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Abstract

Using mass–radius composition models, small planets (R 2 R⊕) are typically classified into three types: iron-rich,
nominally Earth-like, and those with solid/liquid water and/or atmosphere. These classes are generally expected to
be variations within a compositional continuum. Recently, however, Luque & Pallé observed that potentially
Earth-like planets around M dwarfs are separated from a lower-density population by a density gap. Meanwhile,
the results of Adibekyan et al. hint that iron-rich planets around FGK stars are also a distinct population. It
therefore remains unclear whether small planets represent a continuum or multiple distinct populations.
Differentiating the nature of these populations will help constrain potential formation mechanisms. We present the
RhoPop software for identifying small-planet populations. RhoPop employs mixture models in a hierarchical
framework and a nested sampler for parameter and evidence estimates. Using RhoPop, we confirm the two
populations of Luque & Pallé with >4σ significance. The intrinsic scatter in the Earth-like subpopulation is
roughly half that expected based on stellar abundance variations in local FGK stars, perhaps implying M dwarfs
have a smaller spread in the major rock-building elements (Fe, Mg, Si) than FGK stars. We apply RhoPop to the
Adibekyan et al. sample and find no evidence of more than one population. We estimate the sample size required to
resolve a population of planets with Mercury-like compositions from those with Earth-like compositions for
various mass–radius precisions. Only 16 planets are needed when 5%Mps = and 1%Rps = . At 10%Mps = and

2.5%Rps = , however, over 154 planets are needed, an order of magnitude increase.

Unified Astronomy Thesaurus concepts: Extrasolar rocky planets (511); Ocean planets (1151); Open source
software (1866)

1. Introduction

Small planets (R 2 R⊕) are among the most common in the
Galaxy. Standard formation models predict that the relative
amounts of the major rock-building elements (Fe/Mg and
Si/Mg) in small planets should reflect that of their host stars
(e.g., Bond et al. 2010a, 2010b; Elser et al. 2012; Johnson et al.
2012; Thiabaud et al. 2015). The inferred compositions of
observed small exoplanets (Adibekyan et al. 2021; Schulze
et al. 2021; Unterborn et al. 2023) and rocky exoplanetary
material (Bonsor et al. 2021) are consistent with this host-
planet compositional connection at current observational
precisions except in extreme cases, e.g., Kepler-107 c (Bonomo
et al. 2019) and HD 137496 b (Azevedo Silva et al. 2022). In
the solar system, Earth and Mars have compositions that are
consistent with the solar abundances of the major rock-building
elements (e.g., Wanke & Dreibus 1994; Lodders 2003; Wang
et al. 2019; Yoshizaki & McDonough 2020). The composition
of Venus is unknown but expected to be consistent with Earth
(e.g., Zharkov 1983; Aitta 2012; Dumoulin et al. 2017).
Mercury, in contrast, has a 200%–400% overabundance of Fe
relative to the Sun, indicative of a fundamentally distinct
formation regime and/or subsequent evolution from the other

small planets in the solar system (e.g., Cameron 1985; Benz
et al. 1988; Wurm et al. 2013; Johansen & Dorn 2022). If we,
therefore, assume that small planets are barren and rocky, then
inconsistencies between inferred planet composition and host
composition indicate deviations from standard planet formation
models/theories.
Recently, Luque & Pallé (2022) observed a bimodal density

distribution for 27 small planets in orbit around M dwarf hosts.
The authors interpret this bimodality as two compositionally
distinct subpopulations, one with Earth-like compositions and
one with 50% water and 50% rock by mass, but do not provide
robust statistical evidence to support this claim or a comparison
with host abundances of the major rock-building elements.
There is a paucity of known M dwarf abundances of the major
rock-building elements, as measuring M dwarf abundances is a
nontrivial problem and an active area of research (e.g., Allard
et al. 2000; Souto et al. 2022). As such, it is unclear whether
there are indeed two subpopulations of planets around M
dwarfs and to what degree these planets deviate from the host-
planet compositional connection. Adibekyan et al. (2021) show
that 22 likely rocky small planets in orbit around FGK stars
have compositions correlated with their hosts’ but not with a
1:1 relationship. The authors identify a class of five planets
with a Mercury-like overabundance of iron separated from the
general star–planet compositional link by a visually apparent,
but not statistically conclusive, gap in density. Barros et al.
(2022) identify two additional planets around HD 23472 that
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appear to belong to the same iron-enriched population
identified in Adibekyan et al. (2021). Together, these studies
suggest that the small-planet density distribution may not be a
continuum. Instead, planet formation mechanisms might create
up to three distinct classes of small planets: (1) those that
follow the star–planet compositional link, (2) those enriched in
water/atmosphere and/or depleted in iron, and (3) those
enriched in iron and/or depleted in silicates.

Statistical host-planet composition comparisons like that of
Adibekyan et al. (2021) provide a powerful tool for confirming
iron-enriched/silicate-depleted or water-enriched/iron-depleted
small planets (e.g., Santerne et al. 2018; Schulze et al. 2021;
Azevedo Silva et al. 2022; Rodríguez Martínez et al. 2023;
Unterborn et al. 2023). There is, however, a paucity of planets
with known densities and host abundances of Fe, Mg, and Si,
and no single catalog lists all of these quantities simultaneously.
Combining the NASA Exoplanet Archive6 with the Hypatia
Catalog stellar abundance database7 (Hinkel et al. 2014), we
estimate there are approximately 43 planets with measured
densities and host Fe, Mg, and Si abundances. Of these, only
12 are small planets. Direct host-planet comparisons are
therefore limited to single planets or small samples (e.g., 11,
22, and 7 in Adibekyan et al. 2021; Schulze et al. 2021;
Unterborn et al. 2023, respectively).

