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ABSTRACT

Large-scale electron microscopy (EM) has enabled the reconstruction of brain connectomes at the synaptic
level by serially scanning over massive areas of sample sections. The acquired big EM data sets raise the great
challenge of image mosaicking at high accuracy. Currently, it simply follows the conventional algorithms
designed for natural images, which are usually composed of only a few tiles, using a single type of keypoint
feature that would sacrifice speed for stronger performance. Even so, in the process of stitching hundreds of
thousands of tiles for large EM data, errors are still inevitable and diverse. Moreover, there has not yet been an
appropriate metric to quantitatively evaluate the stitching of biomedical EM images. Here we propose a two-
stage error detection method to improve the EM image mosaicking. It firstly uses point-based error detection
in combination with a hybrid feature framework to expedite the stitching computation while maintaining high
accuracy. Following is the second detection of unresolved errors with a newly designed metric of EM stitched
image quality assessment (EMSIQA). The novel detection-based mosaicking pipeline is tested on large EM data

sets and proven to be more effective and as accurate when compared with existing methods.

1. Introduction

The reconstruction of neural circuits through the imaging of serial
ultra-thin sections of brain tissues at nanometer-range resolution with
2D large-scale electron microscopy (EM), employing serial sectioning
techniques such as serial section scanning electron microscopy (ssSEM),
has emerged as a critical and effective method for connectomic stud-
ies [1-4]. The mosaicking of a substantial number of imaging tiles
within the region of interest (ROI) into a cohesive 2D EM image is
indispensable due to the inherent limitations of the size of the field
of view (mfov).

The mosaicking task of EM images for connectomic studies en-
counters the challenge of balancing high speed and high precision.
The inherently high resolution of EM imaging results in substantial
amounts of data, imposing stringent requirements on stitching speed.

Moreover, this substantial amounts of data exacerbates the already
demanding accuracy requirements imposed by downstream alignment
and segmentation tasks [5]. In contrast to generic nature images, the
parallax and distortion inherent in EM images are often mitigated by
opting for a smaller tile size. However, this strategic decision amplifies
the number of tiles and consequently escalates the computational bur-
den for stitching. To mitigate this computational load, it is customary
to reduce the overlap area, yet this approach engenders heightened
challenges in the mosaicking process.

In brief, natural image stitching puts the emphasis on minimizing
local geometric misalignment, improving transition smoothness, and
hiding the seam between parallax images [6-13]. In contrast, the
mosaicking of large-scale EM images can be satisfied with nearly rigid
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Fig. 1. Overview of the image mosaicking pipeline with the proposed two-stage error detection. Upper, the conventional EM image mosaicking workflow. Lower, the
two-stage error detection that is added. In the Y/N insets, the red (Y) and green (N) line segments indicate whether a stitching error exists on the border of two tiles.

transformation but instead greatly suffer from long computation time
and inevitable errors through the enormous amount of data.

The process of mosaicking electron microscopy (EM) images in-
volves several steps, including feature extraction, matching, outlier
rejection, and global optimization to derive the necessary transforma-
tions [14] (Fig. 1). A key consideration in this process is the trade-off
between accuracy and speed in feature extraction. While faster methods
like ORB [15] prioritize speed over accuracy, more accurate techniques
like SIFT [16] require longer computation times [17]. However, the
lack of standardized evaluations for EM image mosaicking makes it
challenging to quantitatively compare feature performance. As a re-
sult, researchers often rely on qualitative assessments, which can be
laborious and subjective. Despite the preference for accuracy, errors
in mosaicking remain challenging to detect, especially given the large
volume of data and time required for analysis. Efforts to enhance
keypoint features and transformation models have been ongoing, but
no method has yet achieved an optimal balance between speed and
accuracy. In response to this challenge, we propose a novel approach
that focuses on error detection and iterative feature refinement.

We designed a two-stage error detection pipeline. In the first stage,
correspondences derived from a hybrid feature framework undergo
scrutiny from a point-based error detection method prior to image
rendering. Subsequently, the detected errors are utilized to iteratively
prioritize a feature with heightened accuracy for handling the flawed
tiles. Then, in the second stage, the mosaicked images undergo evalu-
ation using a novel EM stitched image quality assessment (EMSIQA)
metric to identify any remaining errors. In essence, the approach
involves leveraging fast features to maximize computational speed,
while simultaneously employing error detection methods and exploring
accuracy-focused features to ensure precision. We tested the detection-
based biological EM image mosaicking pipeline on large data sets
of mouse brain from multibeam SEM and mouse glioblastoma from
single-beam SEM, and demonstrated high accuracy and significantly
shortened processing time.

2. Related work

For image mosaicking, current pipelines first match key points for
each pair of overlapped images, estimate the transformation for each
image tile with a global optimization approach [14,18], render the
mosaicked image, and assess the stitched image quality. Below we
review the computational costly keypoint matching step and the final
image quality assessment step.

