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An Additive Manufacturing
Testbed to Evaluate Machine
Learning-Based Autonomous
Manufacturing
This paper details the design and operation of a testbed to evaluate the concept of auton-
omous manufacturing to achieve a desired manufactured part performance specification.
This testbed, the autonomous manufacturing system for phononic crystals (AMSPnC), is
composed of additive manufacturing, material transport, ultrasonic testing, and cognition
subsystems. Critically, the AMSPnC exhibits common manufacturing deficiencies such as
process operating window limits, process uncertainty, and probabilistic failure. A case
study illustrates the AMSPnC function using a standard supervised learning model
trained by printing and testing an array of 48 unique designs that span the allowable
design space. Using this model, three separate performance specifications are defined
and an optimization algorithm is applied to autonomously select three corresponding
design sets to achieve the specified performance. Validation manufacturing and testing con-
firms that two of the three optimal designs, as defined by an objective function, achieve the
desired performance, with the third being outside the design window in which a distinct
bandpass is achieved in phononic crystals (PnCs). Furthermore, across all samples,
there is a marked difference between the observed bandpass characteristics and predictions
from finite elements method computation, highlighting the importance of autonomous man-
ufacturing for complex manufacturing objectives. [DOI: 10.1115/1.4064321]

Keywords: additive manufacturing, computer-integrated manufacturing, control and
automation, inspection and quality control

1Corresponding author.
Manuscript received May 17, 2023; final manuscript received December 11, 2023;

published online January 12, 2024. Assoc. Editor: Jaydeep Karandikar.

Journal of Manufacturing Science and Engineering MARCH 2024, Vol. 146 / 031008-1
Copyright © 2024 by ASME

mailto:zhang.3137@osu.edu
mailto:george.888@osu.edu
mailto:alam.92@osu.edu
mailto:eubel.1@osu.edu
mailto:mshtein@umich.edu
mailto:bartonkl@umich.edu
mailto:hoelzle.1@osu.edu


1 Introduction
This paper details the design and methods for a testbed to evaluate

the concept of autonomous manufacturing. Here, we describe auton-
omous manufacturing as an intelligent manufacturing system that can
make its own decisions to manufacture a part with some desired per-
formance metric without any human intervention. To communicate
what we define as autonomous manufacturing, we first provide a
simple example. Consider the simple production objective of the
manufacture of a bracket with a specified load and moment capacity
in all three directions. The traditional manufacturing paradigm would
require: materials selection, first principles engineering analysis with
assumed material properties, three-dimensional (3D) computational
analysis, production design and analysis, production, testing-based
validation, and then design and process iteration, as necessary.
Process iteration often applies the design of experiments (DoEs)
approach [1], which is well understood and effective, but has signifi-
cant material and labor costs. Now consider an alternative, autono-
mous manufacturing paradigm (Fig. 1): parameterize the part
design and material variables, use a flexible manufacturing system
with integrated metrology and machine learning (ML)-based cogni-
tion to iteratively manufacture within the design space, and then
test performance to converge to a part that satisfies the production
objective, while validating the part.
The simple and well-understood production objective for the

bracket manufacturing example may not be significantly impacted
by autonomous manufacturing; however, autonomous manufactur-
ing has the potential to be transformative for manufacturing objec-
tives in which the design space and fundamental process and artifact
physics are not as well understood and thus evade traditional
manufacturing design. Consider the objective of 3D metamaterial
manufacture with a specified transmission spectrum, such as the
metamaterial problem studied here. This application has a 3D
design space and the critical engineering variable of strain propa-
gates in 3D [2–4]. Two-dimensional and 3D metamaterials are
often analyzed with 2D and 3D computational analyses, evading
simple design rules. Furthermore, manufacturing inaccuracies and
incorrect model assumptions result in discrepancies between the
predicted and actual part performance [5], limiting the effectiveness
of computational model-based topology optimization algorithms.
Applications with similar engineering and manufacturing chal-
lenges include e-beam lithography [6], dielectric meta-surfaces
[7], structural metamaterials [8], and soft robotics [9]. The objective
of this work is related to a few different automated and autonomous
manufacturing systems that automatically generate experiments and
test product properties. These include the autonomous discovery of
new drug compounds [10,11], single-walled carbon nanotubes [12],
and photocatalyst mixtures for improving the efficiency of hydro-
gen production [13]. These systems are part of a larger manufactur-
ing community effort to integrate ML into manufacturing analysis
and operation [14–16].

