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Abstract

This paper presents a modeling effort to explore the underlying physics of temperature evolution during additive friction stir
deposition (AFSD) by a human-Al teaming approach. AFSD is an emerging solid-state additive manufacturing technology that
deposits materials without melting. However, both process modeling and modeling of the AFSD tool are at an early stage. In this
paper, a human-Al teaming approach is proposed to combine models based on first principles with Al. The resulting human-
informed machine learning method, denoted as AFSD-Physics, can effectively learn the governing equations of temperature
evolution at the tool and the build from in-process measurements. Experiments are designed and conducted to collect in-process
measurements for the deposition of aluminum 7075 with a total of 30 layers. The acquired governing equations are physically
interpretable models with low computational cost and high accuracy. Model predictions show good agreement with the
measurements. Experimental validation with new process parameters demonstrates the model’s generalizability and potential for
use in tool temperature control and process optimization.
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1. Introduction studied for centuries and are well-known by humans.
Therefore, humans tend to focus on the underlying physics. At
present, these cognitive capabilities are not integrated within
the computational capabilities of AI/ML. With that in mind,

this paper aims to advance the knowledge of temperature

The goal of learning for either human or artificial
intelligence (Al) is to acquire knowledge. Human learning
provides a blueprint for machine learning (ML) that is

commonly regarded as a pathway to AI. The primary
distinction between human and Al learning is that, while
humans tend to make inferences about natural laws after
acquiring existing knowledge, current AI/ML capabilities
perform the inverse: they fit the data generated by embedded
laws with little to no awareness of first principles. This lack of
awareness limits the use of AI/ML for many science and
engineering fields where first principles and physical
constraints must be applied. These governing laws have been

evolution for additive friction stir deposition (AFSD) by a
human-AlI teaming approach.

AFSD as an emerging solid state metal additive
manufacturing (AM) technology which provides an alternative
to fusion-based AM technologies where materials are melted
locally using a high-intensity heat source [1, 2]. In the AFSD
process, no melting occurs and the geometry and
microstructure are produced during layer-by-layer severe
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plastic deformation. The deposited materials have lower
porosity, reduced thermal gradients, lower residual stress, and
homogenous microstructure. Prior research efforts have studied
various materials and the corresponding structure-property
relationships [3-14]. AFSD, together with metrology and
computer numerically control (CNC) machining, has been
integrated as hybrid manufacturing for industrial applications
[15-17].

The parameter settings for AFSD determine the friction and
plastic deformation at the tool deposition surface, both of
which are primary causes of heat generation in the tool and the
build. AFSD modeling efforts are at an early stage. For process
modeling, numerical models including both mesh-free methods
[18-20] and mesh-based methods [3, 21-24] have been studied.
However, multi-physics models are faced with limitations
including boundary instability, high computational cost, and
poor scalability for multi-layer depositions. These numerical
models are often treated as deterministic and are not well-suited
to combination with data for learning and accuracy
improvement. Further, in-process measurements may be
performed to record physical variables like temperature,
spindle speed, spindle torque, tool location, and actuator force
applied to the feedstock. These in-process measurements
reflect unknown physical laws and provide a foundation for the
development of ML models. A recent study presented a
physics-informed ML method based on neural networks for
temperature modeling of the tool and deposition [25]. The
neural networks model used in-process measurements with low
computational cost but lacked physical interpretability and
model generalizability.

Currently, experimentally verified governing equations are
not available that can describe the mathematical relationship
between temperature evolution at the tool-deposition and other
measurable in-process physical variables. The research
objective of this paper is to explore the governing equations of
temperature evolution during AFSD by a human-Al teaming
approach. A human-informed machine learning method, or
AFSD-Physics, is proposed to learn the governing equations of
temperature evolution at the tool and the build from in-process
measurements. Computational simulations and experimental
validation are conducted to verify the efficiency and efficacy
of the developed methods and acquired governing equations.
The primary contributions are:

e The proposed human-Al teaming approach presents a
pathway to provide Al with first principles models to advance
knowledge in manufacturing. The resulting human-informed
machine learning method can effectively explore the
unknown physics of AFSD and learn the governing equations
of temperature evolution from in-process measurements.

e The acquired governing equations provide physically
interpretable robust models with low computational cost and
high accuracy.

The paper is organized as follows. In Section 2, the problem
description and an overview of the proposed human-Al
teaming approach are introduced. Section 3 gives the proposed
AFSD-Physics method. The acquired governing equations are
discussed in Section 4. The experimental setup and numerical
results are presented in Sections 5 and 6. Section 7 provides
experimental validation. Section 8 concludes the paper.

2. Human-Al teaming for AFSD temperature modeling

2.1 Problem description of AFSD temperature evolution

First principles, human-desired models for AFSD
temperature evolution should consider the following physical
factors: (1) the thermodynamics phenomena dependent on
operating parameters (control variables) for the tool can be
formulated as nonlinear dynamic systems with control; (2)
temperature evolution during layer-by-layer deposition
exhibits thermal cycling as the heating and cooling steps
alternate; and (3) governing equations with high-accuracy and
low computational cost enable real-time prediction, process
control, and optimization.

The Eq. (1) ordinary differential equation (ODE) provides
the governing equation for temperature evolution in this paper:

T=f(T,w), 1

where T can be either the tool temperature T;,,; or the build
temperature Tpyiq, f(+) is an unknown function that governs
the dynamics of T. u = [u; u,] can include other process
variables besides T, where u; refers to the vector of process
parameters that can be explicitly selected and controlled, such
as tool spindle speed and feedstock and tool feed velocities, and
u, includes process physical variables that cannot be
explicitly selected but can be measured, such as spindle torque
and actuator force to push the feedstock through the rotating
spindle. A thermal cycle consists of a heating and a cooling
stage as defined in Eq. (2):

Pl = P}éeat u PL{OOl' vie [L]' (2)

where [L] :={1,2,...,L} denotes the set of deposited layers.
Since the values of u are different in P,,, and P!,,,, it is
plausible to model different functions f(-) for temperature in
P}, and Pl especially for the tool temperature Ty

Next, the in-process physical variables measured for this
paper are summarized as follows:

Troor = Teoo1(t), tool temperature at time ¢t

measured by a tool-embedded thermocouple axially

located within 0.25 mm to 0.38 mm of the tool surface.

An infrared camera is also attached to the moving

spindle carriage. The peak temperature in the field of

view is compared with the tool-embedded

thermocouple temperature measurement to confirm

the performance of the two sensors.

