Semantic Analysis of Macro Usage for Portability

Brent Pappas
pappasbrent@knights.ucf.edu
University of Central Florida

Orlando, United States

ABSTRACT

C is an unsafe language. Researchers have been developing tools
to port C to safer languages such as Rust, Checked C, or Go. Ex-
isting tools, however, resort to preprocessing the source file first,
then porting the resulting code, leaving barely recognizable code
that loses macro abstractions. To preserve macro usage, porting
tools need analyses that understand macro behavior to port to
equivalent constructs. But macro semantics differ from typical func-
tions, precluding simple syntactic transformations to port them.
We introduce the first comprehensive framework for analyzing the
portability of macro usage. We decompose macro behavior into
26 fine-grained properties and implement a program analysis tool,
called Maki, that identifies them in real-world code with 94% accu-
racy. We apply Maki to 21 programs containing a total of 86,199
macro definitions. We found that real-world macros are much more
portable than previously known. More than a third (37%) are easy-
to-port, and Maki provides hints for porting more complicated
macros. We find, on average, 2x more easy-to-port macros and up
to 7x more in the best case compared to prior work. Guided by
Maki’s output, we found and hand-ported macros in three real-
world programs. We submitted patches to Linux maintainers that
transform eleven macros, nine of which have been accepted.

CCS CONCEPTS

- Software and its engineering — Semantics; Preprocessors;
Automated static analysis.

KEYWORDS

macros, C, program analysis

ACM Reference Format:

Brent Pappas and Paul Gazzillo. 2024. Semantic Analysis of Macro Usage
for Portability. In 2024 IEEE/ACM 46th International Conference on Software
Engineering (ICSE "24), April 14-20, 2024, Lisbon, Portugal. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3597503.3623323

1 INTRODUCTION

C is an unsafe language with millions of lines of critical software
infrastructure implemented in it. Researchers have been develop-
ing (semi-)automated tools to port C to safer language, such as
c2rust [25], 3¢ [6], and c2go [4]. Transforming the original, unpre-
processed code is hard, because C programs are written in two

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3623323

Paul Gazzillo
paul.gazzillo@ucf.edu
University of Central Florida
Orlando, United States

languages, C itself and the C preprocessor language, which is used
extensively in real-world C programs [12]. Existing porting tools
instead resort to first preprocessing the source file, then porting
the preprocessed code, due to long-standing obstacles caused by
preprocessor usage [7-9, 24].

The problem with preprocessing first is that the source code is
barely recognizable after preprocessing. The following is an exam-
ple of function macro usage from the lua [31] source:

#define ALPHABIT 0

#define MASK(B) (1<<(B))

#define testprop(c,p) (luai_ctype_[(c)+1]&(p))
#define lislalpha(c) testprop (c,MASK(ALPHABIT))
if (lislalpha(ls->current))

[I N R

While the highlighted call to 1islalpha online 5looks syntactically
like a function call, it is a macro invocation, which expands the
macro, i.e., performs text substitution of the macro’s definition on
line 4 while also substituting its parameters into the macro body.
After preprocessing, macro definitions are gone and the macro call
is reduced to a lengthy series of arithmetic operations on magic
constant values:

if ((Luai_ctype_[(1s->current)+1] & ((1 « (@)))))

This preprocessed source is what tools end up having to port, losing
the macro function abstractions from the original source.

To preserve macro usage mixed with C, without having to pre-
process it away, porting tools need to be able to understand macro
usage before porting to equivalent constructs in the new language.
For instance, some function-like macros, such as MASK on line 2
above, behave like C functions once the code is preprocessed and
compiled. Indeed, prominent coding standards even recommend
using a C function instead of a macro when it already behaves
like a C function [5, 49]. Such macro usage has a straightforward
transformation: create a function of the same name, infer the type
of the arguments(s) [11], and put the macro body in a return state-
ment. For instance, MASK would become the following, where the
highlighted code is the exact contents of the original macro’s body:

int MASK(int B) { return (1«(B)); }

But function-like macros, not part of the C language proper, do not
always behave like C functions. Porting tools cannot, in general,
apply the simple syntactic substitution used for MASK without first
identifying whether it is correct to do so. Macro semantics differs
from C [45] in calling convention and scoping rules; macros are
call-by-name and have dynamic scoping, whereas C functions are
call-by-value and have static scoping. For instance, PREPEND_LIST,
from the bash source [16], resembles a C function, but it assigns
a value to an argument, elist, a side-effect not possible with C’s
call-by-value calling convention alone:

#define PREPEND_LIST(nlist, elist) \
do { nlist ->next = elist; elist = nlist; } while (0)

ICSE °24, April 14-20, 2024, Lisbon, Portugal

A porting tool converting this macro to a C function, for instance,
would need to simulate the macro’s call-by-name behavior by chang-
ing the argument type to a pointer and adding a dereference in the
body to match the behavior of the original macro.

The transformations for MASK and PREPEND_LIST are interface-
equivalent, i.e., the abstract functional specification of the macro
and its C-function equivalent have the same behavior in terms of
inputs and outputs. But in general, macros can freely violate and
modify C syntax [20, 21, 27]. For instance, there is no interface-
equivalent C function for a macro that expands to only a switch
statement’s case label, as in this example, also from lua:

#define vmcase(l) case 1:

Porting this macro to C or any typical programming language would
require redesigning the function interface and refactoring the code
that invokes it, a substantially more complicated transformation
than for the interface-equivalent macros MASK and PREPEND_LIST.
Interface—equivalent macros, in contrast, are easy-to-port macros,
since they require simpler, largely syntactic transformations.

With an automated program analysis of macro usage, porting
tools would be able to determine what transformations preserve
behavior. But prior work on analyzing macro usage for porting is
limited to narrow cases. Mennie and Clarke find and port only
parameter-less macros (called object-like macros [45]) that are
equivalent to C constant variables [34]. Our evaluation shows that
such macros comprise only 19%, on average, out of all the 21 pro-
gram we evaluated, leaving behind a substantial amount of easy-to-
port, interface-equivalent macros. The Visual Studio IDE can also
convert macros to constexpr variables and functions [37], but this
transformation is purely syntactic, suffering similar limitations [38]
to Mennie and Clarke’s work. This means that developers must
manually check that the conversion is correct, since the transformed
declaration’s definition will at best have the same syntax as the
original macro definition, but not necessarily the same behavior.

We introduce the Macro Inspector Framework, the first compre-
hensive framework for analyzing the portability of macro usage
in C programs. Our framework enables the automated understand-
ing of how macros affect the C program, so that porting efforts
can determine the needs for transforming each macro. The key
insight is that our framework takes into account the macro defini-
tion and all its invocation sites, comparing the source code both
before and after preprocessing to identify how the macro affects
the C program. The challenge is that macros have great freedom to
alter the C AST in myriad ways, making it difficult to determine
what specific transformation of the macro would preserve behavior.
Therefore, we decompose the changes macros cause into a set of
26 fine-grained properties and design a set of program analyses to
discover which properties hold for each macro. Using our analytical
framework, we study the combinations of properties that enable
interface-equivalent transformations and which properties need
more complicated refactorings before porting, such as the vmbreak
macro above.