2.1. Keypoint matching for image stitching

Image keypoints. One major time-consuming step in the image
stitching pipeline is keypoint detection. Since the scale-invariant fea-
ture transform (SIFT) [16] was proposed by Lowe et al. in 1999 and
widely applied in many computer vision tasks like stitching, registra-
tion, and template matching, many handcrafted features have been
proposed to improve in either accuracy or speed. Speeded-Up Ro-
bust Features (SURF) [19] was developed as a faster replacement
of SIFT by replacing the Difference of Gaussian (DoG) with Hessian
matrix and squeezing the dimensions of descriptors to speed up the
matching. Oriented FAST and Rotated BRIEF (ORB) [15] further ac-
celerated the extraction, reaching up to a 100-fold speed increase of
SIFT in theory, but its robustness is not as good as SIFT and SURF.
AKAZE [20], proposed as the accelerated version of KAZE [21], adds
FED (Fast Explicit Diffusion) to the pyramid framework and the utiliza-
tion of non-linear scale space makes it more stable than SIFT or SURF.
BRISK [22] was proposed to achieve a high-quality performance albeit
at a dramatically lower computational cost. In recent years, learning-
based features emerged to take advantage of GPU parallel computation.
Learned Invariant Feature Transform (LIFT) [12] used convolutional
neural networks (CNNs) to implement detector, orientation estimator,
and descriptor. However, a CNN-like network is only weakly invariant
to the rotation, which limits its application in many tasks.

Matching outlier rejection. Sparse feature extraction algorithms
pick out the points that are distinctive and robust to transformation and
then give each key point a high-dimensional descriptor. By calculating
the distance of descriptors in an image pair, each key point in one
image will be linked to the closest point in the other, and we refer
to this point pair as a correspondence. Therefore, the challenge is to
find the correct geometric transformation out of massive erroneous
correspondences (outliers). RANSAC [24] is an old but effective algo-
rithm to reject outliers [25]. By iteratively selecting random points, the
fitted model is applied to check how many points are potentially inliers
until a model that can include the most correspondences is achieved.
MLESAC [26], a generalization of RANSAC, maximizes the likelihood
rather than just the number of inliers. PROSAC [27] optimizes the speed
from the perspective of sampling. Also, deep learning is introduced
to make up for the ignorance of global geometric information. Choy
et al. [28] further explored the outlier rejection in high-dimensional
space powered by the Minkowski engine [29]. Yi et al. [23] drew
lessons from the processing of disordered points in PointNet [30], and
proposed a context normalization module to extract the inliers with
global perception, which we call as Global-Perception Outlier Rejection
(GPOR).
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Fig. 2. The first-stage point-based error detection and the hybrid feature framework. Given P overlapped tile pairs with shape [W x H], a feature extraction algorithm with
the highest speed, which is ORB in our experiment, is first used to generate the tentative correspondences. Assisted by modified learning-based global-perception outlier rejection
(GPOR) [23] and RANSAC [24], potential errors in correspondences are detected. Then, slower but more accurate extraction and matching algorithms, such as SIFT and SURF,

are applied to erroneous tile pairs to improve the stitching quality.

2.2. Stitched Image Quality Assessment (SIQA)

Different from other computer vision tasks like classification or
segmentation, it is almost impossible to manually label the ground truth
of the stitching of two naturally acquired images. Thus, researchers
tend to compare the structure of interest in the overlapped region. One
simple way to assess the stitching is to adopt classical image quality
metrics, such as peak signal-to-noise ratio (PSNR) [31], structural
similarity (SSIM) [32], and normalized cross-correlation (NCC) [33].
However, these methods are not designed for the evaluation of image
stitching and ignore the different importance of various types of er-
rors between the stitched images. Qureshi et al. [34] quantified the
geometric and photometric qualities separately of a stitched image and
named the geometric part HFI-SSIM. Yang et al. [35] fused a perceptual
geometric error metric and a local structure-guided metric into one.
Tian et al. [36] took consideration of six different stitching distortion
types and trained an assessment model by SVR [37]. Furthermore,
Ullah [38] took advantage of mask R-CNN [39] to build a three-fold
deep learning-based no-reference stitched image quality assessment
called DLNR-SIQA.

3. Methods
3.1. Framework overview

Our error detection framework has two stages (Fig. 1). In the first
stage, we adapt and integrate the previously proposed GPOR into a
hybrid feature selection framework aimed at striking a harmonious
equilibrium between speed and accuracy. In the second stage, we
introduce and implement a novel metric that more comprehensively
incorporates the image characteristics specific to biomedical EM data.
This metric enables the identification of any persisting errors and
facilitates an accurate assessment of the mosaicking quality.

3.2. Stage 1: Key point matches error detection

Among image features, SIFT is known to have high-quality matches
with costly computation while ORB is faster to compute with a signifi-
cant drop in match quality. It is a straightforward idea to first try ORB
and later try SIFT if the ORB match quality is not sufficient. However, it
is challenging to design a reliable metric for keypoint matches to know
when to switch to a different image feature.

