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A B S T R A C T

Large-scale electron microscopy (EM) has enabled the reconstruction of brain connectomes at the synaptic
level by serially scanning over massive areas of sample sections. The acquired big EM data sets raise the great
challenge of image mosaicking at high accuracy. Currently, it simply follows the conventional algorithms
designed for natural images, which are usually composed of only a few tiles, using a single type of keypoint
feature that would sacrifice speed for stronger performance. Even so, in the process of stitching hundreds of
thousands of tiles for large EM data, errors are still inevitable and diverse. Moreover, there has not yet been an
appropriate metric to quantitatively evaluate the stitching of biomedical EM images. Here we propose a two-
stage error detection method to improve the EM image mosaicking. It firstly uses point-based error detection
in combination with a hybrid feature framework to expedite the stitching computation while maintaining high
accuracy. Following is the second detection of unresolved errors with a newly designed metric of EM stitched
image quality assessment (EMSIQA). The novel detection-based mosaicking pipeline is tested on large EM data
sets and proven to be more effective and as accurate when compared with existing methods.
1. Introduction

The reconstruction of neural circuits through the imaging of serial
ultra-thin sections of brain tissues at nanometer-range resolution with
2D large-scale electron microscopy (EM), employing serial sectioning
techniques such as serial section scanning electron microscopy (ssSEM),
has emerged as a critical and effective method for connectomic stud-
ies [1–4]. The mosaicking of a substantial number of imaging tiles
ithin the region of interest (ROI) into a cohesive 2D EM image is
ndispensable due to the inherent limitations of the size of the field
f view (mfov).
The mosaicking task of EM images for connectomic studies en-

ounters the challenge of balancing high speed and high precision.
he inherently high resolution of EM imaging results in substantial
mounts of data, imposing stringent requirements on stitching speed.
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Moreover, this substantial amounts of data exacerbates the already
demanding accuracy requirements imposed by downstream alignment
and segmentation tasks [5]. In contrast to generic nature images, the
parallax and distortion inherent in EM images are often mitigated by
opting for a smaller tile size. However, this strategic decision amplifies
the number of tiles and consequently escalates the computational bur-
den for stitching. To mitigate this computational load, it is customary
to reduce the overlap area, yet this approach engenders heightened
challenges in the mosaicking process.

In brief, natural image stitching puts the emphasis on minimizing
local geometric misalignment, improving transition smoothness, and
hiding the seam between parallax images [6–13]. In contrast, the
mosaicking of large-scale EM images can be satisfied with nearly rigid
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Fig. 1. Overview of the image mosaicking pipeline with the proposed two-stage error detection. Upper, the conventional EM image mosaicking workflow. Lower, the
two-stage error detection that is added. In the Y/N insets, the red (Y) and green (N) line segments indicate whether a stitching error exists on the border of two tiles.
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transformation but instead greatly suffer from long computation time
and inevitable errors through the enormous amount of data.

The process of mosaicking electron microscopy (EM) images in-
volves several steps, including feature extraction, matching, outlier
rejection, and global optimization to derive the necessary transforma-
tions [14] (Fig. 1). A key consideration in this process is the trade-off
between accuracy and speed in feature extraction. While faster methods
like ORB [15] prioritize speed over accuracy, more accurate techniques
like SIFT [16] require longer computation times [17]. However, the
ack of standardized evaluations for EM image mosaicking makes it
hallenging to quantitatively compare feature performance. As a re-
ult, researchers often rely on qualitative assessments, which can be
aborious and subjective. Despite the preference for accuracy, errors
n mosaicking remain challenging to detect, especially given the large
olume of data and time required for analysis. Efforts to enhance
eypoint features and transformation models have been ongoing, but
o method has yet achieved an optimal balance between speed and
ccuracy. In response to this challenge, we propose a novel approach
hat focuses on error detection and iterative feature refinement.
We designed a two-stage error detection pipeline. In the first stage,

orrespondences derived from a hybrid feature framework undergo
crutiny from a point-based error detection method prior to image
endering. Subsequently, the detected errors are utilized to iteratively
rioritize a feature with heightened accuracy for handling the flawed
iles. Then, in the second stage, the mosaicked images undergo evalu-
tion using a novel EM stitched image quality assessment (EMSIQA)
etric to identify any remaining errors. In essence, the approach
nvolves leveraging fast features to maximize computational speed,
hile simultaneously employing error detection methods and exploring
ccuracy-focused features to ensure precision. We tested the detection-
ased biological EM image mosaicking pipeline on large data sets
f mouse brain from multibeam SEM and mouse glioblastoma from
ingle-beam SEM, and demonstrated high accuracy and significantly
hortened processing time.

. Related work

For image mosaicking, current pipelines first match key points for
ach pair of overlapped images, estimate the transformation for each
mage tile with a global optimization approach [14,18], render the
osaicked image, and assess the stitched image quality. Below we
eview the computational costly keypoint matching step and the final
mage quality assessment step.
2
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.1. Keypoint matching for image stitching