To evaluate the Macro Inspector Framework, we implement its
program analyses in a tool called Maki, which automatically identi-
fies the set of properties held by each macro definition. We use Maki
to study macro behavior in 21 real-world C programs, including
several taken from a classic study of preprocessor usage [12] and

Pappas and Gazzillo

2 more modern programs: the Linux kernel and lua, with a total
of 86,199 macro definitions. We found that, surprisingly, macros
in real-world code are much more portable than previously under-
stood. More than a third (37%) are easy-to-port, interface-equivalent
macro definitions that have a one-to-one mapping to a C function.
Compared to prior work, we find, on average, 2x more and, coun-
terintuitively, programs with the most complicated macro usage
often have even more easy-to-port, interface-equivalent macros
compared to prior work, up to 7x more in the best case. Lastly, we
find that syntactic macros, those that respect C syntax, are usu-
ally interface-equivalent and consequently, projects with relatively
more syntactic macros have more easy-to-port, interface-equivalent
macros. On a statistically significant sample of the benchmark
macro definitions, Maki has 94% accuracy in identifying properties
compared to hand-checked ground truth.

To evaluate the utility of the Macro Inspector Framework, we
conducted several case studies hand-porting macros guided by
Maki’s output on two complete programs from our benchmark
(m4 and enscript) and two Linux modules. Macros identified as
interface-equivalent took only minutes to port, while non-interface-
equivalent macros took substantially longer. We also submitted
patches for a case study of 11 interface-equivalent macros in Linux
source and reported on the discussions that led to the acceptance of
9 of them by developers. This demonstrates that our framework is
useful for helping developers move away from macro usage, even
in large, mature C codebases with formal review processes.

In this paper, we make the following contributions:

e An analytical framework for preprocessor macros that iden-
tifies the portability of macro usage (Section 2).

e Maki, a Clang plugin and Python library that implements
program analyses to detect the framework’s properties (Sec-
tion 3).

o An evaluation of the macro usage and portability in 21 medium-
to-large, real-world C programs (Section 4).

e Case studies of how we used the framework to hand-port
macros in several example programs (Section 5).

Maki’s complete source code is available online as free and open-
source software! as well as in our publicly-available artifact [3].

2 THE MACRO INSPECTOR FRAMEWORK

We detail the syntactic and semantic properties of macro usage
defined in the Macro Inspector Framework, illustrating them with
examples. Table 1 lists each property, including its name and formal
and informal definitions, that together comprise our framework. All
formal definitions take a macro m that contains three fields, tokens
of the unpreprocessed macro invocation (tokens), the preprocessed
macro as an AST if syntactically-valid C (ast), and the macro’s
preprocessed arguments as an AST if syntactically-valid (args).
We group properties into portability categories that provide guid-
ance to porting tools about what language features are implicated
in the macro usage and need to be supported in order to port the
macro. Calling-convention-adapting properties concern macro be-
havior that can be ported by adapting the arguments of the function
when ported to a C-like function. Scope-adapting properties involve
the use of dynamic scope, and so require modifications to ensure

Uhttps://github.com/appleseedlab/macro-analyzer

Property

Semantic Analysis of Macro Usage for Portability

Formal Definition

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Description

Interface-Equivalent

Calling-Convention-Adapting

Modified body
Modified arguments
Addressed body
Addressed arguments

Jde € SIDEEFFECTEDEXPRS(ast), m.ast = e

Ja € m.args, Je € SIDEEFFECTEDEXPRS(ast), a.ast = e
Jde € ADDRESSEDEXPRS(ast), m.ast = e

Ja € m.args, Je € ADDRESSEDEXPRS(ast), a.ast = e

3d € LocaLDECLREFS(m.ast), Va € m.args,

Expands to a side-effected expression
Has a side-effected argument
Expands to an addressof (&) operand

Has an argument that expands to an
addressof (&) operand

Unhygienic INTREE(d, a.ast), ~DECLIN(d, m.ast) Captlfres a .declaratlon from macro m’s
caller’s environment
Scope-Adapting
Locally defined —DEFINEDIN (m, GLOBALSCOPE(ast)) Defined in a local scope

Unordered declarations
Unordered expansion type
Unordered type declarations

Unordered argument types

Unordered macros
Condition macro
Anonymous type

Anonymous argument types

Local argument types

Locally-typed subexpressions

Local type

3d € DEcLREFS(m.ast), DEFINEDBEFORE(m, d)
DEFINEDBEFORE(m, TYPE(m.ast))
3t € TypEREFS(m.ast), DEFINEDBEFORE(m, t)

Ja € m.args, DEFINEDBEFORE(m, TYPE(a.ast))

dn € NESTEDMACROS(m), DEFINEDBEFORE(m, n)
dc € CPPCONDITIONALS, INCONDITION(m.name, ¢)
Jde € ANONTYPEExXPRS(ast), m.ast = e

da € m.args, de € ANONTYPEEXPRS(ast), a.ast = e

da € m.args, de € LocaLTYPEEXPRS(ast), a.ast = e

Jde € LocALTYPEEXPRS(m.ast), e € SUBEXPRS(m.ast)

Jde € LocaLTYPEEXPRS(ast), m.ast = e,
—DEecLIN(TYPE(e), m.ast)

References a declaration defined after
macro m

Expands to an expression whose type is
defined after macro m

References a type defined after macro m
Has an argument that expands to an
expression whose type is defined after
macro m

Invokes a macro defined after macro m
Is invoked in a CPP conditional
Expands to an expression whose type is
unnamed

Has an argument that expands to an
expression whose type is unnamed

Has an argument that expands to an
expression whose type is defined in a
local scope

Contains a subexpression whose type is
defined in a local scope

Expands to an expression whose type is
defined in a local scope

Non-Interface-Equivalent

Thunkizing

Void arguments

Side-effecting arguments

da € m.args, TypE(a.ast) = void
Ja € m.args, de € SIDEEFFECTEXPRS(m.ast),
INTREE(e, a.ast)

Has a void expression argument

Has an argument with side-effects

Callsite-context-altering

Unaligned
Conditional arguments

m.ast = null V a € m.args, a.ast = null
Jda € m.args, de € CoNDExXPRS(m.ast), INTREE(a.ast, e)

Does not align with a single AST node
Has an argument that is conditionally
evaluated in the body of macro m

Nested

Nested in body

Nested in argument

dn € ALLINVOCATIONS, m € NESTEDMACROS(1)
3n € ALLINVOCATIONS, da € n.args,
m € NESTEDMACROS(a)

Is invoked in the body of another macro

Is invoked as an argument to another
macro invocation

Metaprogramming and Generics

Control flow
Non-expression arguments
Stringizing / Token-pasting

m.ast € {return, case, continue, break, goto}
da € m.args, a.ast ¢ Exprs(ast)
€ m.tokens V ## € m.tokens
Table 1: Macro invocation properties.

Alters caller’s control flow
Has argument that is not an expression
Uses stringification or token-pasting

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Name Description

ADDRESSEDEXPRS(a) Set of expressions in AST q that
are the operand of an addressof
(&) expression.

ALLINVOCATIONS Set of all macro invocations.

ANONTYPEEXPRS(a) Set of expressions in AST a whose

type is unnamed.

Whether declaration d was de-
clared in AST a.

Set of expressions in AST a that
are references to declarations.
Whether macro m is defined be-
fore declaration or macro d.
Whether declaration or macro d is
defined in scope s.