Given a chosen feature and an image pair to stitch, we can have
two statistics: M,,, the number of all matches between the image pair
and M;, the number of inlier matches chosen by RANSAC. A commonly
used binary heuristic variable, 7, to determine if the matches are good
or not can be defined by

Mg 1
M>’)’ (@)

n

7]=(Mi>9i)ﬂ(

where ¢; demands big enough number of inlier matches and 6, demands
high enough ratio of inlier matches. When the matches are not good

which means the chosen feature failed, the value of # will be False.
Intuitively, when 6; is small, there are not enough matches to robustly
estimate the transformation matrix; when 6, is small, the image may
have ambiguous structures leading to non-consensus matches.

However, for EM images, the initial keypoint matches are noisy,
which makes the 6, unstable for the selection.

We thus designed a combined approach to detect potential stitching
errors before global optimization and rendering, by filtering the output
inliers from the GPOR with an additional RANSAC and calculating the
acceptance ratio.

In this work, we adopt a learning-based outlier rejection algorithm
proposed by Yi et al. [23]. This algorithm involves considering image
pairs (I, I') and their corresponding essential matrices E to extract the
set of correspondences X associated with E. The challenge of outlier
rejection can be addressed by designing a deep network that encodes a
map f parameterized by @, which

W = fo(X), E =g(X,W). (2)

The W = [Q,, ..., 2y]is the output of the network f,, where 2; € [0, 1]
represents the score assigned to correspondence x;, and £2; = 1 indicates
x; as an inlier. The function g filters correspondences X based on W
and computes the essential matrix E from the filtered X.

In order to individually consider each correspondence within the
broader global context, allowing for the encoding of camera motion,
the feature map is normalized based on its distribution following each
perceptron. The network utilized in this study is a 12-layer ResNet, with
each layer comprising two consecutive blocks comprising a Perceptron
featuring 128 neurons sharing weights for every correspondence, a Con-
text Normalization layer, a Batch Normalization layer, and a Rectified
Linear Unit (ReLU).

The training of this network employs a hybrid loss function com-
prising a classification loss to reject outliers and a regression loss to
predict the essential matrix. Since there is no requirement to estimate
the transformation matrix for each image pair, we solely utilize the
classification loss function.

P

L@) =) L@.x,) (3)
k=1

where @ are the network parameters and x, is the set of putative corre-

spondences for image pair k. Given a set of N putative correspondences

x, and their respective labels y, = [y}c, o ykN ] where y; € 0,1, and

y;'( = 1 denotes that the ith correspondence is an inlier, our outlier
classification error is

1 : .
LD,x) = N}’;{H()’L, S(0,)), @

where ”2 is the linear output of the last layer for the ith correspondence
in training pair k, S is the logistic function used in conjunction with
the binary cross entropy H, and y; is the per-label weight to balance
positive and negative examples.

As shown in Fig. 2, this network accepts the input correspondences
with shape [Batch, 4, K] and outputs the likelihood ranging in (O,
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Fig. 3. Typical scenarios in EM image mosaicking. (a) One image has an out-of-focus
blur simulated by a Gaussian blur. (b) The pair is different only in brightness. (c) Local
distortion on the boundary membranes of cellular compartments, no global translation.
(d) Local distortion in the info-less cytosolic area inside the cellular compartments,
no global translation. (e) Thick membranes, 2-pixel vertical and horizontal global
translation. (f) Thin membranes, 2-pixel vertical and horizontal global translation.

1) for every correspondence shaped as [Batch, 1, K] to estimate the
probability to be an inlier. With such keypoint match error removal, we
empirically find the common image feature selection method (Eq. (1))
becomes more effective due to a more stable inlier match ratio M,/ M,,.

3.3. Stage 2: Stitched image error detection

In the multi-step processing of biomedical EM images, image mo-
saicking is an upstream step to assist later three-dimensional registra-
tion and segmentation. The primary goal is to make every biological
structure well-stitched at the pixel level. In comparison, the visual-
ization factors like the photometric quality have less effect on the
downstream analysis. Furthermore, since the structures in 2D images
are used to reconstruct the 3D volume, any trick to blandish the eyes
such as multi-band blending [40] should not be applied to avoid hidden
errors. Thus, the principles of evaluating the stitching result should (1)
pay the most attention to cellular structures, (2) ignore the photometric
quality and (3) be prior to fusion or blending. Given the stitched left
and right image pair I, and I, we design a new SIQA score that
is customized for EM images with the downstream segmentation task
in mind, termed EMSIQA, for which we take the factors below into
consideration.

(a) Deformation magnitude. Traditional SIQA methods are sensitive to
the change of image appearances, e.g., out-of-focus blur and brightness,
between the pair of images, even if there is no geometric change
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Fig. 4. EMSIQA computation. EMSIQA is a novel metric to evaluate electron mi-
croscopy stitching. Guided by optical flows (via FlowNet2 [41]) and boundaries (via
OTSU segmentation [42]), it measures the geometric error normalized to the biological
structure.

