
Semantic Analysis of Macro Usage for Portability

Brent Pappas
pappasbrent@knights.ucf.edu

University of Central Florida

Orlando, United States

Paul Gazzillo
paul.gazzillo@ucf.edu

University of Central Florida

Orlando, United States

ABSTRACT

C is an unsafe language. Researchers have been developing tools

to port C to safer languages such as Rust, Checked C, or Go. Ex-

isting tools, however, resort to preprocessing the source �le �rst,

then porting the resulting code, leaving barely recognizable code

that loses macro abstractions. To preserve macro usage, porting

tools need analyses that understand macro behavior to port to

equivalent constructs. But macro semantics di�er from typical func-

tions, precluding simple syntactic transformations to port them.

We introduce the �rst comprehensive framework for analyzing the

portability of macro usage. We decompose macro behavior into

26 �ne-grained properties and implement a program analysis tool,

called Maki, that identi�es them in real-world code with 94% accu-

racy. We apply Maki to 21 programs containing a total of 86,199

macro de�nitions. We found that real-world macros are much more

portable than previously known. More than a third (37%) are easy-

to-port, and Maki provides hints for porting more complicated

macros. We �nd, on average, 2x more easy-to-port macros and up

to 7x more in the best case compared to prior work. Guided by

Maki’s output, we found and hand-ported macros in three real-

world programs. We submitted patches to Linux maintainers that

transform eleven macros, nine of which have been accepted.

CCS CONCEPTS

• Software and its engineering → Semantics; Preprocessors;

Automated static analysis.

KEYWORDS

macros, C, program analysis

ACM Reference Format:

Brent Pappas and Paul Gazzillo. 2024. Semantic Analysis of Macro Usage

for Portability. In 2024 IEEE/ACM 46th International Conference on Software

Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3597503.3623323

1 INTRODUCTION

C is an unsafe language with millions of lines of critical software

infrastructure implemented in it. Researchers have been develop-

ing (semi-)automated tools to port C to safer language, such as

c2rust [25], 3c [6], and c2go [4]. Transforming the original, unpre-

processed code is hard, because C programs are written in two

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3623323

languages, C itself and the C preprocessor language, which is used

extensively in real-world C programs [12]. Existing porting tools

instead resort to �rst preprocessing the source �le, then porting

the preprocessed code, due to long-standing obstacles caused by

preprocessor usage [7–9, 24].

The problem with preprocessing �rst is that the source code is

barely recognizable after preprocessing. The following is an exam-

ple of function macro usage from the lua [31] source:

1 #define ALPHABIT 0

2 #define MASK(B) (1 < <(B))

3 #define t e s t p r o p (c , p) (l u a i _ c t y p e _ [(c) +1]&(p))

4 #define l i s l a l p h a (c) t e s t p r o p (c ,MASK(ALPHABIT))

5 i f (lislalpha(ls->current))

While the highlighted call to lislalpha on line 5 looks syntactically

like a function call, it is a macro invocation, which expands the

macro, i.e., performs text substitution of the macro’s de�nition on

line 4 while also substituting its parameters into the macro body.

After preprocessing, macro de�nitions are gone and the macro call

is reduced to a lengthy series of arithmetic operations on magic

constant values:

i f ((luai_ctype_[(ls->current)+1] & ((1 « (0)))))

This preprocessed source is what tools end up having to port, losing

the macro function abstractions from the original source.

To preserve macro usage mixed with C, without having to pre-

process it away, porting tools need to be able to understand macro

usage before porting to equivalent constructs in the new language.

For instance, some function-like macros, such as MASK on line 2

above, behave like C functions once the code is preprocessed and

compiled. Indeed, prominent coding standards even recommend

using a C function instead of a macro when it already behaves

like a C function [5, 49]. Such macro usage has a straightforward

transformation: create a function of the same name, infer the type

of the arguments(s) [11], and put the macro body in a return state-

ment. For instance, MASK would become the following, where the

highlighted code is the exact contents of the original macro’s body:

in t MASK(in t B) { return (1«(B)) ; }

But function-like macros, not part of the C language proper, do not

always behave like C functions. Porting tools cannot, in general,

apply the simple syntactic substitution used for MASK without �rst

identifying whether it is correct to do so. Macro semantics di�ers

from C [45] in calling convention and scoping rules; macros are

call-by-name and have dynamic scoping, whereas C functions are

call-by-value and have static scoping. For instance, PREPEND_LIST,

from the bash source [16], resembles a C function, but it assigns

a value to an argument, elist, a side-e�ect not possible with C’s

call-by-value calling convention alone:

#define PREPEND_LIST (n l i s t , elist) \

do { n l i s t −>nex t = e l i s t ; elist = nlist ; } while (0)

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pappas and Gazzillo

A porting tool converting this macro to a C function, for instance,

would need to simulate themacro’s call-by-name behavior by chang-

ing the argument type to a pointer and adding a dereference in the

body to match the behavior of the original macro.

The transformations for MASK and PREPEND_LIST are interface-

equivalent, i.e., the abstract functional speci�cation of the macro

and its C-function equivalent have the same behavior in terms of

inputs and outputs. But in general, macros can freely violate and

modify C syntax [20, 21, 27]. For instance, there is no interface-

equivalent C function for a macro that expands to only a switch

statement’s case label, as in this example, also from lua:

#define vmcase (l) case l :

Porting this macro to C or any typical programming languagewould

require redesigning the function interface and refactoring the code

that invokes it, a substantially more complicated transformation

than for the interface-equivalent macros MASK and PREPEND_LIST.

Interface-equivalent macros, in contrast, are easy-to-port macros,

since they require simpler, largely syntactic transformations.

