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Abstract—Humans often use natural language instructions to
control and interact with robots for task execution. This poses a big
challenge to robots that need to not only parse and understand
human instructions but also realise semantic understanding of an
unknown environment and its constituent elements. To address this
challenge, this study presents a visionlanguage model (VLM)-driven
approach to scene understanding of an unknown environment to
enable robotic object manipulation. Given language instructions, a
pre-tained visionlanguage model built on open-sourced Llama2-
chat (7B) as the language model backbone is adopted for image
description and scene understanding, which translates visual
information into text descriptions of the scene. Next, a zero-shot-
based approach to fine-grained visual grounding and object
detection is developed to extract and localise objects of interest
from the scene task. Upon 3D reconstruction and pose estimate
estaiglishment of the object, a code-writing large language model
(LLNB is adopted to generate high-level control codes and link
langdage instructions with robot actions for downstream tasks. The
per%rmance of the developed approach is experimentally validated
throggh table-top object manipulation by a robot.

[. INTRODUCTION

31.00 ©2

Hgmans often instruct robots to assist in collaborative
task%', where language instructions are a promising manner to
realfge natural interactions with robots [1]. However, the use
of éatural language instructions in robot control and
intefactions with unknown environments remains a
cha[ﬂzénge. For this purpose, robots need to have the
capdbility of not only parsing natural language instructions
but%lso semantic understanding of unknown interaction
env@onments [2]. A simple natural language instruction
issu€d by humans is built on the understanding of working
envi§onments and cognitive reasoning of operation tasks [3].
Hov@ver, the robot does not initially have such capabilities
suchg as natural language processing and semantic
undérstanding [4]. Thanks to the advancement of vision
tec@iques, the combination of visual systems with artificial
intefligence  (Al) algorithms enables environmental
peri:%ption, object recognition and manipulation, and fusing
the g/isual perception and natural language description
ena@les robots with enhanced capabilities in task execution.
As a@ example, applications of neural radiance fields (NeRFs)
in visual-based robotic manipulation have been investigated
to r%alise 3D reconstruction of physical environments [5].
Upo(g visual representation establishment of objects, NLP
algogithms can comprehend language-based
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instructions and facilitate the downstream tasks with the
support of visual information [6].

In recent years, the emergence of large language models
(LLMs) such as BERT [7], Llama [8], GPT-4 [9], and Gemma
[10] bhas demonstrated notable performance and
achievements in the field of generative Al and robotic
applications. Built on transformer architectures, LLMs are
trained on massive amounts of datasets, which allows them
to generate high-quality and comprehensive language text
[11]. More recently, various applications of leveraging LLMs
in NLP tasks, cognitive reasoning, decision making and robot
control have been reported [12]. For example, leveraging
LLMs to facilitate human-robot interactions (HRIs), robot task
planning, code generation, and text parsing has been
reported in the literature [13][14][15]. Robotists demand
natural HRIs and seamless collaborative task execution, given
the broad deployment of language models. The fusion of
LLMs and robotics can unlock new opportunities to enable
robots to have human-like capabilities of NLP and text
generation [16]. In addition, massive visual data are included
in the training dataset of foundation models, and the
emergence of vision-language models (VLMs) can interpret a
mixture of visual and language inputs [17][18], and these pre-
trained VLMs act as the bridge between visual and textual
information, enabling handling a wide range of
visionlanguage tasks. Additionally, the use of pre-trained
language models for scene understanding of household
objects was investigated [19]. However, semantic scene
understanding is a problem of paramount importance for
robotic manipulation, and robots still lack common-sense
knowledge of objects among manipulation tasks.
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Scene understanding is of critical importance in robotics,
especially autonomous robotic systems and interaction
control, and it refers to context extraction from visual data
[20]. Given language instructions, it facilitates robots have
semantic understanding of the scene and its elements (or
objects) and then provides a base for downstream tasks such
as object localisation and manipulation. Various approaches
to facilitate scene understanding in HRIs, autonomous
navigation and component recognition have been reported in
the literature [21]. For example, a simple task of a robot is to
correctly enumerate how many objects are in the scene and
segment them from the background without prior
knowledge [21]. However, scene understanding of more
complex activities is still a challenging task that requires
retrieving contextual information from the scene, e.g.,
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objects, events, or concepts. For this purpose, research
efforts on a complete semanticlevel description of the scene
[22], 3D scene understanding [23], and the spatial
relationship of objects in a scene were explored [24]. Most of
the existing approaches rely on semantic segmentation from
2D/3D visual information and also require high
computational efforts. Few studies have investigated the
textual description of the scenes by highlighting critical
objects but with the need for fewer computational resources.