Tyuita = Tpuita (S, t) , build/substrate temperature at

time t for location S€S . §=1{s,5, 5354}

refers to a set of four locations where four equally

spaced thermocouples were embedded 2.54 mm

below the substrate surface along the deposition

direction to measure the substrate temperature.

w: Tool spindle speed;

fi: Tool feed velocity or tool traverse speed;

fm: Feedstock feed velocity or material feed rate;

Ty Spindle torque applied to the spindle to overcome the
friction force;

Pr: Spindle power;

Ttool:

Tyuita:
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Figure 1. Schematic illustration of the proposed human-Al teaming approach for AFSD temperature evolution modeling.

T Servo torque for feedstock material,
Fy: Force applied to the feedstock to push it through the
rotating tool;

Stool:  Stoot = (Sx, Sy, Sz), position of the center point at the
tool bottom surface;
Viool:  Vtoot = (Uxs Uy, V;), velocity of the tool center at the

bottom surface along the machine's X, Y and Z axes.

The fundamental research question is: How can the
analytical forms of T = f(T,u) be obtained to describe the
temperature evolutions at the tool and the build from in-process
measurements? For the tool, the governing equation is desired
to describe the heat generation mechanism and temperature
evolution based on the AFSD operating parameters. For the
build, the governing equation is desired to establish the
relationship between temperature measurements at the tool and
temperature measurements at the build/substrate.

2.2 Overview of the proposed human-Al teaming approach

A human-Al teaming approach is proposed to provide the
desired AFSD model. The general steps as shown in Figure 1
are summarised.

Step 1. Human initial human modeling by first principles.
This first step refers to how the human integrates first
principles models and in-process measurements of
physical variables with Al (Section 3.1).

Step 2. Design of experiments for data collection.
Based on the model requirements, measurability of
physical variables and available sensors, experiments
are designed and conducted for a set of process
parameters (Section 5).

Step 3. Human-informed machine learning modeling.

3.1 Design of human-informed learning function space.
The learning function space design integrates physical
knowledge and augments the human-informed initial
model by ML (Section 3.2.1).

3.2 Design of loss function and optimization algorithm.
With the human-informed learning function space, an
effective discrete optimization algorithm is designed to
minimize appropriate loss functions with respect to
accuracy, time efficiency, and robustness to noise in
data (Section 3.2.2).

3.3 Learning process to acquire governing equations.
Experimental data from in-process measurements is
used for the training process of human-informed ML to
obtain the governing equations (see Sections 4, 6, and
7).

Step 4. Experimental validation.
Analyses of the acquired models, including physical
interpretation, simulation, and experimental validation,
are conducted. An additional round of Steps 1-3 is
performed (see Sections 4, 6, and 7).

In the following sections, the procedure is presented step-
by-step to identify the governing equations of temperature
evolution during AFSD.

3. Proposed AFSD-Physics
The resulting AFSD-Physics method is presented in terms
of its two key components: initial human modeling by first

principles and human-informed ML modeling.

3.1 Initial human modeling by first principles

Initial human modeling combines the physical process of
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AFSD with in-process measurements.

3.1.1 Modeling for tool temperature

The governing equation for the tool temperature is
described by the Eq. (3) piecewise functions for the heating and
cooling stages, respectively:

t € Pl l€[L], (3a)

Troor = {fl (Troor(6), W),
tool t e Pclool'l € [L]. (3b)

fZ (Ttool (t): u);

Function f;(+) describes the critical mechanism of heat
generation. Vector # in f;(+) caninclude process parameters
related to both frictional and adiabatic heating, including tool
spindle speed, tool traverse speed, feedstock feed velocity,
spindle torque, etc. Function f,(-) describes the tool cooling
mechanism when the tool is not in contact with the build.
Vector u in f,(-) may include parameters for controlling the
tool cooling jacket which surrounds the rotating tool and
provides forced chilled fluid heat rejection, as needed.

The tool temperature model in Eq. (3a) describes the
moving heat source. During AFSD, the moving heat source is
the deposit beneath the rotating tool, where both friction
heating and adiabatic heating occurs. However, the
measurements of the deposit beneath the tool are difficult to
obtain. The assumption is that the rotating deposit is a single
point heat source and its temperature T,4(t) is equal to the
tool temperature as shown in Eq. (4),

Trq (t) = Ttool(t): (4’)

where T, (t) can be measured by an embedded
thermocouple, which is radially offset from the tool center
(outside the square bore) and is located axially close to the tool
surface. As such, the temperature measured by the
thermocouple is assumed to be the same as rotating deposit.
Note that the actual path of the thermocouple during the
rotating-translating deposition tool motion is cycloidal in
nature. With this assumption, temperature samples from the
cycloidal path of the thermocouple are used as in-process
measurements from the linear motion of the single point heat
source with constant traverse speed. Equation (4) is used to link
heat generation at tool and heat transfer at the build (deposit).

3.1.2 Modeling for build temperature

The 3D build temperature evolution is naturally governed
by a heat transfer partial differential equation (PDE) across the
build geometry. However, in-process measurements are only
available for the four thermocouples embedded in the substrate
(build plate) at discrete; see Section 5 for the details. This
significantly limits the information available for AI modeling.
In this first attempt, the ordinary differential equation (ODE)
that incorporates the temperature of and distance to the moving
heat source is considered to model the build temperature as
shown in Eq. (5),

Towira = f3(Tra (), Tyuia (5, ), d(B)),
te Pilzeat U Pclaolt l € [L]: (5)

where  Tpuita = Tpuita(S,t) 1s the build temperature at

location s € §,and § = {s4,s,,53,5,} refers to a set of four
locations where the four equally spaced thermocouples were
embedded in the substrate along the deposition direction to
measure the substrate temperature. d(t) is the Euclidean
distance between the point location of the rotating deposit s,
and arbitrary location s € §, i.e., d(t) =l s,4 — s ll,. From
the assumption in the previous section, it can be obtained that
Srd = Stoo1 - By introducing d(t) , Eq. (5) implicitly
incorporates the spatial information of the build geometry.
Therefore, it can be used to describe the spatially distributed
temperature for all locations s € §. Note here a single function
f3(+) is adopted for both P},,, and P!,,;.

Finally, the initial conditions for tool temperature and build
temperature are provided as shown in Eq. 6:

Tt001(0) = To, Thuiza (St 0) = T()Stcr (6)

where s;. is the location of the thermocouple in the substrate.
In short, Egs. (3)-(6) collectively provide the initial human
modeling for the governing equations of the unknown
temperature evolution at the build and tool.

3.2 Human-informed machine learning modeling

This section presents the human-informed ML modeling to
learn the analytical form of the unknown functions f;(-), f>(-
) and f3(+) in initial human modeling by first principles. The
main idea is to first design the human-informed learning
function spaces for Tpo; and Tjyq, and then design the loss
function and optimization algorithm for the learning process to
acquire the governing equations from in-process
measurements. The discrete-optimization based machine
learning algorithm in [26, 27] is extended for the design of loss
function and optimization algorithm.

Let T € R¥*Y, Tp,uq € RV*1and U € R¥X/ denote
the in-process measurements of tool temperature, built
temperature at specific location and the other | physical
variables, respectively. The in-process measurements are
recorded at a total of N time points. Let T, € RV*? and
Tyuiia € RV denote the time derivatives of temperatures,
which are numerically calculated by finite difference with
smooth techniques.

3.2.1 Design of human-informed learning function space

Without loss of generality, the notations for f;(-), f2(-)
and f5(-) are not distinguished for the ease of presentation of
this section. Let [P]={1,2,-,P} for arbitrary positive
integer throughout, where P € Z,. A candidate set consisting
of P nonlinear physical terms is defined in Eq. (7),

0T wW=N1TuTRT) uQuw TRuw - 1, (7

where operator @ denotes the element-wise combinations for
constructing nonlinear terms of T and/or u. For example,
polynomial terms of u and T are included as basic nonlinear
physical terms. Other nonlinear physical terms like
trigonometric functions can also be added into the candidate set
if necessary. Let 6, denote the p-th term of 6(T,u), Vp €
[P]. In this paper, assuming functions f;(-), f,(:) and f5(*)
live in the affine space spanned by 6(T,u), the human-
informed learning function space is given in Eq. (8),
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f(T,w) =6(T,u)-§, 3

where & =[§ & - &]T € RF*! refers to the vector of
coefficients. Thus, to identify the governing equations is to
estimate the coefficients & from in-process measurements.
Another assumption for the proposed method is that & is
sparse for governing equations, i.e., only parsimonious terms
that are active govern the dynamics of the underlying physics
of AFSD.

3.2.2 Design of loss function and optimization algorithm

Based on the human-informed function space, the loss
function together with the resulting sparse optimization
problem is defined in Eq. (9),

min [T~ (T, 0) - £l[, + Ao liEllo + 2, N E 13, (9)

where O(T,U) € RV*P is the augmented matrix obtained by
evaluating O(T,u) at each time point of T and U. The first
term represents the empirical risk minimization principle
between the approximations and the derivatives of temperature
measurements T. The regularization term ||&||, denotes the
£y-norm (pseudo norm) of &, namely the number of nonzero
terms in €. The inclusion of the |[§]|, with weight A, enables
the selection of a parsimonious set of (T, u) for describing
the underlying physics. The regularization term || § I3 with
weight A, is added to reduce the effects of noise in the
measurements.

To indicate the existence of terms of O(T,u) in f(T,u),
a vector of discrete variables, ¥ = [y; v, = vplT € BP*1is
introduced, where B = {0,1} is the Boolean domain and

_ {1, if f (w) includes 6,
=

, Vp € |[P].
0, otherwise p€lP]

(10)

With y, Eq. (9) can be rewritten to indicate the inclusion of
each term in 6(T,u) as

min [T~ (T, 0)- (v e O, + Aollgllo + 2 1 £ 13, (A1)

where y o & refers to the element-wise (Hadamard) product.
Consequently, a mixed-integer optimization problem is given
by reformulating Eq. (11) as

T 2
(y*,0*) = argmin||T — @(T, U) - f”z + A, €13, (12a)
(§y)ea
where the solution space A is defined as

—My <& <My, yTe = k,}

f € RPXI,)/ € BPXl (12b)

a={e)

where M is a constant number and can be identified from data.
[-M,M] defines the lower and upper bounds of §. When
¥p =1, &, is estimated based on optimization within
[—M, M]; otherwise, when y,, = 0, &, = 0, meaning term ¢,
is not included in f(T,u). Vector e € RP*! is a vector with
all entries set to 1. As a result, yTe refers to the number of

nonzeros in y, which is defined as constant k. Parameters 4,
and k can be tuned by validation and cross validation
techniques (see [26] for details).

A two-stage solution procedure is utilized to solve the
problem. First, ¥* is identified by solving Eq. (12) with a
discrete optimization solver using column-wise normalized
data of O(T,U) and T. The normalization removes the
effects of different scales of terms in 6(T,u). In the second
stage, & is estimated by a least squares algorithm using the
original data ®(T,U) and T. Only columns corresponding to
Y* are used for the estimation. This allows coefficients &* to
represent the inherent quantitative relationship between the
selected terms in O(T,u) and T.

Once y* and & are identified, the acquired governing
equation can be expressed as

T=0(T,u- (" o&). (13)

The acquired governing equations, as knowledge feedback, can

inform human to conduct further analyses, including physical

interpretation, simulation, and experimental validation. Note

that multiple-round teaming between human and Al would be
needed in a closed-loop manner.

4 Main results: Acquired governing equations

The acquired governing equations by AFSD-Physics
method are presented here. For details of the learning
procedure, readers are referred to the collection of in-process
measurements by experiments in Section 5 and the numerical
experiment settings for AFSD-Physics in Section 6. With such
settings, AFSD-Physics delivers all the governing equations in
Egs. (14) and (15) within 30 seconds.

The acquired governing equation for governing the
evolution of tool temperature T;,,; (°C) is

o {a1w3Tf + 40T Troo1 — A30Tto01°) t € Prege, (14a)
tool —
bl - bZTtool - bBTtoolz' te Pcool’ (14b)

where w is the tool spindle speed (rpm), Tr is the spindle
torque (Nm) required to overcome the friction force, a =
[a; a, az] and b = [b; b, b;] are the estimated coefficients.
As suggested by previous studies [12, 18], spindle speed,
feedstock feed velocity, and the force experienced by the tool
are the major factors for heat generation. Equation (14a)
describes the heat generation mechanism with respect to the
spindle speed w and the spindle torque T. At present, force
measurements are not available due to the lack of effective
metrology methods, but the inclusion of T indicates the
significance of force given the inherent relation between force
and torque. Since Trw refers to the friction power, terms
3Ty and Ty, w?Ty may indicate unknown underlying heat
generation mechanisms in addition to friction power. Note that
the feedstock feed velocity f; is included in the human-
informed learning function space 6(T,u). However, the
human-informed machine learning modeling does not select
any terms containing f;. The reason may be because f; in
current experiments is a constant at 1.93 mm/second during
deposition.
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For the governing equation of tool cooling shown in Eq.
(14b), it is observed that the first two terms exactly match
Newton’s law of cooling, with constant b; relevant to the
room temperature. In addition, a new term —bsTZ2,, is
acquired. For the cooling stage, T;,,; is always non-positive.
The negative coefficient —b; indicates the temperature
decrease of the AFSD tool during cooling is much faster than
that described by Newton’s cooling law. This may represent the
additional cooling effect from the external water jacket.

The governing equation for governing the evolution of
build temperature Tj,;;q (°C) is presented in Eq. (15).

: _ . a4 2 272 3
Tyuita = 1 Tpyita — €28 Troor + €3d°Trpo; + €4d°,

te Pheat v Pcool' (15)
where distance d(t) =ll s —s,4(t) l, (mm) and c¢=
[c1 ¢, €5 4] is the vector of coefficients. Equation (15) can be
described as an ODE with time variant parameter d(t). Also,
the spatial information of the location s € § in the substrate is
implicitly included in d(t). As such, Eq. (15) can predict the
temperature profile for all points in the centreline of the
substrate where the thermocouples are located. This will
generate a 1D map for temperature distribution. In addition,
based on the assumption of a single point moving heat source,
Eq. (15) may have the potential to predict the temperature
evolution at the 2D vertical plane of the deposited layers
bounded by the centreline of the bottom layer and the linear
motion path of the single point heat source.

With Egs. (14)-(15), time domain simulation can be
conducted for a multi-layer AFSD process. In general, two
types of time domain simulations based on different initial
value settings are considered.

o Type I simulation: A new initial value for each layer of
simulation. Type I simulation is used for simulating the heat
generation in Eq. (14a) and tool cooling in Eq. (14b)
independently. The measurement at the beginning of each
layer is used to set the initial value. This represents the
scenario where in-process temperature measurements are
available to calibrate the simulation layer-by-layer.

o Type II simulation: A single initial value for the entire
multi-layer simulation. The initial value of the next layer is
set to be the last value of the previous layer. Type II
simulation is used for the coupled simulation of heat
generation and tool cooling as well as build temperature
evolution in Eq. (15). This simulation is practical when no
in-process temperature measurements are available and
only the room temperature is used to start the simulation.

5 Experimental setup

Experiments were performed using a commercially
available MELD Manufacturing L3 machine to deposit solid
wrought aluminum 7075 feedstock rod with 9.53 mm X 9.53
mm X 508 mm dimensions on the substrate of the same
material. The build to be deposited was a wall with a length of
216 mm and a height of 45.6 mm (30 layers with each layer
1.52 mm thickness). As shown in Figure 2(a), the deposition
was performed in a single direction and the tool was returned
to the same starting position for each layer. Given the wall
length, a single rod of wrought feedstock was able to deposit

two layers. Then the next rod was manually inserted into the
spindle from the square bore at the bottom of the tool.

The operating parameters were: 135 rpm spindle speed
during deposition, 115.6 mm/min feedstock feed velocity, and
127 mm/min tool feed velocity (traverse speed along the
deposition direction). At the beginning of each layer, the
spindle speed was set at 350 rpm to heat the material and was
reduced to 135 rpm as the deposition began. A cooling jacket
located around the tool was run at a constant flow rate during
deposition to cool the tool and avoid excessive heating of the
rod within the tool, which can cause the deposition to fail due
to adhesion between the rod and tool internal passage. After the
numerical results in Section 6 were obtained, additional
experiments using a spindle speed of 115 rpm was also
performed for validation. See details in Section 7.

v
FLIR A70 infrared camera
attached to the tool

Four equally
spaced
thermocouples
embedded in
the substrate

Thermocouple
embedded in
rotating tool

direction

Figure 2. Experimental setup for depositing 7075 aluminum feed rod on a 7075
aluminum substrate for 30 layers using the MELD Manufacturing L3 machine.
(a) A thermocouple embedded in the tool was used to measure the tool
temperature. Four equally spaced thermocouples were embedded in the
substrate for measuring temperature evolution beneath the deposition track. (b)
Substrate with locations of the four thermocouples. Figure is from [25].

In-process measurements were obtained for both the tool
and the build. The tool had an embedded K-type thermocouple
(KTC), which was located within 0.25 mm to 0.38 mm of the
tool surface and used to measure the tool-deposit interface
temperature. The L3 controller was also able to record time
series data, including spindle speed, feedstock feed velocity
and tool position, at a 1 Hz sampling frequency. For the
substrate temperature, two baseplates were used. The upper
baseplate was the one where the deposit was made, and four
equally spaced K-type thermocouples were embedded 2.54 mm
below the build surface and along the track direction from the
underside of the plate. Figure 2(b) shows the locations of the
four thermocouples. The underside in Figure 2(b) was covered
by the lower baseplate to protect the thermocouples.

The experiments resulted in 11,358 in-process data points.
The features include the L3 controller-captured data (spindle
speed, torque, and power; feedstock feed velocity and actuator
force and torque; and position, velocity, and torque for the X,
Y and Z axes), the tooltip temperature from the embedded
thermocouple, and the temperatures from the four substrate
thermocouples.

6 Computational experiments

This section presents the numerical results and analysis for
the proposed AFSD-Physics method using the in-process
measurements, denoted by 135-rpm, from Section 5. The
simulation results for the acquired models as described in
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Section 4 are presented. Comparisons with AFSD-Nets [25]
are conducted to show the effectiveness of AFSD-Physics. All
computations are completed using Python and executed using
a mobile workstation with an Intel® Xeon® W-10885M CPU @
2.40GHz, 128 GB memory, 64-bit Windows 10 Pro operating
system for workstations. The CPLEX 20.1 solver is used as the
discrete optimizer in human-informed machine learning
modeling to solve the problem in Eq. (12).

6.1 Numerical experiment settings of AFSD-Physics

Training and testing dataset. Measurements from the 5-th
to the 20-th layer of the 135-rpm dataset are used as training
data. The first 5 layers are discarded due to poor data quality at
the beginning of the AFSD process. The measurements from
the last 10 layers of the 135-rpm dataset are used as testing data.
Note that for build temperature, only measurements from the
first three thermocouples (KTC1, KTC2, KTC3) are stacked as
a single dataset for training, while the last thermocouple (KTC4)
is purely used for testing.

Parameter settings for AFSD-Physics. The parameters for
human-informed machine learning modeling are set as follows:
M = 1000, k € {3,4,5}, and A, = 100. The best k value is
selected after a preliminary tuning by simulating the acquired
model for 5 layers using temperatures from the 21-th layer of
the 135-rpm dataset as initial values. For the heat generation
stage of tool temperature evolution, the features include the
tool temperature Ty,,;, spindle speed w, spindle torque T,
feedstock feed speed f,,, and actuator force FE, to push the
feedstock downward. Four-order polynomials are used to
construct the candidate nonlinear physical terms 6(T,u).
After the first round of training, only terms related to Typo;, @
and T are identified. As such in the second round of training,
only these three features are included to learn the governing
equation in Eq. (14a). For the tool cooling stage, only T;,o; 1S
included to learn Eq. (14b) since all process parameters are not
related to tool cooling and there are no measurements from the
water jacket. To learn Eq. (15) for build temperature evolution,
the feature set consists of the tool temperature T,,;, the build
temperature Tp,;q » and the distance d Dbetween a
thermocouple in the substrate and the tool.

Comparison metrics. In addition to the computational
efficiency comparison with simulation time, the mean absolute
percentage error (MAPE) in Eq. (16) is used to measure the
prediction accuracy of the methods under comparison.

IT -
MAPE = —Z >< 100%, (16)
where T; and T are the measurement and prediction of the
temperature, respectively, and N is the total number of

measurements. The smaller the MAPE value the better
accuracy of the method.

6.2 Results and analysis for tool temperature

For Eq. (14), the coefficients are acquired as a =
[a, a, a;] = [2.7640 x 107 1.1382 x 1078 1.8361 x
107°], b =[b; b, b5] = [0.3282 0.0135 6.0601 x 1079].
Type I simulations of the acquired governing equations in Eqs.
(14a) and (14b) are first presented for heat generation and tool

cooling, respectively. Then Type II simulation is conducted to
predict the coupled heat generation and tool cooling stages.

6.2.1 Simulation results for tool heating
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Figure 3. Type I simulation (a new initial value for each layer) of heat
generation on training and testing set of 135-rpm in (a) and (b), respectively.
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Figure 4. Zoom-in plots for Figure 3.

Figure 3 displays the simulation results for the temperature
profile of the tool heat generation stage using the training and
testing sets in (a) and (b), respectively. The zoom-in plots are
shown in Figure 4. From these figures, both AFSD-Physics and
AFSD-Nets can capture the overall trend of temperature
increase during the tool heat generation stage. It is observed
that AFSD-Physics is in good agreement with the
measurements and can capture the details of the temperature
evolution. For example, AFSD-Physics captures the first peak
value when the spindle speed is decreased from 350 rpm (for
quick heating and softening of the feedstock) to 135 rpm (for
deposition). The feedstock feed velocity is accordingly
increased from 0.93 mm/second to 1.93 mm/second, and the
tool starts to traverse to deposit materials. The major heat
generation source changes from adiabatic heating caused by
plastic deformation to frictional heating. On the contrary, the
AFSD-Nets model tends to overly smooth the prediction and
fails to recognize the valley-shaped heating pattern present in
the first 5 layers of the training set, see Figure 4(a). Note that
the measurements of the first 5 layers are not included for
training, as such the acquired model of AFSD-Physics
amplifies valley-shaped heating patterns for the first 5 layers.
In general, AFSD-Physics outperforms AFSD-Nets in
capturing the overall profile, detailed heating pattern, and peak
temperatures for the heat generation stage.

The MAPE and simulation time of the acquired models on
the training and testing sets of 135-rpm are presented in Table
1. It is observed that AFSD-Physics obtains much smaller
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MAPE, significantly outperforming AFSD-Nets for both
training and testing datasets. In particular, the MAPE of AFSD-
Physics is at most 55% of that of AFSD-Nets. The simulation
time of AFSD-Physics is within 0.16 seconds. This indicates
that AFSD-Physics can achieve both physically interpretable
and robust models with high accuracy and low computational
cost.

Table 1. MAPE and simulation time comparison for Type I simulation (a new
initial value for each layer) of heat generation stage.

AFSD-Physics acquired model demonstrates superior
performance on test data despite having only 3 parameters.
Table 2: MAPE and simulation time comparison for Type I
simulation (a new initial value for each layer) of tool cooling
stage.

AFSD-Nets AFSD-Physics
Dataset MAPE (%) Time(s) MAPE (%) Time (s)
Training set, 135-rpm 2.9297 5.1711 5.8811 3.3623
Testing set, 135-rpm 3.825 3.5413 3.525 3.3489

AFSD-Nets AFSD-Physics
Dataset MAPE (%) Time(s) MAPE (%) Time (s)
Training set, 135-rpm 185420 06882 102894  0.1566
Testing set, 135-rpm 73858 04169 37789 0.1496

6.2.2 Simulation results for tool cooling

Figure 5 displays the Type I simulation results for the
temperature trajectory comparison of the tool cooling stage
using the training and testing sets in (a) and (b), respectively.
Both AFSD-Nets and AFSD-Physics accurately capture the
temperature decrease during the tool cooling stage and align
almost perfectly with the measurements. In fact, the tool
cooling stage has a much smoother profile than the heat
generation stage, mainly because no process parameters are
involved. As the tool leaves contact with the build, the
temperature evolution during cooling depends mainly on the
conduction along the feedstock and through the cooling jacket,
both of which can be considered to occur at a constant rate. As
such, the trend of tool cooling is clear and can be more easily
captured by both AFSD-Nets and AFSD-Physics.
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Figure 5. Type I simulation (a new initial value for each layer) of tool cooling
stage on training and testing set of 135-rpm in (a) and (b), respectively.

Table 2 summarizes the MAPE and simulation time of Type
I simulation results for both the AFSD-Nets and AFSD-Physics
models. It is observed that AFSD-Nets model obtains better
MAPE prediction performance on the training set of the 135-
rpm dataset, while the AFSD-Physics model obtains better
prediction performance on the testing set of the 135-rpm
dataset. This observation indicates that AFSD-Physics has
superior generalization ability for unseen data by capturing the
underlying physics as analytical physical terms. Furthermore,
AFSD-Nets has 17 parameters for the single hidden layer
neural network deployed with 4 neurons. In contrast, the

6.2.3 Coupled simulation of tool temperature evolution

Type II simulation is conducted to couple the heat
generation and tool cooling stages for the entire 30-layer AFSD
process. As the initial value of the next layer simulation
depends on the last value of the previous one, Type II
simulation results are more effective to validate the coupling
performance of the acquired governing equations.
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Figure 6. (a) Type 1I simulation (a single initial value for the entire multi-layer
simulation) of tool temperature on 135-rpm. (b) Zoom-in plot.

Table 3. MAPE and simulation time comparison for Type II simulation (a
single initial value for the entire multi-layer simulation) of tool temperature.

AFSD-Nets
MAPE (%)
14.5670

AFSD-Physics
Time (s) MAPE (%) Time (s)
5.7751 9.3273 4.2441

Dataset

135-rpm dataset

Figure 6 shows the temperature profile for Type II
simulation on the 135-rpm dataset. It is observed that both
AFSD-Nets and AFSD-Physics models can simulate the
overall thermal cycling. Still, AFSD-Physics can be more
effective to capture the valley-shaped heat generation pattern
between two peak temperature values. As shown in Table 3,
AFSD-Physics outperforms AFSD-Nets for both MAPE and
simulation time. Note that about 3 seconds out of the 4.2441
seconds is spent manipulating the data. The simulation for the
AFSD-Physics model itself is generally completed within 1.5
seconds for a 30-layer deposition. Results and analysis for
build temperature

For Eq. (15), the coefficients are acquired as ¢ =
[cy ¢y ¢35 ¢4] = [—6.3398 x 10710 4,6003 x 1076 2.1208 X
1077 4.3869 x 1078] . Figure 7 displays the Type II
simulation results of the build temperature evolution for the
four thermocouples. In general, both AFSD-Nets and AFSD-



T. Shi, M. Ma, J. Wu, C. Post, E. Charles and T. Schmitz / Manufacturing Letters 00 (2023) 000—000 9

Physics capture the overall trend of the build temperature
profile. Moreover, it is observed that the AFSD-Nets model has
better simulation accuracy for the first few layers, but
inaccurately predicts the peak temperature with a downward
deviation. The AFSD-Physics model has larger deviation in its
prediction of the valley value but maintains a strong capability
for predicting the peak temperature. It must be emphasized that
only the measurements of KTC1, KTC2 and KTC3 are used for
training. Therefore, the simulation results of temperature
evolution for KTC4 are pure extrapolation. In Figure 7(d),
AFSD successfully captures the overall temperature evolution
for unseen data, especially for the peak values. This reflects the
model’s capability to generalize and stabilize.
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Figure 7: Type 1l simulation (a single initial value for the entire multi-layer
simulation) of build temperature on 135-rpm.

Table 4 summarizes the comparison of MAPE and
simulation time for build temperature simulation. It is clearly
seen that AFSD-Physics outperforms AFSD-Nets for both
metrics. The MAPE metrics of build temperature for both
methods are worse than those of tool temperature. The main
reason for this may lie in the inappropriate use of distance d
when the tool is not in contact with the build, in which case the
conduction between the tool and the build is terminated and
cannot be represented by Euclidean distance on the build
geometry. Along with the results in Table 3, the AFSD-Physics
acquired governing equations show good agreement with the
measurements for the tool and build temperature. The total
simulation time is within 5 seconds.

Table 4. MAPE and simulation time comparison for Type II simulation (a
single initial value for the entire multi-layer simulation) of build temperature.

AFSD-Nets AFSD-Physics
Thermocouple "1 2pE (0)  Time(s) MAPE (%) Time (s)
KTCl 170176 23051 142840  0.1177
KTC2 147449 23011  12.9856  0.1057
KTC3 157802 24982 141893  0.1087
. 19.8777  2.1001  17.6206  0.1044
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Figure 8. (a) Simulation results of the build temperature for 53 interpolation
locations on the centreline of substrate where four thermocouples are located.
(b) Zoom-in plots of one-layer build temperature simulation.

Finally, the governing equation in Eq. (15) is used to predict
the temperature evolution for points on the centreline of the
substrate where four thermocouples are located. 53 locations
on this centreline are interpolated across the wall length. The
Type Il simulation results are displayed in Figure 8. This shows
the capability of AFSD-Physics model to produce a 1D
temperature map. It also shows the potential for 2D/3D
temperature maps by integrating more spatial in-process
measurements.

7 Experimental validation

The proposed AFSD-Physics method is validated using
new experiments. The same governing equations from Eq. (14)
for tool temperature evolution are acquired using
measurements from different deposition settings. For build
temperature, governing equations with two out of four physical
terms in Eq. (15) were stably acquired. Due to the significance
of the tool temperature model and the page limit, results of the
tool temperature governing equations are reported here.

In the new experiments, a spindle speed of 115 rpm was
used for deposition. Other process parameters including the
feedstock feed velocity and tool feed velocity, wall geometry,
deposition path, and thermocouples retained the same settings
as for deposition at a spindle speed of 135 rpm. A total of
13,782 in-process data points were obtained. The
measurements of the first 10 layers include many abnormalities
and thus were discarded. The resulting 7782 data points,
denoted by 115-rpm, were first used individually and then
combined with the 135-rpm dataset to create two sets of new
governing equations for tool temperature evolution using
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AFSD-Physics.

7.1 Acquired governing equations

The same set of governing equations are stably acquired for
tool temperature using datasets for only 115-rpm and for 135-
rpm and 115-rpm combined, as shown in Eq. (17).

aSthool3t t€e Pheat' (1761.)

_—_— {a1w3Tf + 4,0 T Typ0; —
tool (17b)

2
bl - bZTtaol - b3Ttool , tE Pcool'

As evidenced by the same physical terms in Eq. (17) as
those in Eq. (14), the proposed AFSD-Physics method can
stably learn the same set of physically interpretable governing
equations. Together with the acquired governing equations
using dataset 135-rpm, three settings of parameter values are
acquired and presented in Table 5. The changes in parameter
values across datasets reveal that these parameters are process
dependent. In other words, with different datasets for different
deposition settings, the same physical terms are acquired but
with different parameter (coefficient) values. This indicates
that the acquired governing equations capture the main

physical mechanisms for tool-deposition temperature evolution.

Table 5. Parameter values of the acquired governing equations using dataset
135-rpm, 115-rpm, and their combination.

AFSD-Physics: AFSD-Physics: AFSD-Physics:

Parameter

135 115 135&115
a, 2.7640 x 107° 2.1621x107° 2.8781x107°
a, 1.8361 x 107 1.7824 x 107° 1.6599 x 107°
a; 1.1382x 1078 1.1865x 1078 1.0621x 1078
b, 0.3283 0.0198 0.1187
b, 0.0135 0.0044 0.0083
b, 6.06 x 107 2.7474x 1075 1.8550 x 107°

7.2 Simulation results and analysis of tool temperature

Both Type I and Type II simulations are conducted for the
three models in Eqs. (17) and Table 5. The comparison with
AFSD-Nets is not included as the AFSD-Physics acquired
model from the 135-rpm dataset significantly outperforms
AFSD-Nets, as shown in Section 6. Also, the simulation time
of the three models is comparable and thus is not reported in
this section.
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Figure 9. Type I simulation (a new initial value for each layer) of heat
generation for 135-rpm in (a) and 115-rpm in (b).

For Type I simulation, Figure 9 and Figure 10 show the
result comparisons of heat generation on datasets 135-rpm and

115-rpm and the respective zoom-in plots. Good agreement is
observed with the measurements for all three models. Also, all
models can capture the detailed valley-shaped heating pattern
between any two peak values. In the peak temperature period,
the acquired model from the combined 135-rpm and 115-rpm
dataset performs somewhere in between the other two models.
This may be because each of the other two models overfits its
own respective training dataset. Table 6 clearly shows that the
model acquired from the 135-rpm dataset obtains the best
MAPE performance for 135-rpm, and the same holds true for
115-rpm. The same observations and conclusions can be
obtained for the cooling stage, as shown in Figure 11, Figure
12 and Table 7.
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Figure 10. Zoom-in plots for one-layer simulation of Figure 9.

Table 6. MAPE comparison of the AFSD-Physics acquired models for Type |
simulation (a new initial value for each layer) of heat generation stage.

AFSD-Physics: ~ AFSD-Physics:  AFSD-Physics:

Dataset 135 115 135& 115
135-rpm 8.1674 8.8862 9.0292
115-rpm 7.3293 7.1952 74722
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Figure 11. Type I simulation (a new initial value for each layer) for tool
cooling stage on dataset 135-rpm in (a) and 115-rpm in (b).
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Figure 12. Zoom-in plots for one-layer simulation of Figure 11.

Table 7. MAPE comparison of the AFSD-Physics acquired models for Type |
simulation (a new initial value for each layer) of tool cooling stage.

AFSD-Physics:

Dataset 135 AFSD-Physics: AFSD-Physics:

115 135&115
27.3814 11.7532

135-rpm 5.2751
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115-rpm 17.4896 10.6491 14.8682
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Figure 13. Type Il simulation (a single initial value for the entire multi-layer
simulation) of tool temperature on dataset 135-rpm in (a) and 115-rpm in (b).
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Figure 14. Zoom-in plots for one-layer simulation of Figure 13.

Table 8. MAPE comparison of the AFSD-Physics acquired models for Type
II simulation (a single initial value for the entire multi-layer simulation).

AFSD-Physics: AFSD-Physics:

AFSD-Physics:
Dataset 135 115

135&115
135-rpm 9.3273 23.4318 12.7625
115-rpm 16.5819 11.0977 14.2969

For Type II simulation, Figure 13 and Figure 14 display the
coupled simulation result comparisons for 135-rpm and 115-
rpm and the respective zoom-in plots. The corresponding
MAPE comparisons are summarized in Table 8. The same
conclusions from the individual heat generation and cooling
stages appear to hold true for their coupled simulation.

In summary, experimental validation shows that the
proposed AFSD-Physics method can stably learn the same
governing equations from different AFSD settings. The main
physical mechanisms are captured by the identified nonlinear
physical terms. This indicates that the AFSD-Physics acquired
models are physically interpretable and robust models with
high-accuracy and low-cost.

8. Conclusions and outlook

This paper presents a modeling effort for the temperature
evolution of an emerging solid state additive manufacturing
process, additive friction stir deposition (AFSD). A human-Al
teaming approach is proposed to explore the governing
equations of temperature evolution at the tool and the build
during AFSD. The proposed human-Al teaming approach
presents a pathway to provide Al with first principles models
to advance knowledge in manufacturing. The resulting human-

informed machine learning method, denoted as AFSD-Physics,
can effectively explore the unknown physics of AFSD and
learn the governing equations of temperature evolution from
in-process measurements. The acquired governing equations
provide physically interpretable robust models with low
computational cost and high accuracy. Simulations of the
acquired governing equations show good agreement with
measurements and significantly outperform the state-of-the-art
neural network-based machine learning model. Experimental
validation with a new process parameter shows the robustness
and generalizability of the acquired governing equations.

This study has two main limitations. The primary one is that
only temperatures are treated as state variables with respective
governing equations, while other explicit physical variables
that can contribute to temperature evolution, like force
experienced by the build, are not considered. Another
limitation is that only spindle speed is involved as a process
parameter in the acquired governing equations. Future work
will develop analytical models and integrate them with a series
of representative experiments to enable the proposed human-
Al teaming approach for exploring governing equations with
arbitrary process parameters, including tool spindle speed,
feedstock feed velocity, and tool traverse speed. Additionally,
governing equations with other physical variables for the build
will be explored to advance the convergence of tool-process-
structure-property for AFSD.

Acknowledgements

The authors acknowledge support from the NSF Engineering
Research Center for Hybrid Autonomous Manufacturing
Moving from Evolution to Revolution (ERC-HAMMER)
under Award Number EEC-2133630. This work was partially
supported by the DOE Office of Energy Efficiency and
Renewable Energy (EERE), under contract DE-AC05
000R22725. The authors also acknowledge the seed funding
from the AI TENNessee Initiative to partially support this
research.

References

[1] Mishra, R.S., R.S. Haridas, and P. Agrawal, Friction stir-
based additive manufacturing. Science and Technology
of Welding and Joining, 2022. 27(3): pp. 141-165.

[2] Yu, H.Z. and R.S. Mishra, Additive friction stir
deposition: a deformation processing route to metal
additive manufacturing. Materials Research Letters,
2021.9(2): pp. 71-83.

[3] Jin, Y., T.Yang, T. Wang, S. Dowden, A. Neogi, and N.B.
Dahotre, Behavioral simulations and experimental
evaluations of stress induced spatial nonuniformity of
dynamic bulk modulus in additive friction stir deposited
AA 6061. Journal of Manufacturing Processes, 2023. 94:
pp. 454-465.

[4] Perry, M.E., H.A. Rauch, R.J. Griffiths, D. Garcia, J.M.
Sietins, Y. Zhu, Y. Zhu, and Z.Y. Hang, Tracing plastic
deformation path and concurrent grain refinement during
additive friction stir deposition. Materialia, 2021. 18: pp.
101159.



12

(5]

(6]

[7]

(8]

[9]

[10]

[11

]

[12]

[13

]

[14]

[15

—_

T. Shi, M. Ma, J. Wu, C. Post, E. Charles and T. Schmitz / Manufacturing Letters 00 (2023) 000—000

Zhu, N., D. Avery, Y. Chen, K. An, J. Jordon, P. Allison,
and L. Brewer, Residual stress distributions in aa6061
material produced by additive friction stir deposition.
Journal of Materials Engineering and Performance, 2023.
32(12): pp. 5535-5544.

Perry, M.E., R.J. Griffiths, D. Garcia, J.M. Sietins, Y.
Zhu, and Z.Y. Hang, Morphological and microstructural
investigation of the non-planar interface formed in solid-
state metal additive manufacturing by additive friction
stir deposition. Additive Manufacturing, 2020. 35: pp.
101293.

Griffiths, R.J., D. Garcia, J. Song, V.K. Vasudevan, M.A.
Steiner, W. Cai, and Z.Y. Hang, Solid-state additive
manufacturing of aluminum and copper using additive
friction stir deposition: Process-microstructure linkages.
Materialia, 2021. 15: pp. 100967.

Williams, M., T. Robinson, C. Williamson, R. Kinser, N.
Ashmore, P. Allison, and J. Jordon, Elucidating the effect
of additive friction stir deposition on the resulting
microstructure and mechanical properties of magnesium
alloy we43. Metals, 2021. 11(11): pp. 1739.

Joshi, S.S., S.M. Patil, S. Mazumder, S. Sharma, D.A.
Riley, S. Dowden, R. Banerjee, and N.B. Dahotre,
Additive friction stir deposition of AZ31B magnesium
alloy. Journal of Magnesium and Alloys, 2022. 10(9): pp.
2404-2420.

Beladi, H., E. Farabi, P.D. Hodgson, M.R. Barnett, G.S.
Rohrer, and D. Fabijanic, Microstructure evolution of
316L stainless steel during solid-state additive friction
stir deposition. Philosophical Magazine, 2022. 102(7):
pp. 618-633.

Hartley, W.D., D. Garcia, J.K. Yoder, E. Poczatek, J.H.
Forsmark, S.G. Luckey, D.A. Dillard, and Z.Y. Hang,
Solid-state cladding on thin automotive sheet metals
enabled by additive friction stir deposition. Journal of
Materials Processing Technology, 2021. 291: pp. 117045.
Garcia, D., W.D. Hartley, H.A. Rauch, R.J. Griffiths, R.
Wang, Z.J. Kong, Y. Zhu, and Z.Y. Hang, In situ
investigation into temperature evolution and heat
generation during additive friction stir deposition: A
comparative study of Cu and Al-Mg-Si. Additive
Manufacturing, 2020. 34: pp. 101386.

Zeng, C., H. Ghadimi, H. Ding, S. Nemati, A. Garbie, J.
Raush, and S. Guo, Microstructure evolution of A16061
alloy made by additive friction stir deposition. Materials,
2022. 15(10): pp. 3676.

Phillips, B., C. Mason, S. Beck, D. Avery, K. Doherty, P.
Allison, and J. Jordon, Effect of parallel deposition path
and interface material flow on resulting microstructure
and tensile behavior of Al-Mg-Si alloy fabricated by
additive friction stir deposition. Journal of Materials
Processing Technology, 2021. 295: pp. 117169.

Kincaid, J., R. Zameroski, T. No, J. Bohling, B. Compton,
and T. Schmitz. Hybrid Manufacturing: Combining
Additive Friction Stir Deposition, Metrology, and
Machining. in TMS Annual Meeting & Exhibition. 2023.
pp. 3-13: Springer.

[16] Schmitz, T., L. Costa, B.K. Canfield, J. Kincaid, R.

[17

[

[18]

[19]

[20

—_

(21]

[22]

(23]

[24]

[25]

[26]

[27]

Zameroski, R. Garcia, C. Frederick, A.M. Rossy, and
T.M. Moeller, Embedded OR code for part authentication
in additive friction stir deposition. Manufacturing Letters,
2023. 35: pp. 16-19.

Kincaid, J., E. Charles, R. Garcia, J. Dvorak, T. No, S.
Smith, and T. Schmitz, Process planning for hybrid
manufacturing using additive friction stir deposition.
Manufacturing Letters, 2023.

Stubblefield, G., K. Fraser, B. Phillips, J. Jordon, and P.
Allison, 4 meshfree computational framework for the
numerical simulation of the solid-state additive
manufacturing process, additive friction stir-deposition
(AFS-D). Materials & Design, 2021. 202: pp. 109514.
Stubblefield, G., K. Fraser, D. Van Iderstine, S. Mujahid,
H. Rhee, J. Jordon, and P. Allison, FElucidating the
influence of temperature and strain rate on the mechanics
of AFS-D through a combined experimental and
computational approach. Journal of Materials Processing
Technology, 2022. 305: pp. 117593.

Stubblefield, G., K. Fraser, T. Robinson, N. Zhu, R.
Kinser, J. Tew, B. Cordle, J. Jordon, and P. Allison, 4
computational —and  experimental  approach  to
understanding material flow behavior during additive
friction stir deposition (AFSD). Computational Particle
Mechanics, 2023: pp. 1-15.

Kincaid, K.C., D.W. MacPhee, G. Stubblefield, J. Jordon,
T.W. Rushing, and P. Allison, 4 finite volume framework
for the simulation of additive friction stir deposition.
Journal of Engineering Materials and Technology, 2023.
145(3): pp. 031002.

Gotawala, N. and Z.Y. Hang, Material flow path and
extreme thermomechanical processing history during
additive friction stir deposition. Journal of Manufacturing
Processes, 2023. 101: pp. 114-127.

Joshi, S.S., S. Sharma, M. Radhakrishnan, M.V.
Pantawane, S.M. Patil, Y. Jin, T. Yang, D.A. Riley, R.
Banerjee, and N.B. Dahotre, 4 multi modal approach to
microstructure evolution and mechanical response of
additive friction stir deposited AZ31B Mg alloy. Scientific
Reports, 2022. 12(1): pp. 13234.

Sharma, S., K.M. Krishna, M. Radhakrishnan, M.V.
Pantawane, S.M. Patil, S.S. Joshi, R. Banerjee, and N.B.
Dahotre, A pseudo thermo-mechanical model linking
process parameters to microstructural evolution in
multilayer additive friction stir deposition of magnesium
alloy. Materials & Design, 2022. 224: pp. 111412.

Shi, T.,J. Wu, M. Ma, E. Charles, and T. Schmitz, AFSD-
Nets: A Physics-informed machine learning model for
predicting the temperature evolution during additive
friction stir deposition. Under review, 2023.

Shi, Z., H. Ma, H. Tran, and G. Zhang, Compressive-
sensing-assisted mixed integer optimization  for
dynamical system discovery with highly noisy data. arXiv
preprint arXiv:2209.12663, 2022.

Ma, M., J. Wu, C. Post, T. Shi, J. Yi, T. Schmitz, and H.
Wang, A physics-informed machine learning-based
control method for nonlinear dynamic systems with highly
noisy measurements. ArXiv. /abs/2311.07613, 2023.