To overcome this lack of host-star abundances, some studies
instead compare inferred small-planet compositions with a
large sample of stellar abundances of the major rock-building
elements (Plotnykov & Valencia 2020; Scora et al. 2020;
Unterborn et al. 2023). Unterborn et al. (2023) used the Hypatia
Catalog stellar abundance database (Hinkel et al. 2014) to
quantify a nominally rocky planet zone (NRPZ): the expected
99.7% range of rocky planet densities owing to the intrinsic
spread in stellar compositions. Where the density and
corresponding uncertainty of a small planet exclude it from
the NRPZ, its bulk composition likely deviates from that
predicted through standard formation models. Excluded planets
whose densities exceed that of the NRPZ are then interpreted as
having an iron enrichment and/or silicate depletion. Excluded
planets with densities less than the NRPZ are interpreted as
being iron-depleted, water-rich, or volatile-rich. Applying this
technique to a large sample of small planets, Unterborn et al.
(2023) find 21 planets that are excluded from the NRPZ with
�90% confidence: eight are likely iron-enriched, and 13 are
iron-depleted, water-rich, or volatile-rich.

It remains an open question whether the densities of small
planets reflect a continuous variation in composition or
multiple, distinct subpopulations. Robust identification of these
subpopulations, or lack thereof, is an imperative first step to
better constraining their formation and subsequent evolution.
Direct host-planet compositional comparisons are a powerful
method for identifying planets that deviate from standard
formation models but are sample-size-limited, making it
difficult to resolve distinct subpopulations of small planets.
This limitation is often circumvented by instead comparing
planet compositions with a large sample of stellar abundances.
While the latter has been used to identify a number of
individual planets that are inconsistent with the NRPZ, no
study has investigated whether these planets form a continuum

with the NRPZ or are members of fundamentally different
subpopulations.
In this work, we present the open-source RhoPop8

(Schulze 2023) code for robust identification of composition-
ally distinct populations of small planets. RhoPop models the
density distribution of an input planet sample as a Gaussian
mixture of up to three compositionally distinct subpopulations
in a hierarchical Bayesian framework. Similar models have
been used for exoplanet population analyses, but small planets
are treated as a single population (Chen & Kipping 2017) or
assume a fixed composition for rocky materials (Neil &
Rogers 2020; Neil et al. 2022). RhoPop uses compositional
grids that span from pure-iron to pure-water planets that are
normalized relative to the average composition of the NRPZ, so
that model results are easily comparable with the expected
compositional range of small water-/volatile-free planets. We
describe the inner workings of our software in Section 2. We
use RhoPop to validate the results of Luque & Pallé (2022)
and Adibekyan et al. (2021) in Sections 3.1 and 3.2,
respectively. In Section 4, we use RhoPop to estimate the
minimum number of planets needed to identify a population of
Mercury-like planets from a population of Earth-like planets for
various mass and radius uncertainties.

2. Methods

2.1. Density–Mass Composition Grids

We use the open-source ExoPlex9 mass–radius composi-
tion calculator (Unterborn et al. 2023) to build density–mass
grids from pure-water worlds to pure-iron planets. ExoPlex
finds the radius for a user-input planet mass and bulk
composition by self-consistently solving the five coupled
differential equations: the mass within a sphere, hydrostatic
equilibrium, the adiabatic temperature profile, Gauss’s law of
gravity in one dimension, and the thermally dependent equation
of state (EOS). We assume a pure-Fe core and adopt ExoPlex’s
default EOS for liquid iron (Anderson & Ahrens 1994).
ExoPlex couples the thermodynamic database of Stixrude &
Lithgow-Bertelloni (2011) with the Perple_X thermody-
namic equilibrium software (Connolly 2009) to find the
equilibrium mineralogy and corresponding material density
throughout the mantle. For outer water layers, ExoPlex adopts
the Seafreeze Fei et al. (1993) and with the empirical
equations of Asahara et al. (2010) (Journaux et al. 2020)
software for liquid water, Ice Ih, II, III, V, or VI. For Ice VI,
ExoPlex couples the isothermal EOS of Journaux et al. (2020).
We build isocomposition rock and liquid/solid water

grids over a mass range of 0.05–10 M⊕ in increments of
/M Mlog 0.02310 D Å( ) . For all planets, we assume the

silicate mantle is Fe-free and fix the mantle molar ratios to
Si/Mg= 0.79, Al/Mg= 0.07, and Ca/Mg= 0.09 per Unter-
born et al. (2023), as the Fe/Mg ratio is the primary control on
density for water-free rocky planets (Dorn et al. 2015;
Unterborn et al. 2016). For pure-rock compositions, we vary
log Fe Mg10( ) from −0.2 to 1.5 (Fe/Mg= 0.01–30) in incre-
ments of log Fe Mg 0.03510 D ( ) . Our range of Fe/Mg
corresponds to a core mass fraction (CMF) range of
0.006–0.95. For water-rich compositions, we build a grid of
water mass fractions (WMF) for WMF= 0.001, 0.005, 0.01,

6 https://exoplanetarchive.ipac.caltech.edu/index.html
7 https://www.hypatiacatalog.com/hypatia

8 https://github.com/schulze61/RhoPop
9 https://github.com/CaymanUnterborn/ExoPlex
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and 0.025 and then in increments of ΔWMF= 0.025 from
0.025 to 1.0. We fix the interior rocky portion of these planets
to have Fe/Mg= 0.71 corresponding to the average Hypatia
values per Unterborn et al. (2023). For compositions between
our computed grid lines, we linearly interpolate between the
two nearest compositional neighbors to approximate the
intermediate isocomposition line.