This work is a proof-of-concept study of autonomous manufac-
turing with the specific objective to manufacture a phononic
crystal (PnC). PnCs are a class of acoustic metamaterial in which
the design of periodic elements controls the bandpass of the trans-
mission of ultrasonic elastic waves, with a user-defined bandpass
specification. The system, entitled the autonomous manufacturing
system for phononic crystals (AMSPnC), is composed of additive
manufacturing (AM), part transport, part testing, and cognition ele-
ments (Fig. 1). The system takes raw materials and user-defined per-
formance specifications as inputs and autonomously prints and then
tests part performance, either in batch or with new updated process
parameters at each print. The outputs are the artifacts, qualified
material performance for each artifact, and knowledge of the empir-
ical physical relationships between design parameters and perfor-
mance. For this specific case study, we employ supervised
learning methods [17] to generate an empirical model of the col-
lected dataset D and then apply standard optimization algorithms
to generate a parameter set to attain user-defined specifications.
The AMSPnC system has a customizable cognition element such
that supervised learning, reinforcement learning, and optimization
algorithms can be efficiently applied and tested. Critically, the
system exhibits the standard challenges of a manufacturing
system—parameter resolution limits, raw material uncertainty,
process uncertainty and probabilistic failure, process operating
window limits, and measurement noise and uncertainty—and thus
provides a realistic testbed for prototyping more sophisticated cog-
nition element designs. Of course, the diversity in manufacturing
processes is large and the AMSPnC cannot capture all manufactur-
ing challenges in a single system; potentially, the AMSPnC design
can motivate similar autonomous manufacturing efforts on other
classes of manufacturing systems. Regardless, to the best of our
knowledge, this is one of the first attempts at ML systems integra-
tion for autonomous manufacturing of a 3D part, whereas recent
studies have only explored 2D geometries such as 3D printing of
simple lines [18,19].
The remainder of the paper is organized as follows. Section 2

provides a systems representation of the manufacturing problem
and provides background on PnCs. Section 3 details the
AMSPnC design. Section 4 details a case study applied to the
AMSPnC and Sec. 5 provides the corresponding results. Section
6 provides interpretations of the current study and the direction of
the future study.

2 Background
2.1 Manufacturing System Representation and

Performance Metric. Consider the general manufacturing
process F :

gt = F (xt) + ξt (1)

Fig. 1 Schematic of the AMSPnC (“Extrusion Head” by thinkin3D is licensed under CCBY-NC
3.0)
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where the process output gt ∈ Rm quantifies the part property or
properties, the process input xt ∈ Rn quantifies manufacturing
parameters, ξt is the process noise, t is the trial index, and T is the
total number of trials:

xt = xt,1, xt,2, . . . , xt,n
[ ]′

gt = gt,1, gt,2, . . . , gt,m
[ ]′

t ∈ [0, 1, . . . , T]

where ′ denotes the transpose operator. For a desired output speci-
fication gd, the objective of the learning problem is to find optimal
design parameters x*, subject to the constraint x ≼ x∗ ≼ x, which
minimizes a loss function y = L gd , gt

( )
that quantifies the deviation

between the gd and gt. The ≼ symbol denotes the element-wise
inequality: x1 ≼ x2 ↔ [x1]i ≤ [x2]i, ∀i. x is a vector of the
minimal allowable parameter values and x is a vector of the
maximum allowable parameter values. The loss function is a
generic term for a weighted function of performance metrics, in
which many methods have been devised to quantify performance
and enforce constraints [20,21].

2.2 Acoustic Metamaterials (Phononic Crystals). PnCs are a
class of acoustic metamaterials in which the transmission spectra of
the elastic waves are dependent on the periodic structure of the
material [22]. For instance, wave propagation in the Z direction of
a representative PnC in Fig. 2(a) is dependent on the design of
the filament diameter (d) and the filament-to-filament distance
(lxy) (Fig. 2(b)). In this study, we characterize the performance of
a PnC by its frequency, f, dependent transmission spectra |T( f )|,
defined as the ratio of the output spectra to the input spectra. The
objective is to manufacture a PnC with the specified acoustic band-
pass. The performance metrics are the bandpass center frequency,
fc, and bandwidth, w: g = fc, w[ ]′. A schematic of the test method

to measure |T( f )| is shown in Fig. 2(c) and an idealized transmission
spectrum with annotated performance metrics is shown in Fig. 2(d ).

3 System Design
The AMSPnC consists of four main subsystems: AM, transport,

testing, and cognition. A computer-aided design (CAD) rendering
of AMSPnC with detailed hardware subsystems is shown in
Fig. 3(a). A photo of the AMSPnC is shown in Fig. 3(b).

3.1 Additive Manufacturing Subsystem. A consumer-grade
fused filament fabrication (FFF) 3D printer (Ultimaker S5, Ulti-
maker, Utrecht, Netherlands) was adapted as the AM subsystem.
The AM subsystem is largely used as received, with the main mod-
ifications being the removal of printing substrate to attach the trans-
port subsystem (Sec. 3.2) and the mounting of the testing subsystem
(Sec. 3.3). The delay line of the transport subsystem serves as the
printer bed for the AM subsystem. The printing head location is
defined by coordinate triad {X, Y, Z} and material extrusion is
defined by coordinate E. All PnCs are printed at the same {X, Y,
Z} start point (Fig. 4).

3.2 Transport Subsystem. The transport subsystem is
designed to deliver an unoccupied location on the printer bed
(delay line) to the printing location for PnC manufacturing and
deliver a manufactured PnC to the testing location. The transport
subsystem coordinate is given by rotation θ (Fig. 4). The motor is
mounted to the Z-axis stage and the delay line (printer bed) is
mounted to the motor (DC-micromotor, Series 3257G024CR,
Schönaich, Germany with encoder, HEDS-5500, Broadcom Inc,
CA, USA).