With an automated program analysis of macro usage, porting

tools would be able to determine what transformations preserve

behavior. But prior work on analyzing macro usage for porting is

limited to narrow cases. Mennie and Clarke �nd and port only

parameter-less macros (called object-like macros [45]) that are

equivalent to C constant variables [34]. Our evaluation shows that

such macros comprise only 19%, on average, out of all the 21 pro-

gram we evaluated, leaving behind a substantial amount of easy-to-

port, interface-equivalent macros. The Visual Studio IDE can also

convert macros to constexpr variables and functions [37], but this

transformation is purely syntactic, su�ering similar limitations [38]

to Mennie and Clarke’s work. This means that developers must

manually check that the conversion is correct, since the transformed

declaration’s de�nition will at best have the same syntax as the

original macro de�nition, but not necessarily the same behavior.

We introduce the Macro Inspector Framework, the �rst compre-

hensive framework for analyzing the portability of macro usage

in C programs. Our framework enables the automated understand-

ing of how macros a�ect the C program, so that porting e�orts

can determine the needs for transforming each macro. The key

insight is that our framework takes into account the macro de�ni-

tion and all its invocation sites, comparing the source code both

before and after preprocessing to identify how the macro a�ects

the C program. The challenge is that macros have great freedom to

alter the C AST in myriad ways, making it di�cult to determine

what speci�c transformation of the macro would preserve behavior.

Therefore, we decompose the changes macros cause into a set of

26 �ne-grained properties and design a set of program analyses to

discover which properties hold for each macro. Using our analytical

framework, we study the combinations of properties that enable

interface-equivalent transformations and which properties need

more complicated refactorings before porting, such as the vmbreak

macro above.

To evaluate the Macro Inspector Framework, we implement its

program analyses in a tool called Maki, which automatically identi-

�es the set of properties held by each macro de�nition. We use Maki

to study macro behavior in 21 real-world C programs, including

several taken from a classic study of preprocessor usage [12] and

2 more modern programs: the Linux kernel and lua, with a total

of 86,199 macro de�nitions. We found that, surprisingly, macros

in real-world code are much more portable than previously under-

stood. More than a third (37%) are easy-to-port, interface-equivalent

macro de�nitions that have a one-to-one mapping to a C function.

Compared to prior work, we �nd, on average, 2x more and, coun-

terintuitively, programs with the most complicated macro usage

often have even more easy-to-port, interface-equivalent macros

compared to prior work, up to 7x more in the best case. Lastly, we

�nd that syntactic macros, those that respect C syntax, are usu-

ally interface-equivalent and consequently, projects with relatively

more syntactic macros have more easy-to-port, interface-equivalent

macros. On a statistically signi�cant sample of the benchmark

macro de�nitions, Maki has 94% accuracy in identifying properties

compared to hand-checked ground truth.

To evaluate the utility of the Macro Inspector Framework, we

conducted several case studies hand-porting macros guided by

Maki’s output on two complete programs from our benchmark

(m4 and enscript) and two Linux modules. Macros identi�ed as

interface-equivalent took only minutes to port, while non-interface-

equivalent macros took substantially longer. We also submitted

patches for a case study of 11 interface-equivalent macros in Linux

source and reported on the discussions that led to the acceptance of

9 of them by developers. This demonstrates that our framework is

useful for helping developers move away from macro usage, even

in large, mature C codebases with formal review processes.

In this paper, we make the following contributions:

• An analytical framework for preprocessor macros that iden-

ti�es the portability of macro usage (Section 2).

• Maki, a Clang plugin and Python library that implements

program analyses to detect the framework’s properties (Sec-

tion 3).

• An evaluation of themacro usage and portability in 21medium-

to-large, real-world C programs (Section 4).

• Case studies of how we used the framework to hand-port

macros in several example programs (Section 5).

Maki’s complete source code is available online as free and open-

source software1 as well as in our publicly-available artifact [3].

2 THE MACRO INSPECTOR FRAMEWORK

We detail the syntactic and semantic properties of macro usage

de�ned in the Macro Inspector Framework, illustrating them with

examples. Table 1 lists each property, including its name and formal

and informal de�nitions, that together comprise our framework. All

formal de�nitions take a macro m that contains three �elds, tokens

of the unpreprocessed macro invocation (tokens), the preprocessed

macro as an AST if syntactically-valid C (ast), and the macro’s

preprocessed arguments as an AST if syntactically-valid (args).

We group properties into portability categories that provide guid-

ance to porting tools about what language features are implicated

in the macro usage and need to be supported in order to port the

macro. Calling-convention-adapting properties concern macro be-

havior that can be ported by adapting the arguments of the function

when ported to a C-like function. Scope-adapting properties involve

the use of dynamic scope, and so require modi�cations to ensure

1https://github.com/appleseedlab/macro-analyzer

Semantic Analysis of Macro Usage for Portability ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Property Formal De�nition Description

Interface-Equivalent

Calling-Convention-Adapting

Modi�ed body ∃4 ∈ SideEffectedExprs(0BC),<.0BC = 4 Expands to a side-e�ected expression

Modi�ed arguments ∃0 ∈<.0A6B, ∃4 ∈ SideEffectedExprs(0BC), 0.0BC = 4 Has a side-e�ected argument

Addressed body ∃4 ∈ AddressedExprs(0BC),<.0BC = 4 Expands to an addressof (&) operand

Addressed arguments ∃0 ∈<.0A6B, ∃4 ∈ AddressedExprs(0BC), 0.0BC = 4 Has an argument that expands to an

addressof (&) operand

Unhygienic
∃3 ∈ LocalDeclRefs(<.0BC),∀0 ∈<.0A6B,

¬InTree(3, 0.0BC),¬DeclIn(3,<.0BC)
Captures a declaration from macro<’s

caller’s environment

Scope-Adapting

Locally de�ned ¬DefinedIn(<,GlobalScope(0BC)) De�ned in a local scope

Unordered declarations ∃3 ∈ DeclRefs(<.0BC),DefinedBefore(<,3) References a declaration de�ned after

macro<

Unordered expansion type DefinedBefore(<,Type(<.0BC)) Expands to an expression whose type is

de�ned after macro<

Unordered type declarations ∃C ∈ TypeRefs(<.0BC),DefinedBefore(<, C) References a type de�ned after macro<

