms as in Equation 1.

image S1 × S2 is labeled by concatenating the labels from S1994

and S2 for each pixel. The VI is then the sum of two error995

terms VImerge and VIsplit996

VImerge = H(S1 ×S2)−H(S1),
VIsplit = H(S1 ×S2)−H(S2), (1)

VI = VImerge + VIsplit.

Due to the additivity of the entropy measure (Meila, 2003),997

VImerge and VIsplit can be broken into individual constituents,998

representing the amount of error contributed by each individ-999

ual label in each segmentation. We could thus rank objects in1000

each segmentation according to the amount of variation they1001

contribute to overall VI (Figures S5). The error contributed by1002

the set of pixels that are both in segment s1 ∈ S1 and s2 ∈ S21003

(i.e. the error contributed by a segment in S1×S2) is1004

W (s1 ∩s2)−W (s1)

and1005

W (s1 ∩s2)−W (s2),

for the split and merge errors, respectively, where W (A) =1006

− |A|
N · log |A|

N , |A| is the number of pixels in A and N is the1007

number of pixels in the image.1008

Once the significantly incompatible objects are detected in1009

each segmentation, we used image processing to delineate the1010

borders that are responsible for the topological differences be-1011

tween the two segmented images (Figure S1). We then pro-1012

duced binary masks from these errors and trained neural net- 1013

works (ERRNET) to detect them directly from membrane prob- 1014

ability maps, themselves produced by another neural network 1015

(FASTEM2MB). Detecting borders allows our technique to dis- 1016

regard small “cosmetic” variations between two segmentations 1017

that do not cause meaningful topological differences. 1018

Determination of maximal segmentation quality. We developed 1019

an unbiased estimate for the minimal dwell needed for 2D seg- 1020

mentation. We compared segmentations from N images for 1021

each pair of dwell times d1 < d2 and an overly slow dwell time 1022

dref. We asked whether the VI of the d2 images was signifi- 1023

cantly smaller (p<0.05; Wilcoxon signed rank test) than d1 im- 1024

ages compared to dref images. When two dwell times were 1025

not sufficiently different, we call these dwell times equivalent. 1026

We defined the minimum dwell time with near maximal seg- 1027

mentation ability as that dwell time beyond which VI does not 1028

improve. 1029

Forcing fast scan imaging of desired regions 1030

The acceleration of SmartEM depends on the quantity of re- 1031

scanned pixels. Since the re-scanning mask is learned rather 1032

than calculated through a fixed process, regions irrelevant to the 1033

connectomics task may contain error-prone regions and appear 1034

in the re-scan map, potentially reducing speedup. To exclude ir- 1035

relevant regions from slow re-scan, we built another neural net- 1036

work module (EMEXCLUDE) to calculate what regions should 1037

be excluded from any re-scan, even if they might be flagged as 1038

error-prone by ERRNET. Developing a separate EMEXCLUDE 1039

module (rather than adding this capability to ERRNET) con- 1040

ferred additional flexibility to the SmartEM pipeline by allow- 1041
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ing us to adaptively choose what regions should be excluded1042