(Fig. 3a-b). To focus on the geometric matching quality for the stitched
image pair, the proposed EMSIQA method computes the average defor-
mation field magnitude, defined as

1
E oy 13- Q) = X+ 0P (5)

i€

where N is the number of pixels, u and v denote the horizontal and
vertical values of the optical flow between the pair of input images,
and (2 represents the region of valid pixels.

(b) Border structure. As illustrated in Fig. 3c—d, due to the imaging noise,
there is non-zero deformation on cell texture, which can overwhelm the
deformation field magnitude on the cell and organelle borders that are
critical for the downstream segmentation task. Thus, we designed the
EMSIQA to focus on the important border features. As the labeling of
precise boundaries of cellular compartments leads to the challenging
segmentation task, we herein use a fast and simple method that is very
effective in scenarios with low-precision requirements. OTSU threshold
segmentation [42] maximizes the contrast between foreground and
background to find the most appropriate segmentation threshold. We
added a median filter to decrease the noise and were able to obtain
a binary mask that coarsely outlined the cellular structures. Thus, we
choose the region of deformation field 2, for image I as

Qp = Median-Filter(OTSU(I )) (©)

(c) Border matching. Although geometric error can quantitatively de-
scribe the displacement in pixels, it cannot represent the mismatch
of biological structures relative to their scales which are extensively
diverse among different cellular compartments. In other words, the
same pixel displacement in big and small cellular structures can cause
different effects on the registration and segmentation that follows
(Fig. 3e-f). Inspired by segmentation algorithms, we adopted Dice
index [43] to quantify the matching of the border structures of the pair
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1.835 mm (458,752 px)
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Fig. 5. CC50K dataset gallery. (a) CC50k dataset, a complete 2D cross-section of adult mouse corpus callosum consisting of 458,752 x 1,441,792 pixels. (b) The 7-mFoV

sub-dataset CC427. (c) Four 1-mFoV subsets named CC61-1 to 4, each containing 61 tiles.

of images:
2% (2,4 N02p)

7
Q4+ Qp )

DICE(Q,. Q) =

where the greater the similarity between the image pairs 7, and I, the
higher the resulting value. Similarly, when there is a consistent pixel
displacement, indicating equal divergence between I, and I, any dis-
placement observed in smaller cellular structures e.g., thin membranes
will exert a stronger influence, resulting in a diminished unaffected
region and consequently a reduced Dice index. In other words, the
larger cellular structures have a substantial (£, n £5) under similar
displacement conditions, which results in a higher Dice index:

2%(24NnQ02p) 2 ®)
Q,+095 Dis
A B 1+QAHQB

Dis=Q,nQ,+02,n0, 9

As shown in Fig. 4, for each image pair to be stitched together,
we crop out the overlapping area from the two images, respectively,
calculate the average geometric error in pixels of all cellular structures,
and then divide it by a penalty item that represents the structure
matching of the two overlapping areas. We call this metric EMSIQA
(EM stitched image quality assessment) and formulate it as:

EfjowIy, 1p,2p)

EMSIQA(I 4, Ip) = DICE(R,/,£2p)

10
where I/ (x,y) = I,(x+u, y+v) is the warping of I, by the optical flow
between the pair of images.

3.4. Implementation details

We tested the pre-trained FlowNet2? [41] on image pairs with
known displacement and found it sufficiently precise and robust. Thus,
when computing the optical flow for EMSIQA evaluation, we directly
adopted the pre-trained model of FlowNet2 [41]. To organize the large-
scale EM data, we adopted the data structure used in TrakEM2 [44] and
the workflow of rh-aligner® [45] with modifications. We implemented
the GPOR referencing Yi et al.* [23] using PyTorch. To train the model,
we set Adam as the optimizer with a learning rate equal to 0.00005

2 https://github.com/NVIDIA/flownet2-pytorch
3 https://github.com/Rhoana/rh_aligner
4 https://github.com/vcg-uvic/learned-correspondence-release

and set the batch size to 32. We only preserved the classification loss
since the weighted 8-point algorithm does not match the workflow of
multiple-image stitching. Other arguments were kept unchanged to Yi
et al. [23]. When extracting features, we set the number of ORB features
to be close to the average value of those extracted by SIFT or SURF.
Commonly, when the image is low-textured, the number of key points
extracted by SIFT or SURF will drastically decrease while ORB will keep
constant or close to the number we pre-set. In the error detection step,
when setting the thresholds of the acceptance ratio and the number
of inliers, we took into consideration the image size and the type of
features. In our experiment, we set the number of ORB features for
one tile to be 50,000 and regard a pair as a stitching error when the
acceptance ratio is lower than 0.9 or the inliers number is below 40
or 20 for ORB and SIFT, respectively by experience. For the execution
order of the features, we set ORB as the first choice to perform the
simplest yet fastest key point extraction. SIFT, as the second option,
will take over where ORB fails and more accurate correspondences are
required. In some very low-texture regions, SURF will serve as the last
choice to extract more feature points than SIFT.