DEecLIN(d, a)
DECLREFS(a)
DEFINEDBEFORE(m, d)

DEFINEDIN(d, s)

ConNDExPRs(a) Set of short-circuiting expressions
(e.g., the ternary operator, or logi-
cal and) in AST a.

CPPCONDITIONALS Set of CPP static conditionals (e.g.,
ifdef, defined, etc.) in program.

GLOBALSCOPE(a) Global scope of AST a.

Pappas and Gazzillo

Name Description

INCONDITION(S, ¢) Whether symbol s appears in CPP
static conditional c.

Whether AST a is a subtree of b.
Set of expressions in AST a that
are references to declarations
declared in local scopes.

Set of expressions in AST a whose
type is defined at local scope.

Set of macro invocations or argu-
ments in m’s nested invocations.
Set of expressions in AST a with
side-effects.

Set of expressions in AST a that
are modified by an assignment
expression or the unary incre-
ment or decrement operator, or
are passed to a function call.

Type of expression e.

Set of expressions in AST a that
reference a type declaration.

INTREE(q, b)
LocALDECLREFs(a)
LocALTYPEEXPRS(a)
NESTEDMACROS(m)
SIDEEFFECTEXPRS(a)

SIDEEFFECTEDEXPRS(a)

TypE(e)
TYPEREFs(a)

Table 2: Helper functions used in formal definitions of properties.

static scope equivalence. Definition-adapting macros are those, like
MASK (Section 1), that require only a syntactic change and involve
no changes to calling convention or scoping.

Together, macros that are calling-convention-, scope-, or definition-
adapting have a one-to-one equivalence with a C-like function and
need only minimal changes to port away from preprocessor usage,
i.e., they are interface-equivalent. Interface-equivalent macros are
relatively easy to port, since they behave like C functions, so iden-
tifying macros that are interface-equivalent should help developers
more easily port away from macro usage. In contrast, non-interface-
equivalent macros require a redesign of the macro’s functional in-
terface, representing more complicated and difficult-to-port macro
usage. We group properties of such macros into Thunkizing for
those that require converting expressions to functions, i.e., thunks,
Call-site-context-altering for those that alter the syntax of the macro
call-site, Nested for nested macro usage, and Metaprogramming for
macros that perform code generation.

2.1 Interface-Equivalent Properties

The PREPEND_LIST macro (from Section 1) causes side-effects on
the value of its argument elist, which is not supported in C or
other languages with call-by-value semantics but is with call-by-
reference semantics. We call this behavior the Modified arguments
property (or Modified body when it occurs in the macro body) and
provide a formal definition in Table 1. A related macro behavior,
also not supported by call-by-value, is the use of the C address-of
operator (&). For example, the 1inkgclist macro below (from lua)
takes the address of its o and p arguments:

1 #define linkgclist(o,p) \
2 linkgclist_(obj2gco(o), &(0)->gclist , &(p))

Argument values and addresses have function-local scope, so the
address will not be the same as the parameter passed to the function
call with call-by-value semantics.

The Unhygienic macro property stems from the same lack of
macro scoping that affects address-of. For example, ISSET (from
gawk [15]) expands to an expression that captures the local variable
sp (highlighted in gray) from its caller’s environment, not possible
with statically-scoped functions.

#define ISSET (opt)

1 (sp->fts_options & (opt))

2 void f() {

3 FTS #*sp;

4 if (ISSET(FTS_LOGICAL))

5}
We define unhygienic macros as those that capture symbols from
the function-local scope and use them in the expanded macro invo-
cation site. When the macro itself is defined inside of the function-
local scope it is locally-defined. The formalization checks whether
the macro has been defined in any scope but the global scope.

The unordered declarations, types, type declarations, argument

types, and macros properties all stem from the dynamic scoping
of macros. Rather than requiring symbols to exist at macro define
time, as in statically-scoped languages, macros need not check for
other symbols being defined until they are invoked. For example,
open_spline (line 1), from xfig [42] takes a symbol s that has type
F_spline, which is declared on line 2 after open_spline:

#define open_spline(s) (!(s->type & 0x1))

typedef struct f_spline F_spline;

void update_spline (F_spline «spline) {

if (open_spline(spline));

}
A condition macro is one which is present in a preprocessor static
conditional, e.g.., within an #ifdef’s condition. The preprocessor
checks if macros are defined, but not functions, so a porting tool

GR W N e

Semantic Analysis of Macro Usage for Portability

handling the condition macro needs to also alter the original pro-
gram so that all preprocessor conditionals relying on that macro
will behave the same after the transformation.

Macros can expand to anonymous types and argument types. For
example, the macro TB_FLAGS defined in fvwm [18] expands to an
anonymously-typed expression:

1 typedef struct { struct { ... } flags; } TitleButton;

2 #define TB_FLAGS(tb) ((tb).flags)

3 static void SetLayerButtonFlag (..., TitleButton «tb) {
4 TB_FLAGS (+tb).has_layer = 1;

5}

The invocation of TB_FLAGS on line 4 expands to the expression
((*tb) .flags), which is described by the anonymous struct type
as highlighted in gray.

Related properties exist for invocations that expand to locally-
typed expressions (local type), accept locally-typed expressions as
arguments (local argument types), or contain locally-typed subex-
pressions, because macro invocations are untyped and can capture
type symbols from the caller’s scope. Functions, however, cannot,
because function type signatures only have globally-defined types
available in scope.

2.2 Non-Interface-Equivalent Properties

Non-interface equivalent macros do not have a one-to-one mapping
to C-like function behavior and represent the most complicated
uses of macros, requiring refactoring of the original use of the
program before mapping them to functions. For instance, macros
may take void arguments, i.e., expressions that have no return value,
such as a call to a void function. But void arguments are not legal
as parameters to C functions. Similarly, when an argument to a
macro causes a side effect (side-effecting arguments), every use of
that argument repeats the effect due to call-by-name semantics,
whereas in C’s call-by-value calling convention, the side effect is
only computed once. For instance, macro min, from emacs [17],
expands the same argument multiple times:

#define min(a, b) ((a) < (b) ? (a) : (b))

If invoked with min(x++, y++);, the macro would increment either
x or y twice, whereas a syntactically-similar C function would only
trigger the increment once, when the arguments get evaluated.

Macro invocations operate at the raw token level and thus do
not need to expand to or accept complete syntactic constructs, e.g.
statements or expressions, as arguments. When a macro’s expansion
does not correspond to a complete syntactic construct, we identify
it as unaligned. Take the following macro expansion:

1 #define ADD(a, b) a + b
2 4 « ADD(5, 6)

A function version of ADD would evaluate the addition first, leaving
the multiplication, 4 * 11, while the macro version results in an
evaluation of the multiplication first, due to operator precedence
on the expanded expression, 4 * 5 + 6, a common pitfall in
preprocessor usage [46]

If a macro invocation expands one of its arguments into a short-
circuiting expression (e.g., a ternary expression or logical conjunc-
tion expression), then it has conditional arguments and may never
evaluate that argument. For instance, the macro AND expands to

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

r-- - - - - - - - - = |
| Invocation
c | properties | Definiti
source . N . efinition
code —|> Clang plugin »| Python script ——> properties
|
! Maki |

Figure 1: Maki architecture diagram.