We note that there is an overlap between our rock grid and
water grid between WMF= 0 and 0.1–0.15, depending on
mass, and Fe/Mg= 0–0.71 (CMF= 0–0.29), meaning there
are two grid solutions for a given mass and radius in this
regime: one with water and one without. This is a result of a
well-known degeneracy when inferring planet composition
from density alone (e.g., Dorn et al. 2015; Rogers 2015;
Unterborn et al. 2016), which persists despite our simplifica-
tions of a pure-Fe core and Fe-free silicate mantle. We
circumvent this degeneracy by using a reduced rock grid from
Fe/Mg= 0.71 to 30 (CMF= 0.29–0.95). For planet densities
lower than a water-free planet with Fe/Mg= 0.71, RhoPop
switches to the water grid. Where our models return a
WMF= 0.0–0.15, however, we also report the corresponding
best-fit Fe/Mg and CMF for a water-free planet.

Following the work of Luque & Pallé (2022), we normalize
all planet densities to a scaled density parameter denoted as
ρscaled. The scaled density parameter is a function of planet
mass and a reference composition. It gives the density a planet
of a given mass would have with the reference composition.
Both our work and Luque & Pallé (2022) assume volatile-/
water-free compositions for reference. Where Luque & Pallé
(2022) uses a nominally “Earth-like” CMF= 0.325, however,
we assume the average CMF= 0.29 of the Hypatia Catalog
corresponding to Fe/Mg= 0.71, Si/Mg= 0.79, Ca/Mg=
0.09, and Al/Mg= 0.07. That is, ρscaled(M)= ρ(M, CMF =
0.29). We choose this value so any planet populations inferred
with RhoPop may be directly compared with the NRPZ. We
can then define a general density ratio parameter ρratio≡
ρ/ρscaled. For the ExoPlex-derived density–mass grids, this is a
function of mass and composition,

M M, , 1ratio scaledr r m r= ( ) ( ) ( )

where μ is the composition in terms of a CMF from 0.29 to 1.0
or a WMF from 0 to 1.0. Our water grid and reduced rock grid
are shown relative to ρscaled in Figure 1.

2.2. Hierarchical Bayesian Model Framework

Inspired by the population insights of Chen & Kipping
(2017) and Neil et al. (2022), RhoPop employs Gaussian
mixture models in a hierarchical Bayesian framework.
Hierarchical Bayesian models (HBMs) employ two sets of
parameters, local and hyper. We treat each observed data point
as a Gaussian random variable centered on its true value with a
standard deviation equal to the observational uncertainty. Since
the true values cannot be known a priori, these are treated as
free model parameters called “local parameters.” The para-
meters that govern the model that predicts the local parameters
are the “hyperparameters.” Here the hyperparameters are those
that describe the underlying populations of planets.
The local parameters of our HBM are the true planet masses,

Mt, and density ratios, ρratio,t. The observed planet mass, Mob, is
modeled as a random Gaussian variable centered on the true
mass, Mt, with a standard deviation equal to the observed mass
uncertainty, Mobs . That is,

M M , , 2i
t
i

Mob i
ob

s~ ( ) ( )

where the superscript i denotes the ith planet in the sample. For
planets with asymmetric observational mass uncertainties, we
take the average of the upper and lower uncertainties to
calculate M

i
ob

s . Evaluating the right-hand side of Equation (2) at

Mi
ob gives the likelihood function for Mt

i, which we denote as

m
i , i.e.,

M M , . 3m
i i

t
i

Mob i
ob

s= ( ∣ ) ( )

We link the local parameters to the hyperparameters that
describe the planet populations using a Gaussian mixture
model. Gaussian mixture models represent some global
population as a combination of Nc normally distributed
subpopulations. Each subpopulation has a mixing weight, w,
which is its fractional size relative to the global population. The
sum of the mixing weights over all Nc components must sum to

Figure 1. Water grid (cyan) and reduced rock grid (black). The ρscaled parameter corresponds to the density at mass of a water- and volatile-free rocky planet with a
liquid pure-iron core and Fe-free silicate mantle with Fe/Mg = 0.71, Si/Mg = 0.79, Ca/Mg = 0.09, and Al/Mg = 0.07.
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unity, i.e.,

w 1, 4
j

N
j

1

c

å =
=

( )

where we use the superscript j to denote the jth subpopulation.
We assume that each j component of our Gaussian mixture
models is centered on composition j

compm with an intrinsic
scatter of density ratios j

ratio,pop
sr . Within a given population,

j
ratio,pop

sr represents the variation that cannot be accounted for by

the observational uncertainties of the planets that belong to it.
We then model the local parameter t

i
ratio,r as a Gaussian

mixture of all Nc components,

w f M , , . 5t
i

j

N
j

t
i j

ratio,
1

comp

c

j
ratio,pop

år m s~ ´ r
=

( ( ) ) ( )