3.3 Testing Subsystem. The ultrasonic testing subsystem
measures the transmission spectra of a PnC artifact by sending an

Fig. 3 AMSPnC: (a) rendered CAD model of the AMSPnC, high-
lighting the four main subsystems, and (b) photograph of the
AMSPnC

Fig. 2 Representative PnC and ultrasonic testing: (a) Schematic
of an acoustic metamaterial (PnC). (b) Unit cell of a PnC and
annotated design parameters d and lxy. (c) Schematic of the
transmission of an elastic wave from the bottom ultrasonic trans-
ducer to the top ultrasonic transducer through a bottom solid
couplant, delay line, PnC, and then a top solid couplant. (d) Ide-
alized transmission spectra demonstrating a phononic band-
pass and bandpass metrics.
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ultrasonic pulse from the pulser (bottom) transducer and then
through the bottom couplant, delay line, PnC, and top couplant to
the receiver (top) transducer (Fig. 2(c)). The following sequence
is used for each ultrasonic test: the transport subsystem moves a
PnC artifact into the testing subsystem; the top and bottom sole-
noids disengage, causing two spring loaded ultrasonic transducers
(A105S-SB Olympus, Tokyo, Japan) to clamp the PnC artifact
from the top and delay line from the bottom; an ultrasonic pulse
is sent to the bottom transducer and received by the top transducer
(USBUT350, US Ultratek Inc, CA, USA); additional pulses at dif-
ferent center frequencies are sent to the bottom transducer according
to the testing scheme detailed in Sec. 3.4.5; the top and bottom sole-
noids are engaged to release the transport subsystem and end the
test. The ultrasonic delay line (Rexolite® Polystyrene, C-Lec Plas-
tics Inc, PA, USA) temporally separates the primary transmission
signal from the reflections at impedance mismatched interfaces
[2]. A solid couplant (AqualinkTM100, Innovation Polymers,
Canada) is adhered at the edges to a 3D printed transducer
holder, which ensures that the couplant is free on the transducer
surface, but taut so that the couplant does not wrinkle. The entire
subsystem is mounted to the Z-stage of the AM subsystem. The
two transducers in our system have a center frequency of the trans-
ducer bandpass specification of 2.25 MHz.

3.4 Cognition Subsystem. The objective of the cognition sub-
system is to automatically test a set of PnC design parameters lxy and
d and then autonomously select optimal design parameters l∗xy and
d* to achieve a desired PnC performance. This objective sets up
the optimization problem

min
xt

E[L(gd, F (xt) + ξt︸����︷︷����︸
gt

]

s.t. x ≼ xt ≼ x

xt = xt,1, xt,2, . . . , xt,n
[ ]′

t ∈ [0, 1, . . . , T]

(2)

The cognition subsystem in Fig. 1 is designed to find the optimal x*
by empirically testing the process function F in either batch testing
or serial testing. This paper investigates batch testing as a proof of
concept; however, other works by our lab have investigated
serial testing, as discussed in Sec. 6 [23]. The coordination of
these empirical testing and optimal parameter selection requires a
multitude of scheduled tasks, which are detailed below. All functions
are integrated into the main LABVIEW program (National Instruments,
Austin, TX, USA). The general information flow is shown in Fig. 5.

3.4.1 Cognition Element. The cognition element generates an
empirical model that discovers the underlying relationship within

dataset D and then finds an optimal parameter set x∗ = l∗xy, d
∗

[ ]′
to attain a user-defined specification using standard optimization
algorithms. A case study of a specific cognition element design is
provided in Sec. 4.2.

3.4.2 Training Set Execution. The training set to generate
dataset D is built by a scheduled set of manufacturing and testing
operations. This schedule is automatically executed, with each
manufacturing and testing operation executed in the loop shown
in Fig. 4: transport, G-code generation, AM, transport, and testing.

3.4.3 G-Code Generation. A custom-built G-code generator
prescribes the AM printing path based on a given d and lxy design.

3.4.4 Manufacturing Execution. The AM subsystem executes
PnC manufacturing with G-code commands sent from 3D slicer
software, cura (Ultimaker, Utrecht, Netherlands), via an ethernet
port. cura loads and sends G-code via a batch script in LABVIEW.

3.4.5 Testing. The testing subsystem conducts ultrasonic
testing of each manufactured PnC. The test consists of multiple
applications of the tone burst signal by the bottom transducer,
each at a different fundamental excitation frequency f0:

v(t) = A cos 2πf0t
( ) 1

2
+
1
2
cos

2πf0
M

t

( )( )
rect

M

2f0

( )
(3)

where A is the voltage amplitude, M is the number of fundamental
periods in the tone burst, and rect is the zero-phase rectangular
function [24]. A single tone burst signal provides broadband exci-
tation of the system with a bandwidth of 1.441( f0/M ), while
being brief in duration such that the signal is transmitted before
the measurement is polluted by reflections at impedance mis-
matched interfaces.

3.4.6 Data Processing. A custom MATLAB script in LABVIEW

performs data post-processing operations: merge multiple tests at
different excitation frequencies, transmission spectra calculation,
assess bandpass metrics, and generate dataset D = {x, y} for the
cognition element.

4 A Case Study
A case study is performed to demonstrate the concept of autono-

mous manufacturing to satisfy a performance specification. The
training set D = {x, y} is built via automated progression through
a full-factorial DoE with three replicates. The cognition element
is based on the supervised learning algorithm polynomial regres-
sion, which fits an empirical relationship between design parameters
and a loss function composed of the PnC transmission metrics of
center frequency fc and bandwidth w. After training, a function min-
imization algorithm, differential evolution, is applied for three dif-
ferent desired center frequency/bandwidth pairs and then five
independent PnC manufacturing and testing operations are per-
formed to validate the method and algorithm performance.

