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Abstract  

This paper presents a modeling effort to explore the underlying physics of temperature evolution during additive friction stir 
deposition (AFSD) by a human-AI teaming approach. AFSD is an emerging solid-state additive manufacturing technology that 
deposits materials without melting. However, both process modeling and modeling of the AFSD tool are at an early stage. In this 
paper, a human-AI teaming approach is proposed to combine models based on first principles with AI. The resulting human-
informed machine learning method, denoted as AFSD-Physics, can effectively learn the governing equations of temperature 
evolution at the tool and the build from in-process measurements. Experiments are designed and conducted to collect in-process 
measurements for the deposition of aluminum 7075 with a total of 30 layers. The acquired governing equations are physically 
interpretable models with low computational cost and high accuracy. Model predictions show good agreement with the 
measurements. Experimental validation with new process parameters demonstrates the model’s generalizability and potential for 
use in tool temperature control and process optimization. 
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1. Introduction 

The goal of learning for either human or artificial 
intelligence (AI) is to acquire knowledge. Human learning 
provides a blueprint for machine learning (ML) that is 
commonly regarded as a pathway to AI. The primary 
distinction between human and AI learning is that, while 
humans tend to make inferences about natural laws after 
acquiring existing knowledge, current AI/ML capabilities 
perform the inverse: they fit the data generated by embedded 
laws with little to no awareness of first principles. This lack of 
awareness limits the use of AI/ML for many science and 
engineering fields where first principles and physical 
constraints must be applied. These governing laws have been 
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studied for centuries and are well-known by humans. 
Therefore, humans tend to focus on the underlying physics. At 
present, these cognitive capabilities are not integrated within 
the computational capabilities of AI/ML. With that in mind, 
this paper aims to advance the knowledge of temperature 
evolution for additive friction stir deposition (AFSD) by a 
human-AI teaming approach. 

AFSD as an emerging solid state metal additive 
manufacturing (AM) technology which provides an alternative 
to fusion-based AM technologies where materials are melted 
locally using a high-intensity heat source [1, 2]. In the AFSD 
process, no melting occurs and the geometry and 
microstructure are produced during layer-by-layer severe 
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plastic deformation. The deposited materials have lower 
porosity, reduced thermal gradients, lower residual stress, and 
homogenous microstructure. Prior research efforts have studied 
various materials and the corresponding structure-property 
relationships [3-14]. AFSD, together with metrology and 
computer numerically control (CNC) machining, has been 
integrated as hybrid manufacturing for industrial applications 
[15-17].  

The parameter settings for AFSD determine the friction and 
plastic deformation at the tool deposition surface, both of 
which are primary causes of heat generation in the tool and the 
build. AFSD modeling efforts are at an early stage. For process 
modeling, numerical models including both mesh-free methods 
[18-20] and mesh-based methods [3, 21-24] have been studied. 
However, multi-physics models are faced with limitations 
including boundary instability, high computational cost, and 
poor scalability for multi-layer depositions. These numerical 
models are often treated as deterministic and are not well-suited 
to combination with data for learning and accuracy 
improvement. Further, in-process measurements may be 
performed to record physical variables like temperature, 
spindle speed, spindle torque, tool location, and actuator force 
applied to the feedstock. These in-process measurements 
reflect unknown physical laws and provide a foundation for the 
development of ML models. A recent study presented a 
physics-informed ML method based on neural networks for 
temperature modeling of the tool and deposition [25]. The 
neural networks model used in-process measurements with low 
computational cost but lacked physical interpretability and 
model generalizability.  

Currently, experimentally verified governing equations are 
not available that can describe the mathematical relationship 
between temperature evolution at the tool-deposition and other 
measurable in-process physical variables. The research 
objective of this paper is to explore the governing equations of 
temperature evolution during AFSD by a human-AI teaming 
approach. A human-informed machine learning method, or 
AFSD-Physics, is proposed to learn the governing equations of 
temperature evolution at the tool and the build from in-process 
measurements. Computational simulations and experimental 
validation are conducted to verify the efficiency and efficacy 
of the developed methods and acquired governing equations. 
The primary contributions are: 

• The proposed human-AI teaming approach presents a 
pathway to provide AI with first principles models to advance 
knowledge in manufacturing. The resulting human-informed 
machine learning method can effectively explore the 
unknown physics of AFSD and learn the governing equations 
of temperature evolution from in-process measurements.  

• The acquired governing equations provide physically 
interpretable robust models with low computational cost and 
high accuracy.  

The paper is organized as follows. In Section 2, the problem 
description and an overview of the proposed human-AI 
teaming approach are introduced. Section 3 gives the proposed 
AFSD-Physics method. The acquired governing equations are 
discussed in Section 4. The experimental setup and numerical 
results are presented in Sections 5 and 6. Section 7 provides 
experimental validation. Section 8 concludes the paper. 

2. Human-AI teaming for AFSD temperature modeling  

2.1 Problem description of AFSD temperature evolution 

First principles, human-desired models for AFSD 
temperature evolution should consider the following physical 
factors: (1) the thermodynamics phenomena dependent on 
operating parameters (control variables) for the tool can be 
formulated as nonlinear dynamic systems with control; (2) 
temperature evolution during layer-by-layer deposition 
exhibits thermal cycling as the heating and cooling steps 
alternate; and (3) governing equations with high-accuracy and 
low computational cost enable real-time prediction, process 
control, and optimization. 

The Eq. (1) ordinary differential equation (ODE) provides 
the governing equation for temperature evolution in this paper: 

𝑇̇ = 𝑓(𝑇, 𝒖), (1) 

where 𝑇 can be either the tool temperature 𝑇𝑡𝑜𝑜𝑙 or the build 
temperature 𝑇𝑏𝑢𝑖𝑙𝑑 , 𝑓(⋅) is an unknown function that governs 
the dynamics of 𝑇 . 𝒖 = [𝒖1 𝒖2] can include other process 
variables besides 𝑇, where 𝒖1  refers to the vector of process 
parameters that can be explicitly selected and controlled, such 
as tool spindle speed and feedstock and tool feed velocities, and 
𝒖2  includes process physical variables that cannot be 
explicitly selected but can be measured, such as spindle torque 
and actuator force to push the feedstock through the rotating 
spindle. A thermal cycle consists of a heating and a cooling 
stage as defined in Eq. (2): 

𝑃𝑙 = 𝑃ℎ𝑒𝑎𝑡
𝑙 ∪ 𝑃𝑐𝑜𝑜𝑙

𝑙 , ∀𝑙 ∈ [𝐿], (2) 

where [𝐿] ≔ {1,2, … , 𝐿} denotes the set of deposited layers.  
Since the values of 𝒖 are different in 𝑃ℎ𝑒𝑎𝑡

𝑙  and 𝑃𝑐𝑜𝑜𝑙
𝑙 , it is 

plausible to model different functions 𝑓(⋅) for temperature in 
𝑃ℎ𝑒𝑎𝑡

𝑙  and 𝑃𝑐𝑜𝑜𝑙
𝑙 , especially for the tool temperature 𝑇𝑡𝑜𝑜𝑙.  

