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Summary

Connectomics provides essential nanometer-resolution,
synapse-level maps of neural circuits to understand brain activity
and behavior. However, few researchers have access to the
high-throughput electron microscopes necessary to generate
enough data for whole circuit or brain reconstruction. To date,
machine-learning methods have been used after the collection of
images by electron microscopy (EM) to accelerate and improve
neuronal segmentation, synapse reconstruction and other data
analysis. With the computational improvements in processing EM
images, acquiring EM images has now become the rate-limiting
step. Here, in order to speed up EM imaging, we integrate
machine-learning into real-time image acquisition in a single-
beam scanning electron microscope. This SmartEM approach
allows an electron microscope to perform intelligent, data-aware
imaging of specimens. SmartEM allocates the proper imaging time
for each region of interest — scanning all pixels equally rapidly,
then re-scanning small subareas more slowly where a higher
quality signal is required to achieve accurate segmentability, in
significantly less time. We demonstrate that this pipeline achieves
a 7-fold acceleration of image acquisition time for connectomics
using a commercial single-beam SEM. We apply SmartEM to
reconstruct a portion of mouse cortex with the same accuracy as
traditional microscopy but in less time.

electron microscopy | connectomics | machine-learning | adaptive scanning

Introduction

Serial-section Electron Microscopy (ssEM) is widely used to
reconstruct circuit wiring diagrams in entire brains of small
animals like C. elegans, Drosophila, and zebrafish (White et al.,
1986; Witvliet et al., 2021; Xu et al., 2020; Hildebrand et al.,
2017) and brain regions in mammals (Morgan et al., 2016;
Kasthuri et al., 2015; Bock et al., 2011; Abbott et al., 2020;
Lu et al., 2023; Song et al., 2023). Comparing the growing
numbers of connectomes of animals with different genetic
backgrounds, life experiences, and diseases will illuminate the
anatomical nature of learning, memory, and developmental
plasticity, the nature of brain evolution, as well as the nature
of anatomical abnormalities that cause neuropathology and
disease (Kornfeld et al., 2020; Shapson-Coe et al., 2024;
Loomba et al., 2022; Karlupia et al.,, 2023; Bidel et al,
2023). To achieve wide-scale deployment for comparative
connectomics, data acquisition and analysis pipelines need to
become more widely available (Swanson and Lichtman, 2016).

At present, connectome datasets are mostly acquired by the
few laboratories and institutions equipped with specialized and
expensive high-throughput electron microscopes such as the
TEMCA (Transmission Electron Microscopy Camera Array)
or the Zeiss 61- or 91-beam scanning electron microscope
(SEM) (Bock et al., 2011; Shapson-Coe et al., 2024). Until
recently, dataset acquisition had not been a limiting factor
in connectomics (Lichtman et al., 2014). A more significant
bottleneck had been data analysis — segmenting serial-section
electron micrographs to reconstruct the shape and distribution
of nerve fibers, identify synapses, and map circuit connectiv-
ity. However, recent improvements in machine-learning and
image analysis (Beier et al., 2017; Januszewski et al., 2018;
Meirovitch et al., 2019; Sheridan et al., 2023) have dramatically
sped data analysis, creating a now urgent need for faster image
acquisition. The field needs more electron microscopes to
deliver datasets as fast as they can now be analyzed. One
way to meet this need is to enable widely-available electron
microscopes, like more affordable point-scanning SEMs, to
collect connectomic datasets.

When using a point-scanning SEM for connectomics, the
time budget for image acquisition time is mostly dictated by the
dwell time that the electron beam spends on each pixel. In prac-
tice, SEM imaging of well-prepared, high-contrast, electron-
dense tissue for connectomics usually uses dwell times >~1000
ns/pixel. By comparison, the time spent moving the beam be-
tween pixels is negligible; modern SEMs use electrostatic scan
generators that deflect the electron beam to any pixel in an im-
age (Mohammed and Abdullah, 2018; Anderson et al., 2013).
To accelerate a SEM for connectomics, one must reduce the to-
tal dwell time over all pixels, but without losing information
needed to accurately determine the wiring diagram.

For connectomics, the salient measure of image accuracy
is neuronal segmentation — being able to correctly identify
each neuron’s membrane boundary and to correctly identify
each synapse. In standard SEM, image acquisition is done
by specifying a fixed homogeneous dwell time for all pixels.
The longer the dwell time, the higher the signal-to-noise per
pixel, and the more accurate the segmentation. Thus, there
is a fundamental trade-off between SEM imaging time and
segmentation accuracy. Previous approaches to improving seg-
mentation accuracy with rapidly acquired images have involved
post-acquisition image processing such as de-noising (Minnen
et al,, 2021) or “super-resolution”/upsampling (Fang et al.,
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2021). However, image processing that works entirely after the
completion of image acquisition is limited by the amount of
original information acquired. No technique unambiguously
“creates” information that was not acquired in the first place.
Fast, lossy image acquisition can miss critical information that
precludes accuracy in any subsequent segmentation.

Our solution to the problem of missing information in an
initial rapidly acquired image is to immediately recover infor-
mation during real-time microscope performance. To do this,
we developed a “smart” SEM pipeline that rapidly identifies
error-prone regions as well as high-salience regions (such as
synapses) in every rapidly acquired image, and immediately
and slowly re-scans only these regions. We define error-prone
regions as only those that would confer full segmentation ac-
curacy to a composite image, which is built from the initial
rapidly acquired image (adequate wherever segmentation is ac-
curate at short dwell time) and fused with long dwell time re-
scans (necessary wherever segmentation is error-prone). When
error-prone and high-salience regions are relatively few in num-
ber and small in size, re-scanning adds little to the total image
acquisition time budget while fully restoring segmentation ac-
curacy. We sought an image acquisition pipeline that achieves
the accuracy of uniform long dwell time acquisition with nearly
the speed of uniform short dwell time acquisition.

We implemented smartness in the pipeline with machine-
learning algorithms running within SEM computer hardware.
This pipeline, called SmartEM, can be applied in any context
where images exhibit high spatial heterogeneity in segmenta-
tion accuracy as a function of imaging time — a fundamental
characteristic of brain images where nerve fibers and synapses
can vary in size and density from region to region. Unavoidable
spatial heterogeneity in any specimen is why a smart selection
of which regions to collect at short dwell times and which re-
gions to re-scan at long dwell times can achieve full segmenta-
tion accuracy but with much less total dwell time. Applied to
connectomics, the SmartEM pipeline yields a substantial 7-fold
speedup for a widely available point-scanning SEM, allowing
the microscope to be used for connectomics solely by imple-
menting our machine-learning algorithms in the GPU-equipped
SEM support computer. Spatial heterogeneity characterizes nu-
merous SEM applications, and SmartEM can thus be applied to
speed reconstruction of other specimens in biology, in material
sciences and in electronic circuit fabrication.

Results

Suitability of adaptive dwell times for connectomics

To establish the rationale for our connectomics pipeline by
point-scanning SEM — automatically applying short dwell times
to most brain regions that are “easy” to segment and long dwell
times to fewer brain regions that are “hard” to segment — we
quantitatively tested how spatial heterogeneity in representative
mammalian brain images affects segmentation accuracy with
different dwell times. To perform these tests, we used a recent
high-quality sample comprising 94 sections of mouse visual
cortex (Karlupia et al., 2023). We re-imaged these 94 sections
at 4 nm pixel resolution using a point-scanning Verios G4 UC
SEM from Thermo Fisher Scientific and a range of fixed dwell
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times from 25 to 1200 ns/pixel.

We note that when these images were originally acquired in
a previous study using standard point-scanning SEM, the dwell
time was 800 ns/pixel (Karlupia et al., 2023). This dwell time
was determined by a “rule-of-thumb” and is close to the 800
— 1000 ns/pixel needed for maximal segmentation accuracy for
this dataset (Figure 1A, 1B).

Our segmentation algorithm — mapping EM images to
membrane predictions (EM2MB) followed by a standard
watershed transform — provided an objective assessment of
segmentation accuracy of images collected with different
dwell times. We adapted EM2MB to SEM images taken with
different dwell-times (see Supplement). We automatically
segmented 256 randomly selected 2000x2000 pixel regions
taken from the 94-section sample with different dwell times.
Automatic segmentation with ultrafast dwell times (25 ns/pixel)
produced frequent merge and split errors compared to auto-
matic segmentation of the same regions with overly slow dwell
times (1200 ns/pixel) (Figure 1A). As dwell times increased,
segmentation errors gradually disappeared.

To quantify segmentation accuracy, we calculated the Vari-
ation of Information (VI; Meila (2003)) between each automat-
ically segmented region at each faster dwell time and the seg-
mentation obtained at the slowest dwell time (Figure 1B). Seg-
mentation accuracy increased with slower dwell times, and sat-
urated at 800-1000 ns/pixel, consistent with the rule-of-thumb
practice in choosing the dwell times for connectomics. With
>1000 ns dwell times, segmentation accuracy using EM2MB is
saturated. At 25 ns/pixel, acquisition speed is 40x faster than
at 1000 ns/pixel, but with lower accuracy.