4.1 Training Set Development

4.1.1 Automated Procedure. There are 12 predefined printing
locations on the surface of the printing bed, each offset by

Fig. 4 Detailed workflow for each trial of the automated training
set execution task Fig. 5 Information flow diagram for AMSPnC. Commands flow

from the LABVIEW program to the printer software, auxiliary hard-
ware, and actuators and sensors.

031008-4 / Vol. 146, MARCH 2024 Transactions of the ASME



30 deg. The printing location and testing location are fixed at a
106.2 deg offset (Fig. 4). The sequence of automation is described
in Algorithm 1.

4.1.2 Full-Factorial Design of Experiment. A full-factorial
DoE is performed to generate datasetD = {x, y}. The PnCs are fab-
ricated with discrete filament diameters, d, and filament-to-filament
distance, lxy, design levels,

d = 350, 400, . . . , 600 μm
lxy = 700, 750, . . . , 1050 μm

(4)

for a total of 48 unique combinations. The levels above are based on
those reported in the literature [2]. The DoE uses three replicates for
a total of 144 PnCs and the manufacturing order is randomized.
With 12 available manufacturing locations on the surface of the
transport subsystem bed, manufacturing is completed in 12 sets.

4.1.3 Manufacture of Phononic Crystals. Polylactic acid fila-
ment (Ultimaker) with a diameter of 2.85 mm and a glass transition
temperature of approximately 60 °C is selected as the raw material
due to the ease of fabrication and relatively low glass transition tem-
perature. PnCs are manufactured on the surface of the transport sub-
system with the printing specifications given in Table 1. A uniform
speed is used to ensure a consistent PnC filament diameter, which
improves transmission amplitude of the PnC. A representative
PnC is shown in Fig. 2(a). Support structures are not required
and not used for the PnC design used herein.
The extrusion feed per nozzle distance traversed (dE/dL) is set in

G-code to be

dE
dL

=
4dh
πD2

(5)

whereD is the diameter of the raw material filament, d is the desired
filament diameter of the PnC, h is the height of each layer, and h= d
in this study.
The printer head starts at the same location {X, Y} for each PnC

manufacture. The Z position is offset by a calibration constant, cal-
ibrated by a flatness measurement using a dial gauge at each loca-
tion on the transport subsystem. A manufacturing batch takes
approximately 5–6 h, depending on the design levels of the PnCs
in the set.

4.1.4 Testing. Ultrasonic testing consists of two basic mea-
surements: reference transmission measurement and PnC transmis-
sion measurement. The reference transmission measurement is the
measurement of the receiving (top) transducer voltage, Vr(t),
when there is an ideal transmitter between the transducers. We
emulate an ideal transmitter by placing a reference sample of the
same size as the PnC but composed of the same material as the
delay line, polystyrene. Two reference measurements using two
identically constructed reference samples are collected at a random-
ized location before each manufacturing set. A thin layer of ultra-
sound transmission gel (Aquasonic 100, Parker Laboratories, NJ,
USA) is applied between the delay line and reference sample to
ensure ideal transmission. PnC transmission is measured by the
receiving transducer voltage, VPnC(t), when there is a PnC artifact
between the transducers. The sequence of operations is described
in Sec. 4.1.1. The PnC polymer elastic modulus is temperature

dependent and thus the transmission spectra is temperature depen-
dent [25]. Accordingly, the testing scheduling logic in Algorithm 1
ensures that each PnC cools for 20 min after manufacturing to
ensure full polymer crystallization.

Algorithm 1 Automated procedure for training set generation
for each batch of 12 PnCs

1: Manual setup. This step is only performed at printing location i= 1 at
the beginning of every 12 PnCs.

Conduct reference signal tests with reference samples. See Section
4.1.4.
Position the bed into the first fabrication location.
i= 1.

2: While i ≤ 12 do
3: Transport to PnC fabrication location

Activate solenoids to free the rotation of transport subsystem.
Rotate the transport subsystem to 30(i− 1) deg.

4: Generate G-code
Deactivate solenoids to lock the transport subsystem.
Access design parameters (d, lxy).
Generate and save G-code to a file.

5: Manufacture PnC
Load the G-code file with CURA and send to the 3D printer.
Execute PnC manufacture.

6: Transport to testing location
IF i= 1; GOTO Step 8.
ELSEIF i < 12

Activate solenoids to free the rotation of transport subsystem
bed.
Transport the previously printed PnC to the test location: θ =
(106.2 + 30(i − 1)) deg.

ELSE
Wait for 20min to cool down the PnC (Sec. 4.1.4).
Activate solenoids to free the rotation of transport subsystem
bed.
Transport the current PnC to the test location: θ = (106.2 +
30i) deg.

7: Test PnC artifact
Deactivate the solenoids to clamp the PnC with the transducers.
Test the PnC with a sequence of five tone burst signals at different
center frequencies (Sec. (Sec. 3.4 and Appendix A.1).
Postprocess data. Add data pair {x,y} to data set D.

8: Increment i = i + 1
9: end

The actuation signal is a temporally separated sequence of tone
burst signals, where each tone burst is of the form of Eq. (3)
(shown in Fig. 6(a)). Here, we execute a sequence of tone burst
signals with f0= 1, 1.5, 2, 2.75, 4 MHz and then merge the
responses using the algorithm described in Appendix A.1 to
further expand the frequency band of excitation to improve the
signal-to-noise ratio at the low and high frequencies. Both the ref-
erence and PnC transmission measurements are sampled at
50 MHz.