Unordered argument types ∃0 ∈<.0A6B,DefinedBefore(<,Type(0.0BC)) Has an argument that expands to an

expression whose type is de�ned after

macro<

Unordered macros ∃= ∈ NestedMacros(<),DefinedBefore(<,=) Invokes a macro de�ned after macro<

Condition macro ∃2 ∈ CPPConditionals, InCondition(<.=0<4, 2) Is invoked in a CPP conditional

Anonymous type ∃4 ∈ AnonTypeExprs(0BC),<.0BC = 4 Expands to an expression whose type is

unnamed

Anonymous argument types ∃0 ∈<.0A6B, ∃4 ∈ AnonTypeExprs(0BC), 0.0BC = 4 Has an argument that expands to an

expression whose type is unnamed

Local argument types ∃0 ∈<.0A6B, ∃4 ∈ LocalTypeExprs(0BC), 0.0BC = 4 Has an argument that expands to an

expression whose type is de�ned in a

local scope

Locally-typed subexpressions ∃4 ∈ LocalTypeExprs(<.0BC), 4 ∈ SubExprs(<.0BC) Contains a subexpression whose type is

de�ned in a local scope

Local type
∃4 ∈ LocalTypeExprs(0BC),<.0BC = 4,

¬DeclIn(Type(4),<.0BC)
Expands to an expression whose type is

de�ned in a local scope

Non-Interface-Equivalent

Thunkizing

Void arguments ∃0 ∈<.0A6B,Type(0.0BC) = void Has a void expression argument

Side-e�ecting arguments
∃0 ∈<.0A6B, ∃4 ∈ SideEffectExprs(<.0BC),

InTree(4, 0.0BC)
Has an argument with side-e�ects

Callsite-context-altering

Unaligned <.0BC = =D;; ∨ ∃0 ∈<.0A6B, 0.0BC = =D;; Does not align with a single AST node

Conditional arguments ∃0 ∈<.0A6B, ∃4 ∈ CondExprs(<.0BC), InTree(0.0BC, 4) Has an argument that is conditionally

evaluated in the body of macro<

Nested

Nested in body ∃= ∈ AllInvocations,< ∈ NestedMacros(=) Is invoked in the body of another macro

Nested in argument
∃= ∈ AllInvocations, ∃0 ∈ =.0A6B,

< ∈ NestedMacros(0)
Is invoked as an argument to another

macro invocation

Metaprogramming and Generics

Control �ow <.0BC ∈ {return, case, continue, break, goto} Alters caller’s control �ow

Non-expression arguments ∃0 ∈<.0A6B, 0.0BC ∉ Exprs(0BC) Has argument that is not an expression

Stringizing / Token-pasting # ∈<.C>:4=B ∨ ## ∈<.C>:4=B Uses stringi�cation or token-pasting

Table 1: Macro invocation properties.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pappas and Gazzillo

Name Description

AddressedExprs(0) Set of expressions in AST 0 that

are the operand of an addressof

(&) expression.

AllInvocations Set of all macro invocations.

AnonTypeExprs(0) Set of expressions in AST 0 whose

type is unnamed.

DeclIn(3, 0) Whether declaration 3 was de-

clared in AST 0.

DeclRefs(0) Set of expressions in AST 0 that

are references to declarations.

DefinedBefore(<,3) Whether macro< is de�ned be-

fore declaration or macro 3 .

DefinedIn(3, B) Whether declaration or macro 3 is

de�ned in scope B .

CondExprs(0) Set of short-circuiting expressions

(e.g., the ternary operator, or logi-

cal and) in AST 0.

CPPConditionals Set of CPP static conditionals (e.g.,

ifdef, defined, etc.) in program.

GlobalScope(0) Global scope of AST 0.

Name Description

InCondition(B, 2) Whether symbol B appears in CPP

static conditional 2 .

InTree(0, 1) Whether AST 0 is a subtree of 1.

LocalDeclRefs(0) Set of expressions in AST 0 that

are references to declarations

declared in local scopes.

LocalTypeExprs(0) Set of expressions in AST 0 whose

type is de�ned at local scope.

NestedMacros(<) Set of macro invocations or argu-

ments in<’s nested invocations.

SideEffectExprs(0) Set of expressions in AST 0 with

side-e�ects.

SideEffectedExprs(0) Set of expressions in AST 0 that

are modi�ed by an assignment

expression or the unary incre-

ment or decrement operator, or

are passed to a function call.

Type(4) Type of expression 4 .

TypeRefs(0) Set of expressions in AST 0 that

reference a type declaration.

Table 2: Helper functions used in formal de�nitions of properties.

static scope equivalence. De�nition-adapting macros are those, like

MASK (Section 1), that require only a syntactic change and involve

no changes to calling convention or scoping.

Together, macros that are calling-convention-, scope-, or de�nition-

adapting have a one-to-one equivalence with a C-like function and

need only minimal changes to port away from preprocessor usage,

i.e., they are interface-equivalent. Interface-equivalent macros are

relatively easy to port, since they behave like C functions, so iden-

tifying macros that are interface-equivalent should help developers

more easily port away frommacro usage. In contrast, non-interface-

equivalent macros require a redesign of the macro’s functional in-

terface, representing more complicated and di�cult-to-port macro

usage. We group properties of such macros into Thunkizing for

those that require converting expressions to functions, i.e., thunks,

Call-site-context-altering for those that alter the syntax of the macro

call-site, Nested for nested macro usage, and Metaprogramming for

macros that perform code generation.