Image keypoints. One major time-consuming step in the image
titching pipeline is keypoint detection. Since the scale-invariant fea-
ure transform (SIFT) [16] was proposed by Lowe et al. in 1999 and
idely applied in many computer vision tasks like stitching, registra-
ion, and template matching, many handcrafted features have been
roposed to improve in either accuracy or speed. Speeded-Up Ro-
ust Features (SURF) [19] was developed as a faster replacement
f SIFT by replacing the Difference of Gaussian (DoG) with Hessian
atrix and squeezing the dimensions of descriptors to speed up the
atching. Oriented FAST and Rotated BRIEF (ORB) [15] further ac-
elerated the extraction, reaching up to a 100-fold speed increase of
IFT in theory, but its robustness is not as good as SIFT and SURF.
KAZE [20], proposed as the accelerated version of KAZE [21], adds
ED (Fast Explicit Diffusion) to the pyramid framework and the utiliza-
ion of non-linear scale space makes it more stable than SIFT or SURF.
RISK [22] was proposed to achieve a high-quality performance albeit
t a dramatically lower computational cost. In recent years, learning-
ased features emerged to take advantage of GPU parallel computation.
earned Invariant Feature Transform (LIFT) [12] used convolutional
eural networks (CNNs) to implement detector, orientation estimator,
nd descriptor. However, a CNN-like network is only weakly invariant
o the rotation, which limits its application in many tasks.
Matching outlier rejection. Sparse feature extraction algorithms

ick out the points that are distinctive and robust to transformation and
hen give each key point a high-dimensional descriptor. By calculating
he distance of descriptors in an image pair, each key point in one
mage will be linked to the closest point in the other, and we refer
o this point pair as a correspondence. Therefore, the challenge is to
ind the correct geometric transformation out of massive erroneous
orrespondences (outliers). RANSAC [24] is an old but effective algo-
ithm to reject outliers [25]. By iteratively selecting random points, the
itted model is applied to check how many points are potentially inliers
ntil a model that can include the most correspondences is achieved.
LESAC [26], a generalization of RANSAC, maximizes the likelihood
ather than just the number of inliers. PROSAC [27] optimizes the speed
rom the perspective of sampling. Also, deep learning is introduced
o make up for the ignorance of global geometric information. Choy
t al. [28] further explored the outlier rejection in high-dimensional
pace powered by the Minkowski engine [29]. Yi et al. [23] drew
essons from the processing of disordered points in PointNet [30], and
roposed a context normalization module to extract the inliers with
lobal perception, which we call as Global-Perception Outlier Rejection
GPOR).
from ClinicalKey.com by Elsevier on March 20, 2025. 
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Fig. 2. The first-stage point-based error detection and the hybrid feature framework. Given P overlapped tile pairs with shape [𝑊 ×𝐻], a feature extraction algorithm with
the highest speed, which is ORB in our experiment, is first used to generate the tentative correspondences. Assisted by modified learning-based global-perception outlier rejection
(GPOR) [23] and RANSAC [24], potential errors in correspondences are detected. Then, slower but more accurate extraction and matching algorithms, such as SIFT and SURF,
are applied to erroneous tile pairs to improve the stitching quality.
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2.2. Stitched Image Quality Assessment (SIQA)

Different from other computer vision tasks like classification or
segmentation, it is almost impossible to manually label the ground truth
of the stitching of two naturally acquired images. Thus, researchers
tend to compare the structure of interest in the overlapped region. One
simple way to assess the stitching is to adopt classical image quality
metrics, such as peak signal-to-noise ratio (PSNR) [31], structural
similarity (SSIM) [32], and normalized cross-correlation (NCC) [33].
However, these methods are not designed for the evaluation of image
stitching and ignore the different importance of various types of er-
rors between the stitched images. Qureshi et al. [34] quantified the
geometric and photometric qualities separately of a stitched image and
named the geometric part HFI-SSIM. Yang et al. [35] fused a perceptual
geometric error metric and a local structure-guided metric into one.
Tian et al. [36] took consideration of six different stitching distortion
types and trained an assessment model by SVR [37]. Furthermore,
Ullah [38] took advantage of mask R-CNN [39] to build a three-fold
deep learning-based no-reference stitched image quality assessment
called DLNR-SIQA.

3. Methods

3.1. Framework overview

Our error detection framework has two stages (Fig. 1). In the first
tage, we adapt and integrate the previously proposed GPOR into a
ybrid feature selection framework aimed at striking a harmonious
quilibrium between speed and accuracy. In the second stage, we
ntroduce and implement a novel metric that more comprehensively
ncorporates the image characteristics specific to biomedical EM data.
his metric enables the identification of any persisting errors and
acilitates an accurate assessment of the mosaicking quality.

.2. Stage 1: Key point matches error detection

Among image features, SIFT is known to have high-quality matches
ith costly computation while ORB is faster to compute with a signifi-
ant drop in match quality. It is a straightforward idea to first try ORB
nd later try SIFT if the ORB match quality is not sufficient. However, it
s challenging to design a reliable metric for keypoint matches to know
hen to switch to a different image feature.
Given a chosen feature and an image pair to stitch, we can have

wo statistics: 𝑀𝑛, the number of all matches between the image pair
nd𝑀𝑖, the number of inlier matches chosen by RANSAC. A commonly
sed binary heuristic variable, 𝜂, to determine if the matches are good
r not can be defined by

= (𝑀𝑖 > 𝜃𝑖) ∩ (
𝑀𝑖
𝑀𝑛

> 𝜃𝑟), (1)

where 𝜃𝑖 demands big enough number of inlier matches and 𝜃𝑟 demands
3

igh enough ratio of inlier matches. When the matches are not good w
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which means the chosen feature failed, the value of 𝜂 will be False.
Intuitively, when 𝜃𝑖 is small, there are not enough matches to robustly
estimate the transformation matrix; when 𝜃𝑟 is small, the image may
have ambiguous structures leading to non-consensus matches.

However, for EM images, the initial keypoint matches are noisy,
which makes the 𝜃𝑟 unstable for the selection.

We thus designed a combined approach to detect potential stitching
errors before global optimization and rendering, by filtering the output
inliers from the GPOR with an additional RANSAC and calculating the
acceptance ratio.