Brain tissue is typically heterogeneous in the difficulty of
segmentation across image regions (Figure 1C, 1D). Thus, seg-
mentation accuracy varied substantially from region to region.
For slow dwell times (1000 ns), segmentation accuracy was nar-
rowly distributed around small VI, indicating less segmentation
errors. For ultrafast dwell times (25 ns), segmentation accuracy
was broadly distributed. Some regions exhibited the same low
VI with both ultrafast and slow dwell times (“easy” to segment
regions). Some regions exhibited drastically higher VI for ul-
trafast dwell times than slow dwell times (“hard” to segment
regions) (Figure 1C). For each region, we determined the mini-
mum dwell time to reach the same segmentation accuracy as the
slowest dwell time (see Supplement: Determination of max-
imal segmentation quality). We observed a broad distribution
of minimum dwell times across pixel regions. Most 2000 <2000
pixel regions are accurately segmented with dwell times <150
ns, but a small number (~25%) required longer dwell times.
Minimum dwell times exhibited a broad-tailed distribution from
50 — 1200 ns/pixel (Figure 1D).

Challenges in smart microscopy

We sought a SmartEM pipeline to identify and adapt to spa-
tial heterogeneity in the segmentation accuracy of brain tissue
for connectomics when imaged at different dwell times. To im-
plement this pipeline with a point-scanning SEM, we needed
to solve several challenges. The SEM needs to automatically
identify error-prone locations in an initial rapidly acquired brain
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Figure 1. The effect of the beam’s dwell time on the ability to segment the EM into neuronal elements. A. Scanning the same EM tile with different dwell times. Short dwell time
scans result in segmentation errors (red squares) that are resolved by longer scans (green squares). Increasing the dwell time improves the segmentation accuracy of short dwell
time images (25 ns/pixel and 75 ns/pixel) but does not improve the segmentation accuracy of sufficiently long dwell time images (800 ns/pixel). B. The segmentation quality of the
same images used in (A) are represented by x markers, alongside the distribution of segmentation qualities of 256 images (scatter and boxes) for 13 dwell times, from 25 ns to
1000 ns, calculated relative to a reference image taken at 1200 ns/pixel. Segmentation error is quantified by variation of information (y-axis). VI drops rapidly with increased dwell
times, saturating with dwell times near 800 ns. Wide distributions indicated by whiskers at each dwell time indicate that some image tiles can be segmented at any dwell time. C.
Segmentation of neuronal tissue has varying quality due to tissue heterogeneity: taking an image at 25 ns could lead to an image that can be segmented at high quality (bottom
image) or low quality (top image), compared to taking the images slowly (at 1000 ns). D. The majority of image regions (greens areas add up to 1.00) can be segmented at faster
dwell times (75 ns to 125 ns), while some regions require longer dwell times (between 400 ns to 800 ns) to reach the segmentation quality criterion. Thus, adapting dwell time for
different regions would save imaging time without reducing segmentation quality.
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Figure 2. Smart microscope challenges. A. An erroneous segmentation of a rapidly
acquired image (25 ns/pixel) with a red arrow indicating the location of a merge error
between two neurons (N1, N2). Slowly acquiring the same image at 1200 ns/pixel
captures the neuronal boundary (middle). The output of the ERRNET neural network
that was trained to predict segmentation errors from EM is shown on the right. Blue
indicates the location where the network predicts a possible merge or a split error.
The yellow outline is a window around the predicted error to provide further context
needed for downstream correction. B. The SEM readily captures any part of an image
at different dwell times, homogeneously at short dwell times (left), homogeneously at
long dwell times (middle), or homogeneously at short dwell times with a sub-region
taken at long dwell times (right). Here, the yellow outline for the long dwell time sub-
region contains a synaptic cleft. C. Predicting neuronal borders from fused EM images
using FUSED2MB.

image. The SEM needs to immediately re-scan pixel neigh-
borhoods around error-causing locations to guarantee accurate
segmentation. After image acquisition, the pipeline needs to ac-
curately segment composite images built from the initial rapidly
acquired images fused with re-scanned error-prone regions. We
review solutions to these challenges that we incorporate in the
smart microscopy pipeline described below.

Detecting error-prone regions by an SEM. To identify error-
prone regions in initial rapidly acquired images, we developed
a machine learning (ML) algorithm to run on the microscope’s
support computer. Figure 2A shows a rapidly acquired image
tile and its segmentation containing a merge error (red arrow
in left panel); the slowly acquired image tile that would not
produce an error (middle panel); the prediction of a neural
network (ERRNET, see below) that identifies error-causing
locations in the rapidly acquired image (corresponding to cell

Meirovitch etal. | SmartEM

membranes associated with the merge error, highlighted in
blue in right panel); and the specification of error-prone region
to be re-scanned that would remedy segmentation errors in
post-processing (yellow outline in middle and right panels).
ERRNET operates in real-time within SEM computer hardware
that is equipped with a high-performance GPU, and is much
faster than initial image acquisition — per pixel processing for a
single commodity GPU is <100 ns/pixel; N GPUs operating in
parallel require < 100/N ns/pixel. A related idea where EM
acquisition is guided based on uncertainty measures estimated
by neural network models was described in Shavit et al. (2021).

SEM re-scanning any sub-region. To use the prediction of error-
prone regions during real-time SEM operation, we modified the
scanning procedure of the microscope to re-scan error-prone
regions at slow dwell times right after the fast scan. In addi-
tion to re-scanning error-prone regions, neural networks can be
trained for data-aware re-scan of additional regions of interest
like synaptic clefts for applications in connectomics. Figure 2B
depicts data-aware re-scan where the microscope is guided to
re-take regions around synaptic clefts that are predicted from an
initial fast scan image of a section of mammalian cortex. SEM
microscopes with electrostatic scan generators are able to con-
duct efficient and rapid re-scan without wasted time in moving
the electron beam (Mohammed and Abdullah, 2018; Anderson
et al., 2013). When ERRNET and re-scan software are seam-
lessly integrated within SEM computer hardware, the total time
spent acquiring an image is the total number of pixels X the
short initial dwell time plus the total number of re-scanned pix-
els x their long dwell time.

Segmentation of multi-dwell time images. After image ac-
quisition, a smart microscopy pipeline generates a complete
rapidly acquired image and set of slowly re-scanned regions
of each sample. When pixels from the re-scanned regions are
substituted into corresponding locations in initially rapidly
acquired images, composite images are produced with pixels
of multiple dwell times. Previous segmentation algorithms
for connectomics have dealt with a single pre-fixed dwell
time (Januszewski et al.,, 2018; Meirovitch et al.,, 2019;
Sheridan et al., 2023) — these algorithms generalize poorly
to homogeneous images taken at different dwell times or to
heterogeneous images composed of regions taken at different
dwell times. The smart microscopy pipeline demands new
algorithms to accurately segment composite images where
different regions are obtained at different dwell times. We
developed a data augmentation training procedure technique
for a neural network with a U-Net (Ronneberger et al., 2015)
architecture (FUSED2MB) to accurately detect membranes
in an image with heterogeneous dwell times as well as if the
image was taken with a single uniformly applied dwell time
(see Supplement). Figure 2C shows an example of an image
that has multiple dwell times (slow scanning arbitrarily within
an S-shaped region surrounded by fast scanning). The predicted
membranes by FUSED2MB are unperturbed when crossing
between regions taken with different dwell times.

Thus, the challenges in building a smart microscopy
pipeline are met by extensively using machine learning in both
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A Traditional EM acquisition

EM imaging

B ML-based EM acquisition

EM imaging

ML post-processing| Selective reimaging

Figure 3. Traditional versus ML-based image acquisition. A. Traditional microscopes
acquire images without real-time adaptation to the data itself. Acquired images are
often processed off-line using machine learning algorithms that might enhance the ex-
isting information content (e.g. using super resolution, de-noising and in-painting ML
techniques). B. The SmartEM pipeline uses dataset-specific machine learning algo-
rithms to guide image acquisition in real-time to increase information content.

guiding image acquisition and image analysis. As illustrated
in Figure 3, our pipeline differs from previous applications
of machine learning in electron microscopy, where image
analysis using neural networks was only used to improve image
appearance after image acquisition.

The smart microscopy pipeline

We built an integrated smart pipeline that meets the above chal-
lenges, Figure 4A shows an example of our smart microscopy
pipeline run on a small tile from the mouse cortex dataset
(Karlupia et al., 2023). The components of the SmartEM are
outlined in Figure 4B and their design and implementation are
described below in detail.

Determining the standard dwell time needed for high accuracy
segmentation. The goal of the SmartEM pipeline is to reach
the segmentation accuracy of standard SEM with uniform slow
scanning, but in much less time. To fairly assess the improve-
ment of SmartEM over standard SEM, we needed first to deter-
mine the shortest dwell time for standard imaging that leads to
accurate segmentation (800 — 1000 ns/pixel in the example in
Figure 1B).

We also needed an objective metric for assessing accurate
segmentation. In the example shown in Figure 1B, the micro-
scope automatically estimates 800 ns as the minimal dwell time
needed for accurate segmentation. This estimate was based on
the output of automatic membrane prediction by a neural net-
work (Pavarino et al., 2023).