2.1 Interface-Equivalent Properties

The PREPEND_LIST macro (from Section 1) causes side-e�ects on

the value of its argument elist, which is not supported in C or

other languages with call-by-value semantics but is with call-by-

reference semantics. We call this behavior the Modi�ed arguments

property (or Modi�ed body when it occurs in the macro body) and

provide a formal de�nition in Table 1. A related macro behavior,

also not supported by call-by-value, is the use of the C address-of

operator (&). For example, the linkgclist macro below (from lua)

takes the address of its o and p arguments:

1 #define l i n k g c l i s t (o , p) \

2 l i n k g c l i s t _ (ob j 2gco (o) , &(o)−> g c l i s t , &(p))

Argument values and addresses have function-local scope, so the

address will not be the same as the parameter passed to the function

call with call-by-value semantics.

The Unhygienic macro property stems from the same lack of

macro scoping that a�ects address-of. For example, ISSET (from

gawk [15]) expands to an expression that captures the local variable

sp (highlighted in gray) from its caller’s environment, not possible

with statically-scoped functions.

1 #define ISSET (opt) (sp−> f t s _ o p t i o n s & (opt))

2 void f () {

3 FTS *sp ;

4 i f (ISSET (FTS_LOGICAL))

5 }

We de�ne unhygienic macros as those that capture symbols from

the function-local scope and use them in the expanded macro invo-

cation site. When the macro itself is de�ned inside of the function-

local scope it is locally-de�ned. The formalization checks whether

the macro has been de�ned in any scope but the global scope.

The unordered declarations, types, type declarations, argument

types, and macros properties all stem from the dynamic scoping

of macros. Rather than requiring symbols to exist at macro de�ne

time, as in statically-scoped languages, macros need not check for

other symbols being de�ned until they are invoked. For example,

open_spline (line 1), from x�g [42] takes a symbol s that has type

F_spline, which is declared on line 2 after open_spline:

1 #define open_ sp l i n e (s) (! (s −> type & 0x1))

2 typedef s t ruc t f _ s p l i n e F_spline ;

3 void upd a t e _ s p l i n e (F _ s p l i n e ∗ s p l i n e) {

4 i f (o p en_ sp l i n e (s p l i n e)) ;

5 }

A condition macro is one which is present in a preprocessor static

conditional, e.g.., within an #ifdef’s condition. The preprocessor

checks if macros are de�ned, but not functions, so a porting tool

Semantic Analysis of Macro Usage for Portability ICSE ’24, April 14–20, 2024, Lisbon, Portugal

handling the condition macro needs to also alter the original pro-

gram so that all preprocessor conditionals relying on that macro

will behave the same after the transformation.

Macros can expand to anonymous types and argument types. For

example, the macro TB_FLAGS de�ned in fvwm [18] expands to an

anonymously-typed expression:

1 typedef s t ruc t { struct { ... } flags ; } T i t l e B u t t o n ;

2 #define TB_FLAGS (tb) ((t b) . f l a g s)

3 s t a t i c void S e t L ay e rBu t t onF l a g (. . . , T i t l e B u t t o n ∗ t b) {

4 TB_FLAGS (∗ t b) . h a s _ l a y e r = 1 ; . . .

5 }

The invocation of TB_FLAGS on line 4 expands to the expression

((*tb).flags), which is described by the anonymous struct type

as highlighted in gray.

Related properties exist for invocations that expand to locally-

typed expressions (local type), accept locally-typed expressions as

arguments (local argument types), or contain locally-typed subex-

pressions, because macro invocations are untyped and can capture

type symbols from the caller’s scope. Functions, however, cannot,

because function type signatures only have globally-de�ned types

available in scope.

2.2 Non-Interface-Equivalent Properties

Non-interface equivalent macros do not have a one-to-one mapping

to C-like function behavior and represent the most complicated

uses of macros, requiring refactoring of the original use of the

program before mapping them to functions. For instance, macros

may take void arguments, i.e., expressions that have no return value,

such as a call to a void function. But void arguments are not legal

as parameters to C functions. Similarly, when an argument to a

macro causes a side e�ect (side-e�ecting arguments), every use of

that argument repeats the e�ect due to call-by-name semantics,

whereas in C’s call-by-value calling convention, the side e�ect is

only computed once. For instance, macro min, from emacs [17],

expands the same argument multiple times:

#define min (a , b) ((a) < (b) ? (a) : (b))

If invokedwith min(x++, y++);, themacro would increment either

x or y twice, whereas a syntactically-similar C function would only

trigger the increment once, when the arguments get evaluated.

Macro invocations operate at the raw token level and thus do

not need to expand to or accept complete syntactic constructs, e.g.

statements or expressions, as arguments.When amacro’s expansion

does not correspond to a complete syntactic construct, we identify

it as unaligned. Take the following macro expansion:

1 #define ADD(a , b) a + b

2 4 ∗ ADD(5 , 6)

A function version of ADD would evaluate the addition �rst, leaving

the multiplication, 4 * 11, while the macro version results in an

evaluation of the multiplication �rst, due to operator precedence

on the expanded expression, 4 * 5 + 6, a common pitfall in

preprocessor usage [46]

If a macro invocation expands one of its arguments into a short-

circuiting expression (e.g., a ternary expression or logical conjunc-

tion expression), then it has conditional arguments and may never

evaluate that argument. For instance, the macro AND expands to

C source
code

Maki

Clang plugin Python script Definition
properties

Invocation
properties

Figure 1: Maki architecture diagram.

((0) && (*x)) which, due to short-circuiting, would never raise a

null pointer fault in spite of the dereference of NULL with *x:

1 #define AND(a , b) ((a) && (b))

2 in t ∗ x = NULL ;

3 AND(0 , *x) ;

If ported to a function with call-by-value semantics, in contrast,

then the *x dereference would always raise the fault.