In our experiment, we tested all algorithms on a workstation
equipped with Intel Core i9-9920X and one Nvidia RTX2080Ti (11 GB
memory). Due to the different scheduling strategies when using
OpenCV [46], we used schedtool® on the Linux platform and ran the
tests on a single processor to ensure the fairness. While processing the
complete large-scale CC50k dataset, we used a multiprocessing mod-
ule and PyTorch multiprocessing module to accelerate the traditional
keypoint extraction methods and deep learning-based outlier rejection
methods, respectively.

4. Results
4.1. Datasets

The presented real datasets were approved by the Experimental
Animal Ethics Committee of Suzhou Institute of Biomedical Engi-
neering and Technology, Chinese Academy of Sciences. The dataset
CC50K was collected from mouse corpus callosum on September 25th,
2018(N0O.2018-A30). The ST793 dataset was collected from the mouse
striatum on September 22nd, 2022. The GBM9 dataset was obtained
from mouse glioblastoma on November 18th, 2020. We used a 61-
beam scanning electron microscope (Zeiss MultiSEM 505) for acquiring

5 https://github.com/freequaos/schedtool
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(d

Fig. 6. ST793 dataset gallery. (a) The ST793 dataset comprises a segment of the adult mouse striatum, featuring 17 mFovs with dimensions of 62,976 x 66, 148 pixels. (b) The
sub-dataset ST91 comprises a complete mFov with 61 tiles and 30 tiles from surrounding mFovs, exhibiting overlap with the entire mFov. (c) The complete mFov consists of 61
tiles. (d) The 24 boundary tiles from the complete mFov and 30 tiles from surrounding mFovs.

(a) imgs before stitching (b) stitching result(proposed)

Fig. 7. GBM9 dataset. Part of a section of adult mouse glioblastoma cell with 9 tiles,
3000 x 3000 pixels per tile. (a) the images before stitching. (b) the stitching result of
proposed.

CC50K and ST793 images, capable of simultaneously capturing mul-
tiple tiles. The images of GBM9 were acquired using a single-beam
scanning electron microscope (Zeiss GeminiSEM 300).

Besides, we generated two sets of synthetic data for the training and
evaluation of GPOR. The dataset for evaluating GPOR will be detailed
and introduced in Section 4.2. Without the metadata like camera poses
in natural images, it is difficult to make a real dataset for training when
processing the EM images because we do not have the ground truth of
L;; according to the epipolar distance. We take advantage of the large
area of EM images to configure a method to generate synthetic datasets
that can simulate the real training data with ground truth. First, we
choose a set of large 2D EM images and randomly select a pixel, used
as the left-top corner of training image la. Then, an affine matrix is
generated to transform the training image 1a to the corresponding area
of training image 1b’. This area is usually not a rectangle so we need to
solve another matrix to transform the whole large EM image in order
to obtain a rectangle training image 1b of the same dimension with
training image la. Please refer to Appendix A for more details about
generating the synthetic datasets.

CC-train. To get the best performance on the real data, we cropped
image pairs from the below CC50k and made a synthetic dataset for
training. The overlap rate is set to be between 0.03 and 0.1 and
we added an extra mask on every image because the later features
matching step only works on an approximately overlapping rectangle.
This training set contains 9226 pairs of images and each pair contains
extracted 1000 correspondences.

CC50k. In the dataset acquired by the 61-beam SEM, one multifield
of view (mFoV) consists of 61 tiles shaped in [2724, 3128], each

Results on CC427
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Fig. 8. Stitching performance (measured in EMSIQA) and running time tested on
the CC427 dataset. The proposed hybrid feature framework achieved an optimized
balance between performance and speed. Note that we constrained the computing
resource to one processor to ensure fairness. SURF ran slower than SIFT in the OpenCV
implementation, which is contrary to the expectation.

scanned by an individual electron beam. We chose a complete cross-
section of mouse corpus callosum containing 826 mFoVs and 50,386
tiles to test our framework (Fig. 5(a)). The physical resolution is 4
nm/px so the about 10 mm? area contains over six hundred billion
pixels. The overlap rate between tiles was set to be 3% when acquiring
the images. This dataset is the superset of CC427 and CC61.

CC427. To promote testing efficiency, we cropped out 7 adjacent
mFoVs with 427 tiles from CC50k (Fig. 5(b)). This 4-billion-pixel subset
is used to test the performance of different features on a large-scale EM
dataset.

CC61. To evaluate the generalization performance of the proposed
method, we also cropped out 4 subsets, each containing one mFoV
with 61 tiles (Fig. 5(c)). These mFoVs come from different areas of the
CC50k, with different cellular structures or image contrasts.

ST793. In the dataset acquired by the 61-beam SEM, a multifield
of view (mFoV) comprises 61 tiles, each shaped in [3376, 3876], with
individual electron beams scanning each tile (Fig. 6(a)). We selected
a mouse striatum section with 13 mFovs and 793 tiles. The physical
resolution is 4 nm/px, with an 8% overlap between mFovs and 1 pm
between tiles during image acquisition. This dataset serves as the
superset of ST91.