The argument of the Gaussian in Equation (5), f M ,t
i j

compm( ),
is calculated directly from the compositional grids (Section 2.1)
and represents the predicted density ratio at Mt

i given a central
composition of population j, j

compm . We then model the

observed density ratio of the ith planet, i
ratio,obr , as being

centered on t
i
ratio,r with an error term corresponding to its

observed uncertainty,
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As with Equation (2), evaluating the right-hand side of
Equation (6) at i

ratio,obr gives the likelihood function for t
i
ratio,r ,

w f M , ,

. 7

i

j

N
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t
i j

1
ratio,ob comp

2 2

c

j i
ratio,pop ratio,ob
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= ´
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( ) ( ) ) ( )

Finally, combining Equations (3) and (7), taking the natural
logarithm, and summing over all Np planets gives the log-
likelihood function for the entire model as a function of the
hyperparameters,

w f M

M M

ln ln ln

ln , ,

ln , . 8

i
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Our HBM framework is summarized schematically in
Figure 2, and all parameters are summarized in Table 1. In
this work, we compare models through Bayesian model
evidence  : the integral of the likelihood (Equation (8)) over

the entire parameter prior space. Mathematically,

D DP M Pr d, , 9ò Q Q Qº =
WQ

   ( ∣ ) ( ∣ ) ( ∣ ) ( )

where Θ represents a generic set of local parameters and
hyperparameters, Pr are the corresponding priors, and  is the
model. We choose wide uninformative uniform priors on all
hyperparameters to remain agnostic when validating previous
results in Sections 3.1 and 3.2. We summarize all hyperparameter
priors in Table 2. RhoPop handles up to three populations, i.e.,
Nc= 1, 2, or 3. RhoPop makes no a priori assumptions about the
central compositions of the populations j

compm other than

comp
1

comp
2m m for Nc= 2 and  comp

1
comp
2

comp
3m m m for Nc=

3. In the three-population scenario, we allow w1 and w2 to vary
from 0 to 1. However, if the sum of these two is greater than 1, the
likelihood function returns a inf- , and that set of parameters is
rejected since Equation (4) must be satisfied. We assume priors of
M M ,t

i i
Mob i

ob
s~ ( ) for all i in Np.

In practice, calculating  analytically is not tractable, and it
must be computed numerically. As such, RhoPop uses the
dynesty10 dynamic nested sampling software package with
the default weighting scheme, which is optimized to simulta-
neously estimate the parameter posteriors and model evidence.
We point the reader to Speagle (2020) for more details.

2.2.1. Model Selection

We adopt the methods outlined in Benneke & Seager (2013),
who use Bayes factors to compare models of increasing
complexity. A general Bayes factor Bij is defined as the ratio of
the Bayesian evidence of model i to the Bayesian evidence of
model j, i.e., Bij i jº   . In terms of hypothesis testing, the
denominator represents the evidence for the null hypothesis,
and the numerator is the alternative hypothesis. A value of
Bij< 1 suggests the data favor model j over model i; i.e., the
data are consistent with the null hypothesis. A Bij from 1 to 3
corresponds to inconclusive support for the more complex
model i, and the null hypothesis cannot be rejected. A Bij from
3 to 12, 12 to 150, and >150 corresponds to weak, moderate,
and strong support, respectively, for the alternative hypothesis.
For a given sample in this work, we first run the one- and two-
population models and compare via B21 2 1=   , where 1
and 2 correspond to the evidence for the one- and two-
population models, respectively. Where there is significant
support for the two-population model (B21> 150), we then run
the three-population model and compare it with the two-
population model via B32. Benneke & Seager (2013, and
references therein) provide formulae to convert Bayes factors to
the frequentist p-value (see their Equation (10)) and corresp-
onding sigma significance nσ (see their Equation (11)). For all
Bayes factors in this work, we use these formulae to calculate
and report the equivalent p-values and nσ significance levels for
the frequentist reader.

3. Validating Previous Results

3.1. Luque & Pallé (2022) sample

The full sample of Luque & Pallé (2022) contains 34 planets
with mass and radius precisions of better than 25% and 8%,

10 https://github.com/joshspeagle/dynesty
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respectively, and radii of less than 4 R⊕. The authors identify seven
planets as mini-Neptunes. We do not consider these planets further
as they require an extended H/He envelope to explain and do not
meet our definition of a small planet. We instead focus on the
remaining 27 planets from which Luque & Pallé (2022) observe a
bimodal density distribution: a higher-density population with 21
members and a lower-density population with six members. The
authors interpret the higher-density population as being purely
rocky in composition and the lower-density population as having a
rocky interior surrounded by a 50% H2O layer by mass.

We run this 27-planet sample through RhoPop with Nc= 1
and 2, i.e., one- and two-population models. We visualize our
results in Figure 3 and summarize the hyperparameter posterior
statistics in Table 3. We find that the two-population model is
strongly preferred with a Bayes factor B21= 1042. In
frequentist parlance, this corresponds to a p-value of
3.4× 10−5 or a 4.1σ detection of two populations. For good

Figure 2. HBM framework. Hyperparameters are shown in blue, local parameters in white, and observed parameters in gray. The observed and local parameters
always have Np members corresponding to the number of planets in the sample. Nc = 1, 2, and 3 when the one-, two-, and three-population model is considered,
respectively. Observed masses and density ratios are modeled as Gaussian random variables centered on their unknown true values (local parameters) with a standard
deviation equal to their observational uncertainties (Equations (2) and (6), respectively). The local and hyperparameters are linked through the mixture model defined
in Equation (5).