from re-scan without retraining ERRNET. Bypassing irrelevant1043

pixels (e.g., cell nuclei, blood vessels) during re-scan boosts ef-1044

ficiency by conserving time and computational resources.1045

Here, we implement EMEXCLUDE to exclude regions that1046

are sufficiently far from any cellular membranes. To do this, we1047

utilize the Euclidean distance transform on input binary mem-1048

branes. This transform calculates the shortest Euclidean dis-1049

tance from each zero pixel (background) to any non-zero (fore-1050

ground) pixel in the image. To train EMEXCLUDE, we bina-1051

rize the distance transform with a fixed threshold (Figure S13).1052

The features of irrelevant regions we learned as a semantic seg-1053

mentation task using paired EM images and their binary masks1054

(see Neural network models). The SmartEM pipeline applies1055

EMEXCLUDE in real-time on short dwell time images and1056

precludes re-scanning irrelevant regions that might have been1057

predicted by ERRNET. To assess the performance of different1058

modules in the SmartEM pipeline, we exclude EMEXCLUDE1059

from speedup tests shown in Figure 5. For the cytoplasm exclu-1060

sion described above, the average exclusion proportion is about1061

23% as shown in Figure S13. The speedup tests shown in1062

Figure 5 would improve with the implementation of EMEX-1063

CLUDE.1064

Identifying additional high-interest regions for slow re-1065

scan1066

ERRNET identifies regions susceptible to segmentation errors1067

and re-scans them at a higher quality to improve segmentation1068

accuracy. The same strategy can be re-formulated, not only1069

to identify error-prone regions, but to identify additional1070

image-specific regions of special interest, such as synapses or1071

any sub-cellular component of biological interest. Here, we1072

built an additional neural network module (EMINCLUDE)1073

to re-scan regions identified as synapses, because of their1074

high relevance to connectomics. Mouse cortex typically1075

contains ∼1-1.5 synapses per µm3 (Kasthuri et al., 2015), or1076

∼2-3 synapses per field of view when image tiles are ∼8×81077

µm2. Because of synapse sparsity, the re-scan time does not1078

substantially increase. We trained EMINCLUDE with a set of1079

manually-annotated long dwell time SEM images.1080

To train EMINCLUDE, we first trained a neural network1081

to detect synapses using manual annotations of long dwell1082

time images (EMINCLUDE). The high performance of EM-1083

INCLUDE is shown in Figure S7. We paired short dwell time1084

images with the binary masks for synapse locations predicted1085

by EMINCLUDE (which had used long dwell time images to1086

make the predictions). This procedure created ground truth1087

to train EMINCLUDE. A snapshot of the synapse detection1088

and re-scan mask generation pipeline is shown in Figure S11.1089

The hyper-parameters and training details of EMINCLUDE are1090

similar to EMEXCLUDE.1091

Optional image homogenization1092

The SmartEM pipeline produces composite image with pixels1093

acquired at different dwell times. A human observer will note1094

contrast differences at interfaces between pixels with different1095

dwell times. To increase human image interpretability, we built1096

G G

D

Translated
EM

Slow or Translated?L1 Loss

Slow
EM

Fused
EM

Adversarial Loss

Figure S3. Image Translation Model. G: generator. D: discriminator. The generator G
takes a fused EM as input and produces a translated EM (i.e., fake slow EM) that looks
similar to slow EM (i.e., taken by the microscope). The discriminator D takes as input a
concatenation of a fused EM and another image that is either slow EM (green arrows)
or a translated EM (red arrows). The aim of the discriminator is to classify whether the
second image is slow EM or translated EM. The model is trained with a combination of
adversarial loss and L1 loss.