A macro can alter its caller’s control �ow directly by expanding

to any of the continue, break, goto, or return keywords. An ex-

pansion to a goto, for instance, pierces the function abstraction

by enabling the callee to return to any point in the caller, because

the goto will be expanded by the macro into the body of its caller.

Nested macros are those that are called by other macros. This may

occur in the de�nition of the macro, for instance lislalpha in

Section 1, or in a parameter at the macro’s invocation site. Un-

like functions, macros do not need to be passed expressions as

arguments and can instead be passed any syntactic construct, such

as statements, declarations, or even unaligned constructs. These

non-expression arguments are not supported in C functions. Macro

invocations can use the stringi�cation and token-pasting operators

to manipulate their arguments’ tokens, which generate string liter-

als and fresh language tokens at macro expansion time. This kind

of code generation allows for metaprogramming, such as re�ection

to print error messages or system-dependent type names.

3 IMPLEMENTATION

We have implemented the Macro Inspector Framework in a new

tool called Maki which performs automated program analysis to

identify macro usage properties. Maki consists of a Clang plugin

comprised of 2,180 lines of C++ code; and 1,519 lines of Python code.

Figure 1 presents Maki’s architecture. The Clang plugin analyzes

macro invocations in individual C source �les, so to analyze a

complete program we �rst intercept its build system using Clang’s

intercept-build utility and use the resulting compile commands

to analyze all �les in the program. These results can then be passed

to Maki’s Python scripts to determine which properties apply to

each of the program’s macro de�nitions.

The Clang plugin works by hooking into the Clang preprocessor

and AST to determine which macros are syntactically aligned. Maki

has methods that implement each property’s formalism by inspect-

ing the C AST and a trace of preprocessor expansions. The Python

scripts read these results into memory and use this information to

determine which properties each macro de�nition satis�es. Based

on these results, we can determine which portability category ap-

plies to each macro de�nition. Maki’s source code is available both

on GitHub 1 and in our public artifact [3].

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pappas and Gazzillo

4 EVALUATION

We use Maki to analyze real-world macro usage portability and

answer the following research questions:

RQ1 (Portability) How much portability is there in real-world

macro usage?

RQ2 (Comparison) HowdoesMaki’s ability to �nd portablemacros

compare to that of prior work?

RQ3 (Alignment and Portability) How does syntactic macro usage

in�uence portability?

RQ4 (Runtime) How quickly does Maki analyze macro usage?

RQ5 (Accuracy) How accurately does Maki identify properties?

All summary data is in our free, publicly-available artifact [3].

4.1 Benchmark Program Selection

We draw 19 programs to analyze from Ernst et al.’s analysis of

C preprocessor usage [12]2 but omit the remaining seven which

either contain C++ code3 orwhichwe could not build due tomissing

dependencies4. To augment the benchmarks, we also add 2 very

large, modern programs as well: the Linux kernel and Lua. Across

all programs in our benchmark, there are 86,199 macro de�nitions.

4.2 Experimental Setup

We ran our experiments on a server with 2 AMD EPYC 7742 64-Core

hyper-threaded processors, for a total of 256 available processes at

one time, with 512GB RAM.We download and extract each program,

and intercept its build system with Clang’s intercept-build tool

to obtain the speci�c compile commands used to compile each

source �le. We pass each of these compile commands to Maki’s

Clang plugin to determine which properties each macro invocation

in the program satis�es. We run the Clang plugin on eight cores for

all programs except for Linux, for which we use 32 cores due to the

kernel’s size. Finally, we run Maki’s Python scripts to determine

which properties apply to each macro de�nition. We only examine

invocations of macros de�ned in the programs themselves and not

invocations of macros de�ned in any system header or library �les,

since they are not part of the application. We reimplement the

macro usage analysis from Mennie and Clarke, which ports only

constant, object-like macros, in Maki, and measure how often they

occur in each program.

4.3 RQ1: Portability

We use Maki to evaluate each of the macro de�nitions across all

programs in our benchmark suite, recording which properties hold

for each macro. For each macro, we use its properties to assign it to

a portability category, as indicated in Table 1. Figure 2 presents our

results. Each program has a segmented bar chart that represents

the percentage distribution of macro de�nitions in each portability

category. When there are multiple invocations of the same de�-

nition that have di�ering portability categories, we record them

as having either multiple interface-equivalent properties or multi-

ple non-interface equivalent. The interface-equivalent portability

categories are color-coded by blue shades, whereas non-interface

2bash, bc, bison, cvs, emacs, enscript, �ex, fvwm, gawk, gnuplot, gv, gzip, m4,
mosaic, perl, rcs, remind, x�g, and zsh
3gcc, ghostscript, and gnuchess
4zephyr, workman, and RasMol

equivalent are yellow shades. The programs are sorted by the high-

est percentage of interface-equivalent macro de�nitions.

Programs have widely-varying macro portability, ranging from

12% to as much as 76% interface-equivalent macros. The largest

program with the most (57,896) macro de�nitions is Linux with 41%

being easily-portable. On average, over all 86,199 macros, 37% are

easy-to-port, being interface-equivalent. The program analyses of

macro semantics in the Macro Inspector Framework has enabled us

to discover that macros in real-world code are much more portable

than previously understood.

4.4 RQ2: Comparison

We measure how many macros are identi�ed as portable accord-

ing to our reimplementation of Mennie and Clarke’s [34] macro

usage analysis and compare the number of these macros to the num-

ber of interface-equivalent macros identi�ed by our framework’s

properties implemented in Maki. Figure 3 presents the relative per-

formance of Mennie and Clarke’s tool against Maki, by dividing the

number of interface-equivalent macros over the constant, object-

like macros identi�ed by Mennie and Clarke. We sort the results

by most to least increase in identi�ed, portable macros. Prior work

transforms an average of 19%, a minimum of 3%, and a maximum

of 61% of macro de�nitions across all the programs we study. On

average, Maki �nds twice as many portable macros, ranging from

1.21x to 7.04x more across all programs.

