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ABSTRACT: Carboxylic acids are valued synthetic building blocks that offer shelf-life stability, structural diversity, and wide com-
mercial availability.  Despite the remarkable synthetic utility of carboxylic acids, a direct enantioselective deoxygenative function-
alization of carboxylic acids remains rare. We present enantioselective deoxygenative amino-cyanation of carboxylic acids using a 
novel TiIV-multicatalytic system that catalytically modified each C–O bond of carboxylic acid to C–C, C–N, and C–H bonds, generating 
enantio-enriched chiral a-amino nitriles (up to 98:2 er).  

Carboxylic acids are structurally diverse, bench stable, rela-
tively nontoxic, and abundant in bioactive compounds.  Also, 
the wide commercial availability of carboxylic acid building 
blocks compared to other carbonyl compounds1 has been rec-
ognized as an essential element for developing novel innova-
tions (Figure 1A), allowing exploration of new chemical space 
continuously.2–10  In addition to these advancements, deoxy-
genative functionalization of a carboxyl group wherein each C–
O bond is converted to a new set of bonds to generate a stere-
ocenter enantioselectively is an intriguing fundamental pursuit, 
yet it remains elusive (Figure 1A).  Unlocking this paradigm 
would enable the rapid and modular buildup of molecular and 
stereochemical complexity of carboxylic acids. 
The challenges of developing an enantioselective deoxygen-

ative functionalization of carboxylic acids stem from their poor 
electrophilicity and the presence of an acidic proton.  Conse-
quently, the use of common organometallic nucleophiles leads 
to over-functionalized side-products and one sacrificial equiv-
alent of the nucleophile is required due to its incompatibility 
with the acidic proton.  Therefore, the lack of a method for di-
rect deoxygenative functionalization necessitates multi-step 
synthesis, including redox-manipulations and prefunctionaliza-
tion of carboxylic acids using harsh reagents or peptide cou-
pling reagents,11 which is inefficient and wasteful.12  To our 
knowledge, there is one report that creates a stereocenter 
from carboxylic acids via a deoxygenative process, where 
Adolfsson and co-workers elegantly showcased Mo-catalyzed 
coupling of enolizable carboxylic acids and secondary amines 
to produce racemic amines.13  Despite this breakthrough, a 

general and enantioselective variant of such a deoxygenative 
process is elusive.   
Herein, we report enantioselective deoxygenative amino-cy-

anation of carboxylic acids as the first-generation reaction of 
this platform, where we catalytically modified each C–O bond 
of carboxylic acid to C–C, C–N, and C–H bonds (Figure 1B).  
Through the protocol herein, diverse carboxylic acid building 
blocks are converted directly to enantio-enriched valuable a-
amino nitriles (up to 98:2 er), which are biologically active and 
synthetically versatile compounds shown to be elaborated into 
various derivatives, such as unnatural amino acids and dia-
mines.14  Although Strecker reaction is a well-known way to 
synthesize a-amino nitriles,15 deoxygenative amino-cyanation 
of carboxylic acids offer employing widely available, structural 
diverse, and bench stable building blocks. 
As a key design element, we hypothesized that deoxygena-

tion of carboxylic acid towards an imine intermediate would 
allow employment of enantioselective functionalization to 
generate chiral amines modularly (Figure 1B).  Given the mul-
tiple C–O bonds within a carboxyl group, we envisaged com-
bining the hydrosilylation of carbonyls and multicatalysis to 
solve the unmet challenges in deoxygenative functionalization 
of carboxylic acids (Figure 1C). Transition metal-catalyzed hy-
drosilylation is an effective way to deoxygenate various car-
bonyls.16–22  Also, multicatalysis has enabled the direct func-
tionalization of unreactive functional groups and the elegant 
synthesis of complex molecules via multiple bond construc-
tions while minimizing waste and cost.23–25  We anticipated  hy-
drosilanes would be a suitable mild reductant to i) facilitate 
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deoxygenation, ii) concomitant removal of the carboxylic pro-
ton via a metal-catalyzed dehydrogenative process, and iii) 
minimize any over-reduction. As outlined in Figure 1C, we en-
visioned a metal-catalyzed sequential deoxygenation of inert 
C–O bonds into more stable Si–O bonds will allow: 1) direct 

amidation of carboxylic acids, 2) chemoselective deoxygena-
tion of the amide II to generate an imine intermediate III, and 
3) the enantioselective functionalization to produce diverse 
enantio-enriched a-amino nitriles IV.     
We devised to employ a sustainable metal catalyst and a

 

Figure 1. Various application of carboxylic acids and our reaction design in this work. 