Table 1
Summary of Parameter Definitions

Parameter Parameter Type Description

j
compm Hyper Central composition of population j in WMF

or CMF
j
ratio,pop

sr Hyper Intrinsic 1σ density ratio scatter of popula-
tion j

w j Hyper Mixing weight of population j

t
i
ratio,r Local True density ratio of planet i

Mt
i Local True mass of planet i

Mi
ob Data Central observed mass of planet i

M
i
ob

s Data 1σ uncertainty in Mi
ob

i
ratio,obr Data Central observed density ratio of planet i
i
ratio,obsr Data 1σ uncertainty in i

ratio,obr

Table 2
Hyperparameter Priors

Parameter Nc = 1 Nc = 2 Nc = 3

comp
1m  [1.0 WMF,

0.95 CMF]
 [1.0 WMF,

0.95 CMF]
 [1.0 WMF,

0.95 CMF]

ratio,pop
1sr  [0, 2]  [0, 2]  [0, 2]

w1 1  [0, 1]  [0, 1]

comp
2m L 0, 1 comp

1m´[ ] 0, 1 comp
1m´[ ]

ratio,pop
2sr L  [0, 2]  [0, 2]

w2 L 1 − w1  [0, 1]

comp
3m L L 0, 1 comp

2m´[ ]

ratio,pop
3sr L L  [0, 2]

w3 L L 1 − w1 − w2

Note. The default prior on comp
1m spans the entirety of our water and reduced

rock grids.
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measure, we run this sample using the three-population model.
We find B32= 0.26, meaning the two-population model is
indeed favored over the three-population model.

As further validation, our two-population model identifies
the same 21 planets as Luque & Pallé (2022) belonging to a
higher-density population. We find that this population is best
fit by a central WMF of 0.02. This WMF falls within the
degenerate zone described in Section 1. As such, we apply a χ2

minimization with these 21 planets over our full rock grid to
find the equivalent CMF assuming the planets are water-free.
We find a CMF= 0.28 (Fe/Mg= 0.67), meaning this popula-
tion is either slightly wet or has a ∼6% Fe depletion relative to
the average volatile-/water-free NRPZ composition of CMF=
0.29 (Fe/Mg= 0.71).

We find the same six planets that Luque & Pallé (2022)
identify as being 50% water worlds as indeed belonging to a
separate lower-density population. We, however, find that this
population is best fit by a central WMF of 0.78. While this
WMF value is substantially more than that predicted by Luque
& Pallé (2022), this is primarily due to the differences in the
underlying material EOSs used in this work versus Luque &
Pallé (2022). Both populations are found to have very little
intrinsic scatter. Even at 10M⊕, where the difference in density
ratios is minimized over the mass range considered, the two
populations are separated by more than 12× their mutual
intrinsic scatter parameters, meaning there is a robust density
gap between these two small-planet populations.

3.2. Adibekyan et al. (2021) sample

The Adibekyan et al. (2021) sample includes 22 likely
volatile-free rocky planets with Mp< 10 M⊕ and mass and
radius uncertainties of <30% around FGK stars. The authors
identify a visually apparent but not statistically significant
subpopulation of five iron-rich planets. We run our one- and
two-population models with this sample and find B21= 0.39,
meaning there is no support for the more complex two-
population over the one-population model. Thus, the single-
population model shown in Figure 4 is our preferred model for
this data set. Given the lack of support for the two-population

model for this data set, we do not consider the three-population
scenario. The results for the two-population and preferred one-
population model are summarized in Table 4.

4. Minimum Number of Planets Required to Resolve a
Population of Iron-rich Planets

Here we assume the five potentially iron-rich planets
identified by Adibekyan et al. (2021) do indeed represent a
distinct higher-density population from a lower-density popu-
lation comprised of the remaining 17 planets and that our null
finding in Section 3.2 is a result of observational uncertainty
alone. We then estimate the minimum number of planets
needed to resolve a population of iron-enriched planets from a
lower-density population of volatile-/water-free rocky planets.
Evidencing the solar system scaled density dichotomy between
Mercury and the other rocky planets, we assume the lower-

Figure 3. Density ratio as a function of mass for our Nc = 1 (left) and Nc = 2 (right) models applied to the Luque & Pallé (2022) sample of small transiting planets in
orbit around M dwarfs. We color code the highest-density population as green and the lowest-density population as purple. The planets are assigned the same color as
the population to which they most likely belong. The solid lines are the isocomposition lines for each j

compm . The bands are the corresponding intrinsic density ratio

scatter parameter j
ratio,pop

sr . For all j
compm and j

ratio,pop
sr , we use the median values given in Table 3.

Table 3
Summary of Parameter Posteriors, Model Evidence, and Model Selection

Parameters for Our One- and Two-population Model Runs with the Luque &
Pallé (2022) Sample

Nc = 1 Nc = 2

Param. Med. 68% CI Med. 68% CI

comp
1m 0.09

WMF
[0.14 WMF,
0.06 WMF]

0.02
WMF

[0.03 WMF,
0.017 WMF]

ratio,pop
1sr 0.21 [0.17, 0.25] 0.02 [0.005, 0.04]

w1 1 L 0.76 [0.67, 0.83]

comp
2m L L 0.78

WMF
[0.87 WMF,
0.69 WMF]

ratio,pop
2sr L L 0.03 [0.008, 0.07]

w2 L L 1-w1 L
L ln 7.20 0.241 =  L ln 14.15 0.322 = 

B21 p-value Sigma Interpretation

1042 3.4 × 10−5 4.1σ Strong evidence for two populations

Note. CI = credible interval.