((9) && (*x)) which, due to short-circuiting, would never raise a
null pointer fault in spite of the dereference of NULL with xx:

1 #define AND(a, b) ((a) && (b))
2 int sx = NULL;
3 AND(0, *x);

If ported to a function with call-by-value semantics, in contrast,
then the *x dereference would always raise the fault.

A macro can alter its caller’s control flow directly by expanding
to any of the continue, break, goto, or return keywords. An ex-
pansion to a goto, for instance, pierces the function abstraction
by enabling the callee to return to any point in the caller, because
the goto will be expanded by the macro into the body of its caller.
Nested macros are those that are called by other macros. This may
occur in the definition of the macro, for instance lislalpha in
Section 1, or in a parameter at the macro’s invocation site. Un-
like functions, macros do not need to be passed expressions as
arguments and can instead be passed any syntactic construct, such
as statements, declarations, or even unaligned constructs. These
non-expression arguments are not supported in C functions. Macro
invocations can use the stringification and token-pasting operators
to manipulate their arguments’ tokens, which generate string liter-
als and fresh language tokens at macro expansion time. This kind
of code generation allows for metaprogramming, such as reflection
to print error messages or system-dependent type names.

3 IMPLEMENTATION

We have implemented the Macro Inspector Framework in a new
tool called Maki which performs automated program analysis to
identify macro usage properties. Maki consists of a Clang plugin
comprised of 2,180 lines of C++ code; and 1,519 lines of Python code.
Figure 1 presents Maki’s architecture. The Clang plugin analyzes
macro invocations in individual C source files, so to analyze a
complete program we first intercept its build system using Clang’s
intercept-build utility and use the resulting compile commands
to analyze all files in the program. These results can then be passed
to Maki’s Python scripts to determine which properties apply to
each of the program’s macro definitions.

The Clang plugin works by hooking into the Clang preprocessor
and AST to determine which macros are syntactically aligned. Maki
has methods that implement each property’s formalism by inspect-
ing the C AST and a trace of preprocessor expansions. The Python
scripts read these results into memory and use this information to
determine which properties each macro definition satisfies. Based
on these results, we can determine which portability category ap-
plies to each macro definition. Maki’s source code is available both
on GitHub ! and in our public artifact [3].

ICSE °24, April 14-20, 2024, Lisbon, Portugal

4 EVALUATION

We use Maki to analyze real-world macro usage portability and
answer the following research questions:

RQ1 (Portability) How much portability is there in real-world
macro usage?

RQ2 (Comparison) How does Maki’s ability to find portable macros
compare to that of prior work?

RQ3 (Alignment and Portability) How does syntactic macro usage
influence portability?

RQ4 (Runtime) How quickly does Maki analyze macro usage?

RQ5 (Accuracy) How accurately does Maki identify properties?

All summary data is in our free, publicly-available artifact [3].

4.1 Benchmark Program Selection

We draw 19 programs to analyze from Ernst et al’s analysis of
C preprocessor usage [12]? but omit the remaining seven which
either contain C++ code? or which we could not build due to missing
dependencies?. To augment the benchmarks, we also add 2 very
large, modern programs as well: the Linux kernel and Lua. Across
all programs in our benchmark, there are 86,199 macro definitions.

4.2 Experimental Setup

We ran our experiments on a server with 2 AMD EPYC 7742 64-Core
hyper-threaded processors, for a total of 256 available processes at
one time, with 512GB RAM. We download and extract each program,
and intercept its build system with Clang’s intercept-build tool
to obtain the specific compile commands used to compile each
source file. We pass each of these compile commands to Maki’s
Clang plugin to determine which properties each macro invocation
in the program satisfies. We run the Clang plugin on eight cores for
all programs except for Linux, for which we use 32 cores due to the
kernel’s size. Finally, we run Maki’s Python scripts to determine
which properties apply to each macro definition. We only examine
invocations of macros defined in the programs themselves and not
invocations of macros defined in any system header or library files,
since they are not part of the application. We reimplement the
macro usage analysis from Mennie and Clarke, which ports only
constant, object-like macros, in Maki, and measure how often they
occur in each program.

4.3 ROQ1: Portability

We use Maki to evaluate each of the macro definitions across all
programs in our benchmark suite, recording which properties hold
for each macro. For each macro, we use its properties to assign it to
a portability category, as indicated in Table 1. Figure 2 presents our
results. Each program has a segmented bar chart that represents
the percentage distribution of macro definitions in each portability
category. When there are multiple invocations of the same defi-
nition that have differing portability categories, we record them
as having either multiple interface-equivalent properties or multi-
ple non-interface equivalent. The interface-equivalent portability
categories are color-coded by blue shades, whereas non-interface

Zbash, be, bison, cvs, emacs, enscript, flex, fvwm, gawk, gnuplot, gv, gzip, m4,
mosaic, perl, rcs, remind, xfig, and zsh

3gcc, ghostscript, and gnuchess

4zephyr, workman, and RasMol

Pappas and Gazzillo

equivalent are yellow shades. The programs are sorted by the high-
est percentage of interface-equivalent macro definitions.

Programs have widely-varying macro portability, ranging from
12% to as much as 76% interface-equivalent macros. The largest
program with the most (57,896) macro definitions is Linux with 41%
being easily-portable. On average, over all 86,199 macros, 37% are
easy-to-port, being interface-equivalent. The program analyses of
macro semantics in the Macro Inspector Framework has enabled us
to discover that macros in real-world code are much more portable
than previously understood.

4.4 RQ2: Comparison

We measure how many macros are identified as portable accord-
ing to our reimplementation of Mennie and Clarke’s [34] macro
usage analysis and compare the number of these macros to the num-
ber of interface-equivalent macros identified by our framework’s
properties implemented in Maki. Figure 3 presents the relative per-
formance of Mennie and Clarke’s tool against Maki, by dividing the
number of interface-equivalent macros over the constant, object-
like macros identified by Mennie and Clarke. We sort the results
by most to least increase in identified, portable macros. Prior work
transforms an average of 19%, a minimum of 3%, and a maximum
of 61% of macro definitions across all the programs we study. On
average, Maki finds twice as many portable macros, ranging from
1.21x to 7.04x more across all programs.

Comparing Figure 2 to the relative performance results, we see
that some of the greatest improvement in portable macro identifica-
tion occurs in programs with some of the most complex macros us-
age. For instance, perl, in which Maki identifies 7.04x more portable
macros, has some of the most non-interface-equivalent macro defi-
nitions. This indicates that complex macro usage obscures macro
portability, and Maki’s analyses help tease out the semantic aspects
of macro usage in order to identify easily-portable macros.

4.5 RQ3: Alignment and Portability

The C preprocessor is lexical and has no requirement to respect C
syntax. This research question evaluates the portability of C macro
usage when only considering syntactic macro use to see the impact
on portability. To measure syntactic macro usage, we measure what
C syntax the macro usage generates (statements, expressions, etc.)
and whether it respects C syntax or violates it, which corresponds
to the Unaligned macro property (Table 1).

Figure 4 presents the percentage of each program’s macro defini-
tions that align with the program’s AST, shown in blue, compared
with its percentage of interface-equivalent macro definitions, shown
in gold. Across all programs, the percentage of aligned definitions
necessarily exceeds the percentage of interface-equivalent defini-
tions, because interface-equivalence depends on syntactic macro
usage (the Unaligned property precludes interface-equivalence).