To accomplish this, we trained a neural network called
SLOWEM2MB to perform automatic membrane prediction
using long dwell time images. We acquired a small and diverse
subset of long dwell time images from random locations in a
specimen, typically twenty 5x5 pm EM tiles, and performed
manual segmentation by an expert to create training data for
SLOWEM2MB.

Next, we used SLOWEM2MB to train a separate neural net-
work called EM2MB that was capable of predicting membranes
with long or short dwell time images. The single-beam SEM al-
lowed for re-imaging the same regions at different dwell times.
The single-beam SEM allowed repeatedly re-imaging the same
region at different dwell times. In this way it was possible to
guide the microscope to collect a large sample of EM images

Meirovitch etal. | SmartEM

from different random locations in the specimen, using differ-
ent dwell times ranging from 25 to 2500 ns/pixel as shown in
Figure 4. SLOWEM2MB was applied to the long dwell time
image at each location to automatically create segmentations
that we could use as “ground truth” to train EM2MB to pre-
dict segmentations with long or short dwell time images. Both
SLOWEM2MB and EM2MB were implemented using a U-net
architecture.

SLOWEM2MB and EM2MB calculated the trade-off be-
tween pixel dwell time and segmentation accuracy. EM2MB
was used to automatically segment all dwell time images (e.g.
from 25 to 1000 ns/pixel for the mouse cortex dataset) and com-
pare them to a reference automatic segmentation corresponding
to the longest dwell time image (e.g. 1200 ns/pixel image).
Thus, it was possible to identify the shortest dwell time for
which mean accuracy across tiles was not further improved by
longer dwell time imaging. This minimum dwell time was de-
fined by SmartEM as the required dwell time to achieve agree-
ment with ultra-slow dwell time segmentation.

Learning to detect error-causing locations in short dwell time
images. To further reduce imaging time we adjusted pixel dwell
time based on segmentation accuracy. Most image regions can
be segmented with full accuracy after scanning with a short
dwell time. Additional dwell time is only selected for those
regions that require longer imaging to segment properly. This
selection was accomplished via a neural network (ERRNET)
that learned what regions required longer dwell time after scan-
ning whole images with short dwell time. ERRNET learns the
features of error-causing locations in raw short dwell time im-
ages that produce segmentation differences — erroneous merges
or splits — in comparison to long dwell time images.

To assemble “ground-truth” to train ERRNET, the micro-
scope first takes a large set of images from random locations
in the specimen at multiple dwell times (e.g. from 25 to 1200
ns/pixel). These images are segmented to distinctly label ev-
ery contiguous neuron cross section. Automatic labeling can be
done using membrane probabilities, a seeding procedure, and
a standard region-growing algorithm such as watershed (Vin-
cent and Soille, 1991). Segmented images at all dwell times are
compared to reference segmented images taken with the longest
dwell time (1200 ns/pixel for the mouse cortex dataset in Fig-
ures 1A, 1B, longer than needed for fully accurate segmenta-
tion with SLOWEM2MB). To automatically learn segmenta-
tion discrepancies between short and long dwell time images,
we developed a method to produce a binary error mask that de-
fines the morphological differences between two segmented im-
ages based on the variation of information (VI) clustering metric
(Meila, 2003) (See Supplement for details). We trained ERR-
NET to predict error-causing regions in short dwell time im-
age as shown in Figure 4. We used the VI metric to detect
objects that are morphologically different between segmenta-
tions of short and long dwell time images, and then mapped the
borders that differ for these objects (described in Supplement)
(Meila, 2003). We noted that all segmentation errors in short
dwell time images can be repaired (i.e. leading to identical seg-
mentation as long dwell time images) by selectively replacing
only regions surrounding discrepancy-causing locations in short
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A Standard EM scanning and segmentation

Sample Long scan Segmentation

@ Smart multi-step EM scanning and segmentation n

20x shorter scan Error-prone regions Re-scanning Segmentation

> > >

B Learning phase Acquisition phase

Sample Short scan Membrane map

Sample Long scan Membrane map ERRNET
Topology comparison
Error map

Short scan Re-scan map FUSEDEM2MB

Partial

rescan Fused image ~ Membrane map

Aligned
acquisition

Figure 4. SmartEM pipeline. A. The smart multi-step imaging compared to standard imaging. In standard EM, the sample is first scanned with a long dwell time and then
segmented (top). In the SmartEM pipeline, the sample is first scanned at a short dwell time, error-prone regions are detected and re-scanned and then segmented. B. The
learning and acquisition phases of SmartEM. Left: For training, SmartEM requires aligned stacks of high-quality (long scan) images and low-quality (short scan) images. A
membrane detector, FUSEDEM2MB (blue), is trained on this dataset to re-produce the high quality results of a membrane detector that runs only on the long scan images. Once
FUSEDEM2MB is trained, the membrane predictions between the short and long dwell times is compared (topology comparison) and a binary error map featuring the differences
between the two predictions is produced. A second network, ERRNET (red) is trained to predict this error map from the membrane predictions of the short dwell time images.
Right: The two trained networks FUSEDEM2MB and ERRNET are used for smart acquisition. First a short scan is performed and the membrane prediction is generated from
FUSEDEM2MB. This prediction serves as an input to ERRNET to generate an error map. The error map is processed and used to guide a long dwell time re-scan. For verification,

the composite image of the two dwell times is segmented.
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dwell time images with corresponding regions taken from long
dwell time images.

Detecting error-prone regions in short dwell time images,
re-scanning, and producing fused images. In real-time opera-
tion, the SEM microscope must take an initial rapidly acquired
image, execute ERRNET to detect error-prone locations, define
a re-scan mask by padding error-prone locations to capture
enough context to improve segmentation accuracy, and then
immediately re-scan all error-prone regions using slow dwell
times.

Unifying and enhancing images. The final output of the pipeline
are images where some pixels are captured with slower dwell
times than others. Although the raw appearance of rapidly cap-
tured regions (high pixel noise) and slowly captured regions
(low pixel noise) does not degrade segmentation accuracy, it
does create visually unappealing contrasts (Figure 3B). To stan-
dardize the SmartEM image for human interpretation, we also
built an algorithm that translates the style of the SmartEM im-
ages to look like standard EM images with homogeneous dwell
times. A similar technique was described in Shavit et al. (2021,
2023). This stylized output does not supplant, but is saved in
addition to, the raw composite SmartEM images. We note that
stylized images often retain the correct details of the ultrastruc-
ture seen in homogeneous long dwell time images (Figure S8).

Technique Evaluation

We developed our SmartEM pipeline to expedite connectomic
reconstruction on our widely available point-scanning SEM, the
Verios G4 UC from Thermo Fisher Scientific. Here, we quanti-
tatively estimate the practical improvement in quality and speed
offered by this pipeline for connectomics.

Improving accuracy. One premise of the smart microscopy
pipeline is that automatically detecting error-prone regions
and replacing them with slower dwell time pixels will reduce
segmentation errors. To attempt to validate this premise, we
compared the accuracy of a segmentation pipeline trained
to deal with short dwell time images (FASTEM2MB at 100
ns/pixel) to a SmartEM pipeline trained to deal with composite
images made from short and long dwell times (FUSEDEM2MB
at 100 ns/pixel and 2500 ns/pixel). The performance of these
networks was compared to the standard segmentation pipeline
with slow image acquisition (SLOWEM2MB at 2500 ns/pixel).
For fair comparison, we used the same long dwell time for the
re-scanning in the smartEM pipeline and for the uniform scan
in the standard pipeline. We found that using these dwell times,
SmartEM pipeline is ~5 x faster than the standard segmentation
pipeline with slow image acquisition and ~2-3x more accurate
(based on VI) than the standard pipeline operating quickly (100
ns/pixel) (Figure S2). Thus, fusing long dwell time pixels into
arapidly acquired image can improve segmentation accuracy.
Another premise of the SmartEM pipeline is that given the
additional time spent in re-scanning part of an image, the im-
provement in segmentation accuracy is superior to the improve-
ment that would be obtained by giving the same amount of extra
time to a standard pipeline that somewhat more slowly acquires
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all pixels at the same dwell time. To attempt to validate this
premise, we used a FastEM pipeline by choosing competitively
fast settings for the standard pipeline, with pixels taken homoge-
neously at 75 ns. We compared the performance of FastEM with
a SmartEM pipeline tuned to take the same average time when
combining both the initial scan and the smart re-scan. The ini-
tial SmartEM scan dwell time was set to 25 ns, the re-scan dwell
time to 200 ns, and a portion of the 12.5% most "error suscepti-
ble" regions were adaptively selected per tile for re-scan, so as
to provide an exact average of 75 ns/pixel. We compared the
variation of information of 64 segmented 2048 x2048 pixel im-
age tiles of fastEM and SmartEM to a reference slowEM and
found that the SmartEM had less error (signed-rank Wilcoxon
test; p<0.05, and p<0.025 for N=38 tiles devoid of cell bodies).