6

The Planetary Science Journal, 5:71 (13pp), 2024 March Schulze et al.



density population has an Earth-like composition, i.e.,
0.325comp

elm = CMF, and the higher-density population has a

Mercury-like CMF of 0.7comp
mlm = CMF. The latter choice is

further supported by the fact that χ2 is minimized between the
five Fe-rich planets of Adibekyan et al. (2021) and our full rock
grid when CMF ∼ 0.73. For a sense of scale, the Hypatia
Catalog has Fe/Mg= 0.79± 0.18 corresponding to CMF=
0.29± 0.05, meaning this population is ∼8σ above the central
CMF of Hypatia. Per the Adibekyan et al. (2021) sample, Fe-
rich planets represent 0.23 of the total population. For
simplicity, we round this up to a quarter and set the mixing
weight of our Mercury-like population to wml= 0.25. The
corresponding mixing weight for the Earth-like population is
then wel= 0.75.

For each sample, we randomly draw Np planet masses from
M M1, 10p ~ Å[ ] . We then assume Nml=wml×Np of these are
Mercury-like and Nel=wel×Np are Earth-like in composition. We
then calculate the density corresponding to 0.7comp

mlm = CMF and

0.325comp
elm = CMF at mass for each Mercury-like and Earth-like

planet, respectively, and then calculate the corresponding planet
radius, Rp. Finally, we resample each mass and radius from the
Gaussian distributions M ,p Mps~( ) and R ,p Rps~( ), respec-
tively, to simulate observational uncertainties. We consider three
sets of mass–radius uncertainties: (1) 10%Mps = and Rps =
2.5%, (2) 6%Mps = and 2%Rps = , and (3) 5%Mps = and Rps =
1%. For each set of mass–radius uncertainties, we calculate B21 and
nσ as a function of Np.
We find that the number of planets required to achieve a strong

detection of both populations is highly dependent on the average
mass and radius uncertainties as shown in Figure 5. For the near
best-case scenario of 5%Mps = and 1%Rps = , we estimate only
∼12 planets are needed to detect both populations with moderate
support (B21> 12 and nσ> 2.7) and ∼16 for detection with strong
support (B21> 150 and nσ> 3.6). For the most conservative, but
still precise, case of 10%Mps = and 2.5%Rps = , a moderate
detection requires approximately 117–118 planets, and a strong
detection requires at least ∼154 planets, i.e., an almost factor of

Figure 4. Density ratio as a function of mass for the preferred Nc = 1 model (left) and the Nc = 2 model (right) applied to the Adibekyan et al. (2021) sample. We
color code the highest-density population as green and the lowest-density population as purple. The planets are assigned the same color as the population to which they
most likely belong. The solid lines are the isocomposition lines for each j

compm . The bands are the corresponding intrinsic density ratio scatter parameter j
ratio,pop

sr . For

all j
compm and j

ratio,pop
sr , we use the median values given in Table 4.

Table 4
Summary of Parameter Posteriors, Model Evidence, and Model Selection Parameters for Our One- and Two-population Model Runs with the Adibekyan et al. (2021)

Sample

Nc = 1 Nc = 2

Param. Med. 68% CI Med. 68% CI

comp
1m 0.31 CMF [0.02 WMF, 0.36 CMF] 0.36 CMF [0.30 CMF, 0.53 CMF]

ratio,pop
1sr 0.16 [0.11, 0.22] 0.17 [0.06, 0.69]

w1 1 L 0.64 [0.07, 0.94]

comp
2m L L 0.05 WMF [0.53 WMF, 0.33 CMF]

ratio,pop
2sr L L 0.19 [0.09, 0.77]

w2 L L 1-w1 L
L ln 25.991 0.2231 = -  L ln 26.93 0.212 = - 

B21 p-value Sigma Interpretation

0.39 1.0 0 No evidence for more than one population

Note. CI = credible interval.
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10 increase in Np from the near best-case scenario. For comparison,
the average mass and radius uncertainties for the Adibekyan et al.
(2021) sample are 14% and 5%, respectively. As such, it is not
surprising that they do not find a conclusive and distinct population
of Fe-rich planets, as it would require significantly more than 154
planets to do so at their average precisions. We also show our
model results for the synthetic 20-planet sample with 5%Mps =
and 1%Rps = in detail in the Appendix to demonstrate RhoPopʼs
ability to recover known hyperparameters.

5. Discussion

5.1. Comparisons with the NRPZ

We compare our results for the Luque & Pallé (2022;
Section 3.1) and Adibekyan et al. (2021; Section 3.2) samples
with the NRPZ (Unterborn et al. 2023). From Equations (24) and
(27) of Unterborn et al. (2023), we estimate that the NRPZ covers
a density ratio range of 0.85–1.1. We reiterate that the NRPZ
represents the expected 3σ compositional range of volatile-free and
water-free rocky planets. The preferred single-population model
for the Adibekyan et al. (2021) sample yields a 1σ density ratio
range that is similar in width to the NRPZ, meaning the 3σ range
for this sample is ∼3× larger than the NRPZ. This result is not
surprising given the number of exceptions to this simplistic picture
of planet formation we outline in Section 1.