In this work, we adopt a learning-based outlier rejection algorithm
proposed by Yi et al. [23]. This algorithm involves considering image
airs (𝐼, 𝐼 ′) and their corresponding essential matrices 𝐸 to extract the
et of correspondences 𝑋 associated with 𝐸. The challenge of outlier
ejection can be addressed by designing a deep network that encodes a
ap 𝑓 parameterized by 𝛷, which

= 𝑓𝛷(𝑋), 𝐸 = 𝑔(𝑋,𝑊 ). (2)

he𝑊 = [𝛺1,… , 𝛺𝑁 ] is the output of the network 𝑓𝛷, where 𝛺𝑖 ∈ [0, 1]
epresents the score assigned to correspondence 𝑥𝑖, and 𝛺𝑖 = 1 indicates
𝑖 as an inlier. The function 𝑔 filters correspondences 𝑋 based on 𝑊
nd computes the essential matrix 𝐸 from the filtered 𝑋.
In order to individually consider each correspondence within the

roader global context, allowing for the encoding of camera motion,
he feature map is normalized based on its distribution following each
erceptron. The network utilized in this study is a 12-layer ResNet, with
ach layer comprising two consecutive blocks comprising a Perceptron
eaturing 128 neurons sharing weights for every correspondence, a Con-
ext Normalization layer, a Batch Normalization layer, and a Rectified
inear Unit (ReLU).
The training of this network employs a hybrid loss function com-

rising a classification loss to reject outliers and a regression loss to
redict the essential matrix. Since there is no requirement to estimate
he transformation matrix for each image pair, we solely utilize the
lassification loss function.

(𝛷) =
𝑃
∑

𝑘=1
(𝛷, 𝐱𝑘) (3)

here 𝛷 are the network parameters and 𝐱𝑘 is the set of putative corre-
pondences for image pair 𝑘. Given a set of 𝑁 putative correspondences
𝑘 and their respective labels 𝐲𝑘 = [𝑦1𝑘,… , 𝑦𝑁𝑘 ] where 𝑦𝑖𝑘 ∈ 0, 1, and
𝑖
𝑘 = 1 denotes that the 𝑖th correspondence is an inlier, our outlier
lassification error is

(𝛷, 𝐱𝑘) =
1
𝑁

𝛾 𝑖𝑘𝐻(𝑦𝑖𝑘, 𝑆(𝑜
𝑖
𝑘)), (4)

where 𝑜𝑖𝑘 is the linear output of the last layer for the 𝑖th correspondence
in training pair 𝑘, 𝑆 is the logistic function used in conjunction with
the binary cross entropy 𝐻 , and 𝛾 𝑖𝑘 is the per-label weight to balance
positive and negative examples.

As shown in Fig. 2, this network accepts the input correspondences

ith shape [Batch, 4, K] and outputs the likelihood ranging in (0,
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Fig. 3. Typical scenarios in EM image mosaicking. (a) One image has an out-of-focus
blur simulated by a Gaussian blur. (b) The pair is different only in brightness. (c) Local
distortion on the boundary membranes of cellular compartments, no global translation.
(d) Local distortion in the info-less cytosolic area inside the cellular compartments,
no global translation. (e) Thick membranes, 2-pixel vertical and horizontal global
translation. (f) Thin membranes, 2-pixel vertical and horizontal global translation.

1) for every correspondence shaped as [Batch, 1, K] to estimate the
probability to be an inlier. With such keypoint match error removal, we
empirically find the common image feature selection method (Eq. (1))
ecomes more effective due to a more stable inlier match ratio 𝑀𝑖∕𝑀𝑛.

.3. Stage 2: Stitched image error detection

In the multi-step processing of biomedical EM images, image mo-
aicking is an upstream step to assist later three-dimensional registra-
ion and segmentation. The primary goal is to make every biological
tructure well-stitched at the pixel level. In comparison, the visual-
zation factors like the photometric quality have less effect on the
ownstream analysis. Furthermore, since the structures in 2D images
re used to reconstruct the 3D volume, any trick to blandish the eyes
uch as multi-band blending [40] should not be applied to avoid hidden
rrors. Thus, the principles of evaluating the stitching result should (1)
ay the most attention to cellular structures, (2) ignore the photometric
uality and (3) be prior to fusion or blending. Given the stitched left
nd right image pair 𝐼𝐴 and 𝐼𝐵 , we design a new SIQA score that
s customized for EM images with the downstream segmentation task
n mind, termed EMSIQA, for which we take the factors below into
onsideration.
a) Deformation magnitude. Traditional SIQA methods are sensitive to
he change of image appearances, e.g., out-of-focus blur and brightness,
etween the pair of images, even if there is no geometric change
4
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Fig. 4. EMSIQA computation. EMSIQA is a novel metric to evaluate electron mi-
croscopy stitching. Guided by optical flows (via FlowNet2 [41]) and boundaries (via
OTSU segmentation [42]), it measures the geometric error normalized to the biological
structure.

(Fig. 3a-b). To focus on the geometric matching quality for the stitched
image pair, the proposed EMSIQA method computes the average defor-
mation field magnitude, defined as

𝐸𝑓𝑙𝑜𝑤(𝐼𝐴, 𝐼𝐵 , 𝛺) = 1
𝑁

∑

𝑖∈𝛺

√

𝑢2𝑖 + 𝑣2𝑖 (5)

where 𝑁 is the number of pixels, 𝑢 and 𝑣 denote the horizontal and
ertical values of the optical flow between the pair of input images,
nd 𝛺 represents the region of valid pixels.
b) Border structure. As illustrated in Fig. 3c–d, due to the imaging noise,
there is non-zero deformation on cell texture, which can overwhelm the
deformation field magnitude on the cell and organelle borders that are
critical for the downstream segmentation task. Thus, we designed the
EMSIQA to focus on the important border features. As the labeling of
precise boundaries of cellular compartments leads to the challenging
segmentation task, we herein use a fast and simple method that is very
effective in scenarios with low-precision requirements. OTSU threshold
segmentation [42] maximizes the contrast between foreground and
background to find the most appropriate segmentation threshold. We
added a median filter to decrease the noise and were able to obtain
a binary mask that coarsely outlined the cellular structures. Thus, we
choose the region of deformation field 𝛺𝐵 for image 𝐼𝐵 as