Estimating speed-up. We considered two scenarios for the
large-scale collection of a connectome dataset. The first
involves a fixed imaging time budget to acquire a selected data
volume at the selected pixel resolution. Here, the task is to
intelligently allocate the imaging time to optimize segmentation
accuracy. We note that this optimization is not feasible with a
standard EM pipeline that would fix the homogeneous dwell
time to fill the time budget. The second scenario involves set-
ting the pipeline quality according to the quality of a standard
EM imaging pipeline. Here, the task is to determine SmartEM
parameters that maintain this quality while minimizing the
required imaging time per volume. Below we analyze both
scenarios.

Scenario 1: Optimized accuracy with fixed imaging time
budget We fix the total imaging time budget for a given speci-
men. From this requirement the pixel dwell time is determined
after subtracting overhead factors (such as image focusing,
astigmatism correction, and mechanical stage movement) from
the total budget. For example, the user might need to image a
given specimen — 100x 100x 100 pm tissue, cut in 30 nm thick
sections, imaged at 4 nm spatial resolution — within 5 days
of continuous EM operation. These constraints determine the
average dwell time per pixel

(5-24-3600 sec)(42 - 30 nm?)
(100pm)3

For a standard EM pipeline, 207.36 ns becomes the homo-
geneous pixel dwell time. For the SmartEM pipeline, the initial
scan and re-scan of all error-prone regions should sum to an av-
erage of 207.36 ns/pixel. This average dwell time, which we
call effective dwell time, can be achieved with different combi-
nations of initial fast dwell time, re-scan slow dwell time, and
percentage of re-scanned pixels:

= 207.36 ns.

Tetrective = Tinitial + @ Tre-scan

where T represents dwell times.

For example, an effective average dwell time of 207.6 ns is
achieved with an initial dwell time of Tj,ji. = 100 ns, re-scan
rate of a = 5%, and re-scan dwell time of T}y = (207.36 —
100)/0.05 = 2147.2 ns. These parameter settings correspond to
a specific segmentation accuracy (VI) relative to the reference
homogeneous long scan image. SmartEM considers a grid of
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Figure 5. SmartEM acquisition time. In the first imaging scenario A-C, the imaging time is constrained by a time budget, which for a fixed volume and pixel resolution, provides the
average dwell time (beam time). The task is to intelligently determine the SmartEM parameters that optimize segmentation accuracy. A For every targeted smart time (effective
dwell time) the smartEM parameters that optimize segmentation accuracy are determined, including the standard (homogeneous) dwell time achieving that segmentation accuracy
(y-axis). The longer the smart time is, the longer homogenous time is needed to achieve the same accuracy, with an asymptote around smart dwell time of 200 ns/pixel, equivalent
to a homogeneous dwell time of about 800 ns/pixel. Error bars represent 1 s.d. B The speed up of the curve in A. The maximal speed up is achieved around the inflection point
in A, around 125 ns/pixel - longer smart imaging up to 200 ns/pixel will still improve segmentation accuracy but with smaller speed up. C The data in A and B is shown for a fixed
volume of 1 TB at 4nm per pixel and a slice thickness of 30 nm. D The variation of information of SmartEM compared to slowEM is calculated for each effective dwell time by
optimizing the pipeline’s parameters and the average VI across tiles is depicted. This allow calculating the two dwell times in the SmartEM (blue) versus standard (red) settings
that produce the same accuracy (on average and per tile). E In the second imaging scenario, the quality of the EM is set in advance in terms of a desired dwell time of a standard
pipeline, and the task is to find smart EM parameters that would provide that quality in a minimal amount of imaging time per volume. Maximal information for segmentation is

achieved with around 140 ns/pixel for SmartEM and with around 800-1000 ns/pixel for standard EM.

parameter settings and calculates the Tinigal, Zre-scan and o set-
tings that produce maximal accuracy (minimal VI) compared
to the segmentation of reference tiles, while guaranteeing the
effective dwell time (see Supplement).

Figure SA presents the results of parameter optimization
for different effective dwell times (smart imaging time) and
image tiles. This optimization links any effective dwell time
(achieved by optimizing the VI for different Tipigar, ZTre-scan) tO
an accuracy-equivalent standard homogeneous dwell time. For
example, an effective dwell time of 200 ns (blue arrow) already
attains the maximal quality using a specific set of initial,
re-scan dwell times, and re-scan rates that are determined per
tile. This quality is comparable to standard homogeneous scan

Meirovitch etal. | SmartEM

at 800 ns/pixel.

Figure 5B depicts the time saved by SmartEM compared to
standard microscopy. For the mouse cortex dataset, the maxi-
mal saving compared to standard EM is achieved when smart
EM is used at an effective dwell time of ~125 ns/pixel, which
corresponds to the inflection point in Figure 5A, leads to an
accuracy akin to ~725 ns/pixel by the standard pipeline. This
effective dwell time produces images with nearly maximal pos-
sible segmentation accuracy (Figure 1). Figure 5C estimates
the time to replicate the accuracy of SmartEM using standard
microscopy using 1TB of mouse cortex (where 1 Byte corre-
sponds to 1 pixel at 4x4x30 nm?). The SmartEM microscope
running for 60 hours of continuous imaging achieves the same
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quality as a standard pipeline running for 250 hours.

Scenario 2: Minimizing imaging time with fixed image
quality In the second scenario a certain volume needs to be
segmented, and SmartEM is asked to minimize imaging cost.
Imaging time is not determined in advance, but the quality
of the smart EM has to meet a quality standard. SmartEM
needs to acquire the volume in a way that leads to comparable
segmentation to standard EM but in significantly less time.

First, the operator determines the dwell time that is needed
to achieve a specific quality with standard homogeneous
scanning. This dwell time can be obtained from the SmartEM
pipeline estimate of a minimum homogeneous dwell time
(Figure 1). Once the image quality is effectively determined
by selecting a reference dwell time for uniform scanning,
SmartEM needs to acquire the volume in a way that leads to
comparable segmentation accuracy, but in considerably shorter
time.

To analyze the expected imaging time of SmartEM in the
mouse cortex dataset, we first segmented images taken at ho-
mogeneous dwell times from 25 to 1200 ns uniform dwell times
from the same areas. We did the same for each image and each
effective dwell time, where each effective dwell time is derived
from the maximally accurate parameter set of initial and re-scan
dwell times and re-scan rate (Figure SD). In all experiments
we used the same error detector (ERRNET) and the same neu-
ral network model to predict membrane from composite images
(FUSEDEM2MB). To match each standard homogeneous dwell
time to an effective smart dwell time, we calculated the shortest
smart dwell time that produces segmentation that is statistically
indistinguishable from the standard dwell time across tiles (see
Supplement). Figure SE depicts the relation between the tar-
geted standard dwell time and the smart time that yields the
same accuracy. The highest possible quality of standard EM
at 1000 ns/pixel (see Figure 1) is attained by a smart effec-
tive dwell time of ~140 ns/pixel. This ~7.1x speed-up from
standard to SmartEM is achieved by selecting the percentage
of re-scanned pixels in each image tile, and letting ERRNET
determine re-scan locations.

In Figure S9 we tested the speed-up achieved by SmartEM
when re-scan rates are fixed in advance and only one pair of
initial and re-scan dwell times are used for imaging. These con-
straints allow direct comparison of the initial and re-scan dwell
times that optimize imaging time. As effective dwell time in-
creases, the time spent on re-scan also increases — the longest
dwell time for re-scan, with the equivalent segmentation accu-
racy as uniform dwell time (at 800 ns), is 1000 ns (initial dwell
time at 200 ns and effective dwell time at 300 ns). Efficiently
correcting errors in comparison to standard imaging with slower
dwell times also requires slower re-scan rates. Maximally slow
re-scan dwell times can be needed even when producing sub-
optimal segmentation (i.e. faster than 800-1000 ns of homoge-
nous dwell time). A re-scan dwell time of 2-3x longer than the
homogeneous dwell time can yield optimal speed up. As the ef-
fective dwell time is allowed to exceed 500 ns and come closer
to the homogeneous dwell time, SmartEM no longer requires a
specific value for the initial scan dwell time (blue curve in Fig-
ure S9) which becomes an arbitrary choice while the re-scan
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rate is maximal and only the percentage of re-scan is increased
to correct remaining errors.

Image acquisition with widely available point-scanning
SEM is now a limiting factor in connectomics. This evaluation
indicates that the SmartEM pipeline can yield >7x speed up
compared to standard image acquisition with a point-scanning
SEM without compromising quality and, at standard fast
acquisition ( 75ns-200ns), smartEM offers better quality.

Imaging mouse cortex with SmartEM

Figure 6 shows the outcome of SmartEM. A volume of size
60x68x3 um?3 (Figure 6A) and a section size 205x 180 ym?
was imaged at 4 nm pixel resolution. For volume acquisition,
we used an initial dwell time of 75 ns/pixel, re-scan of 800
ns/pixel, and re-scan rate of 10% providing an effective dwell
time of

Effective dwell time = 754 0.1 - 800 = 155 ns/pixel.

This average dwell time for SmartEM corresponds to a stan-
dard dwell time of ~1000 ns for traditional microscopy. To test
the pipeline on larger sections, we acquired a 205x 180 pm?
composed of 30x30 individual tiles with the same pixel reso-
lution. For the SmartEM parameters, we used an initial dwell
time of 75 ns/pixel and a rescan of 600 ns/pixel and a rescan
rate of 10% providing an effective dwell time of

Effective dwell time = 754 0.1 - 600 = 135 ns/pixel.