an image translator component that homogenizes SmartEM im- 1097

ages to look like standard EM images with uniform dwell times. 1098

Figure S8 shows a specific example, a fused EM image that is 1099

a mosaic of sub-images with different dwell times. To mitigate 1100

dwell time contrasts and produce a visually coherent image, we 1101

applied a conditional generative adversarial network (IMAGE- 1102

HOMOGENIZER, cGANs) (Mirza and Osindero, 2014). Pre- 1103

vious studies used deep learning to improve the quality of mi- 1104

croscopy images (Fang et al., 2021; Wang et al., 2019; Weigert 1105

et al., 2018; Mi et al., 2021), de-noise EM images (Minnen 1106

et al., 2021), and perform image reconstruction across different 1107

modalities (Li et al., 2023). IMAGEHOMOGENIZER contains 1108

two convolutional neural networks (CNN): a generator and a 1109

discriminator (Isola et al., 2016). Training data are a composite 1110

image and a uniformly long dwell time image, where the com- 1111

posite image is generated by randomly combining pixels from 1112

short dwell time and long dwell time images in different propor- 1113

tions (Figures 6B,6C,6D where the composite images consist 1114

of 75 ns and 600 ns pixel dwell times). As shown in Figure S3, 1115

during the training process, the generator translates the sim- 1116

ulated composite images to resemble long dwell time images, 1117

and the discriminator attempts to distinguish the translated im- 1118

ages from real long dwell time images. The training process 1119

utilizes L1 loss and adversarial loss. After image homogeniza- 1120

tion by the generator, the fused EM images are more suitable 1121

for human inspection and retain the visual details of fine ultra- 1122

structure Figure S8. 1123

Neural network architectures 1124

For all neural network models, we strove for simple archi- 1125

tectures that would allow straightforward reproducibility of 1126

results. A U-Net like architecture (Ronneberger et al., 2015) 1127

was used to train membrane detection of homogeneous dwell 1128

time EMs (SLOWEM2MB, FASTEM2MB), any dwell-time 1129

EM (EM2MB), and composite EM where each image fuses 1130

more than one dwell time (FUSEDEM2MB). We found that 1131

FUSEDEM2MB, once trained, could be used for all membrane 1132

prediction tasks without compromising quality. The same U-net 1133

architecture was also used to train ERRNET, EMINCLUDE, 1134

and EMEXCLUDE. We tried the U-net architecture for image 1135

homogenization, but achieved better results with conditional 1136

GANs. 1137
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Architecture for FUSEDEM2MB and ERRNET. The selected1138

architecture, similar to the UNET(Ronneberger et al., 2015),1139

shown in Figure S14 has 3 sets of 2D-Convolution, Batch-1140

Normalization(Ioffe and Szegedy, 2015), ReLU in each layer.1141

We use residual connections(He et al., 2016) adding the output1142

of the first convolution to the last one in each layer. This1143

architecture showed the highest segmentation accuracy when1144

varying the number of CBR (Conv-BatchNorm-ReLU) in each1145

layer (2∼4), the usage of residual connections, and the type of1146

residual connections (concatenation or addition).1147

U-Net architecture for EMEXCLUDE. We trained a fully convolu-1148

tional UNET model over 200 epochs, employing a learning rate1149

of 0.01. The model was configured with five layers of depth1150

and filter sizes progressively sequenced as 32, 64, 128, 256, and1151

512. To introduce non-linearity and manage potential negative1152

inputs, we incorporated a leakyReLU activation function.1153

Image Normalization and Augmentation. To train the FUSE-1154

DEM2MB network, we used the CLAHE (Pizer et al., 1990)1155

normalization with clipLimit=3 to bring all images to a com-1156

mon color space. We used on the fly rotation, flip, translation1157

to augment the images in the training set. Although images1158

are naturally 2048×2048, we sub-sampled 256×256 squares1159

to train the network. To allow the network to deal with images1160

with multiple dwell times, we randomly replace patches at1161

random locations with different dwell times. Specifically, each1162

sample was generated by choosing a baseline image at a single1163

dwell time and replacing up to 30 patches with a maximum1164

size of 11×11 pixels with the corresponding pixels of an image1165

with longer dwell time.1166

To train ERRNET, we normalized membrane probabilities1167

to [0,1] as an input to the network. We used the same procedure1168

for on the fly translation and rotation but did not replace patches.1169

Training Procedure. We used the Pytorch framework (Paszke1170

et al., 2019) to implement and optimize the network. The Adam1171

optimizer (Kingma and Ba, 2014) with learning rate 0.001 was1172

used to update the network parameters. We used a batch size of1173

16 images. We trained the FUSEDEM2MB network for 500001174

gradient steps. We evaluated validation loss every 1000 steps1175

over 100 batches. The network converged after ∼35000 gra-1176

dient steps. The same procedure was used to train ERRNET.1177

ERRNET converged after ∼8000 gradient steps.1178

Image Translation Networks. IMAGEHOMOGENIZER uses a1179

conditional GAN called pix2pix (Isola et al., 2016), consisting1180

of a generator CNN and discriminator CNN. The generator in-1181

cludes an encoder and decoder that downsamples and then up-1182

samples the input image. The discriminator tries to discriminate1183

between slow EM and translated EM. At the training stage, we1184

use a batch size of 1 and randomly crop 128 × 128 image tiles1185

from a larger composite EM image. The model is first trained1186

with a constant learning rate of 0.0002 for 100 epochs and then1187

for another 100 epochs, during which the learning rate decays1188

to zero. At the inference stage, the whole composite EM image1189

is passed to the model without cropping.1190

Figure S4. Dwell-time re-scan data augmentation. Rows 1-5 show different locations
in the EM sample. Columns 1-4 show different augmented composite images that
were taken at different dwell times; short dwell time pixels in blue, representing 25 ns
scans; long dwell time pixels in red, representing 1200 ns pixels. Column 5 shows
the groundtruth classes for each region that were obtained from the long dwell time
neural network (SLOW2EM). The aim of FUSEDEM2MB is to classify membrane pixels.
Additional augmentations such as translation, rotation, and flip are used during training.