𝛺𝐵 = Median-Filter(OTSU(𝐼𝐵)) (6)

(c) Border matching. Although geometric error can quantitatively de-
scribe the displacement in pixels, it cannot represent the mismatch
of biological structures relative to their scales which are extensively
diverse among different cellular compartments. In other words, the
same pixel displacement in big and small cellular structures can cause
different effects on the registration and segmentation that follows
(Fig. 3e–f). Inspired by segmentation algorithms, we adopted Dice

index [43] to quantify the matching of the border structures of the pair

from ClinicalKey.com by Elsevier on March 20, 2025. 
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Fig. 5. CC50K dataset gallery. (a) CC50k dataset, a complete 2D cross-section of adult mouse corpus callosum consisting of 458,752 × 1,441,792 pixels. (b) The 7-mFoV
ub-dataset CC427. (c) Four 1-mFoV subsets named CC61-1 to 4, each containing 61 tiles.
f images:

ICE(𝛺𝐴, 𝛺𝐵) =
2 ∗ (𝛺𝐴 ∩𝛺𝐵)

𝛺𝐴 +𝛺𝐵
(7)

where the greater the similarity between the image pairs 𝐼𝐴 and 𝐼𝐵 , the
higher the resulting value. Similarly, when there is a consistent pixel
displacement, indicating equal divergence between 𝐼𝐴 and 𝐼𝐵 , any dis-
lacement observed in smaller cellular structures e.g., thin membranes
ill exert a stronger influence, resulting in a diminished unaffected
egion and consequently a reduced Dice index. In other words, the
arger cellular structures have a substantial (𝛺𝐴 ∩ 𝛺𝐵) under similar
isplacement conditions, which results in a higher Dice index:
2 ∗ (𝛺𝐴 ∩𝛺𝐵)

𝛺𝐴 +𝛺𝐵
= 2

1 + 𝐷𝑖𝑠
𝛺𝐴∩𝛺𝐵

(8)

𝑖𝑠 = 𝛺𝐴 ∩𝛺𝐵 +𝛺𝐴 ∩𝛺𝐵 (9)

As shown in Fig. 4, for each image pair to be stitched together,
e crop out the overlapping area from the two images, respectively,
alculate the average geometric error in pixels of all cellular structures,
nd then divide it by a penalty item that represents the structure
atching of the two overlapping areas. We call this metric EMSIQA
EM stitched image quality assessment) and formulate it as:

MSIQA(𝐼𝐴, 𝐼𝐵) =
𝐸𝑓𝑙𝑜𝑤(𝐼𝐴, 𝐼𝐵 , 𝛺𝐵)
DICE(𝛺𝐴′ , 𝛺𝐵)

(10)

here 𝐼𝐴′ (𝑥, 𝑦) = 𝐼𝐴(𝑥+𝑢, 𝑦+𝑣) is the warping of 𝐼𝐴 by the optical flow
etween the pair of images.

.4. Implementation details

We tested the pre-trained FlowNet22 [41] on image pairs with
nown displacement and found it sufficiently precise and robust. Thus,
hen computing the optical flow for EMSIQA evaluation, we directly
dopted the pre-trained model of FlowNet2 [41]. To organize the large-
cale EM data, we adopted the data structure used in TrakEM2 [44] and
the workflow of rh-aligner3 [45] with modifications. We implemented
the GPOR referencing Yi et al.4 [23] using PyTorch. To train the model,
we set Adam as the optimizer with a learning rate equal to 0.00005

2 https://github.com/NVIDIA/flownet2-pytorch
3 https://github.com/Rhoana/rh_aligner
4
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and set the batch size to 32. We only preserved the classification loss
since the weighted 8-point algorithm does not match the workflow of
multiple-image stitching. Other arguments were kept unchanged to Yi
et al. [23]. When extracting features, we set the number of ORB features
to be close to the average value of those extracted by SIFT or SURF.
Commonly, when the image is low-textured, the number of key points
extracted by SIFT or SURF will drastically decrease while ORB will keep
constant or close to the number we pre-set. In the error detection step,
when setting the thresholds of the acceptance ratio and the number
of inliers, we took into consideration the image size and the type of
features. In our experiment, we set the number of ORB features for
one tile to be 50,000 and regard a pair as a stitching error when the
acceptance ratio is lower than 0.9 or the inliers number is below 40
or 20 for ORB and SIFT, respectively by experience. For the execution
order of the features, we set ORB as the first choice to perform the
simplest yet fastest key point extraction. SIFT, as the second option,
will take over where ORB fails and more accurate correspondences are
required. In some very low-texture regions, SURF will serve as the last
choice to extract more feature points than SIFT.

In our experiment, we tested all algorithms on a workstation
equipped with Intel Core i9-9920X and one Nvidia RTX2080Ti (11 GB
memory). Due to the different scheduling strategies when using
OpenCV [46], we used schedtool5 on the Linux platform and ran the
tests on a single processor to ensure the fairness. While processing the
complete large-scale CC50k dataset, we used a multiprocessing mod-
ule and PyTorch multiprocessing module to accelerate the traditional
keypoint extraction methods and deep learning-based outlier rejection
methods, respectively.