readily accessible chiral ligand. We were drawn to oxophilic TiIV 
species as they are catalytically versatile, earth abundant, and 
inexpensive metals that are known to house various chiral lig-
ands for enantioselective catalysis, including carbonyl func-
tionalizations26,27 and enantioselective Strecker reactions.28–33 
Particularly, we were motivated by Buchwald’s pioneering re-
port on the partial reduction of enolizable tertiary amides to 
aldehydes using a stoichiometric amount of TiIV alkoxide.34  Alt-
hough this transformation was rendered catalytic in TiIV, it re-
quires (EtO)3SiH, which is toxic and generate a pyrophoric side- 
product, SiH4.35  This inspired us to develop a safer and general 
catalytic variant of the partial reduction that could be em-
ployed in our proposed deoxygenative functionalization of car-
boxylic acids.  We focused on using benzoic acid 1a and  
Table 1. Optimization of the direct amidation-partial reduc-
tion of carboxylic acid 1a.a  

 
Entry Catalyst Silane 3a’ (%) b 

1 Ti(OnBu)4 Me(EtO)2SiH >95 

2 - Me(EtO)2SiH 0 

3 Ti(OnBu)4 - trace 

aAmine 2 (0.20 mmol), carboxylic acid 1a (0.22 mmol), 
Ti(OnBu)4 (20 mol%), Me(EtO)2SiH (6.0 equiv), toluene (1.0 mL), 
100 °C, 5 h.  b Determined by 1H NMR analysis. 

benzhydryl amine 2 as model substrates to generate an imine 
product 3a’.  After an examination of various catalysts and hy-
drosilanes, we identified 20 mol% Ti(OnBu)4 and excess 
Me(EtO)2SiH at 100 °C provided the desired imine 3a’ in >95% 
conversion (Table 1, entry 1 and see SI for further details).  
Also, amide 4 intermediate was observed, consistent with our 
proposed pathway (Figure 1C). This is supported by subjecting 
amide 4 under the Ti-catalysis to generate imine 3a’ in >95% 
conversion (see SI for details). It is noteworthy that we did not 
observe the anticipated reduced side-products, including ben-
zyl amine or alcohol (Table 1), which is contrary to the well-
established reductive N-alkylation of amines using carboxylic 
acids.20  Control experiments revealed that excluding the Ti-
catalyst or hydrosilane led to unreacted starting materials (en-
tries 2-3).  Our observation is consistent with the dehydrogena-
tive silylation of carboxylic acid towards a silyl ester, followed 
by amidation to afford an amide intermediate.36,37   
Then, we investigated if the Ti-catalyst could be recuperated 

in situ toward an enantioselective cyanation of the imine inter-
mediate 3a’. The wealth of literature on Ti-catalyzed Strecker 
Reactions28,29,31,33,38 inspired us to implement chiral Schiff 
base39 or amino-alcohols29,40,41 and for their ease of modularity.  
nBuOH was used to capture TMS group of TMSCN.  In our lig-
and optimization, amino-alcohol L4a was found to be the opti-
mal ligand that afforded the a-amino nitrile 3a in 64% isolated 
yield and 95:5 er (Figure 2 and see SI for details). Inspired by 
Chai’s work, we employed water additive in the enantioselec-
tive cyanation, which is known to form an active oxo-bridged 
titanium species.33,42–44  Attempts to add all the required com-
ponents at the beginning of the reaction yielded a small 
amount of the desired product 3a (see SI for details).   
We surveyed a variety of carboxylic acids 1, which gave the 
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corresponding a-amino-nitriles 3 in moderate to excellent iso-
lated yields and high enantioselectivity (Figure 2, up to 90% 
isolated yield and 98:2 er). Substrates possessing various elec-
tron-donating and withdrawing substituents, including p-tert-
butyl (3b, 76% isolated yield, 93:7 er), p-methoxy (3c, 68% iso-
lated yield, 97:3 er), p-chloro (3d, 71% isolated yield, 95:5 er), 
p-bromo (3e, 79% isolated yield, 89:11 er), and p-dimethyl- 
amino group (3f, 90% isolated yield, 87:13 er) were well- 

 
Figure 2.  Substrate scope of enantioselective deoxygenative 
amino-cyanation.  Reaction conditions: carboxylic acid (0.22 
mmol), amine (0.20 mmol), Ti(OnBu)4 (20 mol%), Me(EtO)2SiH 
(6.0 equiv), toluene (1.0 mL), 100 °C, 5 h. Then, ligand L4a (22 
mol%), TMSCN (3.0 equiv), nBuOH (1.5 equiv), H2O (20 mol%), 
toluene (0.40 mL) rt, 3-8 h. a1.1 mmol of 1a and 1.0 mmol of 2 
was used.  See SI for further details.  