Comparing Figure 2 to the relative performance results, we see

that some of the greatest improvement in portable macro identi�ca-

tion occurs in programs with some of the most complex macros us-

age. For instance, perl, in which Maki identi�es 7.04x more portable

macros, has some of the most non-interface-equivalent macro de�-

nitions. This indicates that complex macro usage obscures macro

portability, and Maki’s analyses help tease out the semantic aspects

of macro usage in order to identify easily-portable macros.

4.5 RQ3: Alignment and Portability

The C preprocessor is lexical and has no requirement to respect C

syntax. This research question evaluates the portability of C macro

usage when only considering syntactic macro use to see the impact

on portability. To measure syntactic macro usage, we measure what

C syntax the macro usage generates (statements, expressions, etc.)

and whether it respects C syntax or violates it, which corresponds

to the Unaligned macro property (Table 1).

Figure 4 presents the percentage of each program’s macro de�ni-

tions that align with the program’s AST, shown in blue, compared

with its percentage of interface-equivalentmacro de�nitions, shown

in gold. Across all programs, the percentage of aligned de�nitions

necessarily exceeds the percentage of interface-equivalent de�ni-

tions, because interface-equivalence depends on syntactic macro

usage (the Unaligned property precludes interface-equivalence).

In general, the majority of syntactic macro de�nitions are easily-

portable in most programs. Linux, for instance, has a very large

portion that are interface-equivalent, likely because of the good

macro usage coding guidelines encouraged by maintainers [49].

In some programs, however, only a minority of syntactic macros

are easily-portable. For instance, gnuplot has many more aligned

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pappas and Gazzillo

match the language’s function semantics before transforming the

macro. For instance, when macro arguments have side-e�ects, e.g.,

a macro takes x++ as an argument, this side-e�ect is repeated every

time the argument is used. A code generation tool can simulate this

behavior by refactoring the argument into a thunk, which preserves

the side-e�ect throughout the execution of the macro body and

re�ects the �nal value in the caller’s scope.

Even though functions take expression parameters and function

calls themselves are expressions, macros may take and return any

grammar construct, including declarations and control-�ow alter-

ing statements such as goto or break. Barring language-speci�c

extensions to functions such as C’s longjmp, a code generation tool

will likely not be able to simulate these behaviors with functions in

general. For nested macros, however, there is more hope for code

generation tools. When the outer macro is interface-equivalent, it

may be possible to �rst convert the outer macro de�nition, thereby

unnesting the inner macro. After porting, the inner macro is now

an outer macro that can have its properties checked for portability.

7 THREATS TO VALIDITY

Internal validity. The properties are intended cover all macro usage.

If any one macro is not analyzed, we might miss portability. To

ensure completeness, we designed the properties so that when a

macro meets none of the properties, it is interface-equivalent (the

de�nition-adapting portability category). To ensure that the im-

plementation of our macro analysis framework in Maki matches

the formal properties, we developed a test suite to exercise each

property, made from hand-crafted examples and tests adapted from

benchmarks. In total, our test suite comprises 63 �les and 895 source

lines of code. We used this test suite to make Maki highly accu-

rate, as Section 4.7 demonstrates. We intend to add the misclassi-

�ed macros we found while hand-checking Maki’s output against

ground truth in Section 4.7 to Maki’s test suite so that we may ad-

dress them as well. Finally, due to a limitation with Clang, Maki is

unable to check if type-aligned macro invocations satisfy any scope-

adapting properties, so we conservatively assume all type-aligned

invocations are scope-adapting. Since scope-adapting macros are

interface-equivalent, even if this issue were resolved Maki would

still �nd the same quantity of interface-equivalent macros.

External validity. The results about macro usage and portability

depend on the set of benchmark programs chosen. To achieve awide

variety of program types, we started with Ernst et al.’s preproces-

sor metrics benchmarks, which has programs from many domains,

including languages, utilities, shells, etc. To broaden the range and

size of programs, and to compensate for older programs no longer

under development, we added new benchmarks. Our framework is

geared towards C preprocessor macros, but other macro systems,

such as for Rust [28] and Lisp [23] have di�erent semantics. Some

properties from our framework would apply, such as scoping di�er-

ences, but applying our framework to other macro systems would

require adjusting and adding properties, which we leave as future

work. Moreover, porting tools that target high-level language con-

structs may have one-to-one mappings for non-interface equivalent

macros; for instance, languages with �rst-class functions could map

thunkizing macros using anonymous functions. Similarly, we do

not support analyzing macros used in C++ programs, which could

have di�erent properties, e.g., related to its additional language

constructs that would a�ect how often macros are easily-portable.

On the other hand, porting to object-oriented languages could also

open the door to more types of macro transformations, which we

leave to future work.

8 RELATED WORK

Themost recent and only relatedmacro property analyzer isMennie

and Clarke’s [34] automated tool for transforming certain object-

like macros to C variables. Their tool collects facts about macros,

classi�es them based on these facts, and then generates plans for

transforming each macro based on its facts and classi�cations. It

employs sophisticated rules for inserting transformed code, which

enable it to automatically transform certain object-like macros

into correctly-scoped local variables. Maki’s design is similar to

theirs in that it �rst collects properties about macros, and then

categorizes macros based on the properties they satisfy. Maki di�ers

from Mennie and Clarke’s work in that it does not automatically

transform macros, and analyzes a wider array of macro properties

to �nd many more easily portable macros.