   Next, the in-process physical variables measured for this 
paper are summarized as follows: 

𝑇𝑡𝑜𝑜𝑙: 𝑇𝑡𝑜𝑜𝑙 = 𝑇𝑡𝑜𝑜𝑙(𝑡), tool temperature at time 𝑡 
measured by a tool-embedded thermocouple axially 
located within 0.25 mm to 0.38 mm of the tool surface. 
An infrared camera is also attached to the moving 
spindle carriage. The peak temperature in the field of 
view is compared with the tool-embedded 
thermocouple temperature measurement to confirm 
the performance of the two sensors. 

𝑇𝑏𝑢𝑖𝑙𝑑 : 𝑇𝑏𝑢𝑖𝑙𝑑 = 𝑇𝑏𝑢𝑖𝑙𝑑 (𝒔, 𝑡) , build/substrate temperature at 
time 𝑡  for location 𝒔 ∈ 𝓢 . 𝓢 = {𝒔1, 𝒔2, 𝒔3, 𝒔4} 
refers to a set of four locations where four equally 
spaced thermocouples were embedded 2.54 mm 
below the substrate surface along the deposition 
direction to measure the substrate temperature. 

𝜔: Tool spindle speed; 
𝑓𝑡 : Tool feed velocity or tool traverse speed; 
𝑓𝑚: Feedstock feed velocity or material feed rate; 
𝑇𝑓: Spindle torque applied to the spindle to overcome the  
 friction force; 
𝑃𝑓 : Spindle power; 
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𝑇𝑚: Servo torque for feedstock material; 
𝐹𝑚: Force applied to the feedstock to push it through the 
 rotating tool; 
𝒔𝑡𝑜𝑜𝑙: 𝒔𝑡𝑜𝑜𝑙 = (𝑠𝑥 , 𝑠𝑦 , 𝑠𝑧), position of the center point at the  

tool bottom surface; 
𝒗𝑡𝑜𝑜𝑙: 𝒗𝑡𝑜𝑜𝑙 = (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧), velocity of the tool center at the 

bottom surface along the machine's X, Y and Z axes. 

The fundamental research question is: How can the 
analytical forms of 𝑇̇ = 𝑓(𝑇, 𝒖) be obtained to describe the 
temperature evolutions at the tool and the build from in-process 
measurements? For the tool, the governing equation is desired 
to describe the heat generation mechanism and temperature 
evolution based on the AFSD operating parameters. For the 
build, the governing equation is desired to establish the 
relationship between temperature measurements at the tool and 
temperature measurements at the build/substrate.  

2.2 Overview of the proposed human-AI teaming approach 

A human-AI teaming approach is proposed to provide the 
desired AFSD model. The general steps as shown in Figure 1 
are summarised. 

Step 1. Human initial human modeling by first principles.  
This first step refers to how the human integrates first 
principles models and in-process measurements of 
physical variables with AI (Section 3.1). 

Step 2. Design of experiments for data collection.  
Based on the model requirements, measurability of 
physical variables and available sensors, experiments 
are designed and conducted for a set of process 
parameters (Section 5). 

Step 3. Human-informed machine learning modeling. 

3.1 Design of human-informed learning function space. 
The learning function space design integrates physical 
knowledge and augments the human-informed initial 
model by ML (Section 3.2.1). 

3.2 Design of loss function and optimization algorithm. 
With the human-informed learning function space, an 
effective discrete optimization algorithm is designed to 
minimize appropriate loss functions with respect to 
accuracy, time efficiency, and robustness to noise in 
data (Section 3.2.2). 

3.3 Learning process to acquire governing equations. 
Experimental data from in-process measurements is 
used for the training process of human-informed ML to 
obtain the governing equations (see Sections 4, 6, and 
7). 

Step 4. Experimental validation.  
Analyses of the acquired models, including physical 
interpretation, simulation, and experimental validation, 
are conducted. An additional round of Steps 1-3 is 
performed (see Sections 4, 6, and 7). 

In the following sections, the procedure is presented step-
by-step to identify the governing equations of temperature 
evolution during AFSD.  

3. Proposed AFSD-Physics 

The resulting AFSD-Physics method is presented in terms 
of its two key components: initial human modeling by first 
principles and human-informed ML modeling. 

3.1 Initial human modeling by first principles 

Initial human modeling combines the physical process of 

Figure 1. Schematic illustration of the proposed human-AI teaming approach for AFSD temperature evolution modeling. 
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AFSD with in-process measurements. 

3.1.1 Modeling for tool temperature 

The governing equation for the tool temperature is 
described by the Eq. (3) piecewise functions for the heating and 
cooling stages, respectively: 

         𝑇̇𝑡𝑜𝑜𝑙 = {
𝑓1(𝑇𝑡𝑜𝑜𝑙(𝑡), 𝒖), 𝑡 ∈ 𝑃ℎ𝑒𝑎𝑡

𝑙 , 𝑙 ∈ [𝐿],             (3𝑎)

𝑓2(𝑇𝑡𝑜𝑜𝑙(𝑡), 𝒖),  𝑡 ∈ 𝑃𝑐𝑜𝑜𝑙
𝑙 , 𝑙 ∈ [𝐿].             (3𝑏)

 

Function 𝑓1(⋅) describes the critical mechanism of heat 
generation. Vector 𝒖 in 𝑓1(⋅) can include process parameters 
related to both frictional and adiabatic heating, including tool 
spindle speed, tool traverse speed, feedstock feed velocity, 
spindle torque, etc. Function 𝑓2(⋅) describes the tool cooling 
mechanism when the tool is not in contact with the build. 
Vector 𝒖 in 𝑓2(⋅) may include parameters for controlling the 
tool cooling jacket which surrounds the rotating tool and 
provides forced chilled fluid heat rejection, as needed. 

The tool temperature model in Eq. (3a) describes the 
moving heat source. During AFSD, the moving heat source is 
the deposit beneath the rotating tool, where both friction 
heating and adiabatic heating occurs. However, the 
measurements of the deposit beneath the tool are difficult to 
obtain. The assumption is that the rotating deposit is a single 
point heat source and its temperature 𝑇𝑟𝑑 (𝑡) is equal to the 
tool temperature as shown in Eq. (4), 

𝑇𝑟𝑑 (𝑡) = 𝑇𝑡𝑜𝑜𝑙(𝑡), (4) 

where 𝑇𝑡𝑜𝑜𝑙(𝑡) can be measured by an embedded 
thermocouple, which is radially offset from the tool center 
(outside the square bore) and is located axially close to the tool 
surface. As such, the temperature measured by the 
thermocouple is assumed to be the same as rotating deposit. 
Note that the actual path of the thermocouple during the 
rotating-translating deposition tool motion is cycloidal in 
nature. With this assumption, temperature samples from the 
cycloidal path of the thermocouple are used as in-process 
measurements from the linear motion of the single point heat 
source with constant traverse speed. Equation (4) is used to link 
heat generation at tool and heat transfer at the build (deposit). 