4.1.5 Data Processing. Figure 6 shows representative wave-
forms of the reference transmission measurement, vr(t), and the
PnC transmission measurement, vPnC(t), for a tone burst input
with f0= 2 MHz. The waveforms show the temporal separation
between the primary transmitted signal and the reflections from
impedance mismatches at material interfaces. Additionally, there
is electromagnetic crosstalk between the pulser unit and receiver
unit from the initial pulse. The primary transmitted signal is seg-
mented as shown in Fig. 6 (562 samples for vr(t) and 1502
samples for vPnC(t)) and then zero padded to length 4000 to
achieve the desired frequency resolution of 0.0125 MHz. The
Blackman window [26] is applied to the segmented and
zero-padded signals. The five different measurements for the five

Table 1 Manufacturing parameters

Nozzle temperature 205 °C
Nozzle diameter 0.4 mm
Printing speed 1500 mm/min
Dimension of PnCs 34 mm×34 mm×8 mm
Layer height (layer 1) 3

4 d
Layer height (layer >1) d
Filament stacking orientation Orthogonal

Journal of Manufacturing Science and Engineering MARCH 2024, Vol. 146 / 031008-5



different f0 levels are combined to compute a single transmission
spectra of the PnC, |T(f )‖; each signal is transformed to the fre-
quency domain, filtered with a frequency localizing basis function,
and merged in the frequency domain. The metrics of center

frequency (fc) and bandwidth (w) are identified from |T(f )‖ by
fitting a bimodal Gaussian function to |T(f )‖. The algorithm for
multiple excitation frequency merging and then metric identifica-
tion are detailed in Appendix A.2.

4.2 Cognition Element

4.2.1 Loss Function. Given the performance metrics of center
frequency fc and bandwidth w (Fig. 2(d )), a loss function is defined
to penalize deviation from desired performance:

L yd , ya
( )

= αL f + Lw (6)

where

L f =
fc,a − fc,d
∣∣ ∣∣

fc,d

Lw =
wa − wd| |

wd

Loss component L f is the normalized difference between the actual
center frequency, fc,a, and desired center frequency, fc,d. Loss com-
ponent Lw is the normalized difference between actual bandwidth,
wa, and desired bandwidth, wd. A representative desired transmis-
sion spectra are shown in Fig. 2(d ). L f coefficient αweights the rel-
ative penalty for center frequency deviation and bandwidth
deviation, with a higher coefficient more heavily penalizing fre-
quency deviation. In this case study, three loss functions are
tested (loss functions 1, 2, and 3), with α chosen to be 1, 2, and
4, respectively; the choice of α≥ 1 for all loss functions reflects
that bandpass filters are often primarily defined by their center
frequency.

4.2.2 Polynomial Regression. As defined in Eq. (1), the input
parameter set is x = [d, lxy]′ and the output set is g = [fc, w]′. The
goal is to find the optimal d* and l∗xy of PnC such that the loss
value, y = L∗, is minimal based on given performance specifica-
tions gd = [fc,d , wd]′. The supervised learning method polynomial
regression is applied to learn from 144 experimental dataset pairs,
D = {x, y}, x ∈ R144×2, y ∈ R144×1, to generate a loss surface. To
train and test the model, the dataset D is split into training data

Table 2 Desired transmission metrics

Pair no. fc,d (MHz) wd (MHz)

1 0.63 0.15
2 1.20 0.13
3 0.48 0.09

Fig. 6 Representative time-domain waveforms of the transmis-
sion measurement signals: (a) transmitted reference signal, vr(t)
and (b) transmitted PnC signal, vPnC(t)

Fig. 7 Representative transmission spectra and artifacts from the training data set.
(a) Transmission spectra at three representative d, lxy pairs. The center frequency
decreases as the filament-to-filament distance increases. (b) Images of printed
PnCs from the training set. As the filament diameter d increases above 550μm, a
buckling phenomenon emerges that disrupts PnC periodicity.

031008-6 / Vol. 146, MARCH 2024 Transactions of the ASME



and testing data with a 85%:15% split, respectively. Ten-fold cross-
validation is used to prevent overfitting and select the best polyno-
mial degree between 0 and 21 [27]. The training error and testing
error of the polynomial regression model are defined as εTR and
εTE , respectively, based on the mean square error (MSE) in Eq. (7).

ε ·( ) L, L̂
( )

=
1
N

∑N
i=1

Li − L̂i

( )2
(7)

where N is the total number of samples used to calculate the MSE
and L and L̂ are the actual loss and predicted loss, respectively.

4.2.3 Optimization Problem. The ultimate objective of the
system is to autonomously identify a design parameter set that pro-
vides the minimum loss for desired transmission spectra metrics.
This objective is stated as a minimization problem:

{d∗, l∗xy} = argmin
d, lxy

E[L(gd, g(d, lxy))] (8)

such that

350 μm
700 μm

[ ]
≼ d

lxy

[ ]
t

≼ 600 μm
1050 μm

[ ]

The function minimization algorithm differential evolution [28] is
applied to Eq. (8) to find the optimal d* and l∗xy with a minimal pre-

dicted loss, L̂.