4. Results

4.1. Datasets

The presented real datasets were approved by the Experimental
Animal Ethics Committee of Suzhou Institute of Biomedical Engi-
neering and Technology, Chinese Academy of Sciences. The dataset
CC50K was collected from mouse corpus callosum on September 25th,
2018(NO.2018-A30). The ST793 dataset was collected from the mouse
striatum on September 22nd, 2022. The GBM9 dataset was obtained
from mouse glioblastoma on November 18th, 2020. We used a 61-
beam scanning electron microscope (Zeiss MultiSEM 505) for acquiring

5 https://github.com/freequaos/schedtool
from ClinicalKey.com by Elsevier on March 20, 2025. 
opyright ©2025. Elsevier Inc. All rights reserved.
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Fig. 6. ST793 dataset gallery. (a) The ST793 dataset comprises a segment of the adult mouse striatum, featuring 17 mFovs with dimensions of 62, 976 × 66, 148 pixels. (b) The
sub-dataset ST91 comprises a complete mFov with 61 tiles and 30 tiles from surrounding mFovs, exhibiting overlap with the entire mFov. (c) The complete mFov consists of 61
tiles. (d) The 24 boundary tiles from the complete mFov and 30 tiles from surrounding mFovs.
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Fig. 7. GBM9 dataset. Part of a section of adult mouse glioblastoma cell with 9 tiles,
000 × 3000 pixels per tile. (a) the images before stitching. (b) the stitching result of
roposed.

C50K and ST793 images, capable of simultaneously capturing mul-
iple tiles. The images of GBM9 were acquired using a single-beam
canning electron microscope (Zeiss GeminiSEM 300).
Besides, we generated two sets of synthetic data for the training and

valuation of GPOR. The dataset for evaluating GPOR will be detailed
nd introduced in Section 4.2. Without the metadata like camera poses
n natural images, it is difficult to make a real dataset for training when
rocessing the EM images because we do not have the ground truth of
𝑖,𝑗 according to the epipolar distance. We take advantage of the large
rea of EM images to configure a method to generate synthetic datasets
hat can simulate the real training data with ground truth. First, we
hoose a set of large 2D EM images and randomly select a pixel, used
s the left-top corner of training image 1a. Then, an affine matrix is
enerated to transform the training image 1a to the corresponding area
f training image 1b’. This area is usually not a rectangle so we need to
olve another matrix to transform the whole large EM image in order
o obtain a rectangle training image 1b of the same dimension with
raining image 1a. Please refer to Appendix A for more details about
enerating the synthetic datasets.
CC-train. To get the best performance on the real data, we cropped

mage pairs from the below CC50k and made a synthetic dataset for
raining. The overlap rate is set to be between 0.03 and 0.1 and
e added an extra mask on every image because the later features
atching step only works on an approximately overlapping rectangle.
his training set contains 9226 pairs of images and each pair contains
xtracted 1000 correspondences.
CC50k. In the dataset acquired by the 61-beam SEM, one multifield
6

f view (mFoV) consists of 61 tiles shaped in [2724, 3128], each e
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Fig. 8. Stitching performance (measured in EMSIQA) and running time tested on
the CC427 dataset. The proposed hybrid feature framework achieved an optimized
balance between performance and speed. Note that we constrained the computing
resource to one processor to ensure fairness. SURF ran slower than SIFT in the OpenCV
implementation, which is contrary to the expectation.

scanned by an individual electron beam. We chose a complete cross-
section of mouse corpus callosum containing 826 mFoVs and 50,386
tiles to test our framework (Fig. 5(a)). The physical resolution is 4
nm/px so the about 10 mm2 area contains over six hundred billion
pixels. The overlap rate between tiles was set to be 3% when acquiring
the images. This dataset is the superset of CC427 and CC61.

CC427. To promote testing efficiency, we cropped out 7 adjacent
mFoVs with 427 tiles from CC50k (Fig. 5(b)). This 4-billion-pixel subset
is used to test the performance of different features on a large-scale EM
dataset.

CC61. To evaluate the generalization performance of the proposed
method, we also cropped out 4 subsets, each containing one mFoV
with 61 tiles (Fig. 5(c)). These mFoVs come from different areas of the
CC50k, with different cellular structures or image contrasts.

ST793. In the dataset acquired by the 61-beam SEM, a multifield
f view (mFoV) comprises 61 tiles, each shaped in [3376, 3876], with
ndividual electron beams scanning each tile (Fig. 6(a)). We selected
a mouse striatum section with 13 mFovs and 793 tiles. The physical
resolution is 4 nm/px, with an 8% overlap between mFovs and 1 μm
etween tiles during image acquisition. This dataset serves as the
uperset of ST91.
ST91 In SEM image stitching, tile pairs within the same mFov

nd between different mFovs yield distinct results. Typically, stitching
rrors occur between tiles inter-mFovs. So We choose a complete mFov
from ClinicalKey.com by Elsevier on March 20, 2025. 
opyright ©2025. Elsevier Inc. All rights reserved.
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Fig. 9. Visualization of the feature characteristics on the CC61 dataset. Upper: speed-accuracy trade-off. Lower: spatial visualization of the hybrid feature adopted by the
ramework on different tile pairs. The color of the short line connecting the center of two tiles represents the final chosen features. Blue, yellow, and green denote ORB, SIFT,
nd SURF, respectively.
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Table 1
EMSIQA results and running time on CC427 dataset, a real-world dataset containing
427 tiles.
Method All↓ Top10%↓ Top20%↓ Top50%↓ Time↓

SIFT [16] 1.289 0.325 0.437 0.747 28’25’’
SURF [19] 1.588 0.327 0.444 0.783 72’34’’
ORB [15] 13.372 0.565 0.922 2.541 7’36’’
AKAZE [20] 9.040 0.478 0.807 1.988 12’48’’
BRISK [22] 4.441 0.386 0.546 1.083 64’36’’

ORB+GP. 1.972 0.339 0.464 0.830 10’14’’
Hyb. w/o. GP. 17.421 0.756 1.305 3.673 9’22’’
Proposed 1.523 0.289 0.388 0.715 10’41’’

at the midpoint of the section and tiles from surrounding mFovs that
overlap with this entire mFov (Fig. 6(b)). In this sub-dataset, there are
91 tiles.