3.1.2 Modeling for build temperature 

The 3D build temperature evolution is naturally governed 
by a heat transfer partial differential equation (PDE) across the 
build geometry. However, in-process measurements are only 
available for the four thermocouples embedded in the substrate 
(build plate) at discrete; see Section 5 for the details. This 
significantly limits the information available for AI modeling. 
In this first attempt, the ordinary differential equation (ODE) 
that incorporates the temperature of and distance to the moving 
heat source is considered to model the build temperature as 
shown in Eq. (5),  

𝑇̇𝑏𝑢𝑖𝑙𝑑 = 𝑓3(𝑇𝑟𝑑 (𝑡), 𝑇𝑏𝑢𝑖𝑙𝑑 (𝒔, 𝑡),  𝑑(𝑡)),   

 𝑡 ∈ 𝑃ℎ𝑒𝑎𝑡
𝑙 ∪ 𝑃𝑐𝑜𝑜𝑙

𝑙 ,  𝑙 ∈ [𝐿], (5)
 

where 𝑇𝑏𝑢𝑖𝑙𝑑 = 𝑇𝑏𝑢𝑖𝑙𝑑 (𝒔, 𝑡)  is the build temperature at 

location 𝒔 ∈ 𝓢, and 𝓢 = {𝒔1, 𝒔2, 𝒔3, 𝒔4} refers to a set of four 
locations where the four equally spaced thermocouples were 
embedded in the substrate along the deposition direction to 
measure the substrate temperature. 𝑑(𝑡)  is the Euclidean 
distance between the point location of the rotating deposit 𝒔𝑟𝑑 
and arbitrary location 𝒔 ∈ 𝓢, i.e., 𝑑(𝑡) =∥ 𝒔𝑟𝑑 − 𝒔 ∥2 . From 
the assumption in the previous section, it can be obtained that 
𝒔𝑟𝑑 = 𝒔𝑡𝑜𝑜𝑙 . By introducing 𝑑(𝑡) , Eq. (5) implicitly 
incorporates the spatial information of the build geometry. 
Therefore, it can be used to describe the spatially distributed 
temperature for all locations 𝒔 ∈ 𝓢. Note here a single function 
𝑓3(⋅) is adopted for both 𝑃ℎ𝑒𝑎𝑡

𝑙  and 𝑃𝑐𝑜𝑜𝑙
𝑙 .  

Finally, the initial conditions for tool temperature and build 
temperature are provided as shown in Eq. 6: 

𝑇𝑡𝑜𝑜𝑙(0) = 𝑇0, 𝑇𝑏𝑢𝑖𝑙𝑑 (𝒔𝑡𝑐 , 0) = 𝑇0
𝒔𝑡𝑐 , (6) 

where 𝒔𝑡𝑐 is the location of the thermocouple in the substrate. 
In short, Eqs. (3)-(6) collectively provide the initial human 
modeling for the governing equations of the unknown 
temperature evolution at the build and tool. 

3.2 Human-informed machine learning modeling 

This section presents the human-informed ML modeling to 
learn the analytical form of the unknown functions 𝑓1(⋅), 𝑓2(⋅
) and 𝑓3(⋅) in initial human modeling by first principles. The 
main idea is to first design the human-informed learning 
function spaces for 𝑇̇𝑡𝑜𝑜𝑙 and 𝑇̇𝑏𝑢𝑖𝑙𝑑 , and then design the loss 
function and optimization algorithm for the learning process to 
acquire the governing equations from in-process 
measurements. The discrete-optimization based machine 
learning algorithm in [26, 27] is extended for the design of loss 
function and optimization algorithm. 

Let 𝐓𝑡𝑜𝑜𝑙 ∈ ℝ𝑁×1 , 𝐓𝑏𝑢𝑖𝑙𝑑 ∈ ℝ𝑁×1 and 𝐔 ∈ ℝ𝑁×𝐽 denote 
the in-process measurements of tool temperature, built 
temperature at specific location and the other 𝐽  physical 
variables, respectively. The in-process measurements are 
recorded at a total of 𝑁 time points. Let 𝐓̇𝑡𝑜𝑜𝑙 ∈ ℝ𝑁×1  and 
𝐓̇𝑏𝑢𝑖𝑙𝑑 ∈ ℝ𝑁×1  denote the time derivatives of temperatures, 
which are numerically calculated by finite difference with 
smooth techniques.  

3.2.1 Design of human-informed learning function space 

Without loss of generality, the notations for 𝑓1(⋅), 𝑓2(⋅) 
and 𝑓3(⋅) are not distinguished for the ease of presentation of 
this section. 𝐿𝑒𝑡  [𝑃] = {1,2, ⋯ , 𝑃}  for arbitrary positive 
integer throughout, where 𝑃 ∈ ℤ+. A candidate set consisting 
of 𝑃 nonlinear physical terms is defined in Eq. (7),  

𝜽(𝑇, 𝒖) = [1  𝑇  𝒖  (𝑇 ⊗ 𝑇)  (𝒖 ⊗ 𝒖)  (𝑇 ⊗ 𝒖)    ⋯   ], (7) 

where operator ⊗ denotes the element-wise combinations for 
constructing nonlinear terms of 𝑇  and/or 𝒖 . For example, 
polynomial terms of 𝒖 and 𝑇 are included as basic nonlinear 
physical terms. Other nonlinear physical terms like 
trigonometric functions can also be added into the candidate set 
if necessary. Let 𝜃𝑝 denote the 𝑝-th term of 𝜽(𝑇, 𝒖), ∀𝑝 ∈

[𝑃]. In this paper, assuming functions 𝑓1(⋅), 𝑓2(⋅) and 𝑓3(⋅) 
live in the affine space spanned by 𝜽(𝑇, 𝒖) , the human-
informed learning function space is given in Eq. (8), 
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𝑓(𝑇, 𝒖) = 𝜽(𝑇, 𝒖) ∙ 𝝃, (8) 

where 𝝃 = [𝜉1  𝜉2   ⋯  𝜉𝑃]𝑇 ∈ ℝ𝑃×1  refers to the vector of 
coefficients. Thus, to identify the governing equations is to 
estimate the coefficients 𝝃  from in-process measurements. 
Another assumption for the proposed method is that 𝝃  is 
sparse for governing equations, i.e., only parsimonious terms 
that are active govern the dynamics of the underlying physics 
of AFSD.  