Image stitching and alignment 1191

The stitching and alignment of the sample volume was per- 1192

formed on composite dwell time images. After applying a band- 1193

pass filter to raw images, we used conventional block matching 1194

technique to obtain matching points between neighboring im- 1195

ages, from which elastic transformations mapping the raw data 1196

to the aligned volume were computed by mesh relaxation. Code 1197

for stitching and alignment is available at Stitching and align- 1198

ment code. We applied the same stitching and alignment trans- 1199

formations to the fast, composite, and homogenized images to 1200

produce three sets of final volumes. 1201

Segmentation and neuronal reconstruction 1202

Neuron reconstruction technique. To reconstruct neurons in 1203

3D, we applied a lightweight segmentation method that we 1204

previously used to reconstruct neurons from the same sample 1205

imaged by a multi-beam SEM (Karlupia et al., 2023) and tissue 1206

prepared using a whole mouse brain staining technique (Lu 1207

et al., 2023). First, pixels straddling intra-cellular spaces were 1208

predicted by a CNN, based on the pre-trained FUSEDEM2MB 1209

network. To improve the network accuracy, we fine-tuned 1210

FUSEDEM2MB using thirty-six 1024×1024 SmartEM tiles 1211

obtained from random locations in the target volume and 1212

annotated by an expert. Predictions from FUSEDEM2MB 1213

were used as a starting point for the annotation process of 1214

the training set. All sections were segmented in 2D using the 1215

fine-tuned network and watersheds (Pavarino et al., 2023). 1216

Second, a CNN was trained to predict from the EM the 1217

medial axis of all objects in 2D. This process required no 1218
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additional human annotation. Third, 2D object segments were1219

agglomerated across sections based on shape alignment and1220

similarity. In addition, 2D segments were agglomerated if1221

their medial axes were well-aligned using a fixed threshold1222

determining large overlaps. Fourth, agglomerated objects1223

containing a large number of adjacent 2D segments were1224

flagged as objects with possible merge errors. This was done1225

by building a Regional Adjacency Graph whose nodes are 2D1226

segments and edges represent spatial adjacency. Then these1227

objects were re-agglomerated iteratively from the original 2D1228

object segments until the merge-error criterion was attained1229

using an iterative clustering technique (Bailoni et al., 2022).1230

Fifth, orphans were detected and connected to other orphans1231

or non-orphan objects based on their best estimate from the1232

agglomeration graph, i.e., connecting them to objects that did1233

not pass the agglomeration threshold in the first iteration. The1234

results of the reconstruction are shown in Figure 7C.1235

Criterion for filtering dendritic spines. Three dendrites were1236

randomly selected for quantitative analysis. We defined cor-1237

rectly segmented spines as spines whose segmentation includes1238

their synapse-containing regions. Incorrectly segmented spines1239

were split errors that occurred before the synaptic region. To1240

avoid confusing spines with dendritic filopodia, we excluded1241

putative spines from analysis if no potential synapse was1242

contained in the image volume. There observed three types1243

of error: Type 1 errors occur when the spine is prematurely1244

truncated by a split error that occurs before the spine’s corre-1245

sponding synapse that was not due to an obvious image artifact1246

(e.g., tissue preparation, folds in the section). Type 2 errors1247

occur when the spine is not tracked at all due to a split error at1248

its base on the dendrite that was not due to an obvious image1249

artifact. Type 3 errors occur when the spine is lost due to an1250

obvious artifact. We observed such errors caused by local1251

aberrations in tissue preparation in sections 56, 65, 66, 77 and1252

88. The distribution of incorrect spines and their corresponding1253

error type is shown in Table S1. To characterize only errors that1254

might be associated with the SmartEM technique, we exclude1255

the rate of Type 3 errors from consideration.1256

Statistical tests1257

All statistical tests were done using the Wilcoxon signed-rank1258

test for paired samples. The test was used to assess the cases1259

where two dwell times produce similar segmentation quality by1260

comparing the variation of information of individual samples to1261

a single reference taken at a longer dwell time.1262
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A