SugarC [1] transforms preprocessor usage to C by targeting the

preprocessor static conditionals and convering them into runtime

C conditions. SugarC improves variability-aware analyses of pro-

grams that use preprocessor static conditionals for con�guration

management, but does not try to maintain developer abstractions in

the transformed code it produces. Hercules [19] is another tool that

transforms CPP compile time conditionals to C runtime condition-

als. Unlike SugarC, it uses an AST generated by Typechef [27] to

perform its transformation. C Recon�gurator’s [29] transformation

rules were proven to be sound, but only for a theoretical language

that is a subset of what it actually transforms.

McCloskey and Brewer [33] developed Macroscope to transform

CPP macros to new a macro preprocessor language, called ASTEC.

ASTEC has advantages over CPP, but presents all the same issues

to porting tools as CPP code since it is still a preprocessor language.

Moreover, while Macroscope can merge duplicate transformed def-

initions into single de�nitions, their rules for placing transformed

de�nitions are not as rich as those of Mennie and Clarke’s tool [34].

The C preprocessor analysis tool most relevant to this project

is Dietrich’s CppSig [11], which collects macro invocations into

tree structures, and infers function signatures for them. Maki re-

lies on insights akin to those behind CppSig to �nd AST-aligned

macro invocations and infer types for invocations’ expansions and

arguments. The seminal work in CPP analysis is that of Badros

and Notkin [2], which outlines a method of C source code anal-

ysis that o�ers both preprocessing and C parsing “actions” that

are analogous to Clang’s preprocessor callbacks [43] and AST [44].

This is similar in spirit to the approach taken by Maki, since it uses

both Clang preprocessor callbacks and the Clang-generated AST

to perform its analysis. The �rst large study of macro usage was

conducted by Ernst et al. [12], from which we drew many of our

benchmarks programs. CScout [40] enables the analysis of “pro-

gram families” [40], i.e., workspaces comprised of interdependent

programming languages. CScout can perform simple refactorings

on C program families such as identi�er renaming, but cannot

identify all the easily portable macros that Maki does.

Semantic Analysis of Macro Usage for Portability ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Favre’s [13] is the only work we know of to fully formalize

the preprocessor itself. He outlined a denotational semantics for

CPP, taking into account subtle features such as stringi�cation and

tokenization [45]. Since Favre does not consider macro’s interaction

with C code, it is unrelated to the AST-oriented properties of our

the Macro Inspector Framework.

There have been several proposals for hygienic alternatives to

preprocessor macros for C [22, 33, 54], including the aforemen-

tioned ASTEC [33]. These macro languages are syntactic, and re-

quire that all macro invocations align with the program’s AST;

however they are still preprocessor languages that similarly hin-

der porting. Rust [39] o�ers syntactic macro where arguments

are annotated with their AST-node type. Syntactic macro systems

have a home in the Lisp family of programming languages [14, 53].

Pombrio and Krishnamurthi [36] demonstrated the feasibility of

reconstructing abstractions in Lisp-like languages.

3C [6] ports C programs to Checked C [35], a pointer-safe dialect

of C designed to prevent memory bugs. Macro usage has impaired

3C porting e�orts [7–9]. Maki could be used to help develop porting

tools to mitigate the challenge. c2rust [25] translates C code to

unsafe Rust code. Like 3C, c2rust faces problems with preprocessor

macros [24] and preprocesses �rst, losing macro abstractions.

9 CONCLUSION

In this work we present the Macro Inspector Framework and its em-

bodiment in the Maki analyzer. Compared to prior work, our imple-

mentation �nds an average of twice as many easily portable macros,

and up to 7x more for programs with more complex macro usage.

Using our framework as a guide, we hand-patched 11 linux kernel

macros, nine of which have been accepted by kernel maintainers.

In future work, we will study the application of our framework’s

properties when used to port macros to other languages besides C.

Ultimately, we plan to leverage our framework to create an auto-

mated tool for porting easy-to-port macros, so that developers can

focus their porting e�orts on more complex de�nitions.

ACKNOWLEDGMENTS

We would like to thank Mike Hicks, Elaine Weyuker, and all the

reviewers for their valuable feedback. This work was supported in

part by NSF grants CCF-1840934 and CCF-1941816.

REFERENCES
[1] Appleseed Lab. Sugarc. https://github.com/appleseedlab/superc/tree/master/

src/superc/cdesugarer, 2022.
[2] Badros, G., and Notkin, D. A framework for preprocessor-aware c source code

analyses. Software Practice and Experience 30 (07 2000).
[3] Brent Pappas, P. G. Artifact for semantic analysis of macro usage for portability.

https://zenodo.org/record/8326488, 2023.
[4] Chance, E. c2go. https://github.com/elliotchance/c2go, 2021.
[5] CMU SEI SERT Team. Pre00-c. prefer inline or static functions to function-like

macros. https://wiki.sei.cmu.edu/con�uence/display/c/PRE00-C.+Prefer+inline+
or+static+functions+to+function-like+macros, Apr 2022.

[6] Correct Computation Inc. 3c. https://github.com/correctcomputation/
checkedc-clang/, 2021.

[7] Correct Computation Inc. 3c. https://github.com/correctcomputation/
checkedc-clang/issues/400, 2021.

[8] Correct Computation Inc. 3c. https://github.com/correctcomputation/
checkedc-clang/issues/40, 2021.

[9] Correct Computation Inc. 3c. https://github.com/correctcomputation/
checkedc-clang/issues/439, 2021.

[10] Datawrapper GmbH. Datawrapper: Create charts, maps, and tables. https:
//www.datawrapper.de/, 2023. Used to create charts.

[11] Dietrich, C. CppSig: Extracting Type Information for C-Preprocessor Macro Ex-
pansions. Association for Computing Machinery, New York, NY, USA, 2021,
p. 62–68.

