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C T 
Inspired by the natural intelligence of humans and bio-evolution, Artificial Intelligence (AI) has seen accelerated growth since the 

beginning of the 21st century. Successful AI applications have been broadly reported, with Industry 4.0 providing a thematic platform 

for AI-related research and development in manufacturing. 
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This paper highlights applications of AI in manufacturing, ranging from production system design and planning to process 

modeling, optimization, quality assurance, maintenance, automated assembly and disassembly. In addition, the paper presents 

an overview of representative manufacturing problems and matching AI solutions, and a perspective of future research to 

leverage AI towards the realization of smart manufacturing. 
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gedPTRAH1a1. IntroductionTPegandARE 

RAPagedTArtificial intelligence (AI) is often referred to as “the science 

and engineering of making computers behave in ways that, until recently, we 

thought required human intelligence” [89]. The research field of AI evolves 

not only as the community of researchers builds on top of one another's work, 

but also as inspirations are taken from natural 

intelligence.ndagePTRAE 

HPTaged2AR1.1. From natural intelligence to artificial 

intelligenceEPdgeTnRaA 

edTRAPagFor 99% of the known history of the human species, humans 

were wanderers and hunters [219]. With trial and error, humans developed 

more sophisticated strategies that increased the yield of hunting while 

enhancing self-protection. Observing and learning from the behaviors of 

animals, humans gained insights that complemented their survival skills and 

problem-solving strategies. Through collaboration and information-sharing, 

humans accomplished what each alone could not. And using the tools that 
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they developed, humans started to domesticate animals, developed 

agriculture, created homes and cities, and abandoned the nomadic lifestyle. 

Although chasing food and self-protection from predators no longer 

constituted the highest priority in life, curiosity for understanding the 

environment and propensity for self-betterment persisted, thereby continually 

sharpening the evolution of humans intelligence [218].agePTRAEnd 

As the need for understanding the law of nature is essential to theARTdegaP 

survival of the species, humans started to recognize patterns embedded in the 

world and created logical and mathematical tools to synthesize and generate 

knowledge, describe its functioning, learn to break down complex problems into 

smaller ones to optimize solution strategies, and see the similarities among 

different problems for which existing knowledge can be adapted to [191]. 

Throughout this process, learning from animal intelligence played a pivotal role 

in the advancement of natural intelligence as a key element to human 

survival.EndegaPART 

From the era of manual production to a series of industrial revolu-APdRegaT 

tions over the past centuries, human intelligence has not only guided the 

perfection of craftsmanship in the production of goods but also led to the 

mechanization that freed humans from hard labor, as characterized by the 

creation of steam engines, automobiles, electric motors, industrial robots, and 

computers [129]. As a precursor to the era of AI, the idea of mechanization of 

human natural intelligence was also a topic of exploration during the late 19th 

century [274]. In the 1950s, Turing [251] devised Turing test to argue the 

plausibility of “thinking machine”. Shortly after, the term “artificial intelligence” 

was coined by McCarthy [184] at the Dartmouth Summer Research Project on 

Artificial Intelligence (DSRPAI) in 1956, and Minsky [175] presented the 

envisioned steps towards AI: search, pattern recognition, learning, planning, and 

induction. These resemble the main characteristics of natural intelligence and 

catalyzed the AI research until today. This keynote paper aims to present 

advances in AI in manufacturing since the beginning of the 2000s, with related 

AI tech- 

1.2agedPTRAH2 . AI technologiesagePTRAEnd 

The development of AI has been characterized by two distinct tra-RPdegaTA 

jectories, leading to what is known as model-based vs. data-driven methods, as 

illustrated in Fig. 1. Such distinction can be traced back 

to the 1960s, as symbolic vs. connectionist AI.dPTRAEgnae 

Symbolic AI consists of implementing interpretable, high-levelagedTAPR 

rules and calculating symbols that have concrete semantic meanings [232]. The 

design of programming language Lisp in 1958 to manipulate symbols was widely 

regarded as AI’s first contribution [171]. By contrast, connectionist AI envisions 

large-scale calculation of lowlevel functions distributed across a neural network, 

with meaningful behavior appearing as the collective effect of all elementary 

operations. Such bio-inspired concept first emerged from neurophysiologists and 

logicians [172] before evolving into Rosenblatt’s perceptron [212]. Intuitively, 

the symbolic AI is a deductive machine, which relies on human-designed model 

(rule, knowledge) to compute an output from a given input. Connectionist AI is 

an inductive machine which learns the model from observed samples of desired 

input and output. However, the 1st generation AI systems did not take off due to 

their limited capability and practicality [176]. In the early 1970s, research was 

put on hold in what is known as the 1st AI winter [29].dEanARTPeg 

A signiPARdegaT ficant upgrade to the symbolic AI under the name of expert 

systems led the 1st AI revival around 1980 [29]. It was made possible by more 

powerful computers that allow bigger set of rules, which consist of structured 

lists of “IF ... THEN”, to be stored in the memory [242], leading to successful 

diagnosis of blood diseases [229], identification of locomotive breakdowns [22], 

and detection of geological deposits [73]. In addition, the systems can break 

down the reasoning process into blocks of “agents” which could independently 

utilize rules and infer consequences, inspired by the concept of modularity [4]. 

However, researchers soon realized that creating repositories for realistic and 

diverse rules to convey the subtleties in reasoning became increasingly 

inefficient. As research effort in expert systems slowed down and supporting 

hardware (e.g., Lisp machines) dimin- 

ished in the mid 1980s, the 2nd AI winter began [29].EARTPegadn 

During the same period, several algorithmic and theoreticalgeTAPadR 

advances foreshadowed the revival of connectionist AI. Backpropagation was 

developed in 1986 to allow the weights of any type of neural network to be 

optimized [214], propelling a creative period that saw the invention of some of 

the most widely used networks today: convolutional (CNN) and recurrent neural 

network (RNN) [92,142]. Also, universal approximation theorem was proven, 

indicating that neural networks are universal function approximators that 

theoretically can 

fit any functions [96].RAEndagePT 

Interspersed in the evolution of symbolic vs. connectionist AI isPRageTdA the 

notable development of a series of techniques on both modelbased and data-

driven fronts. For example, the evolutionary algorithms developed in the 1960s 

use rules inspired by biological evolution, such as genetic reproduction, 

mutation, recombination, and selection, to search for optimal solutions [95]. In 

the 1990s, kernel methods such as support vector machines (SVM) were 

developed 

adPTRFiguAre 
[39]. The convex nature of these methods provided a means to bypass the local 

minima constraint and their effectiveness in leveraging small datasets made 

them more attractive choices than the neural networks [93]. In 1997, Mitchell 

[177] provided a formal definition of machine learning (ML) to describe 

algorithms such as neural networks that can learn from data and generalize to 

unseen data, without explicit instructions. (A related concept is soft 

computing, generally describing techniques such as evolutionary algorithms 

and neural networks that exploit tolerance for imprecision, uncertainty, 

and partial truth to achieve tractability in problem-solving [31].)dRTPAnaEge 

Given the speciAPRTadeg fics of ML tasks, the learning process can be 

generally categorized as supervised, unsupervised, and reinforced based on 

the interaction [19]: supervised learning trains a ML model on a labeled 

dataset such that the model learns to predict outcomes based on the input data. 

The goal is to minimize the difference between the predicted and actual 

outcomes. Unsupervised learning, in contrast, trains a model on data without 

labeled responses, and the goal is to identify patterns, clusters, or relationships 

within the data. Reinforcement learning (RL) is a paradigm where an agent 

learns to make decisions by performing actions in an environment to 

maximize certain cumulative reward, based on the feedback from its actions 

and expe- 

riences rather than from direct labeled instructions.agePTRAEdn 

In mainstream AI research, the concept of task-oriented, rationalagedTRPA 

agent made a breakthrough around the turn of the century. By definition, a 

rational agent is embedded in an environment to perform tasks. After making 

observations, it changes the environment with its actions in a way that 

optimizes its utility criterion with bounded computational resources [217]. 

Shortly, the rational agent concept defined a dominant and most successful 

approach to AI [216,217] as it was pragmatically task-oriented and inclusive 

regarding all available AI technologies. The notion of rational agent re-

initiated research in ML which was essentially aimed at improving agent 

performance based on accumulated experience [110]. By populating the 

environment with other agents, it could intuitively be extended to multi-agent 

systems and distributed intelligence. Finally, sensing and acting are the 

essence of robotics, and the agent concept brought robotics back into the realm 

of AI, with natural extension to the appli- 
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cations such as the human-robot collaboration (HRC).TRAagePdnE 

The beginning of the past decade has witnessed signiTdegaPAR ficant 

shifts in the AI landscape. Digital transformation across the globe had 

necessitated a new generation of AI methods to tackle new challenges such as 

spam/fraud detection, prediction of supply chain volatility, impacts of 

customer response and behavior on decisionmaking, etc. These new AI 

methods require the use of “big data”, which bears little resemblance to the 

relatively small and calibrated 

data known to the AI community [42].dnERTPegaA 

The challenge to learning from these massive data, after a briefPATdegaR 

period of stagnation, has ultimately been met by the advancement of deep 

neural networks and the growth in computational infrastructure such as 

graphic processing unit (GPU) and cloud computing [130]. Increasingly, 

researchers have realized the capability of deep neural networks in exploiting 

the hierarchical structure embedded in data, making them not only capable of 

ingesting raw data without manual feature engineering (a typical step in other 

ML techniques such as SVM), but also more effective in processing features 

as compared to their “shallow” counterparts [141]. Additionally, empirical 

evidence suggested that the lack of theoretical guarantee in neural networks 

due to the non-convexity is far outweighed by their superior performance in 

handling large, real-world datasets, including image processing and speech 

recognition, when compared to the traditional ML [58,90]. During this period, 

the term “deep learning” (DL), which specifically describes ML using deep 

neural networks 

without manual feature engineering, begins to gain popularity 

[141].agePTRAEnd 

During the past decade, accelerated development of DL hasagedTRAP 

brightened the prospect of fulfilling the longer-awaited promise of neural 

networks being universal function approximators, enabled by a series of 

innovations in terms of the network structures. For example, rectified linear 

unit (ReLU) activation function was rediscovered to replace the traditional 

smoother functions such as hyperbolic tangent, enabling much faster learning 

of deep neural networks [76]. Around the same time, a new regularization 

technique termed dropout has emerged, which randomly drops neurons from 

the network during training [234]. Intuitively, dropout can be considered as 

training an ensemble of networks, each with a different subset of neurons. 

Dropout has seen wide success in preventing model overfitting and 

quantifying model uncertainty [69,234]. Another major innovation is the 

attention mechanism [11]. Rather than having fixed neural network weights 

after training, the goal of attention mechanism is to allow weights generation 

based on the specific input and thereby capturing the dynamic relationship 

between the input and output. Originally conceived as solutions to one narrow 

and specific problem-language translation, attention mechanism has since 

become the cornerstone of general-purpose neural networks, propelled by the 

transformer architecture [254] and its variants [205,206].agePTREndA 

The development of DL during the past decade has also 

facilitatedgedTRAPa the conceptualization and/or maturation of next class of 

learningbased AI techniques such as generative learning and deep 

reinforcement learning (DRL). The main idea of the former is to use deep 

neural networks to approximate the transformation between a known 

distribution where samples can be taken (e.g., standard Gaussian) and a 

(unknown) distribution of desired output, which subsequently enables the 

synthesis of output data by sampling from the known distribution [78,91]. 

Similarly, DRL relies on deep neural networks to directly approximate the 

value functions (which are associated with the cumulative reward) for 

decision-making. Compared to the traditional RL, DRL allows for decision-

making from complex input such as images. These advances have quickly led 

to new results in a num- 

ber of applications such as design and robotics [255,284].dnEaARTPeg 

1.3degaA2HRTP. AI for smart manufacturingdARTPeagnE 

To advance the state of manufacturing, continued effort has 

beenRAPegadT made by engineers and researchers to: 

EngedTRAPa efficiently search through variable space of manufacturing sys- 

tems to optimize scheduling and planning [236];TAREdnageP 

agdePART accurately model process dynamics and optimize process parame- 

ters in production to improve part property [65];EndgPeTRAa 

TegadPAR timely detect defects and forecast future performance of equip- 

ment for quality assurance and maintenance [271];TdPegaRnEA 

gPdTRAea delegate repeated, laborious tasks to robots and explore seamless 

interaction between human and machine [261].aePTRgdnEA 

The increasing difPARTegda ficulty of meeting these objectives due to the 

multitude of productivity, efficiency, and sustainability requirement stemming 

from the growing product and process complexity, as well as the variability 

in customer preferences, provide opportunities for manufacturers to 

investigate AI capabilities. Due to the rising relevance of AI in manufacturing, 

several contributions have been presented as keynotes in CIRP Annals by the 

end of the past century. Markus and Hatvany [170] outlined the structure of 

subfields in manufacturing, such as design, planning, monitoring and control, 

and matched AI tools to the corresponding tasks. Rowe et al. [213] detailed 

AI implementation in grinding, with domain-specific applications such as 

wheel selection and parameter selection. Teti and Kumara [244] defined a 

functional view of manufacturing system consisting of design, planning, 

production, and system-level activities and mapped AI technologies to each 

functional element.RAEndagePT 

After a brief hiatus, the digital transformation of manufacturingTRAPaged has 

accelerated, enabled by massive deployment of sensors and Industrial Internet of 

Things and the resulting large amounts of data produced by machines, 

controllers, and system records, etc. The need to properly decipher the 

 

Fig. 1. Evolution of AI technologies, [16,26,185,195,229,260,283]; LLMs: large language models.AgTaRePdnE 



726agePTRAEnd R.X. Gao et al. / CIRP Annals - Manufacturing Technology 73 (2024) 723749 

information embedded in the data brought AI research back to the spotlight in 

manufacturing, which offers complementary understanding of the physical 

characteristics of a system or process [228]. Unsurprisingly, the comeback of AI 

has been led by the emergent ML, and especially DL technologies. A review of 

ML techniques and their applications in manufacturing is found in [228]. Several 

other review articles are focused on more specific aspects in manufacturing, 

providing analysis at a more granular level. For example, Wang et al. [261] 

provides a comprehensive review of AI for HRC, while Gao et al. [71], Kruger€ 

et al. [134], and Mohring€ et al. [179] addressed the implementation of AI from 

the perspective of data life cycle, control, and self-optimization in their respective 

keynotes. Recent development of model-based AI, such as agent-based system 

and ontology, was also summarized in [183] and [282].EnPdegaTRA 

Diverging from these recent review articles that are primarilygedTRAPa 

focused on specific applications and AI technologies, this keynote paper (Fig. 2) 

aims to present the state-of-the-art of advances in AI in manufacturing with an 

integrated view of system (Ch. 2), process (Ch. 3), quality (Ch. 4), and 

(dis)assembly (Ch. 5) from both modelbased and data-driven perspectives, with 

the integrated view exem- 

plified in case studies (Ch. 6).dEARnPegaT 

The complementary nature between domain knowledge and dataagedTRAP 

will be emphasized. Highlights will also be given to the research avenues that 

have been completely transformed due to the latest AI technologies, such as 

generative learning and DRL, which have led to the development that was 

unimaginable before. This keynote also picks up the baton from Markus and 

Hatvany [170] and Teti and Kumara [244] and provides an updated mapping 

between AI technologies and manufacturing tasks to bridge the gap of AI 

advances in manufacturing over the past 20 years. Correspondingly, newly 

emerged challenges and directions in AI, such as model physical consistency, 

real-life AI, generative AI, and generalist AI models will also 

be discussed (Ch. 7).dnEARTPega 

AFigureadPTR 

 

Fig. 2. Chapter structure of the keynote. gePTRAEnda 

2agedPTRAH1 . AI-assisted production system design and planningagePTRAEnd 

Production systems,dTRAPage consisting of intricate networks of machinery 

and human resources, technological and logistical processes, material, 

information and financial flows, are among the most complex man-made systems. 