GBM9 This 3×3 tiles mouse glioblastoma dataset is consist of 9 tiles
Fig. 7).

.2. Point-based error detection: EM- feature

Assisted by error detection, we can first use the faster feature to
btain the preliminary inliers, and then optimize the potential wrong
airs using a slower feature with stronger performance. As shown in
able 1, we recorded the mean EMSIQA of CC427 dataset to test the
verall performance, and Top 10%, Top 20%, and Top 50% mean EM-
IQA to evaluate how well the top stitched pairs perform. As depicted
n Table 4, we documented the mean EMSIQA for the ST91 dataset,
valuating the stitching results within mFov and between mFovs (Intra
nd Inter mean EMSIQA). Similarly, Table 5 displays the mean EMSIQA
or the GBM9 dataset.
GPOR vs. RANSAC. In order to evaluate the performance of GPOR

n image pairs with different overlap rates, we made a synthetic dataset
ontaining 3k pairs of four different overlap rate ranges, 1k for each
ange (Table 2). We constrained the displacement of four corner points
ithin 50 pixels to simulate the nearly rigid transformation. For each
mage, the dimension is 1024 × 1024, and we set 1k feature points
or SIFT. We found 40.6, 85.1, and 143.3 inliers on average in the
our subsets, respectively. As shown in Table 2, on EMPair3000 which
ncludes different overlap rates, GPOR outperforms RANSAC in most
ases. Because of the imbalance of inliers and outliers (i.e., outliers
re much more than inliers), the disparity of accuracy is insignificant
ompared with precision and recall. Especially in the groups with lower
han 30% overlapping area, GPOR has a great advantage. Considering
7

ll recall values are larger than 0.99, we believe that in the case of W
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Table 2
A Comparison of RANSAC [24] and GPOR on EMPAIR3000, a synthetic dataset
including 1k pairs in the overlap rate range of 20%–30%, 30%–40%, and 40%–50%,
respectively.

20%–30% 30%–40% 40%–50%

RAN. GPOR RAN. GPOR RAN. GPOR

Inliers 13.5 42.0 61.0 86.1 139.6 144.6
Accuracy 0.966 0.998 0.974 0.999 0.996 0.998
Precision 0.477 0.958 0.886 0.984 0.995 0.990
Recall 0.198 0.998 0.649 0.997 0.963 0.999

nearly rigid transformation and small overlapping areas, which apply to
most multibeam EM images, GPOR significantly outperforms RANSAC.

Proposed vs. Single Feature. In previous workflow, people tend to
elect SIFT to guarantee higher stitching precision at the cost of speed.
ur experiment result from CC427 shows that sometimes accuracy and
peed are mutually compatible goals, shown in Fig. 8. By detecting the
rrors from ORB with GPOR and RANSAC, and replacing it with SIFT,
he Top10%, Top20%, and Top50% averaging EMSIQA all exceed the
esult of pure SIFT or SURF and the mean EMSIQA of all tile pairs is
ery close to them (Table 1). Meanwhile, under the same computation
esource, the running time including extracting and matching features,
s cut down to nearly one-third of SIFT.
Proposed vs. without Hybrid Features. GPOR can only work

hen there are enough good correspondences, which is not guaranteed
hen handling sparse key points. The comparison of Proposed and
RB+GPOR in Table 1 indicates that pure ORB assisted by GPOR
annot achieve the performance of ORB hybrid with SIFT.
Proposed vs. Error Detection without GPOR. We also explored

he case of simply using either the filter rate or the number of accepted
orrespondences via RANSAC as the error detection criterion, instead
f applying GPOR. The results are listed in the row of ‘Hyb. w/o GPOR’
n Table 1, indicating they do not work well.
Generalization performance. To assess the generalization per-

ormance, our method performs well on CC61, ST91, and GBM9, as
emonstrated in Table 1, Table 4, and Table 5. CC61 has 4 sets of
61-tile EM images with varied cellular structures and contrasts. ST91
includes an mFov with 61 tiles and 30 tiles from surrounding mFovs.
GBM9 is a glioblastoma dataset with 9 tiles acquired by a single-beam
scanning electron microscope. As described in Section 4.1, CC61-1 is
elatively easy because of the abundant and uniform axon bundles, thus
roviding sufficient keypoint features to extract. The cellular structures
ave different scales in CC61-2. CC61-3 covers many cytons with low
exture. CC61-4 has a low contrast compared to the other regions.

e generate plots for time, mean EMSIQA, and the distribution of

from ClinicalKey.com by Elsevier on March 20, 2025. 
opyright ©2025. Elsevier Inc. All rights reserved.
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Fig. 10. Visualized EMSIQA score distribution and stitching result of CC50k. (a) The EMSIQA distribution is in ascending order among 149666 overlapping areas and three
utoff point values. (b) The stitching results in different EMSIQA score ranges. The final image in each row is the stitching result of the first two images. (c) The EMSIQA
istribution across the whole CC50k image, with two typical regions called out, which are mosaicked bad and well, respectively. A log function on the values.
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ybrid features in Fig. 9. These illustrate that our method demonstrates
xcellent performance across these datasets, with notable improvement
n more challenging data.