As mentioned above, this effective dwell time corresponds
to the maximal possible speed up of SmartEM for this dataset,
producing images with segmentation quality akin to standard
EM at ~1000 ns/pixel. We depict the segmentation of pipeline
outputs in Figure 6B, 6C, 6D using segmentation code that was
deployed on the microscope’s support computer using exist-
ing tools (Pavarino et al., 2023). This 2-dimensional segmen-
tation can be used as input to a 3D-dimensional agglomera-
tion algorithm (Karlupia et al., 2023) to produce high quality
3-dimensional neuron reconstruction.

We also assessed the ability to detect synapses on short
dwell time images (from 25 ns to 1000 ns) and applied this
detection to the above initial scan of 75 ns/pixel with excellent
results that are comparable to slow scan imaging as shown in
Figure 6E, 6F, S7. In Figure 6G, 6H we show the ability
of SmartEM to detect and exclude regions of no interest,
where cytoplasm far from membrane is detected from initial
scan, allowing SmartEM to force the skipping of the long
dwell time scanning from these regions. In Figure 61, 6J, S8
we demonstrate the ability to translate the fused images to a
uniform looking EM tiles with quality akin to long dwell time
imaging.
Neuronal reconstruction of
SmartEM

We tested SmartEM in application to connectomics. Connec-
tomics requires accurate agglomeration of 2D cross-sections

mouse cortex using
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Figure 6. Segmentation of a mouse cortex volume using SmartEM. A. Stitched and aligned SmartEM volume of size 60x 68 x3 um?. B. Segmentation of SmartEM volume using
FUSEDEM2MB and watershed transform. C. Location of the highlighted region in B with respect to the total volume. D Detailed depiction of segmentation in the boxed region in B
(rotated). E,F. Automatic detection of synapses from short dwell time images. G,H. Automatic detection of regions to be excluded from short dwell time images. 1,J. An Image (I)
stylized from a composite dwell times image (J) to appear akin to homogeneous dwell times.
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Figure 7. Neuronal reconstruction of a mouse cortex SmartEM volume taken at an average time of 99 ns/pixel. A. A section showing overlay of fused EM and an automated
neuronal reconstruction, long and short dwell time pixels at 800 ns/pixel (Tre-scan) and 75 ns/pixel (Tiniial), respectively, and a rescan rate of 3% («). B. A dendrite reconstruction
proofread by an expert (red) achieved by manually itemizing and reconstructing all dendritic spines from the fusedEM image stack. An automated reconstruction (blue) achieves a
high reconstruction rate of the dendritic spines. Arrowheads indicate split errors. C. A rendering of the automated 3D reconstruction of all sections in the dataset. The high quality
of automated reconstruction has sparse merge errors common to current segmentation algorithms.

(see Figure 7A) into 3D reconstruction of neuron volumes
and synapses (see Figure 7C). We asked whether the quality
of aligned SmartEM fused images supports automated recon-
struction and proofreading with comparable performance to
traditional imaging. We used competitive SmartEM parameters
to acquire a mouse cortex volume with average dwell time of
99 ns/pixels (initial long dwell time: 75 ns/pixel; rescan long
dwell time: 800 ns/pixel; rescan rate 3%) and a lightweight 3D
segmentation algorithm (see Supplement: Segmentation and
neuronal reconstruction). We assessed the quality of resulting
SmartEM image volume with automated reconstruction of fine
processes and expert manual annotation (Figure 7B).

Reconstruction of dendritic spines. Connectomes can con-
tain “split” errors (fragmenting the volume of one cell) or
“merge” errors (joining the volume of two cells). To bench-
mark SmartEM performance, we studied a challenging and
significant problem: split errors in the 3D reconstruction of
dendritic spines. Spines are the fine processes that protrude
from dendrites and contain synapses. We used automated
3D agglomeration to reconstruct all neurons inside the cortex
volume (Figure 7C, see Supplement). We randomly selected
three dendrites (see Figure 7B). We counted spines that were
fully automatically reconstructed without split errors and spines
with split errors. Expert human annotators verified every
correct reconstruction and verified that every split error was
correctable with proofreading. The percentage of correct spines
was approximately 58%, 53% and 75% in the three dendrites.
The combined percentage of correct spines was 65%, compa-
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rable to the rate of correct spine capture in recent automated
reconstruction of human cortex (67%) (Shapson-Coe et al.,
2024).

Discussion

The future and flexibility of SmartEM

Data analysis for connectomics is rapidly becoming faster,
easier, and cheaper thanks to rapid improvements in machine-
learning and the broadening availability of cloud-based tools
and computational power. Data acquisition speed is now
becoming a bottleneck, rate-limited by the availability and
speed of microscope hardware. High-throughput electron
microscopes, like the Zeiss multibeam SEM, are not commonly
available. This SmartEM pipeline — because it is entirely
implemented in accessory computer hardware — can make
existing, widely available point-scanning SEMs usable for
connectomics with modest cost and modification.

The implementation of the three tools of the SmartEM
pipeline are designed so they can be altered depending on use
case from user to user or preparation to preparation.

Tool 1 allows an SEM to identify error-prone regions in any
rapidly acquired image, but this concept can be implemented
with different underlying component algorithms. As described
above, Tool 1 is built by training the ERRNET neural network
to detect error-prone regions on the basis of segmentation dif-
ferences that arise with fast and slow dwell times. Training the
ERRNET network allows a choice about what segmentation al-
gorithm to use to train the network. We used our recently devel-
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oped two-dimensional segmentation algorithm (Pavarino et al.,
2023; Karlupia et al., 2023), but different laboratories will likely
have their own preferred segmentation algorithms. ERRNET
can be trained with any reliable segmentation algorithm. Be-
cause ERRNET is trained before image acquisition, the speed
or performance of the segmentation algorithm used to train ER-
RNET has no effect on pipeline performance. Tool 2 allows
an SEM to perform the slow re-scan of any region within an
initially rapidly acquired image in real-time during microscope
operation. This slow scan can be done with any point-scanning
SEM with electrostatic scan generators that deflect the electron
beam to any pixel in an image much faster than the fastest dwell
time per pixel (>25 ns) (Mohammed and Abdullah, 2018; An-
derson et al., 2013). Electrostatic scan generators are common
to modern SEM systems built by most manufacturers. Tool 3
that performs segmentation of multi-dwell time images is used
off-line after image acquisition. The method that we imple-
mented to train Fused2MB can be extended to other segmen-
tation algorithms that work with fixed dwell times. Users could
adapt their own segmentation algorithms to work with the multi-
dwell time images that emerge from the SmartEM pipeline.

Diverse use cases for SmartEM

The underlying concept of SmartEM with a point-scanning
SEM can improve the efficiency and accuracy of image acqui-
sition in any context where it makes sense to adapt the time
spent on different regions, much like the human eye, which
rapidly captures most of a visual scene with low-resolution
(non-foveal) imaging and dwells on selected parts of the visual
image to remove ambiguity with high-resolution (foveal)
imaging (Thorpe et al., 1996). Point-scanning SEM is used in
materials science and manufacturing to assess samples that vary
in the spatial density of information content. Any application
where regions of high information content can be predicted (but
not accurately reconstructed) with an initial rapidly acquired
image can benefit from immediate re-scan of those regions,
guided by our SmartEM approach. Imaging approaches that
take advantage of electron beam sensitive materials, such
as cryo-EM would benefit from the selective re-scanning of
SmartEM. The objects of interest that are sparsely distributed
in the specimen, such as a specific mixture of molecules, will
be identified from the rapid initial scan and slowly re-scanned.

Here, we focused on re-scanning for connectomics to
capture information in error-prone regions with respect to
neuronal segmentation. But re-scanning could also be used
to capture information that is salient in other ways. As
we showed, we can also perform re-scanning to selectively
capture high-quality images of every chemical synapse in a
connectome, thereby providing high-quality morphological
reconstructions of salient structures in an image volume in
addition to resolving the problem of error-prone regions, while
still providing substantial pipeline speedup. SmartEM can be
adapted to other applications in cell biology or pathology by
recognizing and re-scanning other sparse cellular structures of
interest (e.g., mitochondria and other organelles).

The SmartEM pipeline can not only be “taught” to capture
the most salient features of an image, but can also be used to
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neglect regions without interest. In most connectomics of larger
brains, nearly all objects in the field of view will be neural struc-
tures. But in small invertebrates, neural tissue might constitute
only a small part of the field of view. The C. elegans nerve
ring (brain) is <10% of the total volume of the body, and wraps
around the pharynx. Any two-dimensional brain section of the
C. elegans nervous system will also include substantial non-
neural tissue. To date, connectomic datasets have been acquired
by carefully designating the region-of-interest for each image.
The SmartEM pipeline may simplify and speed image acquisi-
tion by allowing the microscope to spend the time budget for
each image section on neurons instead of non-neuronal tissue
without needing the user to laboriously specify each region of
interest.