These systems have inspired AI research on automated problem solving, 

reasoning, and learning [36]. In the context of production, whether it be the 

synthesis of complex objects (i.e., production systems) or the dense network of 

their actions (i.e., production plans and schedules), the structural and functional 

relationships among system components must be maintained on top of which 

decisions will be made [54]. The AI research in design and planning of the 

production systems primarily revolves around modelling the systems while 

considering these relationships or constraints, and optimizing design, scheduling, 

and operations in general 

(Fig. 3).EndagePTRA 

readPTRAFigu 

 

Fig. 3. Overview of AI for design of and planning in production systems.PTRAEndage 

2.1aPdegRAH2T. Design of production systemsRAETadngeP 

The design of production systems is primarily a coneTRAPagd figurational 

problem typically requiring combination- and modification-based design 

methods [249], commonly starting with domain knowledge 

before being abstracted into mathematical forms for computation.daPTRgAEne 

2.1.1aPRTdeAg. From ontologies to graph neural networksgePTRAEnda 

One of the primary ways that logic-basedATdegaPR knowledge and 

reasoning, as well as their acquisition and management in AI research is through 

ontologies [208,243]. An ontology is a formal, well-structured vocabulary that 

captures a consensus set of terms to represent the entities in a domain along with 

their relationships. It also provides axioms that guide the interpretation and 

reasoning about terms, enabling verification of data validity and consistency, and 

inference of new knowledge. Ontologies, and more recently, knowledge graphs 

[46] have been used to capture the conceptual structure of manufacturing 

organizations, encompassing related products, technologies, resources, and 

business aspects [46]. Ontologies and knowledge graphs facilitate design 

standardization, semantic interoperability, principled engineering of complex 

software systems, and 

knowledge reusability.agePTRAEnd 

Nowadays, the de-factoegaTPARd “assembly language” of ontology building 

is OWL (Web Ontology Language). Among others, the National Institute of 

Standards and Technology (NIST) uses OWL for product lifecycle modelling and 

promoting an Industrial Ontology Foundry (IOF) [6]. IEEE also uses this form 

of logic-based knowledge representation to define the field of automation and 

robotics [101]. To meet requirements of agility and changeability of 

manufacturing, a decomposed ontology structure is typically used, where one 

part is general and stable, representing the core ontology, while the other parts 

may be domain, application and/or company specific. Such ontologies have been 

developed for additive manufacturing (AM) (see Fig. 4) [162,221], steelmaking 

[28], and robotic assembly [111,128]. 
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Fig. 4. OWL for additive manufacturing, adapted from [ndagePTRAE 162]. 

However, relying solely on symbolic reasoning methods built upon the 

ontologies [208] and knowledge graphs [94], either individually or in 

combination, falls short of fully capturing the essence of production system 

design. The need of transforming the system representation into a computable 

form to modeling the increasing system complexity and realizing functions 

such as design synthesis and system planning and scheduling have led 

contemporary research to rely 

on recent advances in ML and data analytics [108,197].TRAEndPega 

Focusing on a single manufacturing step, WangedTRAPag et al. 

[268] investigated spindle power and tool wear conditions during hard milling 

using the stochastic modeling and analysis technique of Data Dependent 

Systems (DDS). The spindle power data was decomposed into different 

frequency regions using DDS, and the correlation between spindle power and 

tool wear in the frequency domain was quantified. In the context of self-

optimizing machining systems, Mohring€ et al. [179] presented a broad array 

of ML methods that were used for linking sensory characteristic features to 

workpiece, tool, machine, and process states. These AI-based models can be 

used in decision-making processes when predicting part quality, tool and 

machine condi- 

tions are essential elements of a system design problem.agePARTdnE 

For systems consisting of multi-step manufacturing processes,agedTRAP 

graph neural networks (GNNs) [276] have been increasingly attracting 

research attention. GNNs are adept at capturing complex relationships and 

interactions between different components in a manufacturing system. By 

representing machines (processes) and intermediate products as nodes, and 

interactions or dependencies between them as edges, GNNs capture the entire 

manufacturing system through its graph structure while maintaining the 

flexibility of 

neural networks in learning from data.daTnEARPeg 

Fig. 5eTRAPdag illustrates a typical multi-layer GNN representation of a 

manufacturing system by Huang et al. [98]. The system consists of multiple 

types of machines corresponding to various manufacturing 

adTRAFigureP 

 

Fig. 5. GNN representation of a manufacturing system [AgaEPendTR 98]. 

processes. In GNN, each node corresponds to a machine while the inter-node 

connections are determined through the domain knowledge of whether any 

pair of manufacturing steps must be done adjacently. At the input level, each 

GNN node contains a feature representing its local conditions (e.g., machine 

conditions). Then, for each node in the first GNN layer, its feature is 

determined not only from local conditions of the corresponding node, but also 

the conditions from all its 1st order neighbors (i.e., nodes that are one edge 

away). By progressively adding GNN layers, the feature corresponding to 

each node accumulates information regarding local conditions as well as 

correlations from the nodes that are further away. These high-level features 

have shown to be useful in system design synthesis (Section 2.1.2) and 

optimization of system planning and schedul- 

ing (Section 2.2).agPTRAnEde 

2.1.2agedTRAP . Design synthesisagePTRdnEA 

In the design synthesis of production systems, humans still 

retainRAPegdaT their central role, while advanced simulation, process mining, 

data analytics, and visualization methods offer broad support for the analysis 

of solutions. Providing early feedback and learning from the evaluation and 

analysis of partial designs is a key to success. One example that builds upon 

a GNN-modeled manufacturing system is demon- 

strated by Klar et al. [123].agePTRAEnd 

In this work, the main objective is to synthesize factory layoutaedTRAPg 

such that material transportation load is minimized. The authors formulated 

this using an RL-based approach where each machine of the system is 

sequentially added to the shop floor. At each RL step, the decision about 

placement is determined through (1) material flow among different machines, 

which is modeled using a GNN., (2) shop floor layout at the current step (i.e., 

partial design), which is represented by an image and is processed by a 

convolutional neural network (CNN), and (3) features of upcoming machine 

to be placed, which are extracted using a multilayer perceptron (MLP). The 

outputs from these three neural networks (i.e., states in RL) are then fused to 

determine the “goodness” or action values corresponding to different 

candidate x- and y-locations as well as the rotations (i.e., actions in RL) of 

placement. These action (or Q) values can be considered a proxy for the 

material transportation load and the optimal placement comes with the 

combination of x, y, and rotation with the highest Q values. At the initial stage 

of RL, the neural networks may predict the Q values randomly. However, by 

sequentially assigning machines and recording feedback on a trial-and-error 

basis, RL can improve its accuracy in Q value prediction by network weight 

update. This specific RL variant is also known as deep Q learning (DQN) 

[239]. The authors demonstrated the effectiveness of the method using a case 

study of a shop floor with 43 machines.aEgePTnAdR 

The above example provides a template of how design 

synthesisagedTRAP can be achieved through the integration of data learning 
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and simulation and can be expanded to problems with higher complexity. 

Production system design is a teamwork which can be facilitated by agent-

based or distributed AI solutions. As discussed in [295], the multi-agent 

approach to production system design is gaining momentum because it 

facilitates the collaboration of various engineering branches related to the 

problem. Furthermore, it fits well with the workflow of concurrent [161] and 

life cycle [86] engineering. One example is from Zhang and Lin [290] that 

investigated multi-agent RL (MARL) for shop floor layout design 

optimization. The essence of MARL is to assign an agent for each machine 

such that RL can be done in a distributed way [239]. In contrast to [123], their 

objective is to minimize the connection cost among different machines. The 

method is validated using a case study of a pure water 

manufacturing system.agePTRAEnd 

Design of complex systems also necessitates better simulationPRTdegaA 

methods. For this purpose, the concept of Digital Twins (DTs), which captures 

both the models and realizations of engineered systems, together with a 

bidirectional, continuous interaction between the virtual and the physical 

counterparts [190], is envisioned to play a central role through (1) 

consolidating design decisions from different sources, (2) supporting high-

fidelity simulation and evaluation, and 3) facilitating life cycle engineering 

[17,222]. During the engineering phase, a DT can be applied to test and 

validate system design alternatives, while at run time production data can be 

gathered to update and improve a DT (e.g., fine-tune DT parameters to close 

the sim-to-real gap) to complete the bidirectional interaction (Fig. 6). Jaensch 

et al. [103] present a combined approach of these model-based and data-

driven DTs that allows continuous self- 

improvement.FigureRPTdaA agePTRAEnd 

 

Fig. 6. Communication between digital twin and physical system [gePTRAndaE
 257]. 

The combination of simulation and learning-based approachesATRagedP 

often can generate new and creative results. This can be extended to a co-

evolution where a design problem's specification also evolves over time 

[248,249, 270]. Recognizing and formulating new knowledge brought up by 

creative design can be challenging, highlighting the importance of human 

involvement [53,59]. Early efforts have been focusing on the concept of 

explainable AI (XAI) [100]. For example, Klar et al., implemented saliency maps 

[230] to interpret the shop floor regions of interest used by RL in determining 

machine placement. While certain patterns emerge in the beginning, the authors 

admit that the interpretation quickly becomes difficult as the problem scales up 

[123]. Addressing the challenges of XAI in manufacturing requires concerted 

efforts across various manufactur- 

ing domains (see Section 7.10).ARTPegadnE 

2.2H2edPTRagA. Production planning and schedulingRTPgadnEAe 

Production planning and schedulingdTRAPage (PPS) involves 

strategical, tactical and operational decisions in setting and achieving production 

targets. It is expedient to see the problem as orders competing for finite 

production resources in a dynamic environment. Solutions consist of temporally 

interlinked actions assigned across diverse resources, adhering to multiple 

constraints while optimizing criteria related to cost, time, quality, resource, and 

energy utilization, etc. Due to their inherent combinatorial complexity, PPS 

problems of practical relevance are difficult to solve [64]. In a production 

network, this situation is further aggravated by information asymmetry 

[139].APEndegaTR 

2.2.1agedTRAP. From mathematical programming to searchePTREndAag 

For PPS, operations research (OR) has traditionally utilized mathe-agedTRAP 

matical programming for strategic and tactical production planning [202], while 

AI has rather been applied to operational production and logistics scheduling 

[297]. The research of AI has contributed to scheduling by enhancing constraint-

based modeling and constraint programming (CP), addressing representational 

adequacy to ensure compliance with production constraints [138,187]. These 

models, which differentiate between essential hard constraints and soft, 

preference-based constraints, offer a clear, incrementally developable approach, 

critical in industrial AI applications (see also Sect. 7.10) [51]. Advanced CP 

enhances this with its powerful constraint propagation and search-based solution 

techniques, increasing flexibility and adaptability over more rigid algorithms 

[138]. CP's capability for incremental adjustments and its use of approximate 

methods for heuristic guidance further underline its utility in handling complex 

PPS scenarios [41,289].ARnPegaTdE 

Additionally, PPS considers various performance criteria, includ-gedTRAPa 

ing newer aspects like robustness and environmental efficiency [140], with CP 

allowing intuitive representation and exploitation of these factors for improved 

solution efficiency [138]. Moreover, integrating production planning with 

process planning and system configuration, despite increasing solution 

complexity, offers a comprehensive approach [250]. This integration captures a 

broad spectrum of scheduling knowledge, as evidenced by early and subse- 

quent scheduling ontologies [207,231].ndgePTRaEA 

Closely related to CP are the variety of pure search methods. MostaPAedTRg 

of them use heuristics to estimate the value of partial solutions or their distance 

from the goal, striking a balance between completeness and computational 

efficiency. By now, meta-heuristics and in particular local search techniques such 

as simulated annealing, tabu search, and various population-based search 

approaches are routinely applied for solving production planning and scheduling 

problems [1]. For instance, Nonaka et al. [193] proposed a method for optimizing 

the efficiency of a job shop by exploiting the potential of alternative routings 

made available by flexible CNC machines (Fig. 7). To solve this complex 

scheduling problem, the authors combine mathematical programming with tabu 

search. Stricker et al. [237] solved the task of scheduling in matrix production of 

different product variants with various cycle times. This work introduces a 

method for identifying and autonomously adjusting high-performing solutions to 

the scheduling problem employing multi-objective Monte Carlo tree search 

(MCTS). Meta-heuristics have recently been developed further to hyper-

heuristics which interchange different solvers while at work [220]. In parallel, 

anytime algorithms became indispensable for delivering solutions when response 

time was of the essence, as in real-time production scheduling [241]. Recent 

search techniques like large neighborhood search (LNS) [138] have proven to be 

successful in solving highly complex problem formulations, which provide 

intuitive models for high-level production system configura- 

tion [250] and planning [202].AePdnagRET 
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Fig. 7. Schedule optimization: a) alternative routings; b) schedules generated with 

heuristic and optimized load balancing [193EeagdnARTP ]. 