3.2.2 Design of loss function and optimization algorithm 

Based on the human-informed function space, the loss 
function together with the resulting sparse optimization 
problem is defined in Eq. (9), 

min
𝝃

 ‖𝐓̇ − 𝚯(𝐓, 𝐔) ∙ 𝝃‖
2

2
+ 𝜆0‖𝝃‖0 + 𝜆2 ∥ 𝝃 ∥2

2 , (9) 

where 𝚯(𝐓, 𝐔) ∈ ℝ𝑁×𝑃 is the augmented matrix obtained by 
evaluating 𝜽(𝑇, 𝒖) at each time point of 𝐓 and 𝐔. The first 
term represents the empirical risk minimization principle 
between the approximations and the derivatives of temperature 
measurements 𝐓̇. The regularization term ‖𝝃‖0 denotes the 
ℓ0-norm (pseudo norm) of 𝝃, namely the number of nonzero 
terms in 𝝃. The inclusion of the ‖𝝃‖0 with weight 𝜆0 enables 
the selection of a parsimonious set of 𝜽(𝑇, 𝒖) for describing 
the underlying physics. The regularization term ∥ 𝝃 ∥2

2  with 
weight 𝜆2  is added to reduce the effects of noise in the 
measurements. 

To indicate the existence of terms of 𝜽(𝑇, 𝒖) in 𝑓(𝑇, 𝒖), 
a vector of discrete variables, 𝜸 = [𝛾1  𝛾2  ⋯  𝛾𝑃]𝑇 ∈ 𝔹𝑃×1is 
introduced, where 𝔹 = {0,1} is the Boolean domain and  

𝛾𝑝 = {
1, if 𝑓(𝒖) includes 𝜃𝑝

0, otherwise
,    ∀𝑝 ∈ [𝑃]. (10) 

With 𝜸, Eq. (9) can be rewritten to indicate the inclusion of 
each term in 𝜽(𝑇, 𝒖) as 

min
𝝃

 ‖𝐓̇ − 𝚯(𝐓, 𝐔) ∙ (𝜸 ∘ 𝝃)‖
2

2
+ 𝜆0‖𝝃‖0 + 𝜆2 ∥ 𝝃 ∥2

2 , (11)   

where 𝜸 ∘ 𝝃 refers to the element-wise (Hadamard) product. 
Consequently, a mixed-integer optimization problem is given 
by reformulating Eq. (11) as 

⟨𝜸∗, 𝜽∗⟩ = argmin
⟨𝝃,𝛾⟩∈Δ

‖𝐓̇ − 𝚯(𝐓, 𝐔) ∙ 𝝃‖
2

2
+ 𝜆2‖𝝃‖2

2 , (12𝑎) 

where the solution space Δ is defined as  

Δ ≔ {⟨𝝃, 𝜸⟩ |
−𝑀𝜸 ≤ 𝝃 ≤ 𝑀𝜸, 𝜸𝑇𝒆 = 𝑘,

𝝃 ∈ ℝ𝑃×1, 𝜸 ∈ 𝔹𝑃×1
} , (12𝑏) 

where 𝑀 is a constant number and can be identified from data. 
[−𝑀, 𝑀]  defines the lower and upper bounds of 𝝃 . When 
𝛾𝑝 = 1 , 𝜉𝑝  is estimated based on optimization within 
[−𝑀, 𝑀]; otherwise, when 𝛾𝑝 = 0, 𝜉𝑝 = 0, meaning term 𝜉𝑝 
is not included in 𝑓(𝑇, 𝒖). Vector 𝒆 ∈ ℝ𝑃×1  is a vector with 
all entries set to 1. As a result, 𝜸𝑇𝒆 refers to the number of 

nonzeros in 𝜸, which is defined as constant 𝑘. Parameters 𝜆2 
and 𝑘  can be tuned by validation and cross validation 
techniques (see [26] for details).  

A two-stage solution procedure is utilized to solve the 
problem. First, 𝜸∗  is identified by solving Eq. (12) with a 
discrete optimization solver using column-wise normalized 
data of 𝚯(𝐓, 𝐔)  and 𝐓̇ . The normalization removes the 
effects of different scales of terms in 𝜽(𝑇, 𝒖). In the second 
stage, 𝝃∗ is estimated by a least squares algorithm using the 
original data 𝚯(𝐓, 𝐔) and 𝐓̇. Only columns corresponding to 
𝜸∗ are used for the estimation. This allows coefficients 𝝃∗ to 
represent the inherent quantitative relationship between the 
selected terms in 𝜽(𝑇, 𝒖) and 𝑇̇. 

Once 𝜸∗  and 𝝃∗  are identified, the acquired governing 
equation can be expressed as 

𝑇̇ = 𝜽(𝑇, 𝒖) ⋅ (𝜸∗ ∘ 𝝃∗). (13) 

The acquired governing equations, as knowledge feedback, can 
inform human to conduct further analyses, including physical 
interpretation, simulation, and experimental validation. Note 
that multiple-round teaming between human and AI would be 
needed in a closed-loop manner. 

4 Main results: Acquired governing equations 

The acquired governing equations by AFSD-Physics 
method are presented here. For details of the learning 
procedure, readers are referred to the collection of in-process 
measurements by experiments in Section 5 and the numerical 
experiment settings for AFSD-Physics in Section 6. With such 
settings, AFSD-Physics delivers all the governing equations in 
Eqs. (14) and (15) within 30 seconds. 

The acquired governing equation for governing the 
evolution of tool temperature 𝑇𝑡𝑜𝑜𝑙 (℃) is 

𝑇̇𝑡𝑜𝑜𝑙 = {
𝑎1𝜔3𝑇𝑓 + 𝑎2𝜔2𝑇𝑓 𝑇𝑡𝑜𝑜𝑙 − 𝑎3𝜔𝑇𝑡𝑜𝑜𝑙

3, 𝑡 ∈ 𝑃ℎ𝑒𝑎𝑡 , (14𝑎)

𝑏1 − 𝑏2𝑇𝑡𝑜𝑜𝑙 − 𝑏3𝑇𝑡𝑜𝑜𝑙
2,    𝑡 ∈ 𝑃𝑐𝑜𝑜𝑙 ,                     (14𝑏)

 

where 𝜔 is the tool spindle speed (rpm), 𝑇𝑓  is the spindle 
torque (Nm) required to overcome the friction force, 𝒂 =
[𝑎1 𝑎2 𝑎3] and 𝒃 = [𝑏1 𝑏2 𝑏3] are the estimated coefficients. 
As suggested by previous studies [12, 18], spindle speed, 
feedstock feed velocity, and the force experienced by the tool 
are the major factors for heat generation. Equation (14a) 
describes the heat generation mechanism with respect to the 
spindle speed 𝜔 and the spindle torque 𝑇𝑓. At present, force 
measurements are not available due to the lack of effective 
metrology methods, but the inclusion of 𝑇𝑓  indicates the 
significance of force given the inherent relation between force 
and torque. Since 𝑇𝑓𝜔  refers to the friction power, terms 
𝜔3𝑇𝑓 and 𝑇𝑡𝑜𝑜𝑙𝜔

2𝑇𝑓  may indicate unknown underlying heat 
generation mechanisms in addition to friction power. Note that 
the feedstock feed velocity 𝑓𝑡  is included in the human-
informed learning function space 𝜽(𝑇, 𝒖) . However, the 
human-informed machine learning modeling does not select 
any terms containing 𝑓𝑡 . The reason may be because 𝑓𝑡  in 
current experiments is a constant at 1.93 mm/second during 
deposition.  
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For the governing equation of tool cooling shown in Eq. 
(14b), it is observed that the first two terms exactly match 
Newton’s law of cooling, with constant 𝑏1  relevant to the 
room temperature. In addition, a new term −𝑏3𝑇𝑡𝑜𝑜𝑙

2  is 
acquired. For the cooling stage, 𝑇̇𝑡𝑜𝑜𝑙 is always non-positive. 
The negative coefficient −𝑏3  indicates the temperature 
decrease of the AFSD tool during cooling is much faster than 
that described by Newton’s cooling law. This may represent the 
additional cooling effect from the external water jacket.  