In general, the majority of syntactic macro definitions are easily-
portable in most programs. Linux, for instance, has a very large
portion that are interface-equivalent, likely because of the good
macro usage coding guidelines encouraged by maintainers [49].
In some programs, however, only a minority of syntactic macros
are easily-portable. For instance, gnuplot has many more aligned

Semantic Analysis of Macro Usage for Portability

- Definition-adapting . Calling-convention-adapting [lll Scope-adapting
Metaprogramming

xfig
mosaic
cvs

remind

Nested invocations Multiple non-interface-equivalent

1,309 definitions J&ek

4% N
399 definitions Y& 5% Y3 13%
176 definitions J Y8 10%

ICSE 24, April 14-20, 2024, Lisbon, Portugal

Multiple interface-equivalent -CaIl-site-context-altering M Thunkizing

8%
13%

9%

fvwm 1,085 definitions KX 25%
enscript

7% 2~ 24%

6% 43% 7%

flex 401 definitions [PYE3 12% 35% 14%

gv 775 definitions [PAEA 11%
gnuplot 657 definitions [PAEA 9%

rcs 268 definitions 6% 17%
bc 141 definitions WEEA 14% 18%
gawk 1,029 definitions 23%
gzip 505 definitions A 6% 27%

bison
perl 10,547 definitions WEEA 7% 25%
emacs 5,096 definitions 76%

Total 86,199 definitions JE¥AA

32% 20%

34% 21%
15% 41%
26% 27%
33% 17%
15%

40% 15%

7%

Figure 2: Percent of macro definition adaptation categories.

definitions than interface-equivalent ones because 8% of its defi-
nitions align with types (more than any other program), and due
to limitations with Clang we cannot fully analyze the semantic
properties of type-aligned invocations and conservatively report
them as not interface-equivalent.

4.6 RQ4: Runtime

We measure the end-to-end runtime to analyze all definitions’ prop-
erties and portability categories for each program. Across all 21
programs in our benchmark, the median time necessary to ana-
lyze all macro usage was about nine minutes and 20 seconds. The
analysis of Linux took the longest, requiring about 17 days and 21
hours, although it was run with more threads than the rest of the
programs. In total, it took about 19 days and eight hours to fully
analyze all 86,199 macros across all programs.

4.7 RQ5: Accuracy

We measure Maki’s accuracy by comparing it against ground truth
for a statistically significant sample from the benchmark. A 383-
macro sample from the 86,199 macros in our benchmark has a 5%
margin of error and 95% confidence. We created ground truth for the

sample by hand-checking all portability categories shown in Table 1
true positives)
true positives + false positives

for each macro. We compute the precision (
true positives

and recall (true positives + false negatives
as the F; score (harmonic mean of precision and recall). Maki has

a true positive when it reports the same portability categories as

), then we compute accuracy

ground truth, a false positive when the portability categories differ.
It has a true negative when the absence of portability categories
matches ground truth, a false negative if it fails to report portability
categories from ground truth.

Out of the 383-macro sample, Maki had 337 true positives, 17
false positives, and 26 false negatives, resulting in a precision of
95%, a recall of 93% and an F; accuracy of 94%.

Seven false positives were due to the macro expanding to a
designated initializer [47] or a statement expression [48], GCC-
specific C language extensions that Maki does not yet support. Maki
appears to have aligned the ten remaining false positive macros with
incorrect AST subtrees, leading to misclassifications. Maki failed
to match 23 of the false negatives with any portability category
at all, and failed to identify the remaining three as having nested
invocations. By careful manual inspection we identified correct
portability levels for all these macros, and therefore attribute these
errors to limitations in Maki’s implementation rather than the
underlying framework. We plan on adding these misclassifications
to Maki’s test suite so that we may resolve them.

A spreadsheet of the sample detailing ground truth creation can
be found in our publicly-available artifact [3].

5 CASE STUDIES

We present three case studies to demonstrate the capabilities of
the Macro Inspector Framework and of Maki. First, we run Maki
on Linux’s driver staging directory, which contains drivers under
development, and hand-transform several macros Maki identifies

ICSE °24, April 14-20, 2024, Lisbon, Portugal

perl 7.04x
fvwm 6.35x

bc 5.14x
emacs [P
gawk 4.42x
rcs 4.17x
lua 3.92x
bison 3.18x
flex 2.87x
gv 2.85x
gnuplot [ASS
zsh 2.27x
m4 2.23x
bash 2.01x
gzip 1.97x
linux 1.83x
enscript BEVASS
xfig

remind B

mosaic [IVAE

cvs 1.21x

Figure 3: How many more easy-to-port, interface-
equivalent macro definitions Maki finds over prior work.

as easy-to-port. We submit these changes as patches to the Linux
Kernel Mailing List for approval [30] and report on the discussion
that led to their acceptance or rejection by developers. This case
study shows the viability of using Maki to help development on
an actively-maintained, large-scale, critical C codebase that has a
rigorous review process.

Second, using Maki’s output as a guide, we transform by hand all
macros in two programs from our benchmarks, enscript and m4, as
well as two Linux modules, ipc and sound/atmel. This case study
shows the utility of Maki to help quickly port away from macro
usage.

5.1 Patching Linux Kernel Macro Usage

Modifying the Linux kernel requires negotiating a careful and some-
times lengthy patch review process with the Linux developers [52].
We therefore target a select set of macros in the driver/staging/
directory [50] as candidates for patching in the Linux kernel. We se-
lected the first 11 macros that Maki identifies as definition-adapting;
definition-adapting are the simplest to port, requiring only a change
of syntax from a macro definition to a C function with no further
refactoring. For example, GDM_TTY_READY from gdm724x/gdm_-
tty.c evaluates a conditional expression for if-statements:

1 #define GDM_TTY_READY(gdm) \

2 (gdm && gdm->tty dev && gdm->port.count)

3 struct gdm »gdm = tty_dev->gdm[index];

4 if (!GDM_TTY_READY(gdm)) ;

Pappas and Gazzillo

Porting this macro requires only copying the macro body to the
new function’s return statement. Since Maki confirms definition-
equivalence, this transformation is safe for all invocations:

1 static inline bool gdm_tty_ready(struct gdm «gdm) {

2 return gdm && gdm->tty_dev &% gdm->port.count;

3}

In total, we submitted eight patches transforming 11 macros.
As of writing, Linux maintainers have accepted six of our patches
which port nine macros. The remaining two macro transforma-
tions were rejected, because the maintainer preferred keeping the
macro. In one case, the maintainer preferred permanently inlining
it, making porting unnecessary.

Discussion with the maintainer on two of the ported macros
led to safer code: First, FPNTBL_BYTES from media/atomisp/p-
ci/sh_css_params.c contained unsafe multiplication susceptible
to overflow. The maintainer requested using the array3_size
helper, which computes size without overflowing [51]. Second,
irg_data_to_gpio_chip() from greybus/gpio.c expanded to a
void * expression. But the maintainer observed the macro’s return
value is only ever assigned to variables of type struct gpio_chip *
and requested the new function have this return type. All patches
we submitted, along with their mailing list histories, are included
in the publicly-available artifact [3].

5.2 Porting All Macros in a Codebase

We hand-ported macros to C functions in two codebase from our
benchmarks, m4 and enscript. For each codebase, we used Maki’s
output to produce a table of all macros it encountered, sorted by
the portability categories listed in Table 1. We transformed each
of these macros to C, one-at-a-time, starting with the interface-
equivalent, which are the easiest to port. After each transformation,
we ensured the program still built (‘make‘) and passed tests (‘make
check).