B

C

Figure S5. Ranking objects of two segmented images based on contribution to variation of information. A. Segmentation of long dwell time image at 1000 ns. B. Segmentation
of short dwell time image at ∼ 100 ns overlaid on 1000 ns EM. Some large errors are indicated with red arrows. C. Objects that vary between the two segmented images. Red
heatmap indicates contribution to variation of information (Meila, 2003) where variable objects come from either of the two segmented images. The largest variation is captured by
the three objects indicated by red arrows.
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Figure S6. Data-aware imaging of synapses at long dwell time. SmartEM takes a short dwell time image (50 ns/pixel), predicts locations that contain synapses, and re-scans
these regions at long dwell time (1200 ns/pixel). The blue overlay presents synapse predictions by EMINCLUDE. Yellow outlines represent locations for re-scan based on dilation
of EMINCLUDE predictions.
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Figure S7. Synapse detection in ultrafast (25 ns), fast (75 ns) and slow (800 ns) dwell time. EMINCLUDE works at multiple dwell times.
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Figure S8. Examples of image homogenization by IMAGEHOMOGENIZER. Left column: composite EM with two dwell times (75 ns/pixel and 600 ns/pixel). Middle column:
homogenized EM from composite EM, exhibiting similar visual coherence compared to slow EM. Right column: slow EM (600 ns/pixel). Red arrows indicate the locations with
slow dwell time of 600 ns/pixel in composite EM.
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Figure S9. Globally fixed SmartEM parameters and their respective speedup compared to traditional EM.

Meirovitch et al. | SmartEM 24

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 15, 2024. ; https://doi.org/10.1101/2023.10.05.561103doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.05.561103
http://creativecommons.org/licenses/by-nc/4.0/


Figure S10. A. The process of generating the EMEXCLUDE ground truth: EM images taken at slow dwell times are processed to determine regions that should be excluded
in subsequent scans. The sequence begins with the raw EM image, proceeds to membrane predictions highlighting essential structures, and then applies a Euclidean distance
transform to emphasize key features. The final output is a binary differentiation after thresholding, which identifies areas of minimal interest, establishing the EMEXCLUDE ground
truth. B. The EMEXCLUDE ground truth is paired with fast EM images to train a neural network, enabling it to recognize and exclude similar non-essential regions in new scans.
Once trained, the network processes new EM images in real-time, generating EMEXCLUDE masks.
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Figure S11. Synapse detection and rescan mask generation pipeline: aligned acquisition provides electron microscopy (EM) images at varying dwell times. A teacher network is
trained to identify synapses from slow dwell time images, and these identified labels train a student network, EMInclude, for synapse detection on faster dwell time images. This
student network predicts synapse locations to generate a rescan mask, directing the microscope for targeted slow point scans of selected synapses. The outcome is a fused EM
image that integrates different dwell times, optimizing scanning speed and detail in areas of interest.
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Figure S12. A cubical 3 µm portion of an aligned smart EM output from 94 serial
sections.
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Figure S13. Percentage of EM that can be excluded in a 60×68×3µm3 section. On
average, around 23% of the volume can be excluded from rescanning.
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Figure S14. CNN architecture used for the FUSEDEM2MB and ERRNET. The architecture is similar to U-Net (Ronneberger et al., 2015), but has 3 layers of (Convolution, Batch–
Normalization, ReLU) in each layer and has additional residual connections (He et al. (2016)). The architecture is fully convolutional and for both FUSEDEM2MB and ERRNET the
input dimension is 1, respectively for the grayscale image and the membrane probability. In both cases the output dimension is 2, respectively for 0:not-membrane,1:membrane
and 0:no-error,1:error
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Dendrite # Correct Spines # Type 1 Errors # Type 2 Errors # Type 3 Errors % Correct Spines (excluding Type 3)
1 7 3 2 2 58%
2 9 5 3 10 53%
3 21 6 1 5 75%

Combined 37 14 6 17 65%

Table S1. Distribution of correctly and incorrectly segmented dendritic spines by automated reconstruction.
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