To close the gaps, this study presents a pre-trained
visionlanguage  model-driven  approach to  scene
understanding and robotic object manipulation. As shown in
Fig. 1, visual information of the target scene is fed into a pre-
trained VLM built on Llama2 (7B) that is trained on publicly
available data, to build a semantic understanding of the
scene, and it includes text representation of the scene and its
coarse detection of the objects. In parallel, a zero-shot-based
approach to fine-grained visual grounding from complex
scene tasks is developed for object detection with its location
representation by a bounding box with text labels. Upon the
detected 2D object, a 3D reconstruction of the object with
pose estimates where the details can be found in our
previous work [2] is overlaid on the 2D object and defined as
control input of downstream tasks. Then, language
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instructions of tasks are fed into a code-writing LLM to
generate highlevel control code for object manipulation.
Finally, the visual results of the objects are assigned to the
variables of these codes for control action execution.

The remainder of the paper is organised as follows. Section
2 presents the problem statement and methods. Section 3
introduces pre-trained VLM-driven scene understanding and
object grounding, and Section 4 links natural language with
robot actions via a code-writing LLM, followed by
experimental validation. Finally, Section 5 draws conclusions
and highlights future work.

[l. PROBLEM STATEMENT AND METHODS
A. Problem definition

As shown in Fig. 2, an NLP task (NLPT) to robots is
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Overview of VLM-driven scene understanding and robotic object manipulation.

formulated as NLPT ={T,S,P,0}, where T is the textual content
that can be a sentence or a phrase. S, P, and O represent a
subject (executor), a predicate (action) and

T,
NLP task: | A robot | |a component|
NLP
(NEPT) u u Grounding
Semantics:  Subject (S) Predicate (P) Object(0) | —
Plan: Executor Action  Component acted on
Fig. 2. Semantic segmentation of a natural language task.

an object (component to be acted on) of T, respectively. By
adding visual information, textual information of O is
processed and grounded into a real-world object by a
pretrained VLM for object detection. However, 2D
representation of the object detection cannot support
robotic object manipulation (e.g., grasping) that needs
object’s 3D model and pose information. In parallel, having
robots to parse and understanding language instruction for
downstream task (e.g., robot control) remains a challenge.
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Within such a context, the research questions explored in this
study are summarised as follows:

. How to use a VLM for zero-shot sample-based text
description and semantic understanding of an unknown
scene?

« How to link visual grounding and fine-grained object
detection with additional 3D reconstruction for
downstream tasks (e.g., object manipulation)?

« How to parse language instructions and generate
highlevel control codes for robot actions and
manipulation?

B. Architecture of LLM built on Llama2

Fig. 3 presents an architecture of a fine-tuned LLM built on
open-sourced Llama2 (7B) for scene understanding and
object description. It adopts the same architecture of
MiniGPT-v2 [25], and it demonstrated better performance on
handling various vision-language tasks, compared with LLMs
with similar-level parameters including Flamingo9B, MiniGPT-
4 (13B), BLIP-2 (13B), InstructBLIP (13B), LLaVA (13B) and
Shikra (13B). The model takes a vision transformer (ViT) [26]
and a querying transformer (Q-Former) [27] visual backbone,
which remains frozen during all training phases. Adjacent
visual output tokens from a ViT backbone are concatenated
and projected into the Llama2 language model space via a
linear projection layer. Finally, Llama2 language tokens are
directly utilised to handle vision-language tasks such as image
recognition and object grounding. The details of the adopted
architecture can be found in [25].
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Fig. 3. Architecture of VLM for scene description and object detection
(adapted and modified from [25]).

C. Method introduction

Two-system approach: A two-system approach is designed
for scene description with a full-view image and object
detection with an object-of-interest image. A collection of
image datasets is fed into a ViT-based visual encoder to
generate a two-dimensional grid of token vectors, and
subsequently flatten it to create a one-dimensional sequence
[26]. As image resolution increases, the number of visual
tokens also grows significantly. By using MiniGPT-v2 for
object detection, large objects can be accurately detected

and identified, while small objects are often resorted to the
whole description of the environment or the image. This
means that it cannot accurately recognise small objects
within a multi-object complex scene. Given these
characteristics, a two-system approach is therefore
developed. For scene understanding, it uses a full-view scene
image with all of the elements to generate a scene
description by text. For fine-grained object manipulation, a
scene image is segmented into a set of grid images, and the
image with objects of interest is used to accurately detect and
ground the object and then provide visual and location
information to robots for manipulation. Most of object
manipulation is for table-top tasks, and their images token
from a top-view or eye-in-hand camera in a certain distance
regarding the objects mainly contain only objects, which can
be used as well-segmented scenes for fine-grained object
detection.

Llama2 based user prompt: A prompt user interface is
directly adopted from the Llama2-chat 7B interface to
perform vision language tasks. To adopt the pre-trained LLM
for robotic tasks, a set of prompts for specific functions are
used, and they are 1) ‘describe this image as detailed’ for
image description by texts and associating the objects of the
texts with their correspondence in the image; 2) ‘detect an
object’ for object detection and 2D spatial location
grounding. Here, ‘object’ can be instanced by a specific
component such as a tool; 3) ‘refer an object’ for the object
referring with a bounding box and a text label on it. The
prompt template is adopted from a multi-task instruction
template with the task-specific tokens. It consists of a general
input format including image features, a task identifier token,
and an instruction input. The task-specific tokens provided by
MiniGPT-v2 can facilitate precise and accurate task execution
such as visual grounding and object detection.

[Il. SCENE UNDERSTANDING AND OBJECT GROUNDING
A. Zero-shot sample-based scene understanding

Scene understanding in this study is focused on a
customised robotic work cell, and the scene images are not
included in the datasets of training LLMs. These images can
be defined as zero-shot samples for the pre-trained LLM and
utilised to explore its transfer and generalisation capabilities.
Fig. 4 illustrates the performance of scene understanding by
a full-view image. An scene image is fed into the pre-trained
LLM together with a language instruction of
‘describe this image as detailed’. The result of its description
is ‘A robot is next to a table with ’in a simplified format,
and the pre-trained model can recognise most of the objects
in the image and reveal the spatial relationship of these
objects. Therefore, the result reveals a brief understanding of
the given scene and its constituent elements. In parallel, the
visual grounding of objects pinpoints their 2D spatial
locations with accurate bounding boxes and text labels. Here,
associating the object of the text description with its
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counterpart of the scene image is implemented by language
reasoning. However, the components on the table are
ambiguously depicted as ‘a tool’ without detailed
identification. This is limited by the nature of the adopted
model that melts small objects into the environment
description. To address this problem, a fine-grained
description and detection of small objects is necessary, which

will be presented in Subsection Il1-B.

Prompt - [ Describe this image as detailed ]

63—’[1\ robot is next to a table with a tool

Image

t
'
7 L

Fig. 4. Zero shot sample-based scene understanding and visual grounding.

B. Fine-grained object detection and grounding

As shown in the left-side sub-figure of Fig. 5, an image with
only objects of interest (two parts) is segmented from the
whole scene image and uploaded to the pre-trained model,
and the instruction of ‘detect valve cover’ is prompted to
detect the object of the valve cover, followed by the output
of accurate detection and grounding with a bounding box and
text label. It reveals that the developed fine-grained object
detection approach can realise precise detection and
localisation of the small object. Also, a test of how small the
object can be detected is performed given available
experimental resources. With a prompt of ‘detect screw’, the
small-size screws can be precisely detected and grounded as
show in the sub-figure. For the table-top object
manipulation, an eye-in-hand camera mounted on a robot’s
wrist can have fine-grained images of the tasks within a
certain distance, which are highly similar to the segmented

image of the scene image.
Prompt Zl Refer robot |

Visual
Grounding

T €

[Detect valve ooverJ [Detect screwJ

{<16><43>
<40><79>}

Fig. 5. Fine-grained object detection (left) and object referring within a
complex scenario (right).

Right-side sub-figure of Fig. 5 shows the result of a test of
object grounding in a complex scene. Compared with the
scene image in Fig. 4, this scene image contains more objects

and a complex environmental background. A language
instruction of ‘refer robot’ is prompted to refer the robot in
the complex scene and pinpoint its 2D position with an
accurate bounding box. Its location information is depicted in
the left-top (16,43) and right-bottom (40,79) corner position
of the bounding box. This can validate the performance of the
pre-trained model in the visual grounding of key objects
within a complex scene.

IV. LANGUAGE-ACTION TRANSLATION SUPPORTED BY
CODE-WRITING LLM

A. Link language texts with code generation

As shown in Fig. 2, an NLP task for robots can be
decomposed into an executor, actions, and components to be
acted on [28]. Upon a brief understanding of the target scene
and 2D spatial representation of the object in Section lll, this
section investigates a vision-language-action model-driven
approach to downstream tasks. Inspired by Code as Policies
(CaP)[29] and Instruct2Act [30], it uses a code-writing LLM to
link language instructions of the tasks and high-level codes of
robot actions, by integrating vision perception and robot
control functions. It allows a robot to execute a sequence of
actions based on an instruction from the user and an
observation image captured by an eye-in-hand camera.

The code-writing model relies on a well-designed prompt
to the LLM for code generation. A complete prompt to
generate codes contains third-party libraries, API definitions,
and in-context examples, and they are introduced as follows:

Third-party libraries: Python code libraries, such as NumPy,
PyTorch, and cv2 can offer essential information about how
APIs use the parameter types in these libraries for specific
functions such as calculation and image processing.
Iwﬁggypﬁs these libraries can make the code-writing

S . . sl Call and load pose of the object.
straightfenwarga without writing alefglhe codes. The LLM can

f j im, i) -> K ject 5 object bi) .
uSethE RIOWIEHER pf tikse. poplilat-thirdparty Tibaries to
perfotifiddvanced codg gsenerat‘u?f‘f“’.S

images = get_object_images {ob)

# Control APls
# Please use the tools below:
def pick_place(obj) -> str:

""Run picking and placing actions of
objects

Examples:

robot_action = pick_place (obj_0, obj_1)

pass
def detect_object(obj) -> str:
"""Detect the object from the image.
Examples
object_names = detect_object(obj)

pass

def pose_object(obj) -> str: pass

Fig. 6. Example of prompts for vision and control APIs.

API definitions: Given natural language instructions, they
are decomposed into a set of function tasks. These
subfunction tasks are defined and linked with specific APIs,
and the control flow of these APIs is organised sequentially
for task execution. Specifically, this study mainly relies on two

types of APIs and they are for vision perception and robot
24
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action control, namely vision and control APIs as shown in Fig.
6. Specifically, their specifications are summarised as follows:

. getobjimages: gets fine-grained images of objects of
interest by an eye-in-hand camera. It calls a visual
servoing system to transmit and store the images in the
cache variables.

. detectobject: detects and grounds the object that is
extracted from language instructions, among the
images. Specifically, the object of the language
instruction (e.g., valve cover) is assigned to this function,
and then the visual feature of the object is extracted for
recognition and detection, followed by pinpointing the
2D spatial location in the image.

« poseobject: adds a 3D model representation of the
object and its pose on the detected object where the
technical details can be found in our previous study [2].
It provides position and orientation information of the
object with CAD data for manipulation (e.g., grasping).
The object pose regarding the robotic coordinate system
is calculated by a frame transform and cached in the
defined variable objectpose

. pickplace: perform pick and/or placing tasks of objects.
The variables objO and obj1 are assigned with the object
to be manipulated. It receives the object’s pose and
position in the robotic coordinate system, and generates
robot paths of object grasping by using robot operating
system (ROS)-based motion planners.

In-context examples: work as a crucial step in in-context
learning, and instruction-to-code pairs as examples present
the demonstrations of how to learn and generate code from
examples [31]. Specifically, instructions are written as
comments directly preceding a block of corresponding
solution code. These instructions are concatenated with
examples to construct a prompt. The prompt is fed into the
code-writing model with the output of a corresponding
program.

Given a language instruction, its object names are parsed
and extracted by using language reasoning, and it can be few-
shot prompted using code-writing LLMs to associate object
names with language descriptions, categories, or past
context. Then, the vision APIs for image processing and
object detection is called to provide object’s position and
pose to the control APIs, where the motion planning of the
robot arm is generated by a ROS-based motion planner.

Vision APls
Control APIs

Code-writing

Pick up valve cover.
LLM §

@ images = get_object_images(obj) Code
@ object_names = detect_object(‘valve cover’)
@ object_pose = pose_object(‘valve cover’)

@ robot_action = pick_place(obj_0, obj_1)

Fig. 7. A scheme of linking language instructions into robot actions facilitated
by vision perception and a code-writing LLM.

B. Experimental Validation

A case study of table-top object manipulation is performed
to test and validate the developed system. As shown in Fig. 7,
a user instructs a Kinova robot arm (with Robotnik SummitXL
mobile base) to pick up a valve cover. The robot system is
controlled by an ROS-based architecture, and a prompt
interface to the LLM is connected to a PC with Ubuntu20.04
and a single NVIDIA RTX 4090 GPU.

Upon the scene understanding of the physical
environment, a text instruction of ‘pick up valve cover’ is
segmented into an action and a component to be acted on,
and they are a predicate of ‘pick up’ and an object of ‘valve
cover’. Then, the language instruction is input to the code-
writing LLM that outputs the high-level control codes, as
shown in the ‘Code’ module of Figure 7. In parallel, a
collection of the scene image is obtained using an eyein-hand
camera (RealSense D435) by calling a vision API function of
‘getobjectimages (obj)’ in the code module, and the collected
image with a speciﬁc@olution is shown in subset 1, and is
cached into a variable of images. The object of the language
instruction (valve cover) is indexed and grounded into a task
identifier token, and the indexed object is assigned to the
object of the image detection. The function of
objectdetect(‘valve cover’) connects with the image
processing approaches in Section Il to extract the visual
feature of the image, and then identify the object of the valve
cover. The visual grounding is used to accurately determine
the 2D spatial location among the image, indicated by a
bounding box and a text label as shown ininset 2.

Upon 3D reconstruction and pose estimate establishment
through a neural field object modelling [2], a 3D model of the
valve cover with its pose estimate as shown in Figure 8 (left)
is overlaid onto its 2D image, and this is implemented by
running the function of referobject(‘valve cover’). Then, the
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position and pose information of the valve cover regarding
the robotic coordinate system are cached in the variable of
objectpose. The grasping point of object is the centre of the
object’s re-defined coordinate frame (as shown in the pose
image of Figure 8 (left)), which is created by taking the centre
and oriented box of the mesh model of the object’s surface
structure model and geometry. In parallel, such information
is sent to the robot controller via a built-in visual servoing
system (the details can be found in [2]). Once the visual
information is detected, the control API is executed to
perform object grasping by the robot. Specifically, the
position and orientation of the object are loaded into a
function of ‘pickplace(’valve cover’)’ where the valve cover is
assigned to the variable of objO and the variable of objl is
empty. Next, the embedded ROS-based motion planner
outputs robot paths that adopt a top-down grasping policy as
shown in Figure 8 (middle). Finally, the robot arm follows the
motion path to perform the robot action of the pick place,
and the final result is shown in Figure 8

(right).

Fig. 8. Experimental results of robot actions: object’s pose and 3D model
(left), robot grasping (middle), and robot picking action (right).

V. CONCLUSIONS AND FUTURE WORK

This study presents a vision language model-driven
approach to scene understanding of unknown environments
and robotic object manipulation supported by vision
perception and a code-writing LLM. The method adopts a
pre-trained VLM to bridge visual and textual information for
scene understanding with outputs of text-based description,
and it realises the visual grounding of objects of interest with
zeroshot samples, and fine-grained object detection by a
visual encoder and a language decoder. Upon 3D
reconstruction and pose estimate establishment for the
object, a codewriting LLM is used to generate high-level
control code for object manipulation, and the results of visual
perception are employed to the control codes for specific
robot actions. Experimental evaluation using a robotic
grasping task confirms the following contributions from the
vision LLM method:

o VLM-driven scene understanding of an unknown

interaction environment and text description of its
constituent elements.

« A zero-shot-based approach to fine-grained visual
grounding and object. detection from complex scene
tasks.

« Linking language instructions with robot actions for
object manipulation facilitated by vision perception and
a code-writing LLM.

Future efforts will be directed to improving the
performance of VLMs in the fine-grained understanding of
complex environments and consistent element detection and
generalisation to new tasks. Its utility in realising natural
human-robot interactions and autonomous robotic systems
driven by natural language will be investigated.
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