.3. Image-based error detection: EMSIQA

We designed three typical scenarios, including six image pairs as
hown in Fig. 3 to compare EMSIQA with other assessments. The
ppearance represents the blurred images by focus inaccuracy and the
mages of different signal intensities. The Distortion Location shows
he image deformation that occurred on the boundary membranes of
iological structures or in the information-less areas inside the cellular
ompartments. And the Structure Scale discerns the thick and thin
ellular membrane structures. For (a) and (b), the values are very close
o zero, which indicates that the proposed metric is nearly invariant to
he blur and brightness change. In (c) and (d), we added distortion on
oundary membranes and cytosolic areas, respectively. It can clearly
iscriminate the influence of the distortion when it is distributed on
ifferent structures. (e) is an image with a thick cellular structure
hile (f) shows a thin one. Although they have the same pixel-wise
isplacement, the mismatching of cellular structure is more serious
hen it is thin and thus the value is larger, proving that EMSIQA is
ensitive to resolution-independent structure matching. As shown in
able 3, PSNR is sensitive to the brightness change. SSIM increases
hen the structure becomes thinner. NCC does not clearly discriminate
he effect of distortion on boundary membranes or cytosolic areas.
FI-SSIM outputs obviously unreasonable values when evaluating the
hick and thin structures. In conclusion, compared with classical IQAs
nd HFI-SSIM designed for stitching, the proposed EMSIQA gives more
easonable results under common scenarios in EM image mosaicking.

.4. Application on ultra-large 2D image

We applied the proposed framework on CC50k to test the perfor-
ance, speed, and robustness of our framework dealing with ultra-large
ulti-tile EM images. Fig. 5(a) exhibits the overview of the stitched
omplete cross-section of corpus callosum. As shown in Fig. 10(a), the
op10%, Top20%, and Top50% EMSIQA can achieve 0.337, 0.459,
8
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nd 0.829, respectively. Over 80% of the overlapping areas have a
alue below 3. Fig. 10(b) shows three stitching areas in detail for every
MSIQA range. Fig. 10(c) illustrates the EMSIQA distribution among
he whole section. In most regions, the values are kept at a relevant
ow level like the blue box, while in some areas lack texture, and the
erformance is still not perfect, like the red box.

. Conclusion and limitation

Contribution. To address the challenge in large-scale EM image
osaicking, we proposed a two-stage error detection method to assess
he mosaicking in and after the processing. The first stage combines
he learning-based GPOR and the classical RANSAC to examine the key
oint matches and detect the potential stitching errors before the time-
onsuming global optimization and image rendering. We proposed a
ybrid feature framework, where the first stage is point-based error
etection, to comprehensively optimize stitching speed and accuracy.
he second stage takes advantage of a newly designed measurement
f EM stitched image quality assessment (EMSIQA) to detect unsolved
rrors and to comprehensively evaluate the stitching result. Experiment
esults showed that our framework can significantly reduce the com-
utation time compared with existing single-feature workflows, and
eanwhile attain excellent stitching quality. The application of our
ramework to ultra-large multi-tile EM images of the adult mouse’s
triatum, glioblastoma, and corpus callosum showcased outstanding
erformance and robustness in mosaicking extensive and diverse EM
mages.
Limitations. The proposed hybrid feature framework takes ad-

antage of different key features and achieves an optimized balance
etween performance and speed. However, naturally, it cannot surpass
he upper limit of performance of the chosen features. Given the
xtensibility of our framework, more advanced features proposed in
he future can be added to the hybrid features to achieve further
mprovement.
In the experiment GPOR vs. RANSAC (Section 4.2) using synthetic

ataset, the GPOR method adopted in this work can reach a high speed
sing GPUs since the feature numbers of all images are set to be equal
t the data preparation stage. However, the computation speed did not
from ClinicalKey.com by Elsevier on March 20, 2025. 
opyright ©2025. Elsevier Inc. All rights reserved.
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Table 3
Comparison of EMSIQA and other assessments (PSNR [31], NCC [33], SSIM [32] and HFI-SSIM [34]) in the three scenarios (6 image pairs) shown in Fig. 3.
𝐸𝐺(𝑠𝑡𝑟𝑢𝑐.) means the geometric error of the cellular structures and 𝐸𝐺(𝑤ℎ𝑜𝑙𝑒) denotes the geometric error of the whole image. The result shows that the proposed
EMSIQA can better evaluate the stitching of EM images. ✓ indicates where the metric can serve as a successful assessment, while × denotes not.

PSNR↑ NCC↑ SSIM↑ HFI-SSIM↑ EMSIQA (Proposed)

Overall↓ 𝐸𝐺(𝑠𝑡𝑟𝑢𝑐.) ↓ 𝐸𝐺(𝑤ℎ𝑜𝑙𝑒) ↓ 𝑀𝑆 ↑

Appearance × ✓ × × ✓

Fig. 3(a) blur 30.290 0.959 0.812 0.001 0.015 0.015 0.015 0.993
Fig. 3(b) brightness change 11.873 1.000 0.751 0.999 0.034 0.033 0.035 0.991

Distortion Location × × × ✓ ✓

Fig. 3(c) boundary membranes 15.793 0.856 0.687 0.377 2.001 1.784 0.954 0.687
Fig. 3(d) cytosolic areas 16.826 0.890 0.661 0.700 0.653 0.624 1.086 0.955

Structure Scale ✓ ✓ × × ✓

Fig. 3(e) thick structure 14.347 0.865 0.252 0.004 3.094 2.792 2.789 0.902
Fig. 3(f) thin structure 12.662 0.711 0.270 0.004 3.591 2.806 2.793 0.781
reach our expectation on the three real EM datasets because the number
of correspondences varies a lot in different tile pairs, which means we
cannot concatenate them together into a batch and compute them in
parallel.