ST91 In SEM image stitching, tile pairs within the same mFov
and between different mFovs yield distinct results. Typically, stitching
errors occur between tiles inter-mFovs. So We choose a complete mFov
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Fig. 9. Visualization of the feature characteristics on the CC61 dataset. Upper: speed-accuracy trade-off. Lower: spatial visualization of the hybrid feature adopted by the
framework on different tile pairs. The color of the short line connecting the center of two tiles represents the final chosen features. Blue, yellow, and green denote ORB, SIFT,

and SURF, respectively.

Table 1
EMSIQA results and running time on CC427 dataset, a real-world dataset containing
427 tiles.

Method All} Top10%) Top20%) Top50%). Time|
SIFT [16] 1.289 0.325 0.437 0.747 28’25”
SURF [19] 1.588 0.327 0.444 0.783 72'34”
ORB [15] 13.372 0.565 0.922 2.541 7’36”
AKAZE [20] 9.040 0.478 0.807 1.988 12'48”
BRISK [22] 4.441 0.386 0.546 1.083 64’36”
ORB+GP. 1.972 0.339 0.464 0.830 1014”7
Hyb. w/o. GP. 17.421 0.756 1.305 3.673 9227
Proposed 1.523 0.289 0.388 0.715 10417

at the midpoint of the section and tiles from surrounding mFovs that
overlap with this entire mFov (Fig. 6(b)). In this sub-dataset, there are
91 tiles.

GBMO This 3x3 tiles mouse glioblastoma dataset is consist of 9 tiles
(Fig. 7).

4.2. Point-based error detection: EM- feature

Assisted by error detection, we can first use the faster feature to
obtain the preliminary inliers, and then optimize the potential wrong
pairs using a slower feature with stronger performance. As shown in
Table 1, we recorded the mean EMSIQA of CC427 dataset to test the
overall performance, and Top 10%, Top 20%, and Top 50% mean EM-
SIQA to evaluate how well the top stitched pairs perform. As depicted
in Table 4, we documented the mean EMSIQA for the ST91 dataset,
evaluating the stitching results within mFov and between mFovs (Intra
and Inter mean EMSIQA). Similarly, Table 5 displays the mean EMSIQA
for the GBM9 dataset.

GPOR vs. RANSAC. In order to evaluate the performance of GPOR
on image pairs with different overlap rates, we made a synthetic dataset
containing 3k pairs of four different overlap rate ranges, 1k for each
range (Table 2). We constrained the displacement of four corner points
within 50 pixels to simulate the nearly rigid transformation. For each
image, the dimension is 1024 x 1024, and we set 1k feature points
for SIFT. We found 40.6, 85.1, and 143.3 inliers on average in the
four subsets, respectively. As shown in Table 2, on EMPair3000 which
includes different overlap rates, GPOR outperforms RANSAC in most
cases. Because of the imbalance of inliers and outliers (i.e., outliers
are much more than inliers), the disparity of accuracy is insignificant
compared with precision and recall. Especially in the groups with lower
than 30% overlapping area, GPOR has a great advantage. Considering
all recall values are larger than 0.99, we believe that in the case of

Table 2

A Comparison of RANSAC [24] and GPOR on EMPAIR3000, a synthetic dataset
including 1k pairs in the overlap rate range of 20%-30%, 30%-40%, and 40%-50%,
respectively.

20%-30% 30%-40% 40%-50%

RAN. GPOR RAN. GPOR RAN. GPOR
Inliers 13.5 42.0 61.0 86.1 139.6 144.6
Accuracy 0.966 0.998 0.974 0.999 0.996 0.998
Precision 0.477 0.958 0.886 0.984 0.995 0.990
Recall 0.198 0.998 0.649 0.997 0.963 0.999

nearly rigid transformation and small overlapping areas, which apply to
most multibeam EM images, GPOR significantly outperforms RANSAC.

Proposed vs. Single Feature. In previous workflow, people tend to
select SIFT to guarantee higher stitching precision at the cost of speed.
Our experiment result from CC427 shows that sometimes accuracy and
speed are mutually compatible goals, shown in Fig. 8. By detecting the
errors from ORB with GPOR and RANSAC, and replacing it with SIFT,
the Top10%, Top20%, and Top50% averaging EMSIQA all exceed the
result of pure SIFT or SURF and the mean EMSIQA of all tile pairs is
very close to them (Table 1). Meanwhile, under the same computation
resource, the running time including extracting and matching features,
is cut down to nearly one-third of SIFT.

Proposed vs. without Hybrid Features. GPOR can only work
when there are enough good correspondences, which is not guaranteed
when handling sparse key points. The comparison of Proposed and
ORB+GPOR in Table 1 indicates that pure ORB assisted by GPOR
cannot achieve the performance of ORB hybrid with SIFT.

Proposed vs. Error Detection without GPOR. We also explored
the case of simply using either the filter rate or the number of accepted
correspondences via RANSAC as the error detection criterion, instead
of applying GPOR. The results are listed in the row of ‘Hyb. w/0 GPOR’
in Table 1, indicating they do not work well.