2.2.2ARagedTP. Role of learning-based methodsTRAEndgPea 

Compared to design synthesis, a key differentiating factor of PPS isagPARTde 

its dynamic nature. In contrast to design synthesis that can often be done offline, 

it is critical that PPS is done online in response to the dynamic changes likely to 

occur. This temporal scale makes it challenging for decision-making in PPS as 

the predictive model of production may not exist and simulation (that search 

methods need) becomes computationally expensive and likely to deviate from 

reality. Solving these challenges constitutes the first core application 

of ML in PPS.dagePTRAEn 

One important aspect of decision-making in PPS is to forecast 

theageTRAPd expected future progression of production. Compared to the 

traditional time-series analysis, ML, in particular DL has demonstrated 

superior performance in finding highly nonlinear association between the 

variables indicating current production status to its future progression, 

allowing accurate estimation of metrics such as future demand [71] and lead 

times [81]. As an example, Fang et al. [57] developed a stacked sparse 

autoencoder (S-SAE) to predict the remaining time for ongoing 

manufacturing jobs during production. This work first utilizes the capability 

of S-SAE to distill essential features embedded in data related to production 

task (e.g., task composition), production status (e.g., waiting sequence), and 

machine status (e.g., machine utilization rate). This is done by using the 

contractionexpansion structure of S-SAE ‘s encoder-decoder pair. Then, for 

prediction, only the encoder is retained, and it is attached to an MLP for job 

remaining time estimation. The authors noted significantly reduced prediction 

mean absolute percentage error by S-SAE (5.6%) compared to linear 

regression (19.2%), deep belief network, or DBN (16.9%), or using MLP only 

(13.7%). Similarly, ML can be used to create models directly from event log 

data. In production planning, Kad ar et al. suggested a process mining method 

for re-constructing the model of a semiconductor factory from partial, noisy 

and at times contradictory data [113]. Thanks to the tight coupling of physical 

processes and their digital representations, the model could be adapted to 

changing conditions automatically.PAEndTReag 

To a certain extent, these works represent how ML is 

incorporatedTPageRAd into DTs in production management [226,257] 

through surrogate modeling. In addition, the role of ML can also encompass 

replacing simulation directly. For PPS, the efficiency of optimization methods 

depends fundamentally on the fast evaluation of the solution candidates. In 

the case of complex, real-world problems, this can rarely be achieved by the 

application of an easily evaluated objective function. Instead, computationally 

expensive simulations must be performed. ML techniques can act as surrogate 

models to replace simulations for fast evaluation of solution candidates 

generated by meta-heuristics [108,182] (see Fig. 8). Running simulations on 

well-chosen scenarios derived from historical data using unsupervised 

learning is another approach to optimizing efficiency [77]. This work 

combines modeland data-driven analysis to support scheduling in a high-mix 

low- 

volume production environment.adPRAFigureT RTegadnPAE 

 

Fig. 8. Data-driven evolutionary optimization [gePTRAEnda 108]. 

In addition to surrogate modeling, ML has also shown capable 

ofRagedTAP reducing the sim-to-real gap (or deviation) between the digital 

and the physical representation of the system to improve the reliability of 

decision-making. One example is provided by Vrabic et al. [257]. The idea is 

to first determine the source of the deviation and formulate a response strategy 

through generating and simulating what-if scenarios for various disruptions 

using the DT. A neural network then encodes the discovered association and 

predicts the parameters of the DT based on past and present observables. 

Specifically, the network input contains observables at subsequent times of 

observation, while the output includes DT parameters [257]. The network can 

then determine how the DT should be updated so that its behavior matches the 

physical systems. The authors validated the effectiveness of the method in 

improving system resilience (Fig. 9) after disruption 

adPTRAFigure 

 

Fig. 9. Reduction of resilience loss after disruption through NN-based DT parameter 

update [257] (vertical axis represents accuracy of DTegadERnATP ). 

using a case study of cell and gene therapy (CGT) secondary 

manufacturing facilities.EnagePTRAd 

Once a reliable evaluation method is available, RL has also 

beendTRAPage widely investigated for PPS [40,117,151,197] by learning a 

control policy for sequential decision-making from interactions with an 

uncertain, dynamic environment that provides feedback in the form of 

rewards [135,239]. For example, Epureanu et al. investigated [55] an RL-

based method to determine the optimal strategy for handling machine 

breakdown. Specifically, a deep convolutional Q learning neural network as 

shown in Fig. 10 has been developed. The input includes encoded 

production information such as suspect modules and swappable stages. This 

information is processed by convolutional layers for prediction of Q values 

corresponding to three repair strategies. Simulation results using a 
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production system consisting of seven stages show that the developed RL 

significantly reduces the produc- 

tion capacity loss as compared to a random strategy selection.agPTRAEnde 

HuanggedTRAPa et al. [98] built upon a GNN-model production system 

and investigated MARL for maximizing throughput while minimizing 

defects, taking into consideration the variability of each machine. The 

MARL is based on the method of advantage actor-critic or A2C [238]. The 

A2C synergizes an actor, responsible for choosing actions (i.e., setting 

parameters of each machine) based on the current policy, and a critic, which 

evaluates the chosen actions by estimating the value function. The actor's 

policy, represented by GNN, dictates the probabilities of taking specific 

actions in given states. In parallel, the critic assesses the expected return 

from these states, aiding in the computation of the advantage function. This 

function reflects the relative benefit of each action compared to the average, 

guiding the actor toward more rewarding choices. Learning occurs as the 

actor adjusts its policy to maximize rewards, using the advantage function 

as a directional signal, while the critic refines its value predictions to align 

with actual returns. Compared to two rule-based baselines using a simulated 

case study, the MARL is able to incur three times fewer defects while 

maintaining similar throughput and could double the throughput while 

maintaining similar defect-to-throughput ratio. Other reported work 

includes weighted Q-learning [269], double DQN [83], distributed policy 

search [67], and policy-iteration type actor-critic models [157]. Recently, 

policy gradient RL also proved to 

TrPdaRFiguAe 

Fig. 10. Deep Q-learning for optimal strategy selection in handling machine breakdown [ 

be successful in efficiently managing resources of biological material 

production in a highly uncertain environment [181].gePTRAEnda 

agdTRAPeAs exemplified by MARL, in production systems, the operation 

is a result of the collaboration among numerous autonomous decisionmakers, 

each driven by its own objectives within a network of interdependent entities 

[139], naturally fitting multi-agent systems that offer a robust model for 

representing these autonomous units and their interactions, significantly 

enhancing the analysis of systemlevel behavior [183]. Despite the efficiency 

of multi-agent systems in visualizing and analyzing such interactions, 

ensuring consistent, efficient, and goal-oriented operations in line with 

production expectations necessitates some type of centralized control 

mechanisms, a challenge yet to be fully addressed in industrial applications 

[194,253].TRAEndageP 

1agedPTRAH3. AI in process modeling, management and 

optimizationEgePTRAnda agedTRAPAs the core step to transform raw 

materials into finished parts, efficient and anomaly-free manufacturing 

processes have been the goal for manufacturing researchers and engineers 

since the very beginning. As manufacturing processes are getting 

increasingly complex to be designed, modeled, and optimized using domain 

knowledge alone [150], AI techniques are increasingly investigated to 

compensate for this limitation in modeling and parameter optimiza- 

tion, as shown inPdaeuriFAgRT Fig. 11.egaAdTPRnE 

 

Fig. 11. AI research for process design, modeling, and optimization.RdnEATPega 

2HARTPdega3.1. Process designEgPTRAenda 

PARTdegaA detailed summary of AI for process design has been 

presented in [147], which extensively reviewed AI applications in process 

design and planning with a focus on AI techniques of expert systems and 

evolutionary algorithms. This section will first highlight research works that 

mainly benefit from these model-based techniques, 

55gTRAEnaedP ]. 

before introducing more recent works that increasingly leverage the 

capability of data-driven AI.agePTAEndR 

TetiagedTAPR et al. [244] investigated in Intelligent Computing Methods for 

Manufacturing Systems. Future motivations for intelligent computation in 

manufacturing include enhancing decision-making, features, and classifications, 

improving performance, flexibility, and efficiency, and integrating real-time 

operation and automation. Achievements require enhanced knowledge bases, 

improved AI tools, cost reduction, and new applications. Future systems will 

integrate AI into various engineering processes, develop hybrid systems, and 

implement intelligent manufacturing systems, characterized by integration, 

modularity, and hybridization. The research of Molina et al. in [180] addresses 

AI's potential in machining processes, including quality and efficiency 

improvements, contrasts with industry readiness due to machinery and worker 

training deficiencies. Adoption challenges persist despite 

Industry 4.00s promises.ePTRAEndga 

In [gdTRAPae 5], a hybrid approach is presented by using techniques of neural 

networks, fuzzy logic, and rule-based systems. The research illustrates a feature-

based intelligent computer-aided process planning system (CAPP) that includes 

(1) a standardized feature-based model in the form of STEP-based features and 

(2) the hybrid AI model for process planning. In addition, a digital process plan 

can be created, which provides the required information on the components to be 

manufactured. The results of the analysis show that the integration of model-

based and data-driven AI techniques can make process planning more efficient. 

Similar work has been reported in [47] using 



 agePTRAEndR.X. Gao et al. / CIRP Annals - Manufacturing Technology 73 (2024) 723749 731 

genetic algorithm (GA) and neural network.gePTRAEnda 

Beyond process planning, AI has also found applications inAPaedTgR

 fixture design. For example, ML-based optimization of a clamping concept is 

investigated in [60] (Fig. 12). The objective of the investigation is to establish a 

rapid model for positioning fixture locations within an 8second timeframe. The 

clamping of components is an important element in manufacturing processes 

which have a large influence on the dimensional accuracy. In the context of the 

study, an optimal clamping is determined from a multiplicity of configuration 

possibilities for the reduction of manufacturing errors. A milling process is 

chosen as the manufacturing process and the target values of the clamping 

optimization are the maximum workpiece deflection and the lowest natural 

frequency. Initially, exemplary configuration of the clamping is introduced and 

the generation of the input and output data for the ML models based on FE 

simulations are shown. Subsequently, different regression algorithms are 

evaluated, and a morphological box was used to identify the most promising 

algorithm. The research shows that XGBoost achieves good results with a small 

training data set and can assist designers in making decisions regarding the 

design 

of clamping system.nARTPeEgad 

Another study on intelligentdTRAPage fixture design in high performance 

machining is shown in [178]. For this purpose, the influence of different 

workpiece-fixture setups on the natural modes is investigated. The results first 

show the relevance of fixture layout in the context of process-workpiece 

interaction for fixture design, layout, and optimization. Furthermore, the use of 

intelligent fixtures is examined to reduce the influence of vibrations, 

deformations, and positioning of 

urePdgaiFART 
thin-walled parts. It is shown that the use of model-based method in 
combination with process simulation enables a significant improvement of the 

fixture performance and process robustness.ePTRAgEdan 

edTRAaPgFor the identification of forming limits in sheet metal, DL 

algorithms have been investigated in [104]. The forming limit curve defined 

by the major and minor strain is used to determine the forming range. As 

forming behavior is difficult to investigate, since only the last process step can 

be mapped due to the process setup, a semisupervised neural network is 

presented to detect the onset of localized necking. The studies include two 

steps (Fig. 13). The first is supervised feature learning where the extreme 

ranges of the forming sequences are considered. The second is unsupervised 

clustering using Student’s t mixture models (SMM), which groups the 

remaining frames of the forming sequence. The presented approach allows 

location and time independent investigation and an online analysis of a 

distinct time point. By processing the information from the captured images, 

cracking of the sheet specimen can be prevented. A detailed summary of AI 

for process design is presented in the review 

article [147].ndagePTRAE 

eadPTRAFigur 

 

Fig. 13. Supervised feature learning and unsupervised clustering for determination of forming limits, 

adapted from [104]. agePdnEART 

dPTRAH2age3.2. Process modeling and evaluationagePTREndA 

gdTaRAePDepending on the specific application, process modeling 

requires associating process parameters to the final property of the produced 

part (e.g., process-structure-property-performance, or PSPP relationship) or 

revealing the mechanism underlying the time-evolution of process (e.g., 

process dynamics). The capability to accurately predict part property is crucial 

for process optimization, while understanding the underlying process 

mechanism serves as the technical basis for 

process control.TegaPdnEAR 

agedTAPRWhile empirical equations have been developed over the years 

for describing the PSPP relationship, process-to-process variation and process 

physics that are unaccounted for by these models inevitably cause deviation 

in terms of process modeling. The advent of datadriven AI provides a 

promising tool to effectively use the in-process 

sensing data to close this gap.agePRAEndT 

ChoigedTRAPa et al. [35] presented a neural network-based method to 

understand the relationship between the input process parameters in injection 

molding and process output properties, such as those associated with linear 

shrinkage. The idea is based on the self-organizing properties of a neural 

network. The system consists of three functional software groups: a user 

interface and command module, an optimization and synthesis module, and a 

computer-aided engineering (CAE) analysis software module. The authors 

have shown that a prediction error of 0.5% has been achieved [35]. Bak et al. 

[12] also investigated a neural network model for die-casting process. First, 

an optimal set of dominant manufacturing parameters for high product quality 

in a die casting process is determined using the minimal redundancy and 

maximum relevance (MRMR)-based approach. With the selected parameters, 

a prediction accuracy of 99.6% has 

been achieved by the neural network for process yield prediction.agePTRAEnd 

 

Fig. 12. Fixture design optimization for milling process using FE analysis and XGBoost, adapted from [agednEARTP 60]. 
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The applicability of AI techniques toTRAPaged flexible rolling process 

for customized semi-finished products is shown in [121]. Kirchen et al. 

established fundamental correlations between process and quality parameters 

using data-driven AI methods. Here, the predictive model is set up using 

incremental regression modeling and subsequently evaluated with the aid of 

process and quality data. The quality variable describing the homogeneity of 

the sheet thickness of the semifinished product can be predicted with a 

maximum deviation of only 5%. The predictive model allows to derive 

adapted parameter settings between process steps for a product, which offers 

the possibility for process optimization. Similarly, in [264], a DBN is 

investigated to model the complex relationship between material removal rate 

(MRR) and the underlying process parameters in chemical-mechanical 

polishing. The outcome shows that the DBN can predict the MRR with less 

than 3% error, which is an order of magnitude smaller than 

the results from the physical equation.ePTRAEndag 

In addition to analyzing part properties, BrillingeredTRAPag et al. [27] 

have explored the application of AI in predicting the energy consumption of 

CNC machines during processes. For this purpose, a training part is first 

processed, and high frequency measurements and the NC instructions are 

collected. Based on this data, a ML model is trained (Fig. 14). After that, the 

validation part is processed. The NC instructions of the validation part are 

passed to the already trained model. The model then predicts energy 

consumption. For this purpose, three ML algorithms were trained "random 

forest", "decision tree" and "AdaBoost + decision tree" [27]. Although there 

are exceptions for certain measures and aggregates, the most accurate 

predictions can be obtained with the random forest technique. Accordingly, 

the energy demand curve of the machining process is accurately pre- 

dicted.dgTRAEnaeP 

RdTPgeruaiFA 

 

Fig. 14. Energy prediction for CNC machining with ML [PeagdnEART 27]. 