Adaptability of SmartEM for other microscopes and
other applications

Tape-based serial-section sample collection, where specimens
are stored permanently and can be re-imaged at any time, is
suited to SmartEM because any information that is lost dur-
ing imaging can be recovered. When specimens are imaged
for the purpose of connectomics, the SmartEM pipeline might
gloss over features that might eventually be of interest to other
scientists for other applications (e.g., cell biology). Because
serial-sections stored on tape can be safely archived for years,
they can be revisited at any time.

Instead of collecting serial sections on tape, one can use
block face imaging with serial tissue removal. One block face
approach, Focused Ion Beam SEM (FIB-SEM), has distinct ad-
vantages over tape-based serial-section sample collection, in-
cluding thinner tissue layers (4-8 nm) and better preservation of
image alignment (Knott et al., 2008). The principal disadvan-
tage of FIB-SEM has been the slow pace of traditional point-
scanning SEM with >1000 ns dwell times. This can be prob-
lematic when the microscope is used to collect extremely large
specimens, and must be continuously operational for days or
weeks without technical glitch. However, a FIB-SEM that im-
plements the SmartEM pipeline would be able to operate much
faster, increasing the likelihood of capturing an entire specimen
in single long runs. SmartEM is expected to provide greater
speed up on block face imaging because the imaging component
is a larger part of the entire acquisition pipeline compared to
serial-section SEM. Similar benefits will be obtained with other
block face imaging approaches such as Serial Block Face SEM
(SBF-SEM) where a diamond knife slices the specimen (Denk
and Horstmann, 2004). The downside of block face approaches,
whether with traditional imaging or the SmartEM pipeline, is
that each section is destroyed by ablation after being imaged,
forbidding revisiting the sample to capture any information that
was inadvertently lost.

Improvements for SmartEM

The performance of this software pipeline that runs in real-
time during microscope operation should improve further as
machine learning algorithms perform segmentation of rapidly
acquired images more accurately, a trend that can be expected
as more imaging is performed to generate training data for neu-
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ral networks and as neural networks themselves improve over
time. We expect gradual improvement in how rapid the ini-
tial rapid image acquisition can be, and gradual improvement in
how many error-prone regions need to be re-scanned. A further
order-of-magnitude improvement in the SmartEM pipeline may
make point-scanning SEM systems comparably fast as more ex-
pensive multibeam systems. We note that current multibeam
SEM systems cannot be sped up with this SmartEM strategy,
because their multiple beams are coordinated and cannot be in-
dependently controlled, a fundamental requirement of this ap-
proach.

Summary

All components needed to implement the SmartEM pipeline
on the ThermoFisher Verios G4 UC will be provided as
open source software. The basic conceptual workflow of the
SmartEM pipeline is adaptable to other microscope platforms.

Code Availability

Machine learning software and all models will be made avail-
able upon publication on a public repository and are currently
available on request.
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Information

SlowEM2MB borders
e Discrepancy(Net1,Net2)

Figure S1. The discrepancy between segmentation with long dwell time (using
SLOWEM2MB) and short dwell time (using FASTEM2MB) is defined based on VI. VI
is the sum of individual error terms contributed by each object in the two segmented
images. The most variable objects are flagged. Image processing is used to delin-
eate specific borders that appear in only one segmented image. Yellow represents
segmented objects that are uniquely predicted in the long dwell time image. Red rep-
resents segmented objects that are uniquely predicted in the short dwell time image.
A neural network (ERRNET) is trained to predict all red and yellow discrepancies only
using short dwell time images. This is possible because variation occurs where mem-
brane predictors are uncertain and often with typical, at times biologically implausible,
membrane prediction.

Supplemental Information

Segmenting composite images

The smart microscope should be able to analyze images
composed from multiple dwell times (see Figures 1C, 2B, 2C,
4A, 6A-6D). We tested whether replacing error-prone regions
in a short dwell time image with regions taken from long dwell
time images improves segmentation outcomes. Figure S2
depicts the segmentation outcome of a short dwell time image
taken at 100 ns/pixel segmented with a dedicated 100 ns
network FASTEM2MB (S2A,S2E), and by FUSEDEM2MB
(S2B,S2F). The segmentation quality of these networks are
similar (top panel; VI=0.025 and VI=0.022). In most scenarios,
the network trained to deal with fused EM (FUSEDEM2MB)
produces better results than networks trained to handle a fixed
dwell time, even if the input to the two networks consists of
a single homogeneous dwell time. Figures S2C, S2G depict
the segmentation of an image where the error-prone regions
were detected by an error detector and replaced with long
dwell time pixels (2500 ns). The error level is typically and
substantially cut by ~ 3-4 x. The 2500 ns reference image
and its segmentation are shown in Figures S2D, S2H. All error
estimates based on VI shown in Figure S2 are presented as the
sum of the merge error term and split error term.

Imaging procedure

The SEM is automated to acquire acquire images of individual
tiles of every specimen section that are eventually stitched and
aligned to form a total image volume Figure 4. The microscope
navigates through multiple specimen sections held on tape and
defines every specimen region of interest (S-ROI). Each S-ROI

Meirovitch etal. | SmartEM

is captured at high spatial resolution by multi-tile acquisition.
To identify the S-ROI and automate stage position and rota-
tion control, we used SEM Navigator, a custom interface akin
to earlier WaferMapper software (Hayworth et al., 2014). The
list of S-ROIs is exported into a text file, which is subsequently
processed by the SmartEM pipeline (coded in Python/Matlab)
using the Thermo Fisher Scientific Autoscript (Thermo Fisher
Scientific, 2018) package. The SmartEM pipeline controls the
Verios (Thermo Fisher Scientific, 2020) microscope, moves to
S-ROI and individual tile positions, controlling the entire acqui-
sition sequence.

For all image acquisitions, we used the Verios UHR (Ul-
tra High Resolution) imaging mode with 4nm/pixel spatial res-
olution and ~ 4 mm working distance. Image contrast was
obtained using a back-scattered electron detector with 2000 V
stage bias. The initial short dwell time scan was obtained using
the full frame acquisition Autoscript interface. The subsequent
long dwell time re-scan utilized the standard interface of Auto-
script patterning

To optimize image quality and tuning time for both
short movements between neighboring tiles and long move-
ments neighboring sections, we customized sequences of
various autofunctions. These autofunctions included auto-
contrast/brightness (ACB), auto-focus (AF), auto-stigmation
(AS), auto-focus/stigmation (AFS), and auto-lens (AL)
alignment.

Because we used different interfaces for the initial short
dwell time scan and long dwell time re-scan, an additional
alignment procedure was necessary to achieve pixel-resolution
precision in the re-scan. The basic system configuration for the
re-scan acquisition is described in Potocek (2021).

When the re-scan long dwell time was shorter than ~ 500
ns/pixel, an unavoidable artifact due to limited system response
of the electron deflection system occurred at the edge of re-scan
regions. We excised this artifact by omitting a 1-pixel boundary
from every re-scan region.

Segmentation quality metric

To compare the segmentation quality of different samples we
used a variation of information (VI) metric (Meila, 2003).
In principle all comparisons that we made in this study can
be accomplished with other metrics of segmentation quality
as long as they can be applied to 2-dimensional images. We
expect the choice of segmentation metric to have little effect
as long as any metric assesses similar topological attributes
as VI (i.e., whether objects are split or merged). Our im-
plementation of the VI running on CPU/GPU is available at
https://pypi.org/project/python-voi/.

Using VI to build ERRNET. To train the error detectors we
needed to locate the specific regions that contribute to the
largest segmentation differences between image pairs, which is
not provided by the VI metric. VI combines split and merge
errors. The two error measures are defined by comparing the
entropy of three segmented images (Meila, 2003), S; € LY,
Sy € LY and Sy x So € LY x LY for two N-pixel labeling
(instance segmentation) S and So that needs to be compared,
where the Ls represents the sets of pixel labels. The segmented
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Figure S2. Composite EM images fusing short and a long dwell time regions are better segmented compared to short dwell time images. We tested whether replacing error-prone
regions harms the ability to segment. Composite images tend to be segmented with dramatically higher accuracy. Error of the instance segmentation is assessed in terms of the
Variation of Information (VI) compared to the segmented reference image, where VI is composed of a merge and split error terms as in Equation 1.

image S x So is labeled by concatenating the labels from S
and Sy for each pixel. The VI is then the sum of two error
terms Vimerge and VIsplit

VImerge = H(S1 x S2) — H(S51),
Vigplit = H (51 % 52) — H(S2), 1)

VI = VImerge + VISplit'
Due to the additivity of the entropy measure (Meila, 2003),
VImerge and VIsplit can be broken into individual constituents,
representing the amount of error contributed by each individ-
ual label in each segmentation. We could thus rank objects in
each segmentation according to the amount of variation they
contribute to overall VI (Figures S5). The error contributed by
the set of pixels that are both in segment s; € S7 and s2 € So
(i.e. the error contributed by a segment in S7 x.52) is

W(Sl n 82) — W(Sl)

and

W(s1Ns2)—W(s2),

for the split and merge errors, respectively, where W(A) =
—%I -log %, |A| is the number of pixels in A and N is the
number of pixels in the image.