4.3 Validation. To validate the approach outlined in Fig. 1, we
randomly generated three desired center frequency/bandwidth pairs
(fc,d and wd, Table 2) from within the parameter range of the training
set D, calculated optimal input parameters d* and l∗xy, and then per-
formed independent manufacturing and testing of these PnCs. The
complete validation set includes the three different spectra metrics
from Table 2, three different loss functions defined in Sec. 4.2.1,
and five independent manufacturing and testing repetitions, for a
total of 45 validation data points. Experimental loss and transmis-
sion spectra are reported for comparison.

5 Results
5.1 Training Set Results. One hundred and forty-four PnCs

were manufactured according to the schedule detailed in Sec.
4.1.2. Figure 7 displays representative results from a subset of the
manufactured PnCs. In agreement with the literature [2], a consis-
tent trend is that there is an inverse relationship between center fre-
quency and filament-to-filament spacing, lxy. The center frequency
shifts from larger to smaller values as parameter lxy shifts from
smaller to larger values; a representative observation is the center
frequency decreases from approximately 0.65 MHz to 0.46 MHz
as lxy increases from 700 μm to 900 μm at a constant d (400 μm)
(Fig. 7(a)). Filament diameter designs with d less than 550 μm
yield straight, uniform filaments with a consistent periodicity
(Fig. 7(b)). At larger filament diameter designs, the filaments
buckle, breaking the periodicity in the structures. The lack of peri-
odicity yields an artifact that does not act as a metamaterial, creating
an all-reject filter in which the signal strength is significantly dimin-
ished across all frequencies (data not shown).
The computed loss using loss function L3 at the three desired

transmission metrics in Table 2 for all 144 manufactured PnC arti-
facts are shown in Fig. 8; the loss values using L1 and L2 are shown
in Fig. 13 of the Appendix. A loss surface is fit to each loss function
using polynomial regression, Sec. 4.2.2, providing an estimate of
the expected loss across the entire design space domain. Training
error, εTR, and testing error, εTE, are dependent on the associated
loss function and testing pair (Table 3); however, in general the
testing error is slightly larger than the training error, and sometimes
better than the training error, indicating an empirical model without
appreciable overfitting. Additionally, the ramifications of a loss of
structure periodicity from filament buckling, Fig. 7(b), are seen in
the loss surfaces in Figs. 8 and 13; the highest loss values are asso-
ciated with large filament diameters, hence buckling prone param-
eters, leading to severely attenuated transmission amplitudes and
poor matching with the desired transmission performance.

5.2 Cognition Element and Validation Results. The set of
optimal PnC designs, d* and l∗xy, for each loss function and trans-
mission metric pair are given in Table 4 and superimposed on the

Fig. 8 Supervised learning results for loss function 3, L3, for each of the transmission metrics pairs. Resultant optimal param-
eters are indicated on the surface for three pairs.

Table 3 Training and testing error (MSE)

Loss function 1 Loss function 2 Loss function 3

Pair εTR εTE εTR εTE εTR εTE

1 0.45 0.57 0.52 0.61 0.77 0.73
2 0.58 0.79 0.64 0.90 0.79 1.13
3 0.83 1.00 0.95 0.92 1.40 0.99

Table 4 Optimal design parameters and loss

Loss function 1 Loss function 2 Loss function 3

Pair d* l∗xy L∗
1 d* l∗xy L∗

2 d* l∗xy L∗
3

1 481 740 0.05 474 746 0.08 449 758 0.28
2 367 1050 −0.06 370 976 0.14 500 1021 0.22
3 448 787 −0.08 439 802 0.06 413 800 0.06
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Fig. 9 Desired transmission parameters and validation results. Comparison of experimental transmission spectra for
each sample and desired fc,d (dotted line) and wd (gray shaded region) among the three loss functions.

Table 5 Tabulated validation results

Pair 1 Pair 2 Pair 3

L(·) Sample no. fc,exp (MHz) wexp (MHz) L(·), exp fc,exp (MHz) wexp (MHz) L(·),exp fc,exp (MHz) wexp (MHz) L(·),exp

L1 1 0.69 0.13 0.19 0.84 0.09 0.57 0.56 0.11 0.42
2 0.68 0.15 0.09 0.85 0.09 0.57 0.60 0.10 0.38
3 0.70 0.13 0.24 0.85 0.11 0.42 0.62 0.11 0.51
4 0.68 0.13 0.21 0.84 0.10 0.54 0.63 0.11 0.52
5 0.69 0.13 0.21 0.87 0.09 0.57 0.62 0.11 0.56

L2 1 0.69 0.11 0.46 0.93 0.10 0.66 0.59 0.10 0.62
2 0.69 0.12 0.41 0.91 0.10 0.70 0.47 0.44 3.91
3 0.68 0.12 0.38 0.92 0.11 0.65 0.58 0.10 0.58
4 0.68 0.11 0.43 0.93 0.09 0.77 0.59 0.10 0.53
5 0.69 0.11 0.41 0.91 0.10 0.71 0.59 0.10 0.56

L3 1 0.65 0.12 0.34 1.20 0.20 0.54 0.49 0.11 0.32
2 0.62 0.13 0.20 1.19 0.18 0.45 0.57 0.10 0.79
3 0.65 0.12 0.29 1.21 0.20 0.53 0.46 0.25 1.88
4 0.64 0.12 0.27 1.21 0.20 0.54 0.50 0.12 0.50
5 0.64 0.12 0.26 1.22 0.20 0.63 0.57 0.09 0.74
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loss surfaces in Figs. 8 and 13. The results of manufacturing and
testing optimal PnC designs for each loss function and testing
pair are shown in Fig. 9. Qualitatively, more heavily penalizing a
deviation in the center frequency metric forces the cognition
element to choose a parameter design which yields a better compli-
ance with the desired center frequency: compare L1, which penal-
izes fc and w deviation equally, with L3, which penalizes fc
deviation four times stronger than w deviation (Fig. 9). Better
center frequency compliance from L3 can be seen quantitatively
in Table 5, as well. Anomalous manufacturing was observed in 1
of the 45 validation PnCs artifacts: sample 2, L2, pair 3.