BrecherATdeRPga et al. [25] presented a knowledge-based approach to 

evaluate the quality of toolpaths by reducing process data to information 

about machining deficiencies. The approach can be used for post-process and 

planning-integrated diagnosis as a first step towards optimization. The method 

allows NC planners to obtain feedback from virtual or real processes to 

improve their knowledge of the current planning state and identify existing 

deficits. They are thus supported in deriving possible means of optimization 

from aggregated information without having to perform time-consuming 

analyses of raw 

data.agePTRAEnd 

agdTRPAeOne of the most recent research trends in AI-based process 

modeling is the metal AM process. Due to its multi-physics nature, predicting 

part property and modeling process dynamics for AM is challenging. As a result, 

researchers have turned to data-driven AI for establishing the complex 

relationship between process dynamics and part property. For metal AM, the 

characteristics of the melt pool are known to play a crucial role in determining 

the process behavior and outcome. For the evaluation of the melt pool, a 

methodology based on edge image templates combined with Bayesian inference 

is demonstrated by Lindenmeyer et al. [156]. Specifically, high-speed X-ray 

images of the melt pool area were analyzed. The developed detection method has 

a 60% accuracy for identifying the dimensions and shape 

of the melt pool.agePTRAEnd 

degaPARTThe AM process induces process heat that results in local varying 

mechanical properties and is site dependent. To predict mechanical properties of 

the parts, infrared measurements were performed on several thin-walled 

components at the selected positions and converted to wavelet-based scalograms 

by Xie et al. [277]. Subsequently, a CNN is used to predict mechanical properties 

obtained from miniaturized tensile tests (Fig. 15). Furthermore, through a random 

forest algorithm, an infrared thermography parameter can be used to relate the 

mechanical properties to the temperature ranges of the compo- 

nent [277].gaednEARTP 

agePARTdWith the recent development of physics-informed ML [115], 

researchers have started to integrate physical knowledge about the AM process 

and data-driven method, to accurately predict its timedependent evolution. The 

main idea of physics-informed ML is that, in addition to the prediction accuracy 

in the ML loss function, a physical-consistent term is also added such that any 

deviation from the physical equation will be penalized. As a result, the predicted 

output from the ML is expected to be physically consistent. Early proof-

ofconcept has been reported by Zobery et al. [296] and Liao et al. [154]. Both 

studies integrated the heat equation for prediction of tempera- 

ture evolution in AM.gaePTRdnEA 

gedPTRA2Ha3.3. Process optimizationagePTRAEnd 

edTRaAPgAll processes in manufacturing are subject to variations. As an 

example, scattering of the geometrical or mechanical properties of materials can 

cause disruptions during series production and must therefore be detected, 

evaluated, and ultimately controlled and optimized in time. Conventional 

methods using process simulations are often time-consuming and not flexible 

enough to react quickly enough to changes for in-situ optimization. AI offers new 

opportuni- 

ties to exploit further optimization potential.aePgdnEART 

egaPARTdFor process control, researchers have generally followed the vast 

knowledge of control theory and integrated it with AI-based modeling of process 

dynamics. For example, in [8], an integrated method of model predictive control 

(MPC) and Gaussian process (GP)-based AM model is developed. The objective 

of GP is to predict the timeevolution of the melt pool width given the laser power 

and other process parameters. Once the predictive model is obtained, it is 

linearized locally to be compatible with MPC. Simulated results have shown that 

the integrated control method is effective in controlling the melt pool width from 

deviating from a reference trajectory, which is widely considered critical to 

ensure AM part property. Similarly, in [210], a PID controller is investigated for 

AM melt pool depth control, with the depth information directly predicted from 

sensor 

images.TRAEndPage 

gedTRAaPProcess optimization can be considered an inverse problem where 

suited process parameters need to be determined to arrive at the optimized output. 

One of the methods is through sensitivity analysis, 



 agePTRAEndR.X. Gao et al. / CIRP Annals - Manufacturing Technology 73 (2024) 723749 733 

 

Fig. 15. Mechanistic data-driven method for tensile property prediction in AM, adapted from 

[agePTRAEnd 277]. 

as it indicates how the output changes when a unit of change happens at the input 

(e.g., process parameters). In [245], an ML-based methodology for predicting 

and improving the energy requirements of battery production was developed 

(Fig. 16). The approach is intended to highlight the interdisciplinary nature of 

battery production and to be applicable to other sectors. Once an AI-model is 

established at the third phase of the process, "modeling & evaluation”, to identify 

the most influential factors, sensitivity analysis is carried out to evaluate energy 

efficiency potentials and derive actions for improvements. It is reported that 

energy savings of up to 9% have 

been achieved.gePTRAEnda 

adPigureARTF 

 

Fig. 16. ML based optimization of energy efTagePRAEdnficiency, adapted from [245]. 

Other researchers tackle optimization by directly modeling thegedTRAPa 

inverse mapping using ML, e.g., for the production of composite materials. For 

this purpose, ML models were developed in [99] for the rapid evaluation of a 

wide range of boundary conditions (Fig. 17). By comparing thermocouple data 

with the predictions using these boundary conditions, all plausible solutions can 

be identified. To this end, two long short-term memory (LSTM) networks were 

developed to predict workpiece and mold temperatures for a given thermal stack 

and air temperature profile. In addition, a neural network was developed for 

multi-objective optimization of temperature cycle. The method mitigates the risk 

associated with unknown boundary conditions, and the system can be used for 

real-time optimization of the 

curing process with active adjustment of an oven.agePTRAEnd 

PTRAFiguread 

 

Fig. 17. Schematic of ML framework for inverse modeling of composites processing, 

and optimization of air temperature profile [PndageTRAE 99]. 

For ML techniques with probabilistic nature, such as GaussianTRAPegad 

process, Bayesian optimization provides an intuitive way of parameter 

optimization while considering process model uncertainty [233]. The idea is 

to first model the output variables of interest with respect to the process 

parameters. Then, Bayesian optimization is carried out sequentially to 

determine the parameter point to conduct the subsequent experiment that has 

the highest probability of improving the output. ML combined with Bayesian 

optimization has shown to be particularly advantageous in situations where 

acquiring experimental data is a time-consuming process. The effectiveness 

of the method is demonstrated by Maier et al. [166] and Khosravi et al. [119] 

for grinding, where feed rate and cutting speed, and gain of PID control- 

ler are optimally tuned, respectively.PTRAEngead 

One of the promising ML techniques that has attracted muchgdTRAPea 

attention recently for process control and optimization is RL [239]. As RL 

commonly learns the association between process state and 

control/optimization adjustment, it is considered model-free. Several studies 

on RL-based process control and optimization have been reported [52,126]. 

For example, Dornheim et al. [52] investigated RL to find the optimal blank 
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holder force in deep drawing to minimize the tear of the produced part. Their 

approach is based on DQN that uses a neural network to predict the goodness 

associated with each blank holder force adjustment, and the one with the 

highest value is selected. Training of the neural network is carried out in 

simulated environment. The authors reported that after 200 iterations, the 

RLbased method is able to outperform rule-based methods. Besides DQN, the 

method of actor-critic has also been reported for control/ 

optimization of welding [109].agePTRAEnd 

agedTRAPFinally, the methods of search have also contributed to process 

optimization. These methods can effectively explore the parameter space and 

converge to the optimal solutions. For example, evolutionary algorithms have 

shown effective in optimizing tool path for milling, with different 

optimization properties such as time, straightness, and cutter engagement 

[189]. In addition, GA and particle swarm optimization have been 

successfully implemented for parameter 

optimization for cutting [136] and turning [18], respectively.AEndePTRag 

RHTPdegA1a4. AI for quality assurance and maintenanceEnPagedTRA 

eaPgTARdQuality assurance and maintenance have been related to AI 

since the early 1980s [146]. Over the years, the development of modelbased 

AI techniques, such as those based on defect-induced signal features and the 

physics-based models has contributed to safe operations and provided 

technological basis for fault and defect identification [105], machine/tool 

degradation and remaining useful life (RUL) prediction [112]. When it comes 

to data-driven AI, the field of quality assurance and maintenance has some 

unique challenges as compared to the other aspects in manufacturing, such as 

data imbalance and domain knowledge integration [116]. Collectively, these 

challenges started to reshape the research of AI-based quality assurance and 

maintenance, leading to new development of data-driven AI that is robust, 

interpretable, and consistent with physical knowledge. The AI techniques and 

the corresponding applications in quality assurance 

eFadPTRAigurand maintenance are summarized in Fig. 18.RTegadnPAE 

 

Fig. 18. AI-related research for quality assurance and maintenance.gePTRAEnda 

Pegad2HART4.1. AI-enhanced condition monitoringRAEndTPega 

RTdegaPAAs the first step towards quality assurance, condition monitoring 

refers to monitoring the quality attributes of a part, machine, or tool to identify 

deviations that are indicative of potential defects or faults [102]. Traditionally, 

this task relies primarily on inspection by human experts, which is typically a 

time-consuming process conducted offline. The consequence is delays in 

defect detection and interruption to the manufacturing processes. The 

development of AI, especially the advances in image analysis, has accelerated 

research towards 

automated online condition monitoring.PTRAEndeag 

TRaAgedPImages have been widely investigated in AI for manufacturing. 

For example, time-frequency images of vibration signal for machine 

condition monitoring [48] and optical images for surface roughness 

estimation [34]. In these applications, the information contained in the image 

has been distilled into a scalar prediction while its spatial information is 

largely discarded. However, for part surface inspection, it would be desirable 

that the AI algorithm can pinpoint the image region that deviates from normal 

conditions, such that the outcomes 

are more easily understood by human.agRAEndTeP 

Early success of image-based defect detection often relies ondTRAPage point-

of-interest extraction enabled by scale-invariant feature transform (SIFT) [160] 

and speeded-up robust features (SURF) [14]. The motivation is that surface 

defect can exhibit noticeable change in terms of patterns of pixel intensity as 

compared to the non-defective region. As a result, both SIFT and SURF rely on 

models for local extrema detection in image pixel variation, such as the 

difference in Gaussian (DoG) model and the Hessian matrix model. Coupled with 

multi-scale analysis, SIFT and SURF have shown to be effective in finding the 

points-of-interest to support defect detection on steel 

surface [240] and PCB board [85].ePTRAEndag 

The recent development of DL techniques, especially the CNNsPARTdega 

have further sparked research in detection of surface defect whose characteristics 

cannot be described using features such as local extrema of pixel densities [223]. 

As a data-driven AI technique, the working principle of CNN is fundamentally 

different than modelbased method as it does not depend on pre-defined models 

for feature extraction. Instead, image features that are most relevant for 

defect detection are learned through training images.ageARPTdnE 

Mehta and Shao [gAedaPRT 173] presented a CNN-based approach for 

surface defect detection and segmentation in AM. For this purpose, a UNet 

structure, a variant of CNN is considered (Fig. 19) [211]. U-Net is advantageous 

over other CNN variants (such as fully convolutional networks) in defect 

detection where defects can vary in size and shape, due to the network’s unique 

architectural features [211]. Its design, which includes a contracting path and an 

expanding path, allows for effective feature analysis at multiple levels that are 

adaptive to both large and small defects as well as different defect complexities 

(e.g., shapes). Moreover, the skip connections connecting the contracting and 

expanding paths facilities the integration of multi-level image features to enable 

accurate segmentation of defects 

at the U-Net’s output.ARdnEPegaT 

adPTRAFigreu 

 

Fig. 19. U-Net for defect segmentation for AM, adapted from [EdagnePTRA
 211]. 

ToAPgeRaTd overcome the limitation that training images containing defects 

can be insufficient from a single source (e.g., manufacturer) to fully optimize the 
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U-Net, the method of federated learning is considered by the authors [173]. 

Federated learning refers to a collaborative data-driven method that works under 

the premise that limitation in data quantity can be overcome by pooling data 

information from various sources (known as clients). To avoid sharing data 

directly and violating data privacy, federated learning uses a single global model 

while each client only provides a model parameter update that is computed using 

its own data (Fig. 20) [127,173]. As a result, data is never shared across different 

clients, while the information embedded in this data contributes to the 

construction of a global model. The authors have shown that by using federated 

learning, defect 

 

Fig. 20. Schematic of federated learning, adapted from [TdEARnPega 127,173]. 

segmentation accuracy of the global model has outperformed individual models 

that have been trained using siloed data from each cli- 

ent by 20%.RAEndeagPT 

Beyond images, time series data are also commonly collected toAPagedTR 

infer the snapshot of machine/tool conditions using AI. As the temporal 

information embedded in time series data often comes directly from physics, the 

integration of physical knowledge and data-driven method has been investigated 

to improve the physical consistency of AI-models. Wang et al. [259] presented a 

gated recurrent unit (or GRU [37]) network for milling tool wear prediction. This 

study features physics-informed network training to ensure that the predicted tool 

wear level is monotonically increasing as the cutting cycle increases. By using 

physics-informed training, the network prediction logic will be penalized if the 

predicted tool wear does not increase monotonically. As a result, network weight 

update is guided to achieve maximum physical consistency during training. The 

authors have shown that by integrating physics-informed training, not only 

physical inconsistency in tool wear prediction has been eliminated, but also the 

tool wear predictive error is consistently lower (up to 50% in terms of root mean 

square error, RMSE) as compared to the scenario without physics- 

informed training.ageTRAEndP 

4.2edPTRAH2ag. Structural fault identificationdnEaRgePTA 

As the key components in power transmission, smooth and fault-gePARTda 

free operation of rotary machines, such as induction motors, gearboxes, and 

bearings are critical for manufacturing processes such as cutting, grinding, and 

metal forming. AI-based diagnosis allows to identify information related to 

hidden structural faults from sensing data collected from these machines, leading 

to informed decisionmaking on predictive maintenance to prevent unexpected 

interrup- 

tion to production.andEARTPeg 

Model-based AI for fault identigdTPeARa fication traditionally relies on 

timefrequency analysis of sensing signals, such as the wavelet-based method, to 

reveal the structural fault as manifested at the characteristic frequencies 

computed using physical models [61]. Beyond timefrequency analysis, 

researchers have also identified correlation between machine structural fault and 

sensing signal that is based on complexity measures in information theory. For 

example, Yan and Gao observed that fault severity level in bearings is highly 

correlated to complexity measures of the vibration signal such as approximate 

entropy, permutation entropy and Lempel-Ziv complexity, leading to reliable 

fault identification [279,280]. Additionally, empirical signal decomposition, such 

as empirical mode decomposition (EMD) has also shown capable of revealing 

the composition of sensing signal and extracting fault related information from 

the decomposed intrin- 

sic modes [70,145].agePTRAEnd 

The advent of data-driven AI, especially DL, has opened a newgedTRAPa 

avenue for fault identification in rotary machines. The main advantage is the 

elimination of the need to compute and select a priori features or measures 

that are relevant to the structural fault [70]. However, the collection of faulty 

data is often limited due to production and safety constraints [71]. As a result, 

data augmentation has 

been one of the main research focuses.gePTRaEndA 

Recently, data synthesis based on generative adversarial 

network,edTRAPag or GAN [78], to alleviate the lack of data from faulty 

conditions for model training has shown great potential. The structure of GAN 

typically consists of a generator and a discriminator (both as neural network, 

Fig. 21). The objective of the generator is to learn to transform samples from 

a known high-dimensional distribution into samples from the underlying 

distribution of faulty data. The objective of the discriminator is to learn to 

distinguish synthetic samples (from the generator) from real samples collected 

from the faulty machines. The performance of both is improved through 

adversarial training, in which the generator is trained to improve the data 

synthesis quality and reduce the discriminator’s accuracy, while the 

discriminator is trained to improve its capability of detecting synthesized data. 