Our one-population model for the Luque & Pallé (2022)
sample finds a central composition of 0.09 WMF with an
intrinsic 1σ scatter of 0.21

pop
s =r . This leads to a 1σ density

range of ∼0.6–1.0, which is inconsistent with the NRPZ. This
result is not surprising since we expected to find two
populations a priori given the results of Luque & Pallé
(2022), although we did not inject this expectation into our
models. This tension with the NRPZ is reduced for the strongly
preferred two-population model. We find a higher-density
population with a central composition of WMF= 0.02 and

0.02
pop

s =r . The 2% water mass fraction isocomposition line
corresponds to a density ratio of ∼0.95, and the 3σ range in

density ratios is ∼0.89–1.01. This density ratio range falls
entirely within the NRPZ, meaning that this population of
planets can be explained via volatile-free rocky compositions;
i.e., we do not need to invoke water to explain the densities of
these planets. More notable, however, is the fact that the 3σ
range of this population is approximately half the width of the
NRPZ, suggesting that the compositions of these planets may
be less diverse than stellar abundances predict. We note the
important caveat that the NRPZ is estimated using Fe, Mg, and
Si abundances from the Hypatia Catalog database (Hinkel et al.
2014) and is thus strongly biased toward FGK stars, as there is
a lack of M-type stars with abundance measurements,
especially those with Fe, Mg, and Si measurements. This
suggests that the Luque & Pallé (2022) sample has a smaller
spread in the major rock-building elements than FGK stars. In
fact, M dwarfs that host planets in general may have a smaller
spread. Testing this possibility, however, requires more M
dwarf abundances of Fe, Mg, and Si to build an M dwarf
NRPZ, i.e., an M-NRPZ. While TOI-561 b in the Adibekyan
et al. (2021) sample has a ρratio∼ 0.5, consistent with the
lower-density population of Luque & Pallé (2022), the lack of
evidence for a water-rich population around FGK stars further
suggests that small-planet compositions and formation pro-
cesses may be dependent on host-star type.

5.2. The TRAPPIST-1 Planets

The primary goal of Section 3.1 is to validate the results of
Luque & Pallé (2022) using their sample as published. We
note, however, that the TRAPPIST-1 system accounts for
roughly a quarter of the LP22 sample. Further, the seven
TRAPPIST-1 planets have some of the smallest error bars with
an average density uncertainty of 5.6% compared to the
remainder of the sample, which has an average density
uncertainty of 19%. Together, this suggests that our detection
of two populations of M dwarf planets may be driven in large
part by the TRAPPIST-1 system. To test this, we removed the
TRAPPIST-1 planets from the LP22 sample and reran the one-
and two-population models. Without these seven planets, the
detection of two populations of planets is reduced from 4.1σ to
1.8σ, meaning the TRAPPIST-1 planets do indeed play a large
role in the detection of two populations of small planets around
M dwarfs. Further, for the Nc= 2 scenario, we find a median
value of 0.327comp

1m = CMF, nearly identical to the CMF of

Earth, in contrast to 0.02comp
1m = WMF, when the TRAPPIST-

1 planets are included. This begs the question as to whether
volatile-/water-free rocky planets around M dwarfs are
generally Earth-like in composition and the TRAPPIST-1
planets are anomalously iron-depleted or wet. A larger sample
of small M dwarf planets with density precisions comparable to
the TRAPPIST-1 planets and/or an M-NRPZ are needed to
fully investigate this question.

5.3. Alternative Explanations for Water Worlds

We note that our water grid assumes condensed water/ice
phases. The equilibrium temperatures of the five LP22 planets in
the lower-density population range from ∼1.5× to 4.2×Earth’s.
As such, it is likely that substantial fractions of their water exist in
the vapor and supercritical phases. Our choice of condensed
water/ice then overestimates the density of these water layers;
therefore, our WMF estimates serve as an upper limit. We chose to
work in terms of condensed water/ice for the most direct

Figure 5. B21 (left vertical axis) and nσ (right vertical axis) as a function of Np

for average observational uncertainties of 5%Mps = and 1%Rps = (cyan),
6%Mps = and 2%Rps = (purple), and 10%Mps = and 2.5%Rps = (red).
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comparison with the interpretations made in Luque & Pallé (2022),
but a future iteration of RhoPop will incorporate the supercritical
and vapor phases of water and planet equilibrium temperature.

We also note that the population of planets interpreted as water
worlds in Luque & Pallé (2022) and this work is not uniquely
explained as such. Rogers et al. (2023) show that these planets are
equally well explained as sub-Neptunes that have retained a small
fraction of their primordial H/He envelopes and provide some
observational evidence to support this interpretation. It is also
plausible that such planets have outer gaseous envelopes
comprised of species heavier than H/He (e.g., Piaulet et al.
2023). In short, the source M dwarf planet density gap remains to
be fully explored. In a future update, we will expand RhoPop to
account for these various scenarios and investigate whether the
data favor one scenario over the others.