Once the significantly incompatible objects are detected in
each segmentation, we used image processing to delineate the
borders that are responsible for the topological differences be-

tween the two segmented images (Figure S1). We then pro-
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duced binary masks from these errors and trained neural net-
works (ERRNET) to detect them directly from membrane prob-
ability maps, themselves produced by another neural network
(FASTEM2MB). Detecting borders allows our technique to dis-
regard small “cosmetic” variations between two segmentations
that do not cause meaningful topological differences.

Determination of maximal segmentation quality. We developed
an unbiased estimate for the minimal dwell needed for 2D seg-
mentation. We compared segmentations from N images for
each pair of dwell times d; < dg and an overly slow dwell time
dief. We asked whether the VI of the da images was signifi-
cantly smaller (p<0.05; Wilcoxon signed rank test) than d; im-
ages compared to d,.¢ images. When two dwell times were
not sufficiently different, we call these dwell times equivalent.
We defined the minimum dwell time with near maximal seg-
mentation ability as that dwell time beyond which VI does not
improve.

Forcing fast scan imaging of desired regions

The acceleration of SmartEM depends on the quantity of re-
scanned pixels. Since the re-scanning mask is learned rather
than calculated through a fixed process, regions irrelevant to the
connectomics task may contain error-prone regions and appear
in the re-scan map, potentially reducing speedup. To exclude ir-
relevant regions from slow re-scan, we built another neural net-
work module (EMEXCLUDE) to calculate what regions should
be excluded from any re-scan, even if they might be flagged as
error-prone by ERRNET. Developing a separate EMEXCLUDE
module (rather than adding this capability to ERRNET) con-
ferred additional flexibility to the SmartEM pipeline by allow-
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ing us to adaptively choose what regions should be excluded
from re-scan without retraining ERRNET. Bypassing irrelevant
pixels (e.g., cell nuclei, blood vessels) during re-scan boosts ef-
ficiency by conserving time and computational resources.

Here, we implement EMEXCLUDE to exclude regions that
are sufficiently far from any cellular membranes. To do this, we
utilize the Euclidean distance transform on input binary mem-
branes. This transform calculates the shortest Euclidean dis-
tance from each zero pixel (background) to any non-zero (fore-
ground) pixel in the image. To train EMEXCLUDE, we bina-
rize the distance transform with a fixed threshold (Figure S13).
The features of irrelevant regions we learned as a semantic seg-
mentation task using paired EM images and their binary masks
(see Neural network models). The SmartEM pipeline applies
EMEXCLUDE in real-time on short dwell time images and
precludes re-scanning irrelevant regions that might have been
predicted by ERRNET. To assess the performance of different
modules in the SmartEM pipeline, we exclude EMEXCLUDE
from speedup tests shown in Figure 5. For the cytoplasm exclu-
sion described above, the average exclusion proportion is about
23% as shown in Figure S13. The speedup tests shown in
Figure 5 would improve with the implementation of EMEX-
CLUDE.

Identifying additional high-interest regions for slow re-
scan

ERRNET identifies regions susceptible to segmentation errors
and re-scans them at a higher quality to improve segmentation
accuracy. The same strategy can be re-formulated, not only
to identify error-prone regions, but to identify additional
image-specific regions of special interest, such as synapses or
any sub-cellular component of biological interest. Here, we
built an additional neural network module (EMINCLUDE)
to re-scan regions identified as synapses, because of their
high relevance to connectomics. Mouse cortex typically
contains ~1-1.5 synapses per um?3 (Kasthuri et al., 2015), or
~2-3 synapses per field of view when image tiles are ~8x8
pum?. Because of synapse sparsity, the re-scan time does not
substantially increase. We trained EMINCLUDE with a set of
manually-annotated long dwell time SEM images.

To train EMINCLUDE, we first trained a neural network
to detect synapses using manual annotations of long dwell
time images (EMINCLUDE). The high performance of EM-
INCLUDE is shown in Figure S7. We paired short dwell time
images with the binary masks for synapse locations predicted
by EMINCLUDE (which had used long dwell time images to
make the predictions). This procedure created ground truth
to train EMINCLUDE. A snapshot of the synapse detection
and re-scan mask generation pipeline is shown in Figure S11.
The hyper-parameters and training details of EMINCLUDE are
similar to EMEXCLUDE.

Optional image homogenization

The SmartEM pipeline produces composite image with pixels
acquired at different dwell times. A human observer will note
contrast differences at interfaces between pixels with different
dwell times. To increase human image interpretability, we built
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Figure S3. Image Translation Model. G: generator. D: discriminator. The generator G
takes a fused EM as input and produces a translated EM (i.e., fake slow EM) that looks
similar to slow EM (i.e., taken by the microscope). The discriminator D takes as input a
concatenation of a fused EM and another image that is either slow EM (green arrows)
or a translated EM (red arrows). The aim of the discriminator is to classify whether the
second image is slow EM or translated EM. The model is trained with a combination of
adversarial loss and L1 loss.

an image translator component that homogenizes SmartEM im-
ages to look like standard EM images with uniform dwell times.
Figure S8 shows a specific example, a fused EM image that is
a mosaic of sub-images with different dwell times. To mitigate
dwell time contrasts and produce a visually coherent image, we
applied a conditional generative adversarial network (IMAGE-
HOMOGENIZER, cGANs) (Mirza and Osindero, 2014). Pre-
vious studies used deep learning to improve the quality of mi-
croscopy images (Fang et al., 2021; Wang et al., 2019; Weigert
et al., 2018; Mi et al., 2021), de-noise EM images (Minnen
et al., 2021), and perform image reconstruction across different
modalities (Li et al., 2023). IMAGEHOMOGENIZER contains
two convolutional neural networks (CNN): a generator and a
discriminator (Isola et al., 2016). Training data are a composite
image and a uniformly long dwell time image, where the com-
posite image is generated by randomly combining pixels from
short dwell time and long dwell time images in different propor-
tions (Figures 6B,6C,6D where the composite images consist
of 75 ns and 600 ns pixel dwell times). As shown in Figure S3,
during the training process, the generator translates the sim-
ulated composite images to resemble long dwell time images,
and the discriminator attempts to distinguish the translated im-
ages from real long dwell time images. The training process
utilizes L1 loss and adversarial loss. After image homogeniza-
tion by the generator, the fused EM images are more suitable
for human inspection and retain the visual details of fine ultra-
structure Figure S8.

Neural network architectures

For all neural network models, we strove for simple archi-
tectures that would allow straightforward reproducibility of
results. A U-Net like architecture (Ronneberger et al., 2015)
was used to train membrane detection of homogeneous dwell
time EMs (SLOWEM2MB, FASTEM2MB), any dwell-time
EM (EM2MB), and composite EM where each image fuses
more than one dwell time (FUSEDEM2MB). We found that
FUSEDEM2MB, once trained, could be used for all membrane
prediction tasks without compromising quality. The same U-net
architecture was also used to train ERRNET, EMINCLUDE,
and EMEXCLUDE. We tried the U-net architecture for image
homogenization, but achieved better results with conditional
GAN:S.
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Architecture for FUSEDEM2MB and ERRNET. The selected
architecture, similar to the UNET(Ronneberger et al., 2015),
shown in Figure S14 has 3 sets of 2D-Convolution, Batch-
Normalization(Ioffe and Szegedy, 2015), ReLU in each layer.
We use residual connections(He et al., 2016) adding the output
of the first convolution to the last one in each layer. This
architecture showed the highest segmentation accuracy when
varying the number of CBR (Conv-BatchNorm-ReLU) in each
layer (2~4), the usage of residual connections, and the type of
residual connections (concatenation or addition).

U-Net architecture for EMEXCLUDE. We trained a fully convolu-
tional UNET model over 200 epochs, employing a learning rate
of 0.01. The model was configured with five layers of depth
and filter sizes progressively sequenced as 32, 64, 128, 256, and
512. To introduce non-linearity and manage potential negative
inputs, we incorporated a leakyReLLU activation function.

Image Normalization and Augmentation. To train the FUSE-
DEM2MB network, we used the CLAHE (Pizer et al., 1990)
normalization with clipLimit=3 to bring all images to a com-
mon color space. We used on the fly rotation, flip, translation
to augment the images in the training set. Although images
are naturally 2048x2048, we sub-sampled 256x256 squares
to train the network. To allow the network to deal with images
with multiple dwell times, we randomly replace patches at
random locations with different dwell times. Specifically, each
sample was generated by choosing a baseline image at a single
dwell time and replacing up to 30 patches with a maximum
size of 11x11 pixels with the corresponding pixels of an image
with longer dwell time.

To train ERRNET, we normalized membrane probabilities
to [0,1] as an input to the network. We used the same procedure
for on the fly translation and rotation but did not replace patches.

Training Procedure. We used the Pytorch framework (Paszke
et al., 2019) to implement and optimize the network. The Adam
optimizer (Kingma and Ba, 2014) with learning rate 0.001 was
used to update the network parameters. We used a batch size of
16 images. We trained the FUSEDEM2MB network for 50000
gradient steps. We evaluated validation loss every 1000 steps
over 100 batches. The network converged after ~35000 gra-
dient steps. The same procedure was used to train ERRNET.
ERRNET converged after ~8000 gradient steps.