Such adversarial training is expected to arrive at an equilibrium in which the 

discriminator can no longer distinguish synthetic data samples from real ones. 

At this point, the generator can be used for high-fidel- 

ity data synthesis and data augmentation.EndagePTRA 

adPTRAFigure 

 

Fig. 21. Schematic of GAN for data synthesis, adapted from [aEgePTRAnd
 78]. 

The GAN-based data synthesis has been validated in several pub-

APTdegaR lications over the past years, with consistent conclusion that the 

data-driven AI models trained using synthetic data have outperformed the 

ones trained using unbalanced data in fault identification for induction motor 

[227], tool wear [38] and bearing [158]. For example, Shao et al. [227] have 

shown that the fault identification accuracy improvement can be as high as 

close to 50% (from 50% to 99.3%) when the imbalance ratio is 2:1 between 
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the healthy and faulty motor data. Cooper et al. [38] investigated synthesis of 

wavelet spectrums using GAN for non-compliant tool detection in milling. 

Different from the previous works in which the classifier is either constructed 

separately or incorporated with the discriminator, the generator of the GAN is 

inverted to perform non-compliance detection in this work, resulting in a 25% 

improvement in detection accuracy for the dataset with 2:1 imbalance ratio. 

Liu et al. [158] examined the waveform and the corresponding Fourier 

spectrum between the real and synthetic bearing vibration signal (Fig. 22). 

The authors noted that beyond visual similarities, the frequency components 

in Fourier spectrum are well preserved in synthetic data, 

adPTRAFigure 

 

Fig. 22. Consistency between real and synthetic vibration data in time and frequency domains, 

adapted from [158]. agPTRAEnde critical for vibration-based fault 

identification and indicative of good 

performance from GAN.ePTRAEndag 

Besides GAN-based data synthesis, federated learning has alsoedTRAPag 

attracted research interest to bypass the limitation in faulty data quantity. 

Good fault identification accuracy has been reported in several publications 

[75,292]. Zhang et al. [286] investigated a scenario in which data from each 

client is not guaranteed to be available during the training process. The 

motivation is that as each client has full control of its own data, it is possible 

that data from certain clients may not participate during certain stages of the 

training process due to issues such as scheduling conflicts. Such partial 

participation constitutes one of the main differences between federated and 

non-federated learning. In [286], the authors evaluated a federated learning 

scenario with 50 clients, each having a dataset of distinct imbalance levels 

between data of healthy and various faulty bearing conditions. Each training 

epoch has a client participation rate from 80% to 100%. The authors 

demonstrated that federated learning is robust to partial participation and 

achieved fault identification accuracy comparable to the one that would have 

been achieved using centralized training (around 96%). This demonstrates 

federated learning as a reliable technique in addressing limitations in data 

quantity for fault identifica- 

tion of rotary machines.gePRAEndTa 

For critical applications such as fault identiagedTRPA fication, 

once the decision is made by AI, it is imperative to evaluate the logic behind 

the decision against the existing physical knowledge to avoid spurious 

findings. That is, to know exactly how each element in the input contributes 

to the final decision. Research on such post-analysis methods represents the 

first step towards opening the black-box of AI models [9], especially DL 

models, and facilitates broader acceptance of AI- 

enabled applications [230,285].nEARdTPega 

As an example, GrezmakgedTRAPa et al. [79] investigated layer-wise 

relevance propagation (LRP) to determine the prediction logic of CNNbased 

motor fault identification with wavelet time-frequency spectrum of the 

vibration signal as the CNN input. In contrast to the fault identification that 

transforms the input into a discrete probability distribution of motor 

conditions, LRP works backwards by redistributing the final probability 

distribution as relevant score until it reaches the input (Fig. 23). The score 

redistribution follows two rules: (1) the score assigned to each neuron is 

proportional to the multiplication of the activation of the neuron and the 

weights connecting it to the next CNN layer, and (2) all neuron scores within 

each CNN layer add up to one [9]. Based on these two rules, each pixel in the 

spectrum with a positive score can be considered as contributing to the CNN 

decision. The authors observed that the scores in the wavelet spectrum image 

exhibit alternating positive and negative bands, with positive bands largely 

falling on the characteristic frequencies and their harmonics, indicating 

consistency between the CNN prediction 

logic and human knowledge for motor fault identification.dnEARTPega 

Beyond the post-analysis techniques such as LRP, researchers 

alsoagARTdPe investigated network structures that constrain the prediction 

logic to 

eadPTRAFigur 

 

Fig. 23. LRP for interpretable CNN-based motor fault identiRAEndPageT fication [79]. 

be physically consistent, for example, a continuous wavelet convolutional layer 

(CWConv) for bearing fault identification [153]. Different from standard CNN 

kernel that is unconstrained, the wavelet kernel is parameterized by two wavelet 

parameters: scaling and translation. As a result, the behavior of the kernel is 

consistent with the known physical properties of wavelet, leading to improved 

model interpret- 

ability as compared to standard CNN.PTRAEndage 

4.3edPTRAH2ag. Machine remaining life prognosisRAEndagePT 

Prognosis aims at predicting the progression of machine perfor-edTRAPag 

mance from its current status to its functional failure. Accurate RUL estimation 

provides the technological basis for predictive mainte- 

nance [72].PTRAndeagE 

Model-based method in RUL estimation relies on physical degra-gedTRAPa 

dation models, such as the Paris’ law or the Arrhenius equation for characterizing 

damage propagation [198]. As the parameters in these equations are often 

undetermined, calibration is needed to update model parameters using sensor 

data. The degradation models with updated parameters then carry out the 

estimation of RUL. Such a combination of physical model-based prediction and 

data-driven parameter update can be considered a hybrid AI approach. Among 

the techniques under this category, a state-space model using particle filter has 

attracted much research interest due to the root in 

Bayes’ theorem [7].AEndagePTR 

BayesagedTRAP ’ theorem allows to calibrate the degradation model 

parameters using both physical relationship and sensing data [7]. Specifically, the 

physical relationship can be considered as the prior knowledge about the 

parameters, while sensing data allows to compute the likelihood of the prior 

knowledge given the real-world observations. Bayes’ theorem fuses this 

information to arrive at a more accurate, posterior estimation of the model 
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parameters. In practice, particle filter utilizes weighted particles to represent the 

uncertainty in model parameters, making it suited to characterize any 

distributions underlying parameters. Recent development of particle filter 

includes a multi-modal particle filter [267] that can accommodate different 

degradation modalities and a local search particle filter that improves the 

convergence of the algorithm in characterizing the 

model parameters [263].dePTRAnaEg 

Beyond the state-space model, a hybrid AI method has also beengedTaRAP 

developed by integrating physical equations and ML. The main idea is to use ML 

to learn the difference between the physical equation and the real-world 

observation and thereby, complementing the physical knowledge. For example, 

Zhang et al. [287] developed physics-guided GP (PGGP) by embedding a 

degradation equation into its mean function (Fig. 24). GP is a ML method where 

machine performance at any time step in the future is predicted as a Gaussian 

distribution that is conditioned on its past performance [287]. Furthermore, 

uncertainty analysis is inherently incorporated. The authors demonstrated that the 

hybrid AI outperforms the pure datadriven approach in long-term estimation of 

RUL of HVAC systems and Li-Ion batteries by up to 75% in terms of prediction 

error. A simi- 

lar work for bearing RUL prognosis is reported in [107].ndTagePRAE 

Additionally, DL has also been integrated with BayesRTdeagPA ’ theorem 

for RUL estimation [19]. The concept is that for any observed data, there are an 

infinite number of possible models, and the prediction should consider the results 

from all of them. More specifically, each model is assigned a model probability, 

and the prediction result can be considered as the sum of each model’s prediction 

weighted by the corresponding model probability [19]. The effectiveness of this 

method has been validated on Li-Ion battery [293]. In addition to the methods 

described above, other prognosis techniques have also been developed, such as 

the dynamic time warping method that aims to find the optimal match between 

the degradation trajectory to be pre- 

dicted and a reference trajectory [120].TRAEndageP 

gedPTRAH1a5. AI for automated and flexible assembly and 

disassemblyaARPegdTnE agedTAPRThe following chapter (Fig. 25) discusses the 

advances and potentials of AI for assembly and disassembly. Specifically, the 

contribution of AI to the growing challenges of assembly planning and material 

flow control is first described, followed by the fundamental AI-based advances 

in robotics for automation of assembly and disassembly. The rapidly emerging 

research in the field of AI for HRC to cope with the rising demand for flexibility 

and changeability is also discussed, followed by an overview about future 

potentials of AI for assembly 

and disassembly.adePATFigurR ndePTRAEag 

 

Fig. 25. AI-related research for automated assembly and disassembly.ndEARTPage 

d2HARTPega5.1. Assembly planning and material flow controlndRAEagePT 

APRaTdegThe increasing variety of products, especially in the automotive 

industry, goes hand in hand with the growing demands on the flexibility, 

changeability and reconfigurability of assembly lines, which have seen the 

evolvement of lineless structures such as matrix production [237]. These growing 

demands, coupled with the comparatively low degree of automation of complex 

handling and assembly operations, demographic development, and associated 

increase in average age of assembly workers, have resulted in a significant 

increase in the complexity for assembly planning and material flow control and 

highlighted the need for efficient methods to search for 

the optimal solutions among combinatorial variety of outcomes.ndagePTRAE 

5.1.1agdTRAPe. Assembly planning & optimizationdgePTRaEnA 

Introduced in 1975, GA, a subdomain of evolutionary computa-APagedTR 

tion, is regarded as a means for solving a broad range of optimization 

problems for assembly planning and scheduling. For example, Dini et al. [49] 

proposed a GA-based method for generating and evaluating assembly 

sequences. Also based on GA, Raatz et al. [204] proposed a method for 

optimizing the interlocking of human and robot operations in collaborative 

robot-assisted assembly. Kardos et al. [114] suggested a constraint 

programming approach to assembly planning based on boundary-aware 

decomposition to account for process 

complexity.nePTRAEadg 

 

Fig. 24. Physics-guided Gaussian process for system performance prognosis (with Lithium-Ion battery as a case study), adapted from [gePTRAEnda 287]. 
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Complementing the GA-based method are approaches for knowl-

dageTRAP edge-based solutions generation through ontologies. Ahmad et al. 

[3] described a new method in which inferences are generated based on 

explicit knowledge mapped in modular ontologies, based on which product 

and process requirements are mapped to available resources. Additionally, 

self-learning and self-optimizing assembly systems have been proposed for 

adaptive assembly by Kluge et al. [125]. Planning for general manufacturing 

systems has been described in Ch. 2.EATPadgeRn 

5.1.2agePARTd. Material flow controlanEARTPegd 

Due to theTdegaPAR flexibilization of assembly based on the dissolution 

of rigid line structures and transition to matrix production, the needs for 

flexible solutions for material transport using mobile robot platforms are 

growing, opening the potential of AI for increasing the degree of automation 

of autonomous mobile robot (AMR). Among a great wealth of research for 

AMR, learning unknown environments and automatic navigation forms a 

major focus. Various methods of supervised learning, self- and semi-

supervised learning, unsupervised learning, and RL are developed to identify 

movements of AMR relative to its environment. These methods can be 

combined and assigned to artificial perception. A review of vision-based 

navigation 

is provided by [43].eagdnEARTP 

For research of materialPARTdega flow control in known environment, 

major research focuses have been placed on “obstacle avoidance” [23], 

“indoor navigation” [87], and more recently with the rise of automated 

warehouse, “multi-robot cooperation” [155]. As an example, Malus et al. 

[168] combined perception and navigation-related abilities of AMRs with 

MARL, where AMR agents learn to bid for orders to realize self-organizing 

order dispatching. Specifically, agents are given order specification and learn 

to form a bid based on their location and immediate plans. The reward 

function is designed to reward all agents upon order completion by any 

individual agent, which stimulates agent learning towards cooperation. 

MARL training is carried out first using a simplified simulation before 

transferred to a physics-based simulation of AMR fleet for validation (Fig. 

26). The authors demonstrated that the learned policy outperforms 

“closestfirst” policy by learning to cooperate and adapt to the workspace lay- 

out.dPTRAFigurea agPTRAEned 

 

Fig. 26. MARL-based order dispatching, adapted from [TRAndEgeaP 168]. 

TRAH2agedP5.2. Potentials of AI enhanced robotics for 

assemblyRAEndagePT 

agedTRAPIndustrial robots are essential for automation of assembly 

operations and have benefited from the considerable progress in fundamental 

research in robotics through the development of AI methods. Their 

contribution to robotic object handling and manipulation plays 

a crucial role in enabling robotic assembly.EndagePTRA 

APagedTR5.2.1. AI-enhanced "Pick and Place"ageTRAEndP 

agedTRAPHandling operations in assembly often have a degree of 

complexity, which requires the combination of several cognitive and sensory 

motor abilities of a human such as learning/ reasoning, visual cognition, 

flexible mechanics, and haptic cognition [131]. As a result of continued 

progress in ML for robot-assisted manufacturing, the field of "robot learning" 

as a subdomain of ML has gained increasing attention in recent years. In 

[159], Liu et al. presented a comprehensive 

review of this field.TRAEndegaP 

edTaAPRgAdvances in the field of visual object recognition and detection 

through CNN form the basis to achieve hand-eye coordination during object 

grasping and manipulation. In early works, Levine et al. [149] demonstrated 

the robot's ability to independently learn to grasp unknown objects based on 

800,000 gripping cycles of 14 robots working in parallel. The idea is to 

establish a neural network-based mapping between workspace sensing 

images and robot action through interaction between robot and workspace 

such that grasping 

success probability is maximized.RTPeganEAd 

egaATRPdOne of the limitations in [149] is data collection with physical 

experiment that lasts more than 2 months. This motivates other researchers to 

explore methods with improved learning efficiency. For example, Finn et al. 