6 Discussion and Conclusion
The work here presents a new integrated manufacturing, testing,

and cognition system, termed the AMSPnC, to test the concept of

autonomous manufacturing. The purpose of this testbed is to be a
simple, inexpensive, and efficient method to test the cognition
element of autonomous manufacturing systems. Although a
simple system that is purpose driven for PnC manufacture, the
AMSPnC has characteristics that are similar to those of high-value
added manufacturing systems, such as those listed in the introduc-
tion, and is designed to be translatable to other manufacturing
applications.

• The AMSPnC has a flexible design space and testing space. In
the case study presented here, we chose a two-dimensional
design space, x = d, lxy

[ ]′
, to limit the number of artifacts

required in the training data set. However, the freeform
nature of FFF manufacturing permits arbitrary structural
designs, including non-orthogonal filament stacking and both
intra- and inter-layer variation in d and lxy, providing a rich
exploration space for more sophisticated cognition algorithm
development.

• Computational models of wave propagation through the PnC
structure have model uncertainty, which will limit the
effectiveness of zero-shot application of optimization and
ML-based topology optimization algorithms. In a previous
study from our group [29,30], we applied the acoustics
module package of comsol to solve the elastic wave propaga-
tion problem by the finite element method (FEM) for all
designs tested in this paper. Figure 10 shows the comparison
between FEM and AMSPnC measured transmission metrics
fc and w for all printed samples; there is a marked difference
in the distribution of these metrics, demonstrating uncertainty
between model predictions and actual performance. The sensi-
tivity of elastic wave propagation to the difficult to predict
factors of necking at filament stacking interfaces, the material
damping, and filament buckling during manufacturing (Fig. 7)
highlight the importance of empirical learning in autonomous
manufacturing, which innately captures these challenging
factors. The flexible cognition element in the AMSPnC
accommodates myriad ML-based algorithms, including those
that merge computational models with empirical learning.

• The AMSPnC exhibits manufacturing relevant challenges
which lead to imperfect data sets, some of which are not
seen in computational studies, and thus provides a realistic
emulation of advanced manufacturing processes for
testing cognition algorithms. Anomalous manufacturing was

Fig. 10 Comparison of the process output metrics fc andw for a
computational model of a PnC (FEM) and experimental measure-
ment by the AMSPnC. Two representative transmission spectra
for the same input parameters d and lxy show a distinctly different
transmission spectra between FEM and experimental observa-
tion. ©2023 IEEE. Modified, with permission, from Ref. [30].

Fig. 11 Operations schematic demonstrating the methods of local tone burst weighting based on frequency localizing basis
functions. (a) Magnitude of the frequency localizing basis functions |Fk(f)‖, Eq. (A1). Circles denote the center frequency, f0, of
ultrasound actuation. Gray functions denote unused functions in sequence from Eq. (A1). Black functions denote applied func-
tions from Eq. (A1). Applied basis functions have the same peakmagnitude and bandwidth. (b) Representative set of frequency
domain responses before |VPnC,k(f)‖ and after |VPnC,k(f)||Fk(f)‖weighting by frequency localizing basis functions. (c) Composite
transmission spectra |T(f )|.
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observed in one of the 45 artifacts in the validation sets, as
defined by the loss being categorized as an outlier, in compar-
ison to replications of the same design parameters or nearest
neighbors in the training set. Statistical outliers are a
common manufacturing challenge and developed autonomous
manufacturing systems must be robust to them. Certain
regions of the design space yield consistent manufacturing
defects in the form of filament buckling (Fig. 7(b)); these fea-
tures are common in advanced manufacturing where features
such as thin walls and deep draws have a higher probability
of manufacturing failure, and thus become unfavorable
design features, probabilistically. Additionally, there are
certain performance specifications that are not obtainable,
providing a relevant material and design constraint on the
expected performance. For instance, a center frequency
greater than 1MHz is difficult to achieve with the selected

design space and materials; although heavily weighting
the deviation in center frequency permitted us to identify a
parameter set that achieved a bandpass at 1.20MHz
(Fig. 9, L3, pair 2), the bandpass magnitude is weak in com-
parison to the bandpass magnitude achieved at lower
frequencies.

• One of the fundamental components of any cognition element,
the loss function, is tunable, providing a direct mechanism to
weight specific performance metrics for the system. This influ-
ence can be best seen in Fig. 9 where a loss function that
heavily penalizes deviations from the center frequency, L3,
leads to better compliance with the center frequency specifica-
tion, in comparison to L1 and L2. This observed result gives
promise for more sophisticated loss functions, such as loss
functions that integrate pareto optimization or constraints
[20,21] in future work.