As shown in Figure 2, m4 has 68 macro definitions and enscript
has 56. Roughly half of macro definitions are of interface-equivalent
macros in both codebases, 29 for m4 and 25 for enscript. These
macros were fast and easy to transform by hand, taking one author
only 20 minutes for enscript and 15 minutes for m4 to transform all
the interface-equivalent macros. Maki enables this speed, because
it rules out complex macro behavior for these macros, allowing for
a simple syntactic conversion.

The non-interface-equivalent macros were more time-consuming.
These macros (39 in m4 and 31 in enscript) took about 3:40 hours and
4 hours total to transform by hand, respectively. The challenge in
porting is determining how to preserve the macro’s non-functional
behavior in C. For instance, the macro __P, defined in enscript, is
conditionally defined to either expand to a given parameter list or
an empty parameter list.

#if PROTOTYPES
#define ___P(protos) protos
#else /+ no PROTOTYPES «/

#define ___P(protos) ()
extern char «strerror ___P ((int));

\\ 49 more function declarations.

AR WD =

It is used to remove the parameter list for older versions of C.
We converted each unique function signature into a conditionally-
declared typedef to include or exclude parameters.

Semantic Analysis of Macro Usage for Portability

[l Percentage of aligned definitions Percentage of interface-equivalent definitions

bash bc bison cvs emacs enscript flex fvwm

gawk gnuplot gv

ICSE 24, April 14-20, 2024, Lisbon, Portugal

gzip linux lua m4 ncsa perl rcs remind xfig zsh Total

Figure 4: Percentage of aligned and interface-equivalent definitions in each program.

We found that Maki’s results had two false negatives in enscript
and 12 in m4. The two in enscript and eight in m4 were due to Maki’s
lack of support for ad-hoc polymorphism and variadic arguments
in macro invocations. The remaining four Maki identified as calling-
convention-adapting because they modified a bit-field argument.
The C standard prohibits taking the addresses of bit-fields [26], a
subtlety of C that Maki does not take into account.

We also hand-ported two whole Linux modules, ipc and sound/at-
mel, each containing 49 and 55 macros, respectively, taking three
hours total. 91 macros were interface-equivalent while the remain-
ing 13 were non-interface-equivalent. We transformed 102 out of
the 104 macros defined in both modules; the two macros we did
not transform were header guard macros. We checked the changes
by compiling the modules and running Linux’s checker, sparse,
with make C=2. We have not submitted patches for these changes
to Linux maintainers because they are significantly larger in scope
than the patches discussed in Section 5.1, and Linux maintainers pre-
fer to review series of small patches rather than large patches [41].

The changes made to all transformed programs and detailed
notes can be found in our publicly-available artifact [3].

6 MAKI FOR CODE GENERATION

In addition to guidance for hand-porting, Maki can help inform me-
chanical transformation approaches by providing guarantees about
macro usage. When function-like macros are definition-adapting,
the semantics of the macro are identical to a C function, requiring
only simple syntactic changes to place the macro body in a return
statement and to replace the #define with a C function prototype,

as shown in the Linux Case Study (Section 5.1). All other interface-
equivalent macros are either calling-convention-adapting or scope-
adapting, i.e., they differ from functions in calling-convention (call-
by-name vs. call-by-value) or scoping.

When macros are calling-convention-adapting, i.e., they exploit
macros’ call-by-name semantics, generating C code versions of the
macros only requires simulating call-by-name with call-by-value.
For instance, when there are side-effects on a macro’s argument,
such as PREPEND_LIST (Section 1), the call-by-name convention
means the updated value of the argument is reflected in the caller.
Such behavior can be simulated by passing references to the argu-
ments instead of their values, e.g., passing a pointer in C, passing-
by-reference in C++, or passing an object in Java.

Scope-adapting macros exploit the lack of any scope, besides
global, and the dynamic scoping of macro definitions. Macros’ lack
of scoping enables them to capture symbols from their callers’
scope as seen in the use of the function-local sp variable in the
ISSET macro (Section 2) without explicitly passing a parameter.
Maki’s ability to identify scope-adapting properties would enable
automated code generation tools to identify what refactorings are
needed to produce equivalent functions. For macros that exploit
the lack of scoping, the code generation tool need only identify
any undeclared symbols in the macro body that are in the caller’s
scope, then add these as parameters, akin to a function extraction
refactoring [32]. Macros that exploit dynamic scoping only need
reorderings of declarations by the code generation tool to ensure
any macros called in the body are available in the static scope.

As the hand-ported macro case study shows (Section 5.2), non-
interface-equivalent macros are more complicated to port, because
they are not guaranteed to correspond one-to-one with a function.
They instead require first refactoring the functional interface to

ICSE °24, April 14-20, 2024, Lisbon, Portugal

match the language’s function semantics before transforming the
macro. For instance, when macro arguments have side-effects, e.g.,
a macro takes x++ as an argument, this side-effect is repeated every
time the argument is used. A code generation tool can simulate this
behavior by refactoring the argument into a thunk, which preserves
the side-effect throughout the execution of the macro body and
reflects the final value in the caller’s scope.

Even though functions take expression parameters and function
calls themselves are expressions, macros may take and return any
grammar construct, including declarations and control-flow alter-
ing statements such as goto or break. Barring language-specific
extensions to functions such as C’s longjmp, a code generation tool
will likely not be able to simulate these behaviors with functions in
general. For nested macros, however, there is more hope for code
generation tools. When the outer macro is interface-equivalent, it
may be possible to first convert the outer macro definition, thereby
unnesting the inner macro. After porting, the inner macro is now
an outer macro that can have its properties checked for portability.

7 THREATS TO VALIDITY

Internal validity. The properties are intended cover all macro usage.
If any one macro is not analyzed, we might miss portability. To
ensure completeness, we designed the properties so that when a
macro meets none of the properties, it is interface-equivalent (the
definition-adapting portability category). To ensure that the im-
plementation of our macro analysis framework in Maki matches
the formal properties, we developed a test suite to exercise each
property, made from hand-crafted examples and tests adapted from
benchmarks. In total, our test suite comprises 63 files and 895 source
lines of code. We used this test suite to make Maki highly accu-
rate, as Section 4.7 demonstrates. We intend to add the misclassi-
fied macros we found while hand-checking Maki’s output against
ground truth in Section 4.7 to Maki’s test suite so that we may ad-
dress them as well. Finally, due to a limitation with Clang, Maki is
unable to check if type-aligned macro invocations satisfy any scope-
adapting properties, so we conservatively assume all type-aligned
invocations are scope-adapting. Since scope-adapting macros are
interface-equivalent, even if this issue were resolved Maki would
still find the same quantity of interface-equivalent macros.
External validity. The results about macro usage and portability
depend on the set of benchmark programs chosen. To achieve a wide
variety of program types, we started with Ernst et als preproces-
sor metrics benchmarks, which has programs from many domains,
including languages, utilities, shells, etc. To broaden the range and
size of programs, and to compensate for older programs no longer
under development, we added new benchmarks. Our framework is
geared towards C preprocessor macros, but other macro systems,
such as for Rust [28] and Lisp [23] have different semantics. Some
properties from our framework would apply, such as scoping differ-
ences, but applying our framework to other macro systems would
require adjusting and adding properties, which we leave as future
work. Moreover, porting tools that target high-level language con-
structs may have one-to-one mappings for non-interface equivalent
macros; for instance, languages with first-class functions could map
thunkizing macros using anonymous functions. Similarly, we do
not support analyzing macros used in C++ programs, which could

Pappas and Gazzillo

have different properties, e.g., related to its additional language
constructs that would affect how often macros are easily-portable.
On the other hand, porting to object-oriented languages could also
open the door to more types of macro transformations, which we
leave to future work.