tolerated. Benzoic acid bearing an ortho-chloro-substituent 
was not impacted by the steric hindrance, resulting in 73% iso-
lated yield and 98:2 er of the product 3g.  No dehalogenation 
was observed for all the halogen-bearing substrates. For trans-
cinnamic acid substrate, the corresponding conjugated imine 
intermediate was formed quantitatively without reduction of 
a,b-unsaturation, followed with highly regio- and enantiose-
lective cyanation to generate the a-amino-nitrile product 3h in 

79% yield and 95:5 er.  Heterocyclic acids were well-tolerated 
to produce amino-nitriles (3i, 3j, and 3k) with moderate to ex-
cellent enantioselectivity.  Using 2-furonic acid and 2-thio-
phene carboxylic acids, products 3i and 3j were obtained in 
high enantioselectivities (70% isolated yield, 91:9 er and 46% 
isolated yield, 93:7 er, respectively).  Nicotinic acid substrate 
gave a reduced level of enantioselectivity in product 3k (71:29 
er) in 73% isolated yield.  Linear and cyclic aliphatic acids gave 
moderate enantioselectivity in product 3l and 3m (83:17 er 
and 80:20 er, respectively).  To our surprise, the sterically hin-
dered pivalic acid was converted to corresponding amino-ni-
trile 3n, albeit with poor enantioselectivity of 62:38 er.  Cyclo-
propyl carboxylic acid proceeded smoothly with modest enan-
tioselectivity of 70:30 er in good yield (84%, see compound 3o) 
and no ring-opened products were observed, suggesting no a-
amino radical is formed.  Then, we surveyed several amine 
coupling partners. Benzylamine and bis(3,5-trifluoromethyl)-
benzylamine were well-tolerated to give their corresponding 
products 3p and 3q in 87% and 56% isolated yield, respectively, 
with moderate to good enantioselectivity (76:24 and 88:12 er, 
respectively). Less nucleophilic aniline was a suitable coupling 
partner that led to 70% isolated yield and 64:36 er of the prod-
uct 3r. 
To demonstrate the utility of our protocol, we developed 

one-step, enantioselective synthesis of deoxy-analogs of phar-
maceuticals (Scheme 1).  The implementation of our Ti-multi-
catalysis using commercially available carboxylic acid 1s and 
amine 2s proceeded smoothly to generate a new deoxy-analog 
of moclobemide 3s (a known monoamine oxidase inhibitor)45 
in 92% isolated yield and 81:19 er. It is notable that Lewis basic 
amine 2s did not inhibit the reaction.  In fact, the enantioselec-
tive cyanation of the corresponding imine intermediate pro-
ceeded faster than other substrates, suggesting that the mor-
pholine moiety may be acting as a directing group for the Ti- 
center. Next, we investigated the derivatization of adapalene,  
SCHEME 1. Synthesis of deoxy-analogs of pharmaceuticals. 

 
For reaction conditions, see SI for details.  

a naphthoic acid derivative with retinoid activity.46  After a sol-
vent optimization, the new deoxy-analog of adapalene 3t was 
obtained in 87% yield and 94:6 er. This result highlights a dis-
tinct advantage of our method, allowing carboxylic acids as 
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starting materials. To employ the current Strecker method to 
prepare product 3t, the carboxylic acid motif must be con-
verted to its aldehyde analog via redox-manipulation then un-
dergo condensation with an amine followed by cyanation, 
which is synthetically inefficient. 
We propose the multicatalytic cycle outlined in Figure 3.  

Carboxylic acid 1 undergoes Ti-catalyzed dehydrogenative si-
lylation to form silyl-ester I (see SI for detail), which sequen-
tially undergoes Ti-catalyzed amidation to generate amide in-
termediate II.  Then, the oxophilicity of the Ti-catalyst and the 
Lewis basicity of amide facilitate the chemoselective partial re-
duction to produce a silyl-hemiaminal III, which collapses to an 
imine species IV.  Lastly, in the presence of the chiral ligand and 
water additive, an oxo-bridged chiral titanium complex is 
formed to catalyze the enantioselective cyanation via complex 
V, generating the a-amino-nitrile 3.  We observed a non-linear 
effect under our optimized condition, which is consistent with 
the formation of the oxo-bridged chiral titanium complex V 
(see SI for detail).47  Alternative forms of complex V akin to 
Maruoka’s work are also possible.48 

 

Figure 3.  Proposed Ti-multicatalysis.  

In conclusion, we have developed a multicatalytic enantiose-
lective deoxy-functionalization of carboxylic acids that directly 
generate a-amino nitrile products. This reaction is facilitated 
by an inexpensive, widely accessible TiIV catalyst and a chiral 
amino-alcohol ligand that converts each C–O bond of carbox-
ylic acid to C–C, C–N, and C–H bonds via three distinct catalytic 
transformations.  We envision that this multicatalytic strategy 
will provide a direct approach toward diversifying carboxylic 
acids. Further mechanistic investigation and application of this 
platform is currently in progress.   
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