The governing equation for governing the evolution of 
build temperature 𝑇𝑏𝑢𝑖𝑙𝑑  (℃) is presented in Eq. (15). 

𝑇̇𝑏𝑢𝑖𝑙𝑑 = 𝑐1𝑇𝑏𝑢𝑖𝑙𝑑
4 − 𝑐2𝑑2𝑇𝑡𝑜𝑜𝑙 + 𝑐3𝑑2𝑇𝑡𝑜𝑜𝑙

2 + 𝑐4𝑑3,        

 𝑡 ∈ 𝑃ℎ𝑒𝑎𝑡 ∪ 𝑃𝑐𝑜𝑜𝑙 , (15) 

where distance 𝑑(𝑡) =∥ 𝒔 − 𝒔𝑟𝑑(𝑡) ∥2  (mm) and 𝒄 =
[𝑐1 𝑐2 𝑐3  𝑐4] is the vector of coefficients. Equation (15) can be 
described as an ODE with time variant parameter 𝑑(𝑡). Also, 
the spatial information of the location 𝒔 ∈ 𝓢 in the substrate is 
implicitly included in 𝑑(𝑡). As such, Eq. (15) can predict the 
temperature profile for all points in the centreline of the 
substrate where the thermocouples are located. This will 
generate a 1D map for temperature distribution. In addition, 
based on the assumption of a single point moving heat source, 
Eq. (15) may have the potential to predict the temperature 
evolution at the 2D vertical plane of the deposited layers 
bounded by the centreline of the bottom layer and the linear 
motion path of the single point heat source.  

With Eqs. (14)-(15), time domain simulation can be 
conducted for a multi-layer AFSD process. In general, two 
types of time domain simulations based on different initial 
value settings are considered. 

• Type I simulation: A new initial value for each layer of 
simulation. Type I simulation is used for simulating the heat 
generation in Eq. (14a) and tool cooling in Eq. (14b) 
independently. The measurement at the beginning of each 
layer is used to set the initial value. This represents the 
scenario where in-process temperature measurements are 
available to calibrate the simulation layer-by-layer.  

• Type II simulation: A single initial value for the entire 
multi-layer simulation. The initial value of the next layer is 
set to be the last value of the previous layer. Type II 
simulation is used for the coupled simulation of heat 
generation and tool cooling as well as build temperature 
evolution in Eq. (15). This simulation is practical when no 
in-process temperature measurements are available and 
only the room temperature is used to start the simulation. 

5 Experimental setup 

Experiments were performed using a commercially 
available MELD Manufacturing L3 machine to deposit solid 
wrought aluminum 7075 feedstock rod with 9.53 mm × 9.53 
mm ×  508 mm dimensions on the substrate of the same 
material. The build to be deposited was a wall with a length of 
216 mm and a height of 45.6 mm (30 layers with each layer 
1.52 mm thickness). As shown in Figure 2(a), the deposition 
was performed in a single direction and the tool was returned 
to the same starting position for each layer. Given the wall 
length, a single rod of wrought feedstock was able to deposit 

two layers. Then the next rod was manually inserted into the 
spindle from the square bore at the bottom of the tool. 

The operating parameters were: 135 rpm spindle speed 
during deposition, 115.6 mm/min feedstock feed velocity, and 
127 mm/min tool feed velocity (traverse speed along the 
deposition direction). At the beginning of each layer, the 
spindle speed was set at 350 rpm to heat the material and was 
reduced to 135 rpm as the deposition began. A cooling jacket 
located around the tool was run at a constant flow rate during 
deposition to cool the tool and avoid excessive heating of the 
rod within the tool, which can cause the deposition to fail due 
to adhesion between the rod and tool internal passage. After the 
numerical results in Section 6 were obtained, additional 
experiments using a spindle speed of 115 rpm was also 
performed for validation. See details in Section 7. 

 

Figure 2. Experimental setup for depositing 7075 aluminum feed rod on a 7075 
aluminum substrate for 30 layers using the MELD Manufacturing L3 machine. 
(a) A thermocouple embedded in the tool was used to measure the tool 
temperature. Four equally spaced thermocouples were embedded in the 
substrate for measuring temperature evolution beneath the deposition track. (b) 
Substrate with locations of the four thermocouples. Figure is from [25]. 

In-process measurements were obtained for both the tool 
and the build. The tool had an embedded K-type thermocouple 
(KTC), which was located within 0.25 mm to 0.38 mm of the 
tool surface and used to measure the tool-deposit interface 
temperature. The L3 controller was also able to record time 
series data, including spindle speed, feedstock feed velocity 
and tool position, at a 1 Hz sampling frequency. For the 
substrate temperature, two baseplates were used. The upper 
baseplate was the one where the deposit was made, and four 
equally spaced K-type thermocouples were embedded 2.54 mm 
below the build surface and along the track direction from the 
underside of the plate. Figure 2(b) shows the locations of the 
four thermocouples. The underside in Figure 2(b) was covered 
by the lower baseplate to protect the thermocouples. 

The experiments resulted in 11,358 in-process data points. 
The features include the L3 controller-captured data (spindle 
speed, torque, and power; feedstock feed velocity and actuator 
force and torque; and position, velocity, and torque for the X, 
Y and Z axes), the tooltip temperature from the embedded 
thermocouple, and the temperatures from the four substrate 
thermocouples. 

6 Computational experiments 

This section presents the numerical results and analysis for 
the proposed AFSD-Physics method using the in-process 
measurements, denoted by 135-rpm, from Section 5. The 
simulation results for the acquired models as described in 
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Section 4 are presented. Comparisons with AFSD-Nets [25]  
are conducted to show the effectiveness of AFSD-Physics. All 
computations are completed using Python and executed using 
a mobile workstation with an Intel® Xeon® W-10885M CPU @ 
2.40GHz, 128 GB memory, 64-bit Windows 10 Pro operating 
system for workstations. The CPLEX 20.1 solver is used as the 
discrete optimizer in human-informed machine learning 
modeling to solve the problem in Eq. (12). 