Fig. 12 Scatter plot of the loss values for the validation experiments (five samples) and nearest neighbors from training and
testing sets (12 samples). Anomalous artifacts in the validation experiments are determined by the standard definition of an
outlier. Anomalous artifacts in the nearest neighbors sets are defined by observation and qualitative investigation of the trans-
mission spectra; only three replications are performed in the training set and testing sets that compose the nearest neighbors,
precluding the standard statistical determination of outliers.
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The polynomial regression algorithm and function minimization
scheme applied in the case study are simple options for the cogni-
tion element for a first, proof-of-concept case study to demonstrate
some of the most basic properties of the AMSPnC. However, the
true value of the AMSPnC is the ability to efficiently test myriad
more advanced cognition element designs. A typical manufacturing
process is expensive in terms of machine time, materials, and labor.
To be machine time, materials, and labor efficient, ML algorithms
embedded in the cognition element will need to converge to an
optimal parameter set on the order of 10 samples, be robust to the
inevitable anomalous manufacturing events, and be continuously
applied, permitting the system to auto-regulate for deviations in
material feedstock and environmental conditions. To do so, ML
algorithms may integrate process and artifact physics models to
reduce the need for large data sets, such as the ML algorithms pre-
viously explored by our group [29]. Unlike the serial process of
training set development and then process optimization employed
here, continuous, sequential ML algorithms, such as reinforcement
learning [23], may be better suited to continually adapt to a chang-
ing environment or material and more tightly cluster empirical sam-
pling near the optimal inputs l∗xy and d* for higher performance.
Additionally, potential AMSPnC advancements could integrate
other sensors, such as machine vision systems to measure actual fil-
ament spacing and diameter, lxy,a and da during the process to teach
ML models the process–structure–performance relationship for the
AMSPnC: commanded lxy and d is the process input, measured lxy,a
and da are the structure metrics, and measured fc,a and wa are the
performance metrics. Lastly, the design of the AMSPnC is most rel-
evant to FFF 3D printing, but the concepts of having a flexible input
space, online measurement, and flexible autonomous cognition and
automated systems for communication are transferable design ele-
ments that may have impacts on other classes of manufacturing
systems.
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Appendix
A.1 Multi Excitation Filtering. The tone burst signal, Eq. (3),

has the favorable property that the excitation is brief, on the order of
microseconds, and thus permits temporal separation between the
primary transmission and internal reflections in the PnC;
however, the tone burst bandwidth is 1.441( f0/M ), which is on
the order of 0.25–0.50 MHz for the fundamental frequencies used
here [31]. To ensure a strong signal-to-noise ratio across a broad
band of frequencies of interest, we excite the reference sample or

Fig. 13 Supervised learning results for loss functions 1 and 2, L1 and L2, for each of the transmission metrics pairs. Resultant
optimal parameters are indicated on the surface for three pairs.
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PnC with a sequence of temporally separated tone burst signals with
different fundamental frequencies, f0= 0.250, 0.354, 0.500, …,
5.66 MHz. Both time-domain transmission functions, vr(t) and
vPnC(t), are transformed to the frequency domain using the discrete
Fourier transform (DFT) to give Vr(f ) = DFT vr(t)( ) and
VPnC(f ) = DFT vPnC(t)( ). Each frequency domain function is then
multiplied by a frequency localizing basis functions (Fig. 11) to
locally weight the response in the frequency band excited by its
respective tone burst signal [31], Eq. (A1), and then summed
together to form a composite frequency domain response across a
broad band of frequencies, Eq. (A2).

Fk(s) : = sq(k−1)pqk
∏k
i=1

1

s + pi
( )q ; k = 1, . . . , ñ (A1)

Vr(f ) =
∑̃n+1
k=1

Vr,k(f ) Fk j
f

2π

( )∣∣∣∣
∣∣∣∣e j∠Fk j( f /2π)( )

VPnC(f ) =
∑̃n+1
k=1

VPnC,k(f ) Fk j
f

2π

( )∣∣∣∣
∣∣∣∣e j∠Fk j( f /2π)( ) (A2)

where j =
����
−1

√
, q ∈ N+ is the order of basis function, and

0 < p1 < · · · < pñ <∞. The transmission spectra are then calculated
using the standard equation

T(f )
∣∣ ∣∣ = |VPnC(f )|

|Vr(f )| (A3)

Here, we use q= 1 and p= (3/5)f0.

A.2 Transmission Spectra Metric Identification. Transmis-
sion spectra metrics fc and w are identified from the transmission
spectra |T( f )|. Each transmission spectra is fit to the bimodal Gauss-
ian function

k(f ) = a1e
−(f−fc1 )

2/2σ21 + a2e
−(f−fc2 )

2/2σ22 (A4)

using the fit function in matlab. fc(·) and σ(·) are selected from the
dominant peak, as determined by the maximum of a1 and a2, as
the metrics for fc and w, respectively. w is calculated from σ(·)
using the −3 dB bandwidth convention:

w = 2σ ·( )
����������������
−2 ln 10−3/20

( )√
(A5)

A.3 Consistency Between Training and Validation Data.
Figure 12 provides a comparison between training data and vali-
dation data for each loss function and metric pair. As validation
artifacts are manufactured at design parameters that are not in the
set of design parameters used in training, the validation data are
compared to the four nearest neighbors in the set of design
parameter used in training. Qualitatively, the validation data
are largely within the span of the training data and are thus
consistent.
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