[62] demonstrated that one-shot imitation learning could reduce needs for 

training data. One-shot imitation learning can be considered a variant of meta-

learning where the objective is to optimize meta-parameters such that a small 

number of gradient steps can produce good performance under new tasks. 

Additionally, simulation-based methods have been investigated to replace 

physical robots and facilitate the learning process. To bridge the sim-to-real 

gap such that the grasping algorithm learned in simulation can be translated 

into the real world, Rao et al. [209] have investigated cycle-generative 

adversarial network (Cycle-GAN) to synthesize real-looking texture for the 

simulation (Fig. 27), and 

reduced learning time from months to days.TAageRPdnE 

PgedARTaMore recently, Wen et al. proposed a method to learning 

category-level, task-compatible grasping using simulation data [272]. The 

adPTRAFigure 

 

Fig. 27. Transformation of simulated image to support simulation-based robotic grasp- 

ing learning [209]. PTRAEndage 

method achieved category-level generalization through a CNN-based canonical 

transformation. Then, grasping heatmaps are generated for different part 

categories based on grasping stability and task compatibility (Fig. 28). A survey 

on ML vision-based robotic grasping and 

manipulation is presented in [124].agePTRAEnd 
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RAFiguredaPT 

 

Fig. 28. Robotic grasping learning based on canonical transformation and simulation- 

based grasping probability estimation, adapted from [dRgePTaAEn 272]. 

In addition to learning algorithms, GabrieledTRaPgA et al. [68] optimized 

object grasp points based on constrained GA, which evaluates both part’s mass 

distribution and the holding force each gripper can provide. The developed 

method first identifies potential grasp points based on a point cloud of the 

geometry. Then, part segmentation and identification of center of mass are carried 

out. Finally, GA-based optimization is implemented with weighted fitness criteria 

for evalu- 

ation and selection of optimal grasp points.gaTRPAEned 

To ensure a robust, fast, and accurate stacking process, BobkadTRAPage

 et al. [21] presented a deviation compensation strategy which increases accuracy 

through modeling of process-specific deviations. Potential multidimensional 

regression methods for modeling the deviations are compared. Supported by 

ANN, placing operations with significantly increased precision are performed by 

a robotbased fuel cell stacking system. The contribution of the work is the model 

simplicity where the authors designed a feed forward ANN (FF-ANN) with only 

3 hidden layers and 40 neurons to achieve the significantly optimized stacking 

accuracy of limp fuel cell components. In [284], a learning-based method for 

joint object picking and placing has been developed to assist in autonomous 

object assembly using height maps of both object and assembly kit. Specifically, 

three neural networks are developed to predict picking location, placing location, 

and the needed rotation of the object before placing, as shown in Fig. 29. The 

novelty of the study is a self-supervised approach to use disassembly as a means 

of data collection for network training that minimizes human intervention. The 

authors demonstrated that after 10 h of training, the method can achieve a 

94% assembly success rate.TEAeadgPnR 

Fig. 29. Joint learning of object picking and placing for robotic assembly [284]. 

5.2.2gedTRAPa. AI methods for contact-rich joining tasksePTRAEndag 

A humandTRAPage ’s ability to manually perform complex joining processes 

with small tolerances such as peg-in-hole insertion is based on a fusion of visual 

and sensory motor abilities in combination with cognitive skills for motor control 

as well as dexterity and compliance of the human arms and hands. However, 

translating such capability into complex robot-based assembly operations, 

especially the transition from free motion when approaching the workpiece to the 

moment of contact between robot and stiff environment, is challeng- 

ing [133].RAEndagePT 

For these types of contact processes, two control strategies areAPTdegaR 

commonly applied, indirect control methods such as compliance or impedance 

control and direct force control. In these operations, one of the fundamental 

challenges is to control the position and force of the end effector at the same time, 

where the stiffness as well as position and shape of contact object often are not 

exactly known. Qiao et al. [203] introduced a learning mechanism to compensate 

for this lack of knowledge. Through a "reinforcement" function, regarded as a 

principle for parameter identification and adaptation, the method optimizes a 

joint position and force control of the robot in contact 

with the unknown constraint environment.ageTRAEndP 

Other studies of control of contact-rich tasks were focused on MLaPARTdeg 

[148] to combine visual data as generated from camera data in handeye 

coordination scenarios with other sensing modalities such as force/torque and 

proprioception. For example, Lee et al. [144] proposed a multimodal 

representation learning approach, where camera images, force/torque signals and 

data from the robot encoders for current position and velocity are jointly encoded 

into one model comprising MLP and CNN as shown in Fig. 30. The authors also 

proposed a self-supervision approach to avoid time-consuming data labeling. By 

investigating model-free RL to determine subsequent robot action, the need for 

an accurate model of process dynamics can be avoided, which is difficult to 

obtain for contact rich tasks. Haninger 

FeugrARTPdiaet al. [84] demonstrated the fusion of image and 

force/torque data 

agePTRAEnd 

through variational autoencoder (VAE) for peg-in-hole insertion. The VAE 

learns the representation of the data by minimizing the difference between 

each sample of the real data used for encoding and the predicted state 

generated from the decoder. Based on the mutual information between 

these states, the controllability of the model is evaluated. In addition to 

torque/force, Pfrommer et al. [201] proposed a ContactNets-based method, 

which learns the contact parameters 

including friction without contact or force sensing.RAEndgaePT 

APTdegaR5.2.3. AI enhanced assembly of deformable objectsagePTRAEnd 

agedTRAPHandling and assembly of deformable objects traditionally 

can only be carried out manually whereas robot-based handling and 

assembly is mostly limited to rigid objects. This is due to the heterogeneous 

geometrical and mechanical properties in combination with non-linear 

dynamics that are challenging for the classical modeling 

and control methods [167].agePTRAEnd 
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gedTRAPaThe potential of AI-based approaches to identify the control 

parameters or learn the control policy without an explicit model, e. g. by 

teleoperation or kinesthetic teaching, is high, as shown in [143] for 

complex operations such as force controlled bimanual robotic handling 

operations of deformable linear objects (DOL) and weaves. In contrast to 

teleoperation or kinesthetic teaching, Wu et al. [275] introduced an 

approach for learning of deformable object manipulation without 

demonstration through model-free visual RL. In this work, the pick and 

place policies are learned separately to avoid challenges such as reward 

assignment in RL. The developed solution first trains place policy with 

uniformly random pick, and then selects the optimal pick point that 

maximizes the value function in RL. In robotics the research field of 

deformable object manipulation (DOM) is steadily growing with new 

approaches often based on ML, especially 

DRL but also artificial visuomotor learning [148].dEangePTRA 

aedTRAPgIn [167], Makris et al. gave a comprehensive overview about 

control methods for handling of deformable objects in assembly. The 

overview includes different ML based methods such as SVM and neural 

networks for deformation control, extraction of grasping poses, pose 

estimation of grasping garment or the estimation of deformations of soft 

objects with unknown mechanical properties. It also refers to RL based 

methods for learning of manipulation of ropes, 

clothes, and fluids.agePTRAEnd 

agedPTRAH25.3. AI based disassemblygePTRAEdna 

agedTRPACompared to the assembly of products, automated disassembly 

represents a greater challenge due to the often-unknown internal structure. 

Also, the evaluation of the form of separation of inter-component connection 

can be more complex than the planning and design of the connection itself. 

Vongbunyong et al. [256] introduced a cognitive robotics-based system for 

disassembly of LCD screens. The system is equipped with cognitive functions 

for reasoning, execution monitoring, learning and revision. It stores relevant 

information from successful disassembly processes of a product. The results 

show that the system is flexible enough to deal with any product models with- 

out prior information.RAEneadgPT 

RAPagedTPhysics-based simulation and search algorithms have also been 

investigated for disassembly planning. One example is reported in [247], 

where a progressive Breadth-First Search (BFS) is developed and 

implemented in combination with a rigid-body simulator ensuring axis-

aligned torques and forces for each component. Specifically, given assembled 

states of all components, the method iteratively searches for an ordered 

sequence of disassembly paths that connect the assembled state and a 

disassembled state for each component subject to the precedence relationship. 

At each iteration, the developed method tries to disassemble each of the 

remaining components until all are disassembled. The authors demonstrated 

the effectiveness of the method by solving complex assemblies such as 

electric 

motor in the simulated evaluation.PTRAEadgen 

edTRAPagOther researchers have been investigating computer vision for 

identification of components in the assembled part, which serves as the basis 

for disassembly. These techniques include CNN [169] and its variants such as 

you-only-look-once, YOLO [15] and region-based CNN (RCNN) [63,281] 

that have shown capable of segmenting com- 

ponents such as screwhead in the assembled part.nEATRPeadg 

AH2RTPdega5.4. AI for symbiotic human robot collaborationagePTRAEdn 

agedTRAPHRC is regarded as a means for increased flexibility of 

assembly lines and as a contribution to the change from mass production to 

mass customization [261]. Among various elements of HRC, the adaptability 

of robots to the workspace as well as human worker 

actions are fundamental to realize seamless HRC [132].nRTegadPEA 

RAPegdaTIn recent years, AI-based approaches for enhancing robot’s 

perception of human action have been introduced. Wang et al. [266] described 

a CNN-based approach for human action recognition, which serves as the 

basis for human action prediction. Specifically, the authors investigated 

transfer learning to resolve the limitation in manufacturing data collection. 

The developed method has achieved an action recognition accuracy of 96.6% 

in a car engine assembly scenario. As a further step towards HRC, human 

trajectory prediction is investigated in [288], which is critical to enable robot 

to deliver part/ tool to the desired location to realize collaboration. 

Specifically, trajectory prediction is realized through an RNN. The novelty of 

the work includes two functional units for parsing the evolutionary pattern of 

human body joints and their coordination. In a car engine assembly case study, 

the developed method allows robots to synchronize with 

humans to realize pro-active part/tool pick-up and handover.EndagePTRA 

gTdeaPARWang et al. [262] presented a novel form of communication 

between human and robot for HRC through analysis of brainwave signals. In 

this approach brainwaves are first converted to time-frequency images which 

serve as an input to a VGG16 (a variant of CNN). The network then 

determines the human command through predicting the subject, predicate, 

and object, such as “robot assembly block” (Fig. 31). The predicted command 

is then translated to robot action via function blocks. The feasibility of 

brainwave-based robot control is demonstrated by car engine assembly. This 

example 

 

Fig. 30. Neural network architecture for self-supervised multimodal representation learning of a robotic peg in hole insertion task [AEndagePTR 144]. 
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adPTRAFigure 

 

Fig. 31. VGG16 structure and adaption to time-frequency images [dPageTRAEn
 262]. 

underlines the high potential of AI for task-oriented robot programming [134] as 

a future means for reduction of robot programming effort in assembly. Recent 

studies of HRC have been summarized by 

Semeraro et al. [225].agePTRAEnd 

TRAH2degaP5.5. The future of AI-based assembly and disassembly 

automationaePTRAEndg 

agPARTdeThe ongoing research shows a high potential of AI for the 

improvement of robot capabilities to support assembly and disassembly. A 

potential future research direction is high payload applications, as current AI-

based robotic research has restricted payload limits. For these applications, 

further improvements of cognitive robotic skills to ensure safe interaction 

between human and robot are required. The steady increase of exoskeleton 

support systems in assembly will also benefit from the development of AI 

methods for improved detection of human intentions and states as well as the 

adaptive control of robot kinematics (Fig. 32) [137]. As a result, the adaptation 

of the support to the worker and the respective assembly operation can be 

individually controlled in the sense of a symbiotic 

eadTRAFguriPconnection between human and exoskeleton.ndagePTRAE 

 

Fig. 32. Soft robotic assist system PowerGrasp. Left: dual arm system, right: single arm 

system with elbow and wrist/finger actuator [EgPRTaAedn 137]. 

RAPedagTA lot of promising research work in recent years has shown the 

feasibility of AI-based approaches to enable robotic object handling for 

assembly/disassembly. Their broad application in industrial scenarios will 

generally require an integration of intelligent planning methods and a high in-

process adaptivity of the robot. The increase of cognitive skills of the robot such 

as tasks recognition and automated generation of control parameters also shows 

a high potential for the reduction of effort for robot programming which so far is 

regarded as one of the major obstacles for the application of robots.EndTPeagRA 

dPTRAH1eag6. Industrial case studiesagePTRAEnd 

agedTRAPThe ultimate goal of AI in manufacturing is to have various AI 

techniques developed successfully translated into realization of 
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smart manufacturing. To this end, representative industry case stud- 

ies are presented in this chapter.agePTRAEnd 

agedPTRAH26.1. Optimization of production schedulingePTRAEndag 

edTRAPagIn general, manufacturing is about turning raw materials into 

products. For manufacturers that make different types of products, each 

production line is often focused on producing one single type of product at any 

time. The production scheduling problem is therefore to determine how long 

each line should take one type of product before switching to another type, with 

the objective of fulfilling the maximum number of orders while minimizing the 

cost. The scheduling problem is usually constrained by factors such as the 

availability of production lines, pending orders, predicted incoming orders, 

inventory levels, and production rates of each product type. Additionally, the 

cost of switching is a significant factor to consider, which can encompass 

scenarios such as the production of off-grade products sold at reduced margins 

and the associated downtime of production lines.agePTRAEnd 

agedTRAPSimilar to the research efforts described in Ch. 2, Dow Chemical, 

which has 50+ plants worldwide with each manufacturing 2050 products, has 

developed a RL-based system named AlphaDow to tackle challenges in 

production scheduling [118]. AlphaDow is based on the actor-critic RL 

framework as shown in Fig. 33. At high-level, it ingests the state of the current 

production schedule and determines the schedule change that is needed for the 

subsequent operations (such as product switching). In AlphaDow, the state 

consists of manufacturing data (such as production rates of each product type), 

customer demand (such as open orders, predicted orders), current inventory 

levels, as well as maintenance schedule. The objective of RL includes 

maximized on-time shipments, minimized inventory levels, minimized off-

grade products, etc. Additionally, the technique of masking is incorporated at 

the RL output to suppress product switch- 

TRAFigreuadPing that is incompatible with the production 

system.ePTAdERnag 

 

Fig. 33. Actor-critic RL for production scheduling, adapted from [agePRAEnTd
 118]. 

agedTRAPThe training of RL is carried out using the method of 

populationbased bandits (PB2) [199], which is based on a multi- agent approach 

that leverages GP-based Bayesian optimization to improve the search efficiency 

of optimal RL hyperparameters. The outcome has shown that the RL-based 

approach is able to reduce overall cost as compared to heuristic rule-based 

scheduling method over a period of 12 months in a simplified product scenario 

consisting of 5 different products. Dow Chemical expects to expand the method 

into all its 

plants in the future.gePTRAEnda 

gedPTRAH2a6.2. Automated chip detection and removal for 

machininggTdnEARPea 

agedTAPRCutting metals often results in chips that are prone to accumulate 

around the tool and workpieces, leading to degraded processing. As a result, 

operators are traditionally required to remove the chips regularly. The cleaning 

process takes away valuable machine operation time and hinders automation. 