8 RELATED WORK

The most recent and only related macro property analyzer is Mennie
and Clarke’s [34] automated tool for transforming certain object-
like macros to C variables. Their tool collects facts about macros,
classifies them based on these facts, and then generates plans for
transforming each macro based on its facts and classifications. It
employs sophisticated rules for inserting transformed code, which
enable it to automatically transform certain object-like macros
into correctly-scoped local variables. Maki’s design is similar to
theirs in that it first collects properties about macros, and then
categorizes macros based on the properties they satisfy. Maki differs
from Mennie and Clarke’s work in that it does not automatically
transform macros, and analyzes a wider array of macro properties
to find many more easily portable macros.

SugarC [1] transforms preprocessor usage to C by targeting the
preprocessor static conditionals and convering them into runtime
C conditions. SugarC improves variability-aware analyses of pro-
grams that use preprocessor static conditionals for configuration
management, but does not try to maintain developer abstractions in
the transformed code it produces. Hercules [19] is another tool that
transforms CPP compile time conditionals to C runtime condition-
als. Unlike SugarC, it uses an AST generated by Typechef [27] to
perform its transformation. C Reconfigurator’s [29] transformation
rules were proven to be sound, but only for a theoretical language
that is a subset of what it actually transforms.

McCloskey and Brewer [33] developed Macroscope to transform
CPP macros to new a macro preprocessor language, called ASTEC.
ASTEC has advantages over CPP, but presents all the same issues
to porting tools as CPP code since it is still a preprocessor language.
Moreover, while Macroscope can merge duplicate transformed def-
initions into single definitions, their rules for placing transformed
definitions are not as rich as those of Mennie and Clarke’s tool [34].

The C preprocessor analysis tool most relevant to this project
is Dietrich’s CppSig [11], which collects macro invocations into
tree structures, and infers function signatures for them. Maki re-
lies on insights akin to those behind CppSig to find AST-aligned
macro invocations and infer types for invocations’ expansions and
arguments. The seminal work in CPP analysis is that of Badros
and Notkin [2], which outlines a method of C source code anal-
ysis that offers both preprocessing and C parsing “actions” that
are analogous to Clang’s preprocessor callbacks [43] and AST [44].
This is similar in spirit to the approach taken by Maki, since it uses
both Clang preprocessor callbacks and the Clang-generated AST
to perform its analysis. The first large study of macro usage was
conducted by Ernst et al. [12], from which we drew many of our
benchmarks programs. CScout [40] enables the analysis of “pro-
gram families” [40], i.e., workspaces comprised of interdependent
programming languages. CScout can perform simple refactorings
on C program families such as identifier renaming, but cannot
identify all the easily portable macros that Maki does.

Semantic Analysis of Macro Usage for Portability

Favre’s [13] is the only work we know of to fully formalize
the preprocessor itself. He outlined a denotational semantics for
CPP, taking into account subtle features such as stringification and
tokenization [45]. Since Favre does not consider macro’s interaction
with C code, it is unrelated to the AST-oriented properties of our
the Macro Inspector Framework.

There have been several proposals for hygienic alternatives to
preprocessor macros for C [22, 33, 54], including the aforemen-
tioned ASTEC [33]. These macro languages are syntactic, and re-
quire that all macro invocations align with the program’s AST;
however they are still preprocessor languages that similarly hin-
der porting. Rust [39] offers syntactic macro where arguments
are annotated with their AST-node type. Syntactic macro systems
have a home in the Lisp family of programming languages [14, 53].
Pombrio and Krishnamurthi [36] demonstrated the feasibility of
reconstructing abstractions in Lisp-like languages.

3C [6] ports C programs to Checked C [35], a pointer-safe dialect
of C designed to prevent memory bugs. Macro usage has impaired
3C porting efforts [7-9]. Maki could be used to help develop porting
tools to mitigate the challenge. c2rust [25] translates C code to
unsafe Rust code. Like 3C, c2rust faces problems with preprocessor
macros [24] and preprocesses first, losing macro abstractions.

9 CONCLUSION

In this work we present the Macro Inspector Framework and its em-
bodiment in the Maki analyzer. Compared to prior work, our imple-
mentation finds an average of twice as many easily portable macros,
and up to 7x more for programs with more complex macro usage.
Using our framework as a guide, we hand-patched 11 linux kernel
macros, nine of which have been accepted by kernel maintainers.
In future work, we will study the application of our framework’s
properties when used to port macros to other languages besides C.
Ultimately, we plan to leverage our framework to create an auto-
mated tool for porting easy-to-port macros, so that developers can
focus their porting efforts on more complex definitions.

ACKNOWLEDGMENTS

We would like to thank Mike Hicks, Elaine Weyuker, and all the
reviewers for their valuable feedback. This work was supported in
part by NSF grants CCF-1840934 and CCF-1941816.

REFERENCES
[1

APPLESEED LAB. Sugarc. https://github.com/appleseedlab/superc/tree/master/

src/superc/cdesugarer, 2022.

[2] Babros, G., AND NOTKIN, D. A framework for preprocessor-aware ¢ source code
analyses. Software Practice and Experience 30 (07 2000).

[3] BRENT Pappas, P. G. Artifact for semantic analysis of macro usage for portability.
https://zenodo.org/record/8326488, 2023.

[4] CHANCE, E. c2go. https://github.com/elliotchance/c2go, 2021.

[5] CMU SEI SERT TeaMm. Pre00-c. prefer inline or static functions to function-like
macros. https://wiki.sei.cmu.edu/confluence/display/c/PRE00-C.+Prefer+inline+
or+static+functions+to+function-like+macros, Apr 2022.

[6] CorrECT COMPUTATION INC. 3c. https://github.com/correctcomputation/
checkedc-clang/, 2021.

[7] Correct CompuTATION INC. 3cC.
checkedc-clang/issues/400, 2021.

[8] CorrecT COMPUTATION INC. 3c.
checkedc-clang/issues/40, 2021.

[9] CorrecT ComPUTATION INC. 3c.

checkedc-clang/issues/439, 2021.

https://github.com/correctcomputation/
https://github.com/correctcomputation/

https://github.com/correctcomputation/

(10]

[11

[12

[13

[14

e
2.

(37]

[38

(39]
[40

N
furg

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

DATAwWRAPPER GMBH. Datawrapper: Create charts, maps, and tables. https:
//www.datawrapper.de/, 2023. Used to create charts.

DieTrIcH, C. CppSig: Extracting Type Information for C-Preprocessor Macro Ex-
pansions. Association for Computing Machinery, New York, NY, USA, 2021,
p. 62-68.

ERrNsT, M. D., BADROS, G. J., AND NOTKIN, D. An empirical analysis of ¢ prepro-
cessor use. IEEE Trans. Softw. Eng. 28, 12 (dec 2002), 1146-1170.