6.1 Numerical experiment settings of AFSD-Physics 

Training and testing dataset. Measurements from the 5-th 
to the 20-th layer of the 135-rpm dataset are used as training 
data. The first 5 layers are discarded due to poor data quality at 
the beginning of the AFSD process. The measurements from 
the last 10 layers of the 135-rpm dataset are used as testing data. 
Note that for build temperature, only measurements from the 
first three thermocouples (KTC1, KTC2, KTC3) are stacked as 
a single dataset for training, while the last thermocouple (KTC4) 
is purely used for testing.  

Parameter settings for AFSD-Physics. The parameters for 
human-informed machine learning modeling are set as follows: 
𝑀 = 1000, 𝑘 ∈ {3,4,5}, and 𝜆2 = 100. The best 𝑘 value is 
selected after a preliminary tuning by simulating the acquired 
model for 5 layers using temperatures from the 21-th layer of 
the 135-rpm dataset as initial values. For the heat generation 
stage of tool temperature evolution, the features include the 
tool temperature 𝑇𝑡𝑜𝑜𝑙 , spindle speed 𝜔, spindle torque 𝑇𝑓 , 
feedstock feed speed 𝑓𝑚 , and actuator force 𝐹𝑚  to push the 
feedstock downward. Four-order polynomials are used to 
construct the candidate nonlinear physical terms 𝜽(𝑇, 𝒖) . 
After the first round of training, only terms related to 𝑇𝑡𝑜𝑜𝑙, 𝜔 
and 𝑇𝑓 are identified. As such in the second round of training, 
only these three features are included to learn the governing 
equation in Eq. (14a). For the tool cooling stage, only 𝑇𝑡𝑜𝑜𝑙 is 
included to learn Eq. (14b) since all process parameters are not 
related to tool cooling and there are no measurements from the 
water jacket. To learn Eq. (15) for build temperature evolution, 
the feature set consists of the tool temperature 𝑇𝑡𝑜𝑜𝑙, the build 
temperature 𝑇𝑏𝑢𝑖𝑙𝑑 , and the distance 𝑑  between a 
thermocouple in the substrate and the tool. 

Comparison metrics. In addition to the computational 
efficiency comparison with simulation time, the mean absolute 
percentage error (MAPE) in Eq. (16) is used to measure the 
prediction accuracy of the methods under comparison. 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝑇𝑖 − 𝑇̂𝑖|

𝑇𝑖

𝑁

𝑖=1
× 100%, (16) 

where 𝑇𝑖  and 𝑇̂𝑖  are the measurement and prediction of the 
temperature, respectively, and 𝑁  is the total number of 
measurements. The smaller the MAPE value the better 
accuracy of the method. 

6.2 Results and analysis for tool temperature 

For Eq. (14), the coefficients are acquired as 𝒂 =
[𝑎1 𝑎2 𝑎3] = [2.7640 × 10−9    1.1382 × 10−8  1.8361 ×
10−9] , 𝒃 = [𝑏1 𝑏2 𝑏3] = [0.3282  0.0135   6.0601 × 10−6] . 
Type I simulations of the acquired governing equations in Eqs. 
(14a) and (14b) are first presented for heat generation and tool 

cooling, respectively. Then Type II simulation is conducted to 
predict the coupled heat generation and tool cooling stages. 

6.2.1 Simulation results for tool heating 

 
Figure 3. Type I simulation (a new initial value for each layer) of heat 
generation on training and testing set of 135-rpm in (a) and (b), respectively. 

 
Figure 4. Zoom-in plots for Figure 3.  

Figure 3 displays the simulation results for the temperature 
profile of the tool heat generation stage using the training and 
testing sets in (a) and (b), respectively. The zoom-in plots are 
shown in Figure 4. From these figures, both AFSD-Physics and 
AFSD-Nets can capture the overall trend of temperature 
increase during the tool heat generation stage. It is observed 
that AFSD-Physics is in good agreement with the 
measurements and can capture the details of the temperature 
evolution. For example, AFSD-Physics captures the first peak 
value when the spindle speed is decreased from 350 rpm (for 
quick heating and softening of the feedstock) to 135 rpm (for 
deposition). The feedstock feed velocity is accordingly 
increased from 0.93 mm/second to 1.93 mm/second, and the 
tool starts to traverse to deposit materials. The major heat 
generation source changes from adiabatic heating caused by 
plastic deformation to frictional heating. On the contrary, the 
AFSD-Nets model tends to overly smooth the prediction and 
fails to recognize the valley-shaped heating pattern present in 
the first 5 layers of the training set, see Figure 4(a). Note that 
the measurements of the first 5 layers are not included for 
training, as such the acquired model of AFSD-Physics 
amplifies valley-shaped heating patterns for the first 5 layers. 
In general, AFSD-Physics outperforms AFSD-Nets in 
capturing the overall profile, detailed heating pattern, and peak 
temperatures for the heat generation stage. 

The MAPE and simulation time of the acquired models on 
the training and testing sets of 135-rpm are presented in Table 
1. It is observed that AFSD-Physics obtains much smaller 



8 T. Shi, M. Ma, J. Wu, C. Post, E. Charles and T. Schmitz / Manufacturing Letters 00 (2023) 000–000 

MAPE, significantly outperforming AFSD-Nets for both 
training and testing datasets. In particular, the MAPE of AFSD-
Physics is at most 55% of that of AFSD-Nets. The simulation 
time of AFSD-Physics is within 0.16 seconds. This indicates 
that AFSD-Physics can achieve both physically interpretable 
and robust models with high accuracy and low computational 
cost. 

Table 1. MAPE and simulation time comparison for Type I simulation (a new 
initial value for each layer) of heat generation stage. 

Dataset 
AFSD-Nets AFSD-Physics 

MAPE (%) Time (s) MAPE (%) Time (s) 

Training set, 135-rpm 18.5429 0.6882 10.2894 0.1566 

Testing set, 135-rpm 7.3858 0.4169 3.7789 0.1496 

6.2.2 Simulation results for tool cooling 

Figure 5 displays the Type I simulation results for the 
temperature trajectory comparison of the tool cooling stage 
using the training and testing sets in (a) and (b), respectively. 
Both AFSD-Nets and AFSD-Physics accurately capture the 
temperature decrease during the tool cooling stage and align 
almost perfectly with the measurements. In fact, the tool 
cooling stage has a much smoother profile than the heat 
generation stage, mainly because no process parameters are 
involved. As the tool leaves contact with the build, the 
temperature evolution during cooling depends mainly on the 
conduction along the feedstock and through the cooling jacket, 
both of which can be considered to occur at a constant rate. As 
such, the trend of tool cooling is clear and can be more easily 
captured by both AFSD-Nets and AFSD-Physics. 

 
Figure 5. Type I simulation (a new initial value for each layer) of tool cooling 
stage on training and testing set of 135-rpm in (a) and (b), respectively. 

Table 2 summarizes the MAPE and simulation time of Type 
I simulation results for both the AFSD-Nets and AFSD-Physics 
models. It is observed that AFSD-Nets model obtains better 
MAPE prediction performance on the training set of the 135-
rpm dataset, while the AFSD-Physics model obtains better 
prediction performance on the testing set of the 135-rpm 
dataset. This observation indicates that AFSD-Physics has 
superior generalization ability for unseen data by capturing the 
underlying physics as analytical physical terms. Furthermore, 
AFSD-Nets has 17 parameters for the single hidden layer 
neural network deployed with 4 neurons. In contrast, the 

AFSD-Physics acquired model demonstrates superior 
performance on test data despite having only 3 parameters. 
Table 2: MAPE and simulation time comparison for Type I 
simulation (a new initial value for each layer) of tool cooling 
stage. 

Dataset 
AFSD-Nets AFSD-Physics 

MAPE (%) Time (s) MAPE (%) Time (s) 

Training set, 135-rpm 2.9297 5.1711 5.8811 3.3623 

Testing set, 135-rpm 3.825 3.5413 3.525 3.3489 

6.2.3 Coupled simulation of tool temperature evolution 

Type II simulation is conducted to couple the heat 
generation and tool cooling stages for the entire 30-layer AFSD 
process. As the initial value of the next layer simulation 
depends on the last value of the previous one, Type II 
simulation results are more effective to validate the coupling 
performance of the acquired governing equations. 

 
Figure 6. (a) Type II simulation (a single initial value for the entire multi-layer 
simulation) of tool temperature on 135-rpm. (b) Zoom-in plot. 

Table 3. MAPE and simulation time comparison for Type II simulation (a 
single initial value for the entire multi-layer simulation) of tool temperature. 

Dataset 
AFSD-Nets AFSD-Physics 

MAPE (%) Time (s) MAPE (%) Time (s) 

135-rpm dataset 14.5670 5.7751 9.3273 4.2441 

Figure 6 shows the temperature profile for Type II 
simulation on the 135-rpm dataset. It is observed that both 
AFSD-Nets and AFSD-Physics models can simulate the 
overall thermal cycling. Still, AFSD-Physics can be more 
effective to capture the valley-shaped heat generation pattern 
between two peak temperature values. As shown in Table 3, 
AFSD-Physics outperforms AFSD-Nets for both MAPE and 
simulation time. Note that about 3 seconds out of the 4.2441 
seconds is spent manipulating the data. The simulation for the 
AFSD-Physics model itself is generally completed within 1.5 
seconds for a 30-layer deposition. Results and analysis for 
build temperature 

For Eq. (15), the coefficients are acquired as 𝒄 =
[𝑐1 𝑐2 𝑐3  𝑐4] = [−6.3398 × 10−10  4.6003 × 10−6  2.1208 ×
10−7  4.3869 × 10−8] . Figure 7 displays the Type II 
simulation results of the build temperature evolution for the 
four thermocouples. In general, both AFSD-Nets and AFSD-
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Physics capture the overall trend of the build temperature 
profile. Moreover, it is observed that the AFSD-Nets model has 
better simulation accuracy for the first few layers, but 
inaccurately predicts the peak temperature with a downward 
deviation. The AFSD-Physics model has larger deviation in its 
prediction of the valley value but maintains a strong capability 
for predicting the peak temperature. It must be emphasized that 
only the measurements of KTC1, KTC2 and KTC3 are used for 
training. Therefore, the simulation results of temperature 
evolution for KTC4 are pure extrapolation. In Figure 7(d), 
AFSD successfully captures the overall temperature evolution 
for unseen data, especially for the peak values. This reflects the 
model’s capability to generalize and stabilize. 

 

  

 

 
Figure 7: Type II simulation (a single initial value for the entire multi-layer 
simulation) of build temperature on 135-rpm. 

Table 4 summarizes the comparison of MAPE and 
simulation time for build temperature simulation. It is clearly 
seen that AFSD-Physics outperforms AFSD-Nets for both 
metrics. The MAPE metrics of build temperature for both 
methods are worse than those of tool temperature. The main 
reason for this may lie in the inappropriate use of distance 𝑑 
when the tool is not in contact with the build, in which case the 
conduction between the tool and the build is terminated and 
cannot be represented by Euclidean distance on the build 
geometry. Along with the results in Table 3, the AFSD-Physics 
acquired governing equations show good agreement with the 
measurements for the tool and build temperature. The total 
simulation time is within 5 seconds. 

Table 4. MAPE and simulation time comparison for Type II simulation (a 
single initial value for the entire multi-layer simulation) of build temperature. 

Thermocouple 
AFSD-Nets AFSD-Physics 

MAPE (%) Time (s) MAPE (%) Time (s) 

KTC1 17.0176 2.3051 14.2840 0.1177 

KTC2 14.7449 2.3011 12.9856 0.1057 

KTC3 15.7802 2.4982 14.1893 0.1087 

KTC4 19.8777 2.1001 17.6206 0.1044 

 

 

Figure 8. (a) Simulation results of the build temperature for 53 interpolation 
locations on the centreline of substrate where four thermocouples are located. 
(b) Zoom-in plots of one-layer build temperature simulation. 

Finally, the governing equation in Eq. (15) is used to predict 
the temperature evolution for points on the centreline of the 
substrate where four thermocouples are located. 53 locations 
on this centreline are interpolated across the wall length. The 
Type II simulation results are displayed in Figure 8. This shows 
the capability of AFSD-Physics model to produce a 1D 
temperature map. It also shows the potential for 2D/3D 
temperature maps by integrating more spatial in-process 
measurements. 

7 Experimental validation 

The proposed AFSD-Physics method is validated using 
new experiments. The same governing equations from Eq. (14) 
for tool temperature evolution are acquired using 
measurements from different deposition settings. For build 
temperature, governing equations with two out of four physical 
terms in Eq. (15) were stably acquired. Due to the significance 
of the tool temperature model and the page limit, results of the 
tool temperature governing equations are reported here.   

In the new experiments, a spindle speed of 115 rpm was 
used for deposition. Other process parameters including the 
feedstock feed velocity and tool feed velocity, wall geometry, 
deposition path, and thermocouples retained the same settings 
as for deposition at a spindle speed of 135 rpm. A total of 
13,782 in-process data points were obtained. The 
measurements of the first 10 layers include many abnormalities 
and thus were discarded. The resulting 7782 data points, 
denoted by 115-rpm, were first used individually and then 
combined with the 135-rpm dataset to create two sets of new 
governing equations for tool temperature evolution using 
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AFSD-Physics. 

7.1 Acquired governing equations 

   The same set of governing equations are stably acquired for 
tool temperature using datasets for only 115-rpm and for 135-
rpm and 115-rpm combined, as shown in Eq. (17).   

𝑇̇𝑡𝑜𝑜𝑙 = {
𝑎1𝜔3𝑇𝑓 + 𝑎2𝜔2𝑇𝑓𝑇𝑡𝑜𝑜𝑙 − 𝑎3𝜔𝑇𝑡𝑜𝑜𝑙

3, 𝑡 ∈ 𝑃ℎ𝑒𝑎𝑡 , (17𝑎)

𝑏1 − 𝑏2𝑇𝑡𝑜𝑜𝑙 − 𝑏3𝑇𝑡𝑜𝑜𝑙
2,    𝑡 ∈ 𝑃𝑐𝑜𝑜𝑙 .                     (17𝑏)

 

As evidenced by the same physical terms in Eq. (17) as 
those in Eq. (14), the proposed AFSD-Physics method can 
stably learn the same set of physically interpretable governing 
equations. Together with the acquired governing equations 
using dataset 135-rpm, three settings of parameter values are 
acquired and presented in Table 5. The changes in parameter 
values across datasets reveal that these parameters are process 
dependent. In other words, with different datasets for different 
deposition settings, the same physical terms are acquired but 
with different parameter (coefficient) values. This indicates 
that the acquired governing equations capture the main 
physical mechanisms for tool-deposition temperature evolution. 

Table 5. Parameter values of the acquired governing equations using dataset 
135-rpm, 115-rpm, and their combination.  

Parameter AFSD-Physics: 
135 

AFSD-Physics: 
115 

AFSD-Physics: 
135&115 

𝒂𝟏 2.7640 × 10−9 2.1621 × 10−9 2.8781 × 10−9  
𝒂𝟐 1.8361 × 10−9 1.7824 × 10−9 1.6599 × 10−9  
𝒂𝟑 1.1382 × 10−8 1.1865 × 10−8 1.0621 × 10−8 
𝒃𝟏 0.3283 0.0198 0.1187 
𝒃𝟐 0.0135 0.0044 0.0083 
𝒃𝟑 6.06 × 10−6 2.7474 × 10−5 1.8550 × 10−5 

7.2 Simulation results and analysis of tool temperature 

Both Type I and Type II simulations are conducted for the 
three models in Eqs. (17) and Table 5. The comparison with 
AFSD-Nets is not included as the AFSD-Physics acquired 
model from the 135-rpm dataset significantly outperforms 
AFSD-Nets, as shown in Section 6. Also, the simulation time 
of the three models is comparable and thus is not reported in 
this section.  

 
Figure 9. Type I simulation (a new initial value for each layer) of heat 
generation for 135-rpm in (a) and 115-rpm in (b). 

For Type I simulation, Figure 9 and Figure 10 show the 
result comparisons of heat generation on datasets 135-rpm and 

115-rpm and the respective zoom-in plots. Good agreement is 
observed with the measurements for all three models. Also, all 
models can capture the detailed valley-shaped heating pattern 
between any two peak values. In the peak temperature period, 
the acquired model from the combined 135-rpm and 115-rpm 
dataset performs somewhere in between the other two models. 
This may be because each of the other two models overfits its 
own respective training dataset. Table 6 clearly shows that the 
model acquired from the 135-rpm dataset obtains the best 
MAPE performance for 135-rpm, and the same holds true for 
115-rpm. The same observations and conclusions can be 
obtained for the cooling stage, as shown in Figure 11, Figure 
12 and Table 7. 

 
Figure 10. Zoom-in plots for one-layer simulation of Figure 9. 

Table 6. MAPE comparison of the AFSD-Physics acquired models for Type I 
simulation (a new initial value for each layer) of heat generation stage. 

Dataset  AFSD-Physics: 
135 

AFSD-Physics: 
115 

AFSD-Physics: 
135&115 

135-rpm 8.1674 8.8862 9.0292 

115-rpm 7.3293 7.1952 7.4722 

 

 
Figure 11. Type I simulation (a new initial value for each layer) for tool 
cooling stage on dataset 135-rpm in (a) and 115-rpm in (b). 

 
Figure 12. Zoom-in plots for one-layer simulation of Figure 11. 

Table 7. MAPE comparison of the AFSD-Physics acquired models for Type I 
simulation (a new initial value for each layer) of tool cooling stage. 

Dataset  AFSD-Physics: 
135 

AFSD-Physics: 
115 

AFSD-Physics: 
135&115 

135-rpm 5.2751 27.3814 11.7532 
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115-rpm 17.4896 10.6491 14.8682 

 

 
Figure 13. Type II simulation (a single initial value for the entire multi-layer 
simulation) of tool temperature on dataset 135-rpm in (a) and 115-rpm in (b). 

 

Figure 14. Zoom-in plots for one-layer simulation of Figure 13. 

Table 8. MAPE comparison of the AFSD-Physics acquired models for Type 
II simulation (a single initial value for the entire multi-layer simulation). 

Dataset  AFSD-Physics: 
135 

AFSD-Physics: 
115 

AFSD-Physics: 
135&115 

135-rpm 9.3273 23.4318 12.7625 

115-rpm 16.5819 11.0977 14.2969 

For Type II simulation, Figure 13 and Figure 14 display the 
coupled simulation result comparisons for 135-rpm and 115-
rpm and the respective zoom-in plots. The corresponding 
MAPE comparisons are summarized in Table 8. The same 
conclusions from the individual heat generation and cooling 
stages appear to hold true for their coupled simulation. 

In summary, experimental validation shows that the 
proposed AFSD-Physics method can stably learn the same 
governing equations from different AFSD settings. The main 
physical mechanisms are captured by the identified nonlinear 
physical terms. This indicates that the AFSD-Physics acquired 
models are physically interpretable and robust models with 
high-accuracy and low-cost. 

8. Conclusions and outlook 

This paper presents a modeling effort for the temperature 
evolution of an emerging solid state additive manufacturing 
process, additive friction stir deposition (AFSD). A human-AI 
teaming approach is proposed to explore the governing 
equations of temperature evolution at the tool and the build 
during AFSD. The proposed human-AI teaming approach 
presents a pathway to provide AI with first principles models 
to advance knowledge in manufacturing. The resulting human-

informed machine learning method, denoted as AFSD-Physics, 
can effectively explore the unknown physics of AFSD and 
learn the governing equations of temperature evolution from 
in-process measurements. The acquired governing equations 
provide physically interpretable robust models with low 
computational cost and high accuracy. Simulations of the 
acquired governing equations show good agreement with 
measurements and significantly outperform the state-of-the-art 
neural network-based machine learning model. Experimental 
validation with a new process parameter shows the robustness 
and generalizability of the acquired governing equations.  

This study has two main limitations. The primary one is that 
only temperatures are treated as state variables with respective 
governing equations, while other explicit physical variables 
that can contribute to temperature evolution, like force 
experienced by the build, are not considered. Another 
limitation is that only spindle speed is involved as a process 
parameter in the acquired governing equations. Future work 
will develop analytical models and integrate them with a series 
of representative experiments to enable the proposed human-
AI teaming approach for exploring governing equations with 
arbitrary process parameters, including tool spindle speed, 
feedstock feed velocity, and tool traverse speed. Additionally, 
governing equations with other physical variables for the build 
will be explored to advance the convergence of tool-process-
structure-property for AFSD. 
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