DMG Mori has developed “AI chip removal”, an AI-based system for 

automated chip accumulation analysis and chip removal path generation as 

shown in Fig. 34 [50].agPTREndAe 

 

Fig. 34. “AI chip removal” system from DMG Mori [ePTRAEndag 50]. 

RAPagedTThe “AI chip removal” system consists of four steps. First, the 

machining chamber is equipped with two cameras to take high-resolution 

images of the entire chamber. The cameras are enhanced with water-repellent 

films and air blow to prevent chips and coolant from adhering that can degrade 

the image quality. The images are then analyzed using image recognition 

techniques from computer vision to evaluate the location and level of 

accumulation of chips, resulting in heatmaps that provide comprehensive 

information about chips in 

the machining chamber.AEndRagePT 

ageTRAPdThe heatmaps serve as the basis for cleaning path generation, 

which can be considered a process optimization problem similar to those 

described in Ch. 3. Specifically, the necessity of coolant cleaning and the 

amount of coolant discharging are computed based on the chip locations as well 

as the level of accumulation. Finally, chip removal is executed through chip 

flush nozzles with a wide movable range based on the determined cleaning path. 

Compared with the conventional fixed nozzle system that is limited when chip 

accumulation pattern or workpiece type changes, the “AI chip removal” system 

enables automatic angle adjustment that is adaptive to different accumulation 

patterns and workpiece types, suited for machining of high-mix products and 

contributing to improved operating rates of 

machining system.agePRAEndT 

AH2agedPTR6.3. Natural language processing for machine 

maintenancendgaePTRAE 

ageTRAPdVarious AI techniques have been presented for machine condition 

monitoring, fault diagnosis and RUL prognosis in Ch. 4. These techniques are 

mainly based on sensor data, such as time series and images. However, this data 

does not contain information that is equally important for predictive 

maintenance, such as describing what fixes were implemented to resolve the 
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discovered quality issues. The vast majority of such information is buried in the 

text data, such as main- 

tenance records.ePTRAEndag 

agedTRAPCompared to time series and image data, text poses unique 

challenges for pattern recognition. For example, text may contain typos, 

acronyms, abbreviations, non-standard concatenations, etc., making it 

especially difficult for pattern recognition. As one of the early works, 

researchers at Boeing have developed the PArts Name Discovery Analytics 

method, or PANDA, that leverages linguistics domain knowledge and natural 

language processing (NLP) to extract part names from maintenance records as 

a first step towards effective 

text pattern recognition [192] (Fig. 35).adnEARTPeg 

ageTRAPdThe method starts by user entering a few basic “seed” part name 

heads, such as fan, valve, relay, and switch. This is followed by the construction 

of tree data structures, such that the first level nodes are the entered part heads 

with the descendants being the tokens that precede them in the dataset. The tree 

is then traversed in depth-first 

PTRAFiguraed 

 

Fig. 35. PANDA method for part name extraction from noisy text [agePTRAEnd
 192]. 

manner as long as the minimum frequency criteria is satisfied, result- 

ing in candidate part names.aePTRAEndg 

edTRAPagThese candidates are purified using a series of empirical filters 

before generating training samples for ML training. Rather than using the part 

names alone, their k-previous and k-next word tokens and their part-of-speech 

tags are also used as features for ML, which provide each part name a context 

in the maintenance record. The training samples are then used to train sequence 

ML models that can predict sequences of tokens, such as conditional random 

field (CRF) or LSTM. The part name predicted from the trained ML model will 

subsequently pass through a few human-in-the-loop steps for validation. In 

evaluation, PANDA scored an 81% accuracy for part name extraction, 

demonstrating its capability of analyzing text data and 

supporting maintenance activities.agePTRAEnd 

RAPgaedTMore recently, the research of NLP has exploded with the 

development of generative AI and large language models (LLMs). These 

developments have rapidly transformed the state-of-the-art NLP and opened 

new possibilities to advance smart manufacturing. These 

new developments are described in Ch. 7.RAEndgaePT 

RAH2agedPT6.4. Human activity recognition for assemblyEndagePTRA 

agedTRAPAs manufacturing is transitioning from mass production to mass 

customization, it is becoming increasingly difficult for workers to achieve a 

high level of assembly quality without making errors due to the high variety of 

operations that they have to carry out. While innovation in robot technologies 

as described in Ch. 5 can be leveraged to assist human workers, human workers 

are still needed in the foreseeable future to handle operations that require 

flexibility and dexterity, such as picking up small objects (e.g., screws) and 

installing them in a constrained space. The increasing variety of operations also 

makes it more difficult to assess worker’s performance and timely 

detect error.gePTRAEadn 

gedTRAPaTo tackle these challenges, the German Research Center for 

Artificial Intelligence (DFKI) and Hitachi have jointly developed AI-based 

technology for human activity recognition of workers through multi- 

modal sensor fusion, as shown in Fig. 36 [45].agePTRAEnd 

geRPATdaThe primary sensors consist of an eye-tracking glass and an 

armband, generating gaze point and muscle activation signal as sensing data, 

respectively. Human action recognition is carried out by training two deep 

neural networks to analyze gaze point for object recognition (e.g., screw) and 

muscle activation signal for action recognition (e.g., twist). Additionally, this 

system can also assist workers in identifying correct types of parts/tools during 

pick up (through gaze point), assessing quality of assembly, such as tightening 

level of screws, by analyzing the muscle activation signal, and evaluating 

ergonomics by utilizing the human pose and the muscle activation 

ugeadPTRAFir 

 

Fig. 36. Flowchart of AI-based human activity recognition [ndagePTRAE 45]. 

data (Fig. 37). DFKI and Hitachi have demonstrated the effectiveness of the 

system in manufacturing operations and preventing human 

error in assembly.PTRAEndage 

TRAFgureadiP 

 

Fig. 37. Object detection and screw tightening level prediction [agePRAEndT
 44]. 
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edPTRAH1ag7. Challenges and future directionsagePTRAEnd 

TRAPaedgAdvancement in manufacturing has continued to drive the pursuit 

for enhancing the performance, robustness, and trustworthiness of AI methods 

to transform data into actionable insights. At the same time, the continued surge 

in data acquired from manufacturing processes and systems has presented new 

challenges for researchers and practitioners to more efficiently harness the 

potential of AI in realizing smart manufacturing. This section outlines ten 

recommendations for 

future research.EndagePTRA 

PTRAH2aged7.1. Unsupervised learning for unlabeled dataEndagePTRA 

TRAPagedImproving data availability is one of the central focuses in 

datadriven AI. However, manual labeling of manufacturing data can be a 

daunting task. Most of the reported research of AI in manufacturing has been 

focused on supervised learning. For datasets used to develop supervised 

learning algorithms, data labeling is either predetermined before data collection 

(such as pre-seeding structural 

fault into machine) or carried out manually after data is collected.dagePTRAEn 

APagedTRTo improve the flexibility and efficiency in data labeling, one of 

the future research topics in AI in manufacturing can be unsupervised learning. 

The focus is on characterizing patterns embedded in data such that these 

patterns can be used for a variety of tasks and in combination with supervised 

learning. The goal is to utilize unlabeled data to not only develop data-driven 

AI models, but also improve the models’ capability to generalize as compared 

to those developed using a limited number of labeled data. Early work on 

unsupervised learning for model generalization has demonstrated its 

effectiveness, for example, for motor fault diagnosis in [215]. The authors 

demonstrated that the features learned from unlabeled data of two motor 

conditions using unsupervised learning can be well generalized to additional 

motor conditions, as reflected by a 9.6% higher diagnostic accuracy when 

compared to supervised method that is 

trained using a limited amount of labeled data.agePTRAEnd 

agedPTRAH27.2. Integrating physics with AIgePTRAEnda 

edTRAPagIntegrating physical laws and principles with AI has long been 

regarded as a crucial milestone to enable the utilization of physical knowledge 

and information extracted from sensor data to effectively solve manufacturing 

problems [80]. Promising results have been achieved in applications such as 

AM part property prediction and 

tool wear prognosis [246,259].agePTAEndR 

geTRAPdaNevertheless, AI architecture and physical components have 

largely been treated independently from each other, with the output from one 

side serving as the input to the other. Many AI models, particularly deep 

learning models, remain decoupled from physical domain knowledge. A 

potential solution lies in designing AI structures that possess a physically 

interpretable behavior, allowing better understanding and optimization of the 

properties of related AI models. An example of early effort in this direction is 

to replace the first layer in a CNN that is randomly generated with a continuous 

wavelet convolutional layer [153]. The resulting new layer mimics the behavior 

of wavelet transform, which is grounded in mathematical principles and 

decomposes the input signal into the time and frequency domains, thus ensuring 

physical interpretability of the layer output. At the same time, parameters of the 

wavelet layer can be continually optimized by the incoming data. To accelerate 

physics-AI integration and enhance applications to manufacturing, further 

research on AI model design that incorporates physical domain knowledge is 

war- 

ranted.daePTRAgEn 

dPTRA2Hgea7.3. Embedding safety constraintsagePdnEART 

TRAPgaedWhile integrating physical knowledge with data-driven AI 

contributes to improving the interpretability and physical consistency of data-

driven methods, for AI-based decision-making that involve critical operations 

such as real-time control of manufacturing processes and collaborative robots, 

an extra layer of safety constraints is needed 

to avoid catastrophic outcome.dnEARTaPeg 

RAPeagdTAs one of the main drivers for AI-based decision-making, 

research using reinforcement learning has shown to be able to alleviate this 

limitation through algorithm training in a simulated environment before fine-

tuning in real-world scenarios [52]. Still, such an approach cannot eliminate the 

safety concerns entirely. A promising future research direction is to combine 

AI-based decision-making with model predictive control (MPC). MPC has seen 

significant success in recent decades and has established itself as the primary 

method for the systematic handling of safety constraints [88]. By combining the 

constraint satisfaction capability of MPC with the modeling capability of data-

driven AI, integrated models can be developed as shown in Fig. 38. An early 

work is the development of MPC-based safety filter [258]. The main idea is to 

solve an optimization problem to find the safety-compliant control signal that 

is the closest to the output from the data-driven RL algorithms. This method is 

suited for any data-driven decision-making algorithms 

and has been validated in the research of self-driving vehicles.aePndgEART 

PTRAH2aged7.4. Controlling false discovery rate and causal AIAPTREndage 

adgTeRAPOne of the most promising aspects of AI for manufacturing is the 

discovery of new knowledge. For example, for complex processes such as AM 

[122] and semiconductor manufacturing [264], it is essential to be able to screen 

a large number of process parameters and determine which ones are the most 

influential, in order to effi- 

ciently achieve process optimization.PTAEndRage 

agedTRPAThe primary challenge for AI-based scientific discovery is to 

ensure low false discovery rate (FDR), as high FDR can result in significant 

waste of effort in the subsequent confirmatory study. 

 

Fig. 38. Integrated method combining constraint satisfaction from MPC and modeling 

capability of data-driven AI, adapted from [88agePTRAEnd ]. 

Common post-analysis techniques such as SHapley Additive exPlanations 

(SHAP), while effective in quantifying the influence of process parameters on 

the part property, are not able to distinguish correlation from causation 

[74,164]. Various research efforts have been made to tackle this challenge. For 

example, knockoff filter [13] has been developed to control FDR for data-

driven AI. The main idea of knockoff filter is to construct dummy parameters 

that are designed to mimic the structure found within the existing parameters 

while exhibiting feature importance statistics in a way to allow accurate FDR 

control. Another promising branch of research is the emerging causal ML, 
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which aims to combine causal inference framework with data-driven methods 

to ensure validity of findings [165]. These studies should motivate 

manufacturing researchers to develop more rigorous and reliable procedures for 

continued scientific discovery 

using AI.RagePnTAEd 

TPdegaRAH27.5. Extending NLP with embedding and 

transformerdRAEnagePT 

agedARTPWhile NLP has been investigated for manufacturing as described 

in Ch. 6.3, the process of AI algorithm development generally lacks systematic 

guidance and often requires empirical design. Handling text has long been a 

challenge to AI due to the limitation in transforming words into computable 

elements while retaining the semantic structure. Breakthrough came in the 

2010s through embedding 

[174] and the transformer architecture [254].AERTPgadne 

TRPagedAThe technique of embedding is characterized by the mapping of 

words to their representations in a high-dimensional space [174]. To establish 

domain-specific embedding, a key step involves training of the mapping to 

maximize the consistency between an individual word and its existing 

manufacturing context while minimizing the consistency with non-existing 

contexts. This enables the implicit encoding of word semantics. The result is 

that semantically similar 

words exhibit similar representations.agePTREndA 

gedTRAPaOriginally designed for language translation, the structure of 

transformer features a set of self-attention that allows to capture and quantify 

the association between words in the translated sentence and the original 

sentence [254]. With sentences encoded using embedding, transformer enables 

massive parallel computing to 

achieve state-of-the-art performance in translation.ndgaPEAReT 

ARTdPgaeOne promising future research direction for AI in manufacturing 

is to utilize transformer (and its variant) as a backbone model on top of which 

specific text-based analysis module can be extended. Early progress includes 

information parsing from maintenance logs [33], which confirms the potential 

of transformer as a powerful tool to support the development of language-based 

AI methods and applica- 

tions.RTAEdagenP 

egH2ARaTPd7.6. Learning from human demonstrationdnEARTPega 

gdaPARTeIn the era of Industry 5.0, human workers will be back in the 

spotlight as the concept of "human-in-the-loop" acknowledges the crucial role 

that human expertise plays in manufacturing settings [186,278]. 