Image Translation Networks. IMAGEHOMOGENIZER uses a
conditional GAN called pix2pix (Isola et al., 2016), consisting
of a generator CNN and discriminator CNN. The generator in-
cludes an encoder and decoder that downsamples and then up-
samples the input image. The discriminator tries to discriminate
between slow EM and translated EM. At the training stage, we
use a batch size of 1 and randomly crop 128 x 128 image tiles
from a larger composite EM image. The model is first trained
with a constant learning rate of 0.0002 for 100 epochs and then
for another 100 epochs, during which the learning rate decays
to zero. At the inference stage, the whole composite EM image
is passed to the model without cropping.
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Figure S4. Dwell-time re-scan data augmentation. Rows 1-5 show different locations
in the EM sample. Columns 1-4 show different augmented composite images that
were taken at different dwell times; short dwell time pixels in blue, representing 25 ns
scans; long dwell time pixels in red, representing 1200 ns pixels. Column 5 shows
the groundtruth classes for each region that were obtained from the long dwell time
neural network (SLOW2EM). The aim of FUSEDEM2MB is to classify membrane pixels.
Additional augmentations such as translation, rotation, and flip are used during training.

Image stitching and alignment

The stitching and alignment of the sample volume was per-
formed on composite dwell time images. After applying a band-
pass filter to raw images, we used conventional block matching
technique to obtain matching points between neighboring im-
ages, from which elastic transformations mapping the raw data
to the aligned volume were computed by mesh relaxation. Code
for stitching and alignment is available at Stitching and align-
ment code. We applied the same stitching and alignment trans-
formations to the fast, composite, and homogenized images to
produce three sets of final volumes.

Segmentation and neuronal reconstruction

Neuron reconstruction technique. To reconstruct neurons in
3D, we applied a lightweight segmentation method that we
previously used to reconstruct neurons from the same sample
imaged by a multi-beam SEM (Karlupia et al., 2023) and tissue
prepared using a whole mouse brain staining technique (Lu
et al., 2023). First, pixels straddling intra-cellular spaces were
predicted by a CNN, based on the pre-trained FUSEDEM2MB
network. To improve the network accuracy, we fine-tuned
FUSEDEM2MB using thirty-six 1024x1024 SmartEM tiles
obtained from random locations in the target volume and
annotated by an expert. Predictions from FUSEDEM2MB
were used as a starting point for the annotation process of
the training set. All sections were segmented in 2D using the
fine-tuned network and watersheds (Pavarino et al., 2023).
Second, a CNN was trained to predict from the EM the
medial axis of all objects in 2D. This process required no
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1219 additional human annotation. Third, 2D object segments were
1220 agglomerated across sections based on shape alignment and
1221 similarity. In addition, 2D segments were agglomerated if
1222 their medial axes were well-aligned using a fixed threshold
1223 determining large overlaps. Fourth, agglomerated objects
122« containing a large number of adjacent 2D segments were
1225 flagged as objects with possible merge errors. This was done
1226 by building a Regional Adjacency Graph whose nodes are 2D
1227 segments and edges represent spatial adjacency. Then these
1228 Objects were re-agglomerated iteratively from the original 2D
1229 Object segments until the merge-error criterion was attained
1230 using an iterative clustering technique (Bailoni et al., 2022).
1231 Fifth, orphans were detected and connected to other orphans
1222 or non-orphan objects based on their best estimate from the
123 agglomeration graph, i.e., connecting them to objects that did
123« not pass the agglomeration threshold in the first iteration. The
1235 results of the reconstruction are shown in Figure 7C.

126 Criterion for filtering dendritic spines. Three dendrites were
127 randomly selected for quantitative analysis. We defined cor-
1238 rectly segmented spines as spines whose segmentation includes
1239 their synapse-containing regions. Incorrectly segmented spines
120 Were split errors that occurred before the synaptic region. To
1241 avoid confusing spines with dendritic filopodia, we excluded
1242 putative spines from analysis if no potential synapse was
1243 contained in the image volume. There observed three types
1244 Of error: Type I errors occur when the spine is prematurely
1245 truncated by a split error that occurs before the spine’s corre-
1246 sponding synapse that was not due to an obvious image artifact
1247 (e.g., tissue preparation, folds in the section). Type 2 errors
1246 occur when the spine is not tracked at all due to a split error at
1249 its base on the dendrite that was not due to an obvious image
1250 artifact. Type 3 errors occur when the spine is lost due to an
1251 obvious artifact. We observed such errors caused by local
122 aberrations in tissue preparation in sections 56, 65, 66, 77 and
123 88. The distribution of incorrect spines and their corresponding
124 error type is shown in Table S1. To characterize only errors that
1255 might be associated with the SmartEM technique, we exclude
126 the rate of Type 3 errors from consideration.

127 Statistical tests

128 All statistical tests were done using the Wilcoxon signed-rank
1259 test for paired samples. The test was used to assess the cases
1200 Where two dwell times produce similar segmentation quality by
126t comparing the variation of information of individual samples to
1262 a single reference taken at a longer dwell time.
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Figure S5. Ranking objects of two segmented images based on contribution to variation of information. A. Segmentation of long dwell time image at 1000 ns. B. Segmentation
of short dwell time image at ~ 100 ns overlaid on 1000 ns EM. Some large errors are indicated with red arrows. C. Objects that vary between the two segmented images. Red
heatmap indicates contribution to variation of information (Meila, 2003) where variable objects come from either of the two segmented images. The largest variation is captured by
the three objects indicated by red arrows.
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Figure S6. Data-aware imaging of synapses at long dwell time. SmartEM takes a short dwell time image (50 ns/pixel), predicts locations that contain synapses, and re-scans
these regions at long dwell time (1200 ns/pixel). The blue overlay presents synapse predictions by EMINCLUDE. Yellow outlines represent locations for re-scan based on dilation
of EMINCLUDE predictions.
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Figure S7. Synapse detection in ultrafast (25 ns), fast (75 ns) and slow (800 ns) dwell time. EMINCLUDE works at multiple dwell times.
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Figure S8. Examples of image homogenization by IMAGEHOMOGENIZER. Left column: composite EM with two dwell times (75 ns/pixel and 600 ns/pixel). Middle column:
homogenized EM from composite EM, exhibiting similar visual coherence compared to slow EM. Right column: slow EM (600 ns/pixel). Red arrows indicate the locations with
slow dwell time of 600 ns/pixel in composite EM.
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Dwell time (ns)

Effective dwell time of all-tile fixed pipeline runs

Figure S9. Globally fixed SmartEM parameters and their respective speedup compared to traditional EM.
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Figure S10. A. The process of generating the EMEXCLUDE ground truth: EM images taken at slow dwell times are processed to determine regions that should be excluded
in subsequent scans. The sequence begins with the raw EM image, proceeds to membrane predictions highlighting essential structures, and then applies a Euclidean distance
transform to emphasize key features. The final output is a binary differentiation after thresholding, which identifies areas of minimal interest, establishing the EMEXCLUDE ground
truth. B. The EMEXCLUDE ground truth is paired with fast EM images to train a neural network, enabling it to recognize and exclude similar non-essential regions in new scans.
Once trained, the network processes new EM images in real-time, generating EMEXCLUDE masks.
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Figure S11. Synapse detection and rescan mask generation pipeline: aligned acquisition provides electron microscopy (EM) images at varying dwell times. A teacher network is
trained to identify synapses from slow dwell time images, and these identified labels train a student network, EMInclude, for synapse detection on faster dwell time images. This
student network predicts synapse locations to generate a rescan mask, directing the microscope for targeted slow point scans of selected synapses. The outcome is a fused EM
image that integrates different dwell times, optimizing scanning speed and detail in areas of interest.
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Figure S12. A cubical 3 um portion of an aligned smart EM output from 94 serial
sections.
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Figure S13. Percentage of EM that can be excluded in a 60 x 68 x 3um? section. On
average, around 23% of the volume can be excluded from rescanning.
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Figure S14. CNN architecture used for the FUSEDEM2MB and ERRNET. The architecture is similar to U-Net (Ronneberger et al., 2015), but has 3 layers of (Convolution, Batch—
Normalization, ReLU) in each layer and has additional residual connections (He et al. (2016)). The architecture is fully convolutional and for both FUSEDEM2MB and ERRNET the

input dimension is 1, respectively for the grayscale image and the membrane probability. In both cases the output dimension is 2, respectively for 0:not-membrane,1:membrane
and 0:no-error,1:error
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Dendrite | # Correct Spines | # Type 1 Errors | # Type 2 Errors | # Type 3 Errors | % Correct Spines (excluding Type 3)
1 7 3 2 2 58%
2 9 5 3 10 53%
3 21 6 1 5 75%

Combined 37 14 6 17 65%

Table S1. Distribution of correctly and incorrectly segmented dendritic spines by automated reconstruction.

Meirovitch et al.

SmarteEM

30


https://doi.org/10.1101/2023.10.05.561103
http://creativecommons.org/licenses/by-nc/4.0/