FAVRE, J.-M. Cpp denotational semantics. In Proceedings Third IEEE International
Workshop on Source Code Analysis and Manipulation (2003), pp. 22-31.

FLarT, M. Composable and compilable macros: You want it when? In Proceedings
of the Seventh ACM SIGPLAN International Conference on Functional Programming
(New York, NY, USA, 2002), ICFP ’02, Association for Computing Machinery,
p. 72-83.

FREE SOFTWARE FOUNDATION. Gawk v5.1.1. https://www.gnu.org/software/
gawk/, 2021.

FREE SOFTWARE FOUNDATION. Bash v5.2 rcl. https://www.gnu.org/software/
bash/, 2022.

FREE SOFTWARE FOUNDATION. Emacs v28.1. https://www.gnu.org/software/
emacs/, 2022.

FVWM TeaM. Fvwm v2.6.9. https://www.fvwm.org/, 2019.

GARBE, F. Performance measurement of ¢ software product lines. Master’s thesis,
University of Passau, 2017.

GARRIDO, A., AND JoHNSON, R. E. Analyzing multiple configurations of a ¢
program. 21st IEEE International Conference on Software Maintenance (ICSM’05)
(2005), 379-388.

GazziLro, P., AND GRIMM, R. Superc: Parsing all of ¢ by taming the preprocessor.
SIGPLAN Not. 47, 6 (jun 2012), 323-334.

GOSLING, J. Ace: a syntax-driven c preprocessor. Australian Unix Users Group
(1989).

GRAHAM, P. On Lisp. Prentice Hall, 1993.

IMMUNANT. c2rust. https://github.com/immunant/c2rust/issues/16, 2018.
IMMUNANT. c2rust. https://github.com/immunant/c2rust, 2022.

ISO TecunicAaL ComMITTEE ISO/IEC JTC 1/SC 22. ISO-IEC-9899-2011. Standard,
International Organization for Standardization, Dec. 2011.

KASTNER, C., GIARRUSSO, P. G., RENDEL, T., ERDWEG, S., OSTERMANN, K., AND
BERGER, T. Variability-aware parsing in the presence of lexical macros and
conditional compilation. In Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications (New York,
NY, USA, 2011), OOPSLA ’11, Association for Computing Machinery, p. 805-824.
KLABNIK, S., AND NicHOLS, C. Macros - the rust programming language. https:
//doc.rust-lang.org/book/ch19-06-macros.html, Nov 2022.

LAZAR, A., AND MELO, J. C reconfigurator. https://github.com/itu-square/c-
reconfigurator, 2017.

Linux KERNEL MAINTAINERs. Linux kernel mailing list. https://lore. kernel.org/.
Lua TeAM. lua. https://github.com/lua/lua, 2022.

MARTIN FOwLER, K. B. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Longman Publishing Co., Inc., USA, 1999.

McCLOSKEY, B., AND BREWER, E. Astec: A new approach to refactoring c. SIGSOFT
Softw. Eng. Notes 30, 5 (sep 2005), 21-30.

MENNIE, C., AND CLARKE, C. Giving meaning to macros. In Proceedings. 12th
IEEE International Workshop on Program Comprehension, 2004. (2004), pp. 79-85.
MICROSOFT RESEARCH. 3c. https://github.com/Microsoft/checkedc/, 2021.
PoMBRIO,]J., AND KRISHNAMURTHI, S. Resugaring: Lifting evaluation sequences
through syntactic sugar. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (New York, NY, USA, 2014),
PLDI ’14, Association for Computing Machinery, p. 361-371.

Pora, A. Convert macros to constexpr. https://devblogs.microsoft.com/cppblog/
convert-macros-to-constexpr/, Jun 2018.

REDDY, S. Auto refactor of a macro followed by a comment to a constexpr put
the semicolon after the comment. https://developercommunity.visualstudio.com/
t/auto-refactor- of-a- macro-followed-by-a-comment-to/354205, Oct 2018.
Rust TEAM. rust. https://github.com/rust-lang/rust, 2022.

SpiNELLIS, D. Global analysis and transformations in preprocessed languages.
IEEE Trans. Softw. Eng. 29, 11 (nov 2003), 1019-1030.

STERBA, D. Re: [patch] fs: Nifs read-write driver gpl implementation by paragon
software. https://lore kernel.org/linux-fsdevel/20200815190642.GZ2026 @twin.
jikos.cz/.

SUTANTHAVIBUL, S., Yap, K., SmITH, B. V., KING, P., BOYTER, B., SaTO, T., AND
Loimer, T. Xfig v3.2.8b. https://mcj.sourceforge.net/, 2021.

THE CLANG TEAM. clang:ppcallbacks class reference — clang 16.0.0git docu-
mentation. https://clang.llvm.org/doxygen/classclang_1_1PPCallbacks.html, Nov
2022.

THE CLANG TEAM. Introduction to the clang ast — clang 16.0.0git documentation.
https://clang.llvm.org/docs/IntroductionToTheClang AST.html, 2022.

TuE GCC TeaM. The ¢ preprocessor. https://gcc.gnu.org/onlinedocs/cpp/, 2022.
THE GCC TEAM. Operator precedence problems. https://gcc.gnu.org/onlinedocs/
cpp/Operator-Precedence-Problems.html#Operator-Precedence-Problems, Nov
2022.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

[47] THE GCC TeAaM. Designated inits. https://gcc.gnu.org/onlinedocs/gec/
Designated-Inits.html, 2023.

[48] TuE GCC TEAM. Statement exprs. https://gcc.gnu.org/onlinedocs/gec/Statement-
Exprs.html, 2023.

[49] TuE Linux KERNEL. Linux kernel coding style. https://github.com/torvalds/linux/
blob/master/Documentation/process/coding-style.rst, 2023. Section 12, "Macros,
Enums and RTL".

[50] TuE LiNux KERNEL. Linux Kernel drivers/staging, 2023.

[51] TuE Linux KERNEL. Memory Allocation Guide. https://www.kernel.org/doc/

Pappas and Gazzillo

html/latest//core-api/memory-allocation.html, 2023.

THE LiNux KERNEL. Submitting patches: the essential guide to getting your code
into the kernel. https://github.com/torvalds/linux/blob/master/Documentation/
process/submitting-patches.rst, 2023.

THE RACKET TEAM. Racket. https://racket-lang.org/, 2022.

WEISE, D., AND CREW, R. Programmable syntax macros. In Proceedings of the ACM
SIGPLAN 1993 Conference on Programming Language Design and Implementation
(New York, NY, USA, 1993), PLDI '93, Association for Computing Machinery,
p. 156-165.

	Abstract
	1 Introduction
	2 The Macro Inspector Framework
	2.1 Interface-Equivalent Properties
	2.2 Non-Interface-Equivalent Properties

	3 Implementation
	4 Evaluation
	4.1 Benchmark Program Selection
	4.2 Experimental Setup
	4.3 RQ1: Portability
	4.4 RQ2: Comparison
	4.5 RQ3: Alignment and Portability
	4.6 RQ4: Runtime
	4.7 RQ5: Accuracy

	5 Case Studies
	5.1 Patching Linux Kernel Macro Usage
	5.2 Porting All Macros in a Codebase

	6 Maki for Code Generation
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