[12] Ernst, M. D., Badros, G. J., and Notkin, D. An empirical analysis of c prepro-
cessor use. IEEE Trans. Softw. Eng. 28, 12 (dec 2002), 1146–1170.

[13] Favre, J.-M. Cpp denotational semantics. In Proceedings Third IEEE International
Workshop on Source Code Analysis and Manipulation (2003), pp. 22–31.

[14] Flatt, M. Composable and compilable macros: You want it when? In Proceedings
of the Seventh ACM SIGPLAN International Conference on Functional Programming
(New York, NY, USA, 2002), ICFP ’02, Association for Computing Machinery,
p. 72–83.

[15] Free Software Foundation. Gawk v5.1.1. https://www.gnu.org/software/
gawk/, 2021.

[16] Free Software Foundation. Bash v5.2 rc1. https://www.gnu.org/software/
bash/, 2022.

[17] Free Software Foundation. Emacs v28.1. https://www.gnu.org/software/
emacs/, 2022.

[18] FVWM Team. Fvwm v2.6.9. https://www.fvwm.org/, 2019.
[19] Garbe, F. Performance measurement of c software product lines. Master’s thesis,

University of Passau, 2017.
[20] Garrido, A., and Johnson, R. E. Analyzing multiple con�gurations of a c

program. 21st IEEE International Conference on Software Maintenance (ICSM’05)
(2005), 379–388.

[21] Gazzillo, P., and Grimm, R. Superc: Parsing all of c by taming the preprocessor.
SIGPLAN Not. 47, 6 (jun 2012), 323–334.

[22] Gosling, J. Ace: a syntax-driven c preprocessor. Australian Unix Users Group
(1989).

[23] Graham, P. On Lisp. Prentice Hall, 1993.
[24] Immunant. c2rust. https://github.com/immunant/c2rust/issues/16, 2018.
[25] Immunant. c2rust. https://github.com/immunant/c2rust, 2022.
[26] ISO Technical Committee ISO/IEC JTC 1/SC 22. ISO-IEC-9899-2011. Standard,

International Organization for Standardization, Dec. 2011.
[27] Kästner, C., Giarrusso, P. G., Rendel, T., Erdweg, S., Ostermann, K., and

Berger, T. Variability-aware parsing in the presence of lexical macros and
conditional compilation. In Proceedings of the 2011 ACM International Conference
on Object Oriented Programming Systems Languages and Applications (New York,
NY, USA, 2011), OOPSLA ’11, Association for Computing Machinery, p. 805–824.

[28] Klabnik, S., and Nichols, C. Macros - the rust programming language. https:
//doc.rust-lang.org/book/ch19-06-macros.html, Nov 2022.

[29] Lazar, A., and Melo, J. C recon�gurator. https://github.com/itu-square/c-
recon�gurator, 2017.

[30] Linux Kernel Maintainers. Linux kernel mailing list. https://lore.kernel.org/.
[31] Lua Team. lua. https://github.com/lua/lua, 2022.
[32] Martin Fowler, K. B. Refactoring: Improving the Design of Existing Code.

Addison-Wesley Longman Publishing Co., Inc., USA, 1999.
[33] McCloskey, B., and Brewer, E. Astec: A new approach to refactoring c. SIGSOFT

Softw. Eng. Notes 30, 5 (sep 2005), 21–30.
[34] Mennie, C., and Clarke, C. Giving meaning to macros. In Proceedings. 12th

IEEE International Workshop on Program Comprehension, 2004. (2004), pp. 79–85.
[35] Microsoft Research. 3c. https://github.com/Microsoft/checkedc/, 2021.
[36] Pombrio, J., and Krishnamurthi, S. Resugaring: Lifting evaluation sequences

through syntactic sugar. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (New York, NY, USA, 2014),
PLDI ’14, Association for Computing Machinery, p. 361–371.

[37] Popa, A. Convert macros to constexpr. https://devblogs.microsoft.com/cppblog/
convert-macros-to-constexpr/, Jun 2018.

[38] Reddy, S. Auto refactor of a macro followed by a comment to a constexpr put
the semicolon after the comment. https://developercommunity.visualstudio.com/
t/auto-refactor-of-a-macro-followed-by-a-comment-to/354205, Oct 2018.

[39] Rust Team. rust. https://github.com/rust-lang/rust, 2022.
[40] Spinellis, D. Global analysis and transformations in preprocessed languages.

IEEE Trans. Softw. Eng. 29, 11 (nov 2003), 1019–1030.
[41] Sterba, D. Re: [patch] fs: Ntfs read-write driver gpl implementation by paragon

software. https://lore.kernel.org/linux-fsdevel/20200815190642.GZ2026@twin.
jikos.cz/.

[42] Sutanthavibul, S., Yap, K., Smith, B. V., King, P., Boyter, B., Sato, T., and

Loimer, T. X�g v3.2.8b. https://mcj.sourceforge.net/, 2021.
[43] The Clang Team. clang::ppcallbacks class reference — clang 16.0.0git docu-

mentation. https://clang.llvm.org/doxygen/classclang_1_1PPCallbacks.html, Nov
2022.

[44] The Clang Team. Introduction to the clang ast — clang 16.0.0git documentation.
https://clang.llvm.org/docs/IntroductionToTheClangAST.html, 2022.

[45] The GCC Team. The c preprocessor. https://gcc.gnu.org/onlinedocs/cpp/, 2022.
[46] The GCC Team. Operator precedence problems. https://gcc.gnu.org/onlinedocs/

cpp/Operator-Precedence-Problems.html#Operator-Precedence-Problems, Nov
2022.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Pappas and Gazzillo

[47] The GCC Team. Designated inits. https://gcc.gnu.org/onlinedocs/gcc/
Designated-Inits.html, 2023.

[48] The GