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Abstract—Humans often use natural language instructions to 

control and interact with robots for task execution. This poses a big 
challenge to robots that need to not only parse and understand 
human instructions but also realise semantic understanding of an 
unknown environment and its constituent elements. To address this 
challenge, this study presents a visionlanguage model (VLM)-driven 
approach to scene understanding of an unknown environment to 
enable robotic object manipulation. Given language instructions, a 
pre-tained visionlanguage model built on open-sourced Llama2-
chat (7B) as the language model backbone is adopted for image 
description and scene understanding, which translates visual 
information into text descriptions of the scene. Next, a zero-shot-
based approach to fine-grained visual grounding and object 
detection is developed to extract and localise objects of interest 
from the scene task. Upon 3D reconstruction and pose estimate 
establishment of the object, a code-writing large language model 
(LLM) is adopted to generate high-level control codes and link 
language instructions with robot actions for downstream tasks. The 
performance of the developed approach is experimentally validated 
through table-top object manipulation by a robot. 

I. INTRODUCTION 

Humans often instruct robots to assist in collaborative 

tasks, where language instructions are a promising manner to 

realise natural interactions with robots [1]. However, the use 

of natural language instructions in robot control and 

interactions with unknown environments remains a 

challenge. For this purpose, robots need to have the 

capability of not only parsing natural language instructions 

but also semantic understanding of unknown interaction 

environments [2]. A simple natural language instruction 

issued by humans is built on the understanding of working 

environments and cognitive reasoning of operation tasks [3]. 

However, the robot does not initially have such capabilities 

such as natural language processing and semantic 

understanding [4]. Thanks to the advancement of vision 

techniques, the combination of visual systems with artificial 

intelligence (AI) algorithms enables environmental 

perception, object recognition and manipulation, and fusing 

the visual perception and natural language description 

enables robots with enhanced capabilities in task execution. 

As an example, applications of neural radiance fields (NeRFs) 

in visual-based robotic manipulation have been investigated 

to realise 3D reconstruction of physical environments [5]. 

Upon visual representation establishment of objects, NLP 

algorithms can comprehend language-based 
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instructions and facilitate the downstream tasks with the 

support of visual information [6]. 

In recent years, the emergence of large language models 

(LLMs) such as BERT [7], Llama [8], GPT-4 [9], and Gemma 

[10] has demonstrated notable performance and 

achievements in the field of generative AI and robotic 

applications. Built on transformer architectures, LLMs are 

trained on massive amounts of datasets, which allows them 

to generate high-quality and comprehensive language text 

[11]. More recently, various applications of leveraging LLMs 

in NLP tasks, cognitive reasoning, decision making and robot 

control have been reported [12]. For example, leveraging 

LLMs to facilitate human-robot interactions (HRIs), robot task 

planning, code generation, and text parsing has been 

reported in the literature [13][14][15]. Robotists demand 

natural HRIs and seamless collaborative task execution, given 

the broad deployment of language models. The fusion of 

LLMs and robotics can unlock new opportunities to enable 

robots to have human-like capabilities of NLP and text 

generation [16]. In addition, massive visual data are included 

in the training dataset of foundation models, and the 

emergence of vision-language models (VLMs) can interpret a 

mixture of visual and language inputs [17][18], and these pre-

trained VLMs act as the bridge between visual and textual 

information, enabling handling a wide range of 

visionlanguage tasks. Additionally, the use of pre-trained 

language models for scene understanding of household 

objects was investigated [19]. However, semantic scene 

understanding is a problem of paramount importance for 

robotic manipulation, and robots still lack common-sense 

knowledge of objects among manipulation tasks. 
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Scene understanding is of critical importance in robotics, 

especially autonomous robotic systems and interaction 

control, and it refers to context extraction from visual data 

[20]. Given language instructions, it facilitates robots have 

semantic understanding of the scene and its elements (or 

objects) and then provides a base for downstream tasks such 

as object localisation and manipulation. Various approaches 

to facilitate scene understanding in HRIs, autonomous 

navigation and component recognition have been reported in 

the literature [21]. For example, a simple task of a robot is to 

correctly enumerate how many objects are in the scene and 

segment them from the background without prior 

knowledge [21]. However, scene understanding of more 

complex activities is still a challenging task that requires 

retrieving contextual information from the scene, e.g., 

objects, events, or concepts. For this purpose, research 

efforts on a complete semanticlevel description of the scene 

[22], 3D scene understanding [23], and the spatial 

relationship of objects in a scene were explored [24]. Most of 

the existing approaches rely on semantic segmentation from 

2D/3D visual information and also require high 

computational efforts. Few studies have investigated the 

textual description of the scenes by highlighting critical 

objects but with the need for fewer computational resources. 

To close the gaps, this study presents a pre-trained 

visionlanguage model-driven approach to scene 

understanding and robotic object manipulation. As shown in 

Fig. 1, visual information of the target scene is fed into a pre-

trained VLM built on Llama2 (7B) that is trained on publicly 

available data, to build a semantic understanding of the 

scene, and it includes text representation of the scene and its 

coarse detection of the objects. In parallel, a zero-shot-based 

approach to fine-grained visual grounding from complex 

scene tasks is developed for object detection with its location 

representation by a bounding box with text labels. Upon the 

detected 2D object, a 3D reconstruction of the object with 

pose estimates where the details can be found in our 

previous work [2] is overlaid on the 2D object and defined as 

control input of downstream tasks. Then, language 

instructions of tasks are fed into a code-writing LLM to 

generate highlevel control code for object manipulation. 

Finally, the visual results of the objects are assigned to the 

variables of these codes for control action execution. 

The remainder of the paper is organised as follows. Section 

2 presents the problem statement and methods. Section 3 

introduces pre-trained VLM-driven scene understanding and 

object grounding, and Section 4 links natural language with 

robot actions via a code-writing LLM, followed by 

experimental validation. Finally, Section 5 draws conclusions 

and highlights future work. 

II. PROBLEM STATEMENT AND METHODS 

A. Problem definition 

As shown in Fig. 2, an NLP task (NLPT) to robots is 

formulated as NLPT ={T,S,P,O}, where T is the textual content 

that can be a sentence or a phrase. S, P, and O represent a 

subject (executor), a predicate (action) and 

 

 Fig. 2. Semantic segmentation of a natural language task. 

an object (component to be acted on) of T, respectively. By 

adding visual information, textual information of O is 

processed and grounded into a real-world object by a 

pretrained VLM for object detection. However, 2D 

representation of the object detection cannot support 

robotic object manipulation (e.g., grasping) that needs 

object’s 3D model and pose information. In parallel, having 

robots to parse and understanding language instruction for 

downstream task (e.g., robot control) remains a challenge. 

 

 Fig. 1. Overview of VLM-driven scene understanding and robotic object manipulation. 
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Within such a context, the research questions explored in this 

study are summarised as follows: 

• How to use a VLM for zero-shot sample-based text 

description and semantic understanding of an unknown 

scene? 

• How to link visual grounding and fine-grained object 

detection with additional 3D reconstruction for 

downstream tasks (e.g., object manipulation)? 

• How to parse language instructions and generate 

highlevel control codes for robot actions and 

manipulation? 

B. Architecture of LLM built on Llama2 

Fig. 3 presents an architecture of a fine-tuned LLM built on 

open-sourced Llama2 (7B) for scene understanding and 

object description. It adopts the same architecture of 

MiniGPT-v2 [25], and it demonstrated better performance on 

handling various vision-language tasks, compared with LLMs 

with similar-level parameters including Flamingo9B, MiniGPT-

4 (13B), BLIP-2 (13B), InstructBLIP (13B), LLaVA (13B) and 

Shikra (13B). The model takes a vision transformer (ViT) [26] 

and a querying transformer (Q-Former) [27] visual backbone, 

which remains frozen during all training phases. Adjacent 

visual output tokens from a ViT backbone are concatenated 

and projected into the Llama2 language model space via a 

linear projection layer. Finally, Llama2 language tokens are 

directly utilised to handle vision-language tasks such as image 

recognition and object grounding. The details of the adopted 

architecture can be found in [25]. 

 

Fig. 3. Architecture of VLM for scene description and object detection 
(adapted and modified from [25]). 

C. Method introduction 

Two-system approach: A two-system approach is designed 

for scene description with a full-view image and object 

detection with an object-of-interest image. A collection of 

image datasets is fed into a ViT-based visual encoder to 

generate a two-dimensional grid of token vectors, and 

subsequently flatten it to create a one-dimensional sequence 

[26]. As image resolution increases, the number of visual 

tokens also grows significantly. By using MiniGPT-v2 for 

object detection, large objects can be accurately detected 

and identified, while small objects are often resorted to the 

whole description of the environment or the image. This 

means that it cannot accurately recognise small objects 

within a multi-object complex scene. Given these 

characteristics, a two-system approach is therefore 

developed. For scene understanding, it uses a full-view scene 

image with all of the elements to generate a scene 

description by text. For fine-grained object manipulation, a 

scene image is segmented into a set of grid images, and the 

image with objects of interest is used to accurately detect and 

ground the object and then provide visual and location 

information to robots for manipulation. Most of object 

manipulation is for table-top tasks, and their images token 

from a top-view or eye-in-hand camera in a certain distance 

regarding the objects mainly contain only objects, which can 

be used as well-segmented scenes for fine-grained object 

detection. 

Llama2 based user prompt: A prompt user interface is 

directly adopted from the Llama2-chat 7B interface to 

perform vision language tasks. To adopt the pre-trained LLM 

for robotic tasks, a set of prompts for specific functions are 

used, and they are 1) ‘describe this image as detailed’ for 

image description by texts and associating the objects of the 

texts with their correspondence in the image; 2) ‘detect an 

object’ for object detection and 2D spatial location 

grounding. Here, ‘object’ can be instanced by a specific 

component such as a tool; 3) ‘refer an object’ for the object 

referring with a bounding box and a text label on it. The 

prompt template is adopted from a multi-task instruction 

template with the task-specific tokens. It consists of a general 

input format including image features, a task identifier token, 

and an instruction input. The task-specific tokens provided by 

MiniGPT-v2 can facilitate precise and accurate task execution 

such as visual grounding and object detection. 

III. SCENE UNDERSTANDING AND OBJECT GROUNDING 

A. Zero-shot sample-based scene understanding 

Scene understanding in this study is focused on a 

customised robotic work cell, and the scene images are not 

included in the datasets of training LLMs. These images can 

be defined as zero-shot samples for the pre-trained LLM and 

utilised to explore its transfer and generalisation capabilities. 

Fig. 4 illustrates the performance of scene understanding by 

a full-view image. An scene image is fed into the pre-trained 

LLM together with a language instruction of 

‘describe this image as detailed’. The result of its description 

is ‘A robot is next to a table with a tool’ in a simplified format, 

and the pre-trained model can recognise most of the objects 

in the image and reveal the spatial relationship of these 

objects. Therefore, the result reveals a brief understanding of 

the given scene and its constituent elements. In parallel, the 

visual grounding of objects pinpoints their 2D spatial 

locations with accurate bounding boxes and text labels. Here, 

associating the object of the text description with its 
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counterpart of the scene image is implemented by language 

reasoning. However, the components on the table are 

ambiguously depicted as ‘a tool’ without detailed 

identification. This is limited by the nature of the adopted 

model that melts small objects into the environment 

description. To address this problem, a fine-grained 

description and detection of small objects is necessary, which 

will be presented in Subsection III-B. 

 

Fig. 4. Zero shot sample-based scene understanding and visual grounding. 

B. Fine-grained object detection and grounding 

As shown in the left-side sub-figure of Fig. 5, an image with 

only objects of interest (two parts) is segmented from the 

whole scene image and uploaded to the pre-trained model, 

and the instruction of ‘detect valve cover’ is prompted to 

detect the object of the valve cover, followed by the output 

of accurate detection and grounding with a bounding box and 

text label. It reveals that the developed fine-grained object 

detection approach can realise precise detection and 

localisation of the small object. Also, a test of how small the 

object can be detected is performed given available 

experimental resources. With a prompt of ‘detect screw’, the 

small-size screws can be precisely detected and grounded as 

show in the sub-figure. For the table-top object 

manipulation, an eye-in-hand camera mounted on a robot’s 

wrist can have fine-grained images of the tasks within a 

certain distance, which are highly similar to the segmented 

image of the scene image. 

Fig. 5. Fine-grained object detection (left) and object referring within a 
complex scenario (right). 

Right-side sub-figure of Fig. 5 shows the result of a test of 

object grounding in a complex scene. Compared with the 

scene image in Fig. 4, this scene image contains more objects 

and a complex environmental background. A language 

instruction of ‘refer robot’ is prompted to refer the robot in 

the complex scene and pinpoint its 2D position with an 

accurate bounding box. Its location information is depicted in 

the left-top (16,43) and right-bottom (40,79) corner position 

of the bounding box. This can validate the performance of the 

pre-trained model in the visual grounding of key objects 

within a complex scene. 

IV. LANGUAGE-ACTION TRANSLATION SUPPORTED BY 

CODE-WRITING LLM 

A. Link language texts with code generation 

As shown in Fig. 2, an NLP task for robots can be 

decomposed into an executor, actions, and components to be 

acted on [28]. Upon a brief understanding of the target scene 

and 2D spatial representation of the object in Section III, this 

section investigates a vision-language-action model-driven 

approach to downstream tasks. Inspired by Code as Policies 

(CaP)[29] and Instruct2Act [30], it uses a code-writing LLM to 

link language instructions of the tasks and high-level codes of 

robot actions, by integrating vision perception and robot 

control functions. It allows a robot to execute a sequence of 

actions based on an instruction from the user and an 

observation image captured by an eye-in-hand camera. 

The code-writing model relies on a well-designed prompt 

to the LLM for code generation. A complete prompt to 

generate codes contains third-party libraries, API definitions, 

and in-context examples, and they are introduced as follows: 

Third-party libraries: Python code libraries, such as NumPy, 

PyTorch, and cv2 can offer essential information about how 

APIs use the parameter types in these libraries for specific 

functions such as calculation and image processing. 

Importing these libraries can make the code-writing 

straightforward without writing all of the codes. The LLM can 

use the knowledge of these popular third-party libraries to 

perform advanced code generation. 

API definitions: Given natural language instructions, they 

are decomposed into a set of function tasks. These 

subfunction tasks are defined and linked with specific APIs, 

and the control flow of these APIs is organised sequentially 

for task execution. Specifically, this study mainly relies on two 

types of APIs and they are for vision perception and robot 
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action control, namely vision and control APIs as shown in Fig. 

6. Specifically, their specifications are summarised as follows: 

• getobjimages: gets fine-grained images of objects of 

interest by an eye-in-hand camera. It calls a visual 

servoing system to transmit and store the images in the 

cache variables. 

• detectobject: detects and grounds the object that is 

extracted from language instructions, among the 

images. Specifically, the object of the language 

instruction (e.g., valve cover) is assigned to this function, 

and then the visual feature of the object is extracted for 

recognition and detection, followed by pinpointing the 

2D spatial location in the image. 

• poseobject: adds a 3D model representation of the 

object and its pose on the detected object where the 

technical details can be found in our previous study [2]. 

It provides position and orientation information of the 

object with CAD data for manipulation (e.g., grasping). 

The object pose regarding the robotic coordinate system 

is calculated by a frame transform and cached in the 

defined variable objectpose 

• pickplace: perform pick and/or placing tasks of objects. 

The variables obj0 and obj1 are assigned with the object 

to be manipulated. It receives the object’s pose and 

position in the robotic coordinate system, and generates 

robot paths of object grasping by using robot operating 

system (ROS)-based motion planners. 

In-context examples: work as a crucial step in in-context 

learning, and instruction-to-code pairs as examples present 

the demonstrations of how to learn and generate code from 

examples [31]. Specifically, instructions are written as 

comments directly preceding a block of corresponding 

solution code. These instructions are concatenated with 

examples to construct a prompt. The prompt is fed into the 

code-writing model with the output of a corresponding 

program. 

Given a language instruction, its object names are parsed 

and extracted by using language reasoning, and it can be few-

shot prompted using code-writing LLMs to associate object 

names with language descriptions, categories, or past 

context. Then, the vision APIs for image processing and 

object detection is called to provide object’s position and 

pose to the control APIs, where the motion planning of the 

robot arm is generated by a ROS-based motion planner. 

 

Fig. 7. A scheme of linking language instructions into robot actions facilitated 
by vision perception and a code-writing LLM. 

B. Experimental Validation 

A case study of table-top object manipulation is performed 

to test and validate the developed system. As shown in Fig. 7, 

a user instructs a Kinova robot arm (with Robotnik SummitXL 

mobile base) to pick up a valve cover. The robot system is 

controlled by an ROS-based architecture, and a prompt 

interface to the LLM is connected to a PC with Ubuntu20.04 

and a single NVIDIA RTX 4090 GPU. 

Upon the scene understanding of the physical 

environment, a text instruction of ‘pick up valve cover’ is 

segmented into an action and a component to be acted on, 

and they are a predicate of ‘pick up’ and an object of ‘valve 

cover’. Then, the language instruction is input to the code-

writing LLM that outputs the high-level control codes, as 

shown in the ‘Code’ module of Figure 7. In parallel, a 

collection of the scene image is obtained using an eyein-hand 

camera (RealSense D435) by calling a vision API function of 

’getobjectimages (obj)’ in the code module, and the collected 

image with a specific resolution is shown in subset 1 , and is 

cached into a variable of images. The object of the language 

instruction (valve cover) is indexed and grounded into a task 

identifier token, and the indexed object is assigned to the 

object of the image detection. The function of 

objectdetect(‘valve cover’) connects with the image 

processing approaches in Section III to extract the visual 

feature of the image, and then identify the object of the valve 

cover. The visual grounding is used to accurately determine 

the 2D spatial location among the image, indicated by a 

bounding box and a text label as shown in inset 2 . 

Upon 3D reconstruction and pose estimate establishment 

through a neural field object modelling [2], a 3D model of the 

valve cover with its pose estimate as shown in Figure 8 (left) 

is overlaid onto its 2D image, and this is implemented by 

running the function of referobject(‘valve cover’). Then, the 
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position and pose information of the valve cover regarding 

the robotic coordinate system are cached in the variable of 

objectpose. The grasping point of object is the centre of the 

object’s re-defined coordinate frame (as shown in the pose 

image of Figure 8 (left)), which is created by taking the centre 

and oriented box of the mesh model of the object’s surface 

structure model and geometry. In parallel, such information 

is sent to the robot controller via a built-in visual servoing 

system (the details can be found in [2]). Once the visual 

information is detected, the control API is executed to 

perform object grasping by the robot. Specifically, the 

position and orientation of the object are loaded into a 

function of ‘pickplace(’valve cover’)’ where the valve cover is 

assigned to the variable of obj0 and the variable of obj1 is 

empty. Next, the embedded ROS-based motion planner 

outputs robot paths that adopt a top-down grasping policy as 

shown in Figure 8 (middle). Finally, the robot arm follows the 

motion path to perform the robot action of the pick place, 

and the final result is shown in Figure 8 

(right). 

 

Fig. 8. Experimental results of robot actions: object’s pose and 3D model 
(left), robot grasping (middle), and robot picking action (right). 

V. CONCLUSIONS AND FUTURE WORK 

This study presents a vision language model-driven 

approach to scene understanding of unknown environments 

and robotic object manipulation supported by vision 

perception and a code-writing LLM. The method adopts a 

pre-trained VLM to bridge visual and textual information for 

scene understanding with outputs of text-based description, 

and it realises the visual grounding of objects of interest with 

zeroshot samples, and fine-grained object detection by a 

visual encoder and a language decoder. Upon 3D 

reconstruction and pose estimate establishment for the 

object, a codewriting LLM is used to generate high-level 

control code for object manipulation, and the results of visual 

perception are employed to the control codes for specific 

robot actions. Experimental evaluation using a robotic 

grasping task confirms the following contributions from the 

vision LLM method: 

• VLM-driven scene understanding of an unknown 

interaction environment and text description of its 

constituent elements. 

• A zero-shot-based approach to fine-grained visual 

grounding and object. detection from complex scene 

tasks. 

• Linking language instructions with robot actions for 

object manipulation facilitated by vision perception and 

a code-writing LLM. 

Future efforts will be directed to improving the 

performance of VLMs in the fine-grained understanding of 

complex environments and consistent element detection and 

generalisation to new tasks. Its utility in realising natural 

human-robot interactions and autonomous robotic systems 

driven by natural language will be investigated. 
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