Besides, our framework is specially optimized for the images ac-
quired by the multibeam SEM with small tile size, of which the non-
linear distortion is negligible in most cases for stitching. Thus we
here did not discuss the distortion nor apply our proposed scheme on
deformed EM images where elastic transformation is needed.
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Appendix A. Details of making the synthetic dataset

Cropping from a large image. Supposing that the size of the large image
and cropped image are [H, W] and [h,w], respectively. We first ran-
domly select a point [𝑑𝑖𝑠𝑝_𝑥𝑠𝑟𝑐 , 𝑑𝑖𝑠𝑝_𝑦𝑠𝑟𝑐] as the left-top of image 1, then
a random affine matrix M is generated to represent the transformation
between image 1 and image 2. We can formulate the coordinates of one
point in these two images’ coordinate systems as:

𝐌 ⋅ 𝐏𝐭𝑐𝑜𝑜𝑟1𝑠𝑟𝑐 = 𝐏𝐭𝑐𝑜𝑜𝑟2𝑠𝑟𝑐 (A.1)

Next, we need to calculate 𝐏𝐭𝑑𝑠𝑡 in the large image’s coordinate
system. We can choose three corner points in image 2: [0, 0], [0, h],
[w, 0] as the anchors. Thus, their coordinates in image 1 can be written
as:

𝐏𝐭𝑐𝑜𝑜𝑟1𝑑𝑠𝑡 = 𝐌−1 ⋅ 𝐏𝐭𝑐𝑜𝑜𝑟2𝑑𝑠𝑡 (A.2)

According to the location of image 1 in the large image, we can get the
global coordinates:

𝐏𝐭𝑐𝑜𝑜𝑟𝑔𝑑𝑠𝑡 = 𝐌−1 ⋅ 𝐏𝐭𝑐𝑜𝑜𝑟1𝑑𝑠𝑡 + [𝑑𝑖𝑠𝑝_𝑥𝑠𝑟𝑐 , 𝑑𝑖𝑠𝑝_𝑦𝑠𝑟𝑐 , 0]𝑇 (A.3)

However, the parallelogram solved by the three points in the global
coordinate system cannot be directly cropped because in most cases it
is not a rectangle so we have to transform the large image using the
matrix:

𝐌𝑙𝑎𝑟𝑔𝑒2𝑠𝑚𝑎𝑙𝑙 = 𝑔𝑒𝑡𝐴𝑓𝑓𝑖𝑛𝑒(𝐏𝐭𝑐𝑜𝑜𝑟𝑔𝑑𝑠𝑡 ,𝐏𝐭𝑐𝑜𝑜𝑟1𝑑𝑠𝑡 ) (A.4)

Then, cropping the transformed large image using 𝑀𝑙𝑎𝑟𝑔𝑒2𝑠𝑚𝑎𝑙𝑙 into [h,
w] can generate image 2.

Normalization. In real EM data, the dimensions of tiles are not constant
so the learning-based outlier rejection model has to be trained under
a normalized coordinate system. We constrain the coordinates in the
range of [−1, 1] following:

𝑥𝑛𝑜𝑟𝑚1 =
2𝑥1
𝑤1

− 1, 𝑦𝑛𝑜𝑟𝑚1 =
2𝑦1
ℎ1

− 1,

𝑥𝑛𝑜𝑟𝑚2 =
2𝑥2
𝑤2

− 1, 𝑦𝑛𝑜𝑟𝑚2 =
2𝑦2
ℎ2

− 1
(A.5)

Supposing that the affine matrix M is:

𝑀 =
(

𝑓11 𝑓12 𝑓13
)

(A.6)

𝑓21 𝑓22 𝑓23
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Table 4
EMSIQA results and running time on ST91 dataset, a real-world dataset
containing 91 tiles.
Method All↓ Intra%↓ Inter%↓ Time↓

SIFT [16] 3.28 3.18 3.58 39’43’’
SURF [19] 3.44 3.46 3.39 31’34’’
ORB [15] 42.58 45.95 32.85 8’05’’
AKAZE [20] 24.01 30.02 6.67 13’43’’
BRISK [22] 22.24 25.99 11.39 17’48’’

Proposed 4.31 4.27 4.41 15’43’’

Table 5
EMSIQA results and running time on GBM9 dataset, a real-world dataset
containing 9 tiles.
Method All↓ Best%↓ Worst%↓ Time↓

SIFT [16] 3.20 0.49 3.66 16’’
SURF [19] 3.11 0.51 3.66 15’’
ORB [15] 5.62 0.65 11.65 6’’
AKAZE [20] 3.40 0.59 4.15 11’’
BRISK [22] 3.27 0.47 3.84 14’’

Proposed 3.21 0.57 3.72 10’’

then the corresponding elements in normalized matrix 𝑀𝑛𝑜𝑟𝑚 can be
formulated as:

[0, 0] = 𝑓11 × 𝑤1
𝑤2

[0, 1] = 𝑓12 × ℎ1
𝑤2

[0, 2] = 𝑓11 × 𝑤1
𝑤2

+ 𝑓12 × ℎ1
𝑤2

+ 𝑓13 × 2
𝑤2

− 1

[1, 0] = 𝑓21 × 𝑤1
ℎ2

[1, 1] = 𝑓22 × ℎ1
ℎ2

[1, 2] = 𝑓21 × 𝑤1
ℎ2

+ 𝑓22 × ℎ1
ℎ2

+ 𝑓23 × 2
ℎ2

− 1

(A.7)

Appendix B. EMSIQA results and running time for the ST91 and
GBM9 datasets

Here we present the results of datasets ST91 and GBM9 in Tables 4
and 5.
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