5.4. Caveats to Estimates on the Minimum Number of Planets
Needed to Resolve an Fe-rich Population

In Section 4, we estimated that approximately 154 planets with
average 10%Mps = and 2.5%Rps = are needed to resolve a
population of planets with Mercury-like compositions from a
population with nominally Earth-like compositions. Interestingly,
there are 154 small planets in the NASA Exoplanet Archive11 with
density uncertainties of less than 100%. The average and
median M–R uncertainties of these planets, however, are Mps =
27% and 6%Rps = and 19%Mps = and 5%Rps = , respec-
tively. These uncertainties are 2× the precisions required to
resolve an Fe-rich population with high confidence for
Np= 154. As such, even if such a population exists, we do
not expect it to be resolvable with the current sample of small
planets. We note, however, that our analysis assumes there is
one Fe-rich planet for every three nominally Earth-like planets
(wml= 0.25) based on the work of Adibekyan et al. (2021). If
Fe-rich planets are more abundant relative to Earth-like planets
than 1:3, then the required sample size to resolve this
population will be reduced, and vice versa. Further, we assume
a constant bulk composition for the iron-rich population of

0.7comp
mlm = . While we use Mercury and the five potentially Fe-

rich planets from Adibekyan et al. (2021) to justify this choice,
the average CMF can be higher or lower, which will act to
make this population more or less easily resolvable at a given
mass and radius precision, respectively. We will consider a
wider range of mixing weights and compositions for the Fe-rich
population in future work.

6. Conclusions

We present the open-source software RhoPop for identifying
distinct populations of small planets and use it to validate the
recent results of Luque & Pallé (2022) and Adibekyan et al.
(2021). While we show that a distinct population of Fe-rich planets
is likely unresolvable with the current sample of small planets,
RhoPop is designed to provide the community with a ready-to-go
tool for identifying such populations as the number and precisions
of small planets continue to increase. The next release of RhoPop
will include preloaded compositional grids with atmosphere layers
comprised of various molecular species. We will use these

additional grids to investigate whether the population of planets
interpreted by Luque & Pallé (2022) as 50% water worlds are
better explained as having an atmosphere. In future work, we will
apply RhoPop to the entire available sample of small planets and
expand our analysis of the minimum number of planets required to
resolve a population of iron-rich planets.
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Appendix
Synthetic Planet Sample Example

Here we show the detailed results of RhoPop applied to a
synthetic 20-planet sample where the hyperparameters are known
a priori to demonstrate their successful recovery. To reiterate, we
sample five planets from the Mercury-like population with

0.7comp
mlm = CMF and intrinsic scatter 1

ratio,pop
sr = 0.0. Similarly,

we sample 15 planets from an Earth-like population with
0.325comp

elm = CMF and intrinsic scatter
ratio,pop
2sr = 0.0. This

gives wel= 0.75 and wml= 1−wel= 0.25. We use the same
hyperparameter priors given in Table 2 and assign 5% uncertainties
in Mob and 1% in Rob to each planet.
We apply the one- and two-population RhoPop models to

this sample and find, unsurprisingly, that the two-population
model is favored over the one-population model at the >4σ
level. The results are summarized in Table 5 and visualized in
Figure 6. The one-population model is naturally a poor fit for
this sample and recovers a mean composition of CMF= 0.42,
which is w wel

comp
el ml

comp
ml m m´ + ´ . None of the true

hyperparameter values are contained within the 68% CIs of
the estimated μcomp for the one-population model. The two-
population model, however, recovers accurate values for both
the Earth-like and Mercury-like populations. RhoPop finds

0.71comp
1

0.04
0.03m = -

+ CMF corresponding to the Mercury-like

population we fixed to have 0.7comp
mlm = CMF. Similarly,

RhoPop finds a lower-density population with comp
2m =

0.32 0.02
0.02

-
+ CMF corresponding to the Earth-like population we

fixed to have 0.325comp
elm = CMF. Further, this model finds

w 0.271
0.1
0.09= +

- , which is consistent with the injected value
of wml= 0.25. We show the hyperparameter posteriors for
the one- and two-population models in Figures 7 and 8,
respectively.

11 As of 2023 August 7.
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Figure 6. Summary of results for a synthetic 20-planet sample of planets with two populations: a Mercury-like one with 0.7comp
mlm = CMF and wml = 0.25 and an

Earth-like population with 0.325comp
elm = CMF and wel = 0.75.

Table 5
Summary of Parameter Posteriors, Model Evidence, and Model Selection Parameters for Our One- and Two-population Models for a Synthetic Sample of 20 Planets

with Mercury-like and Earth-like Subpopulations

Nc = 1 Nc = 2

Param. Med. 68% CI Med. 68% CI

comp
1m 0.44 CMF [0.39 CMF, 0.48 CMF] 0.71 CMF [0.67 CMF, 0.74 CMF]

ratio,pop
1sr 0.20 [0.16, 0.24] 0.06 [0.02, 0.17]

w1 1 L 0.27 [0.18, 0.37]

comp
2m L L 0.32 CMF [0.30 CMF, 0.34 CMF]

ratio,pop
2sr L L 0.02 [0.005, 0.04]

w2 L L 1-w1 L
L ln 3.34 0.201 = -  L ln 3.79 0.272 = 

B21 p-value Sigma Interpretation

1250 2.8 × 10−5 4.2σ Strong evidence for two populations

Note. CI = credible interval.
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Figure 7. Hyperparameter posterior corner plot for the one-population model applied to our synthetic sample. The +/− values correspond to the 95% credible
intervals. This figure was generated with the dynesty dynamic nested sampling software package (Speagle 2020).
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