The emphasis on leveraging the full potential of human expertise provides an 

opportunity to develop skill transfer from human demonstration to AI 

algorithms, with potential benefits including rapid reprogramming of robot to 

learn new skills without having to rely on 

large-scale data collections [149].agePTRAEnd 

RAPagedTOne of the promising directions is imitation learning, which 

enables a robot to acquire the ability in fine manipulation in assembly by 

learning from human demonstration via teleoperation [294]. To reduce the error 

compounding effect due to the difference between the training and testing 

scenarios, the algorithm learns to implicitly associate sensing images to the 

robot actions on an average basis rather than aiming at reproducing actions at 

each instant. Early results have shown that imitation learning through 

teleoperation can achieve human-like capability for object manipulation and 

assembly after only 10-min human demonstration. In a follow-up work, the 

authors further installed the manipulator on a mobile platform, drastically 

increasing the capability of this setup [66]. Teleoperation has also been 

integrated with virtual reality (VR) to enable more flexible human 

demonstration [291]. Future research of imitation learning in manufacturing 

can also be focused on extending its application beyond robotics to realize skill 

transfer from human to AI. Additionally, imitation learning can be integrated 

with curriculum learning, which brings in external expertise into the learning 

process by appropriate tasks sequencing and generation, and transferring skill 

or knowledge learned for tasks with increased complexity [188].dnEATRPega 

edPTRAH2ag7.7. Adopting generative AIePTRAEnagd 

RAPagedTGenerative AI itself has been around in manufacturing for a few 

years as exemplified by research on GAN and its variants. However, the 

capability to control the generated data at a more granular level has always been 

challenging. The recent development of diffusion 

models aims to tackle this challenge.ARTPeadnEg 

PagedTRAThe diffusion model consists of the diffusion process and a 

reverse process. The diffusion process progressively adds random noise to the 

data, and the reverse process, usually built on neural networks, learns to 

progressively remove the noise [163]. The method was originally developed for 

image synthesis where a sequence of welltrained denoisers represent a mapping 

from a known distribution to the distribution of images. New images can then 

be synthesized by first sampling from the known distribution, before passing 

through 

the denoiser sequence.aePTRAEndg 

gedPARTaThe diffusion model becomes significantly more impactful once 

it is combined with language-based instruction that can be used to tailor the 

synthesized data [235], with the training process of the denoiser including an 

additional input that is the language-based instruction, which is usually in the 

form of an image caption. Once the denoiser is trained, the diffusion model can 

synthesize realistic images that are highly customized to the user 

instruction.dagePTRAEn 

gaAdRTPeFor manufacturing, generative AI can have broad applications 

such as design and optimization of materials and processes. One promising 

approach is self-supervised learning enabled by physicsbased simulation. The 

idea is to attach the simulation by ingesting the output of the generative AI (e.g., 

design parameters) and verify its effectiveness (e.g., whether desired property 

is achieved). Since generative AI can take the desired property as the input, the 

deviation between the output of the simulation and the input of the generative 

AI constitutes a self-supervised circle to guide the improvement of generative 

AI. Such ideas have been explored for design optimization of material 

microstructure [255] and robotic gripper [82]. Research on integrating 

language-based instruction into the self-supervised learning framework is 

expected to further enhance the utility of gen- 

erative AI in design and optimization in manufacturing.gePTRAEnda 

PHegaTRA2d7.8. From specialist to generalist modelARTPegEdna 

gPARTdeaIn 2022, ChatGPT, an LLM from OpenAI, took the world by 

storm [20,200]. At the heart of its popularity is what can be considered the 

transition from the traditional specialist AI model to a new generation of 

generalist model. For a specialist model, the task itself is implicitly determined 

when training data is collected [2]. Each model is unique to the task it is trained 

on and does not have capability to carry out new tasks. By contrast, a generalist 

model is trained with task-related instruction and therefore can perform various 

tasks [273]. However, building generalist LLMs for manufacturing can be 

challenging on several fronts: 

EnagedTRPA 

(1) Data quantity: A generalist model is currently considered possible only 

when building on top of a foundation model that is pretrained on massive 

data in an unsupervised manner. However, 

RaPgedAT such quantity of manufacturing data is yet to be 

acquired.EndagePTRA 

(2) Pre-training: Even though ChatGPT is pre-trained with unlabeled data, its 

“Q&A” format allows formulation as predicting the next word in the 

sentence and thereby, minimizing the requirement of data labeling. Such 

formulation is, however, difficult to translate to manufacturing, as 

manufacturing data generally does not 
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RTdegaPAcontain the desired output in themselves.dRagePTAEn 

(3) Fine-tuning: The pre-trained model is also fine-tuned with human 

feedback. For example, tens of thousands of instructions are manually 

tuned and tens of thousands of ChatGPT’s answers are evaluated by 

human experts to encourage more natural ones [196]. The requirement of 

such scale of human feedback can be 

beyond the capacity of any individual manufacturers.REndAagePT 

Despite these challenges, building upon the existing generalistgedTRAPa 

models has shown to be highly performant in manufacturing applications such 

as robotics and maintenance. One early example is shown in Fig. 39, where 

multi-modal instruction is utilized to control the robot to carry out distinct tasks 

by fine-tuning a T5 LLM [106]. More recently, researchers have found high 

efficiency of fine-tuning ChatGPT using manufacturing domain knowledge 

(such as ontology) to improve LLM’s understanding of hierarchical structure of 

machine components, leading to accurate responses when it comes to 

determining components of interest and suggesting resolution based on the 

issues presented in the maintenance log [265]. This example illustrates that 

LLMs can be adapted to specific manufacturing problems by infusing domain-

specific information into these models and using them in the workflows where 

conversational problem-solving is appropriate. Such cases could be the 

specification of system design or planning problems, the diagnosis and 

maintenance of manufacturing equipment, or supporting teamwork in HRC in 

assembly.AdEnaRTPeg 

reFdaTRAPigu 

 

Fig. 39. Multi-modal instruction for robotic action, 16 illustrate actions carried out by robot to 

fulfill instruction [106]. RAEenadTgP 

Despite the initial success, LLMs' capability in approximate infor-

gdTRAePa mation retrieval is often (mis)taken in having abilities of reasoning 

and planning. However, LLMs are essentially language models whereas 

manufacturing applications such as planning requires world models [252]. As a 

result, synergistic integration of LLMs and world models would open a 

potential path to solving general planning problems. Additionally, as LLM 

models become larger, training often requires high computational power, 

leaving behind a large computational carbon footprint [224]. As a result, 

research should also consider efficiency and energy consumption as model 

evaluation metrics. To this end, researchers have started developing model 

evaluation metric that takes into account the computational footprint [32]. As 

the emphasis on sustainability is essential for the future of manufacturing, 

research on model energy efficiency in real-world 

applications should be encouraged.PRTAndageE 

7.9AH2agedPTR. Developing AI-specific hardwareEndagePTRA 

While most of the AI research in manufacturing has been solelygeTRAPda 

focused on software (i.e., algorithms), increasing demand for sensing, data 

transmission, and processing speed and accuracy in AI implementation has 

brought hardware limitations into the spotlight, including generic design of 

sensors and processing units that are not optimized for AI algorithms. Dedicated 

AI hardware, in particular Lisp machines, have provided a major boost to AI 

research before the beginning of the second AI winter (see Fig. 1). Recognizing 

the state of AI research, it is envisioned that advancing the state of design of 

specific hardware for a new generation of AI algorithms can again lead to 

tremendous benefits for AI in manufacturing. Three promising 

directions are described as recommendations:ARPegaETdn 

AI-enhanced metrologygdTRAPae . In manufacturing, often the sensor is not 

able to directly measure the variables of interest and only indirect measurement 

can be made. Examples include measuring subsurface structure using electrical 

capacitance tomography [56], where only capacitance between different nodes 

is obtained, and angle measurement is based on angle-dependent second 

harmonic generation (SHG) spectrum [152]. In these cases, obtaining variables 

of interest requires solving an inverse problem which is commonly ill-posed. 

The advancement of AI methods provides a new way of resolving this issue by 

establishing complex inverse mapping using neural networks. Early work [152] 

has shown that neural networks can solve the inverse problem in angle 

measurement based on the SHG spectrum to achieve a sub-arcsecond level of 

accuracy and 

resolution.ARTegadnEP 

Sensing-AI codesignTRegaPAd . The idea of codesign is to formulate 

sensing mechanism as an optimization problem such that it can be optimized in 

an end-to-end fashion together with the AI algorithm for manufacturing tasks. 

This ensures that only the information that is most relevant to the tasks is 

captured. While similar to AI-enhanced metrology, the uniqueness of codesign 

is that sensing mechanism can be tailored for each application. Sensing-AI 

codesign has already been progressing in the medical field, where optimal MRI 

strategy is needed to minimize scanning time while restoring images with the 

highest quality. By exploring codesign, an 8x reduction of scanning time has 

been achieved with minimal image quality degradation [10]. The codesign 

approach can be extended to sensor-rich manufacturing environment to further 

facilitate optimization of AI 

methods.gePnaTRAEd 

Hardware-level AI computationTdegaPAR . Modern AI algorithms such as 

those based on deep neural networks require significant computation even for 

inference. While advances in GPU have significantly improved the 

computational efficiency, many applications in manufacturing still struggle 

with AI computation using standard GPU, such as real-time control in AM. To 

resolve this limitation, researchers have started exploring hardware-level 

implementation of AI computation. One example is to replace a digital 

convolution layer in CNN with optical convolution by designing specific optical 

elements and light pathway to mimic the convolution operation with images 

[30,97] (Fig. 40). The result is an orders-of-magnitude reduction of 

computational time. By synergistically integrating hardware design with an AI 

algorithm, the development of AI-specific hardware is expected to significantly 

improve the efficiency and scalability of AI 

in manufacturing.TPegaEdnAR 
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Fig. 40. Setup for optical convolution operation [TRAEndageP 97]. 

AH2RdTPega7.10. Real-life introduction of AIageTRAEndP 

PARTdegaDespite AI support, many industrial projects in production have 

yet to progress beyond the stage of prototype building. The lack of adoption of 

AI techniques developed in the research community can be attributed to various 

factors beyond technological and engineering advancements. Successful 

integration of these advanced techniques into industry requires appropriate 

scope setting and problem statement, change management, development of a 

credible business case, 

and last but not least, gaining the trust of potential users.RPTaAEndge 

agARTedPOften, there could be unrealistic expectations for AI-enhanced 

projects arising from a lack of understanding of the constraints of AI and/or a 

risk-averse, conservative position against adopting new technologies that is 

generally perceived as black-box. In fact, it is often difficult to forecast 

precisely what to expect from an AI application. Gaining industry’s trust is 

essential. Towards this end, end users need to be provided with interpretable, 

physically trustworthy predictions when AI is involved, and at the same time, 

an option for humans to remain in control. They should also be able to change 

solutions without violating the underlying constraints. If requested, 

explanations need to be generated along with the solutions.aPegdnEART 

RAPTagedAll this poses strict requirements towards interactive user 

interfaces with a reasonable response time that is consistent with the 

expectation for real-world operations. For domain experts on the factory floor, 

modelling limitations and assumptions underlying the AI algorithms need to be 

clearly laid out and readily accessible for finetuning. Based on the idea that even 

though “all models are wrong, but some are useful” [24], declarative AI 

approaches that rest upon explicit assumptions have an advantage over 

pragmatic purely datadriven methods in this respect. XAI attempts to open the 

“black box” models generated by data-driven techniques and make them 

amenable to human interpretation and comprehension. XAI methods 

characterize model accuracy, fairness and transparency, thereby promoting trust 

in an AI system. XAI provides an answer to concerns about the legal, security 

and compliance risks of using AI in an industrial environment. This also 

facilitates making the distinction between real domain constraints and 

inveterate past practices which should be rather dispensed of. For management, 

it is essential to build and maintain trust via, if possible, public success stories, 

and new business models which mitigate risks and enable sharing of ben- 

efits.PTRAEndage 

ARPdegaT1H8. ConclusionsePARTadnEg 

edTRAPgaArtificial intelligence is destined to play a pivotal role in 

redefining the manufacturing landscape. This transformative shift will be driven 

by key technologies, with the goal to enhance: (1) production system design 

and planning, (2) process modeling, management, and optimization, (3) quality 

assurance and maintenance, and (4) automated assembly and disassembly. This 

keynote has offered a comprehensive overview of the current state-of-the-art of 

AI in manufacturing, illuminating its manufacturing-specific life cycle, from 

the initial design through process management to quality main-
 agdPTRALisItem RAistLabelgd[5]PTdagenTRAEP 

tenance and automation.RAEndagePT 

 agedTRAPAdditionally, AI's place in manufacturing has been exemplified

 [6] 

 
magdPTRALisIte

 l

gdPTaAistLbeR gePTRAEdna 

through the exploration of industrial case studies, which showcase practical 

implementations and benefits of AI in automation of 

machining operation with computer vision, optimization of mainte- 

agdTRALiPItems istLabelgdPT[7]RAdagenTRAEP nance with natural language 

processing, and human action recogni- 

tion for process monitoring and inspection. Furthermore, specific LisIemAatRTPdg 

aLsiAtRdg[8]PTl ebPdaEeARgTn challenges arising from issues such as data validity 

in real-world 

applications, the need for further integrating physics with AI meth-

 
PiLsmetIagdTRA TlgLtRAisadb[9]PegEePaRAndT 

ods, real-life concerns of AI including transparency, interpretability, and 

trustworthiness, the necessity for the adoption of next-genera- 
a

gdTPRALisItem sleaLtiARgTPd[10]bAenaPEdgTR tion generative AI with granular 
control, and the development of generalist AI promoting natural interaction 
with users are outlined, 

with the proposed future directions intending to provide a roadmap
 agdPTRetIsimLA abPdgelTRAis[11]tLePTRgEndaA 

for researchers and practitioners.aTegPdnEAR 

 PARTdegaWith the rapidly evolving AI landscape, novel methodologies and

 tgemLadPTRAisI ebaLgtsRiAd[12]P TlgEnPTeAdRa 

tools continue to emerge. Embracing these advancements will not only 

allow manufacturers to harness the power of AI by capitalizing 
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on the wealth of information available in a data-rich environment 

but also enable deeper understanding of the mechanisms underlying 

agdPTRALisItem RAistLabelgd[14]PTAEngRdePTa manufacturing processes and systems 

to ultimately advance the sci- 
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