Generalization performance. To assess the generalization per-
formance, our method performs well on CC61, ST91, and GBM9, as
demonstrated in Table 1, Table 4, and Table 5. CC61 has 4 sets of
61-tile EM images with varied cellular structures and contrasts. ST91
includes an mFov with 61 tiles and 30 tiles from surrounding mFovs.
GBMDO is a glioblastoma dataset with 9 tiles acquired by a single-beam
scanning electron microscope. As described in Section 4.1, CC61-1 is
relatively easy because of the abundant and uniform axon bundles, thus
providing sufficient keypoint features to extract. The cellular structures
have different scales in CC61-2. CC61-3 covers many cytons with low
texture. CC61-4 has a low contrast compared to the other regions.
We generate plots for time, mean EMSIQA, and the distribution of
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Fig. 10. Visualized EMSIQA score distribution and stitching result of CC50k.

(a) The EMSIQA distribution is in ascending order among 149666 overlapping areas and three

cutoff point values. (b) The stitching results in different EMSIQA score ranges. The final image in each row is the stitching result of the first two images. (c) The EMSIQA
distribution across the whole CC50k image, with two typical regions called out, which are mosaicked bad and well, respectively. A log function on the values.

hybrid features in Fig. 9. These illustrate that our method demonstrates
excellent performance across these datasets, with notable improvement
on more challenging data.

4.3. Image-based error detection: EMSIQA

We designed three typical scenarios, including six image pairs as
shown in Fig. 3 to compare EMSIQA with other assessments. The
Appearance represents the blurred images by focus inaccuracy and the
images of different signal intensities. The Distortion Location shows
the image deformation that occurred on the boundary membranes of
biological structures or in the information-less areas inside the cellular
compartments. And the Structure Scale discerns the thick and thin
cellular membrane structures. For (a) and (b), the values are very close
to zero, which indicates that the proposed metric is nearly invariant to
the blur and brightness change. In (c) and (d), we added distortion on
boundary membranes and cytosolic areas, respectively. It can clearly
discriminate the influence of the distortion when it is distributed on
different structures. (e) is an image with a thick cellular structure
while (f) shows a thin one. Although they have the same pixel-wise
displacement, the mismatching of cellular structure is more serious
when it is thin and thus the value is larger, proving that EMSIQA is
sensitive to resolution-independent structure matching. As shown in
Table 3, PSNR is sensitive to the brightness change. SSIM increases
when the structure becomes thinner. NCC does not clearly discriminate
the effect of distortion on boundary membranes or cytosolic areas.
HFI-SSIM outputs obviously unreasonable values when evaluating the
thick and thin structures. In conclusion, compared with classical IQAs
and HFI-SSIM designed for stitching, the proposed EMSIQA gives more
reasonable results under common scenarios in EM image mosaicking.

4.4. Application on ultra-large 2D image

We applied the proposed framework on CC50k to test the perfor-
mance, speed, and robustness of our framework dealing with ultra-large
multi-tile EM images. Fig. 5(a) exhibits the overview of the stitched
complete cross-section of corpus callosum. As shown in Fig. 10(a), the
Top10%, Top20%, and Top50% EMSIQA can achieve 0.337, 0.459,

and 0.829, respectively. Over 80% of the overlapping areas have a
value below 3. Fig. 10(b) shows three stitching areas in detail for every
EMSIQA range. Fig. 10(c) illustrates the EMSIQA distribution among
the whole section. In most regions, the values are kept at a relevant
low level like the blue box, while in some areas lack texture, and the
performance is still not perfect, like the red box.

5. Conclusion and limitation

Contribution. To address the challenge in large-scale EM image
mosaicking, we proposed a two-stage error detection method to assess
the mosaicking in and after the processing. The first stage combines
the learning-based GPOR and the classical RANSAC to examine the key
point matches and detect the potential stitching errors before the time-
consuming global optimization and image rendering. We proposed a
hybrid feature framework, where the first stage is point-based error
detection, to comprehensively optimize stitching speed and accuracy.
The second stage takes advantage of a newly designed measurement
of EM stitched image quality assessment (EMSIQA) to detect unsolved
errors and to comprehensively evaluate the stitching result. Experiment
results showed that our framework can significantly reduce the com-
putation time compared with existing single-feature workflows, and
meanwhile attain excellent stitching quality. The application of our
framework to ultra-large multi-tile EM images of the adult mouse’s
striatum, glioblastoma, and corpus callosum showcased outstanding
performance and robustness in mosaicking extensive and diverse EM
images.

Limitations. The proposed hybrid feature framework takes ad-
vantage of different key features and achieves an optimized balance
between performance and speed. However, naturally, it cannot surpass
the upper limit of performance of the chosen features. Given the
extensibility of our framework, more advanced features proposed in
the future can be added to the hybrid features to achieve further
improvement.

In the experiment GPOR vs. RANSAC (Section 4.2) using synthetic
dataset, the GPOR method adopted in this work can reach a high speed
using GPUs since the feature numbers of all images are set to be equal
at the data preparation stage. However, the computation speed did not
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Comparison of EMSIQA and other assessments (PSNR [31], NCC [33], SSIM [32] and HFI-SSIM [34]) in the three scenarios (6 image pairs) shown in Fig. 3.
E(struc.) means the geometric error of the cellular structures and Eg;(whole) denotes the geometric error of the whole image. The result shows that the proposed

EMSIQA can better evaluate the stitching of EM images.

indicates where the metric can serve as a successful assessment, while x denotes not.

PSNR? NCCt SSIM{ HFI-SSIM? EMSIQA (Proposed)

Overall] Eg(struc.) | Eg(whole) | Mgt
Appearance X X X
Fig. 3(a) blur 30.290 0.959 0.812 0.001 0.015 0.015 0.015 0.993
Fig. 3(b) brightness change 11.873 1.000 0.751 0.999 0.034 0.033 0.035 0.991
Distortion Location X X X
Fig. 3(c) boundary membranes 15.793 0.856 0.687 0.377 2.001 1.784 0.954 0.687
Fig. 3(d) cytosolic areas 16.826 0.890 0.661 0.700 0.653 0.624 1.086 0.955
Structure Scale X X
Fig. 3(e) thick structure 14.347 0.865 0.252 0.004 3.094 2.792 2.789 0.902
Fig. 3(f) thin structure 12.662 0.711 0.270 0.004 3.591 2.806 2.793 0.781

reach our expectation on the three real EM datasets because the number Acknowledgments
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Appendix A. Details of making the synthetic dataset

Cropping from a large image. Supposing that the size of the large image
and cropped image are [H, W] and [h,w], respectively. We first ran-
domly select a point [disp_x,.,disp_y,,.] as the left-top of image 1, then
a random affine matrix M is generated to represent the transformation
between image 1 and image 2. We can formulate the coordinates of one
point in these two images’ coordinate systems as:

M- Ptiort = Ptio? (A1)

sre

Next, we need to calculate Pt,, in the large image’s coordinate
system. We can choose three corner points in image 2: [0, 0], [0, h],
[w, 0] as the anchors. Thus, their coordinates in image 1 can be written
as:

Pt — M_1 . Pteoo2

dst dst (a.2)

According to the location of image 1 in the large image, we can get the
global coordinates:

coor,

Ptdxt

s —M~! .Pt;‘:;r‘ + [disp_Xgper disp_Ygpe, 017 (A.3)

However, the parallelogram solved by the three points in the global
coordinate system cannot be directly cropped because in most cases it
is not a rectangle so we have to transform the large image using the
matrix:

coor,

M/ﬂrgeZsmall = getAffine(Ptds; LS Ptcoorl)

dst (A4)

Then, cropping the transformed large image using M, ¢o2mqn into [h,
w] can generate image 2.

Normalization. In real EM data, the dimensions of tiles are not constant
so the learning-based outlier rejection model has to be trained under
a normalized coordinate system. We constrain the coordinates in the
range of [-1, 1] following:

x;lorm= ﬁ—l, y;lorm= Zﬂ—l,
w) hy (A5)
norm 2x2 1 norm 2y2 ’
xy —-1L -1
Wy hy
Supposing that the affine matrix M is:
_( fuuof12 f13
M= < f21  f22 f23 (A-6)
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Table 4
EMSIQA results and running time on ST91 dataset, a real-world dataset
containing 91 tiles.

Method All} Intra%,| Inter%)| Time|
SIFT [16] 3.28 3.18 3.58 39'43”
SURF [19] 3.44 3.46 3.39 31°34”
ORB [15] 42.58 45.95 32.85 8°05”
AKAZE [20] 24.01 30.02 6.67 13’437
BRISK [22] 22.24 25.99 11.39 17°48”
Proposed 4.31 4.27 4.41 15’43”
Table 5

EMSIQA results and running time on GBM9 dataset, a real-world dataset
containing 9 tiles.

Method All} Best%] Worst%)| Timel
SIFT [16] 3.20 0.49 3.66 16”
SURF [19] 3.11 0.51 3.66 15”7
ORB [15] 5.62 0.65 11.65 6”
AKAZE [20] 3.40 0.59 4.15 117
BRISK [22] 3.27 0.47 3.84 14”
Proposed 3.21 0.57 3.72 10”

then the corresponding elements in normalized matrix M"*™ can be
formulated as:

0,01 = £11x %L
w2
0.1]= f12x AL
w2
[0,2]:f11><w—;+f12><h—12+f13x%—1
$1 w w (A7)
1,01 = f21 x &=
[1,0]=f ><h2
hl
Li=f2x%
[L1]=f Xh2
wl hl 2
L2l=f2Ix 2 p x4 f23x = — 1
[1,2]=f ><h2+f xh2+f3><h2

Appendix B. EMSIQA results and running time for the ST91 and
GBM9 datasets

Here we present the results of datasets ST91 and GBM9 in Tables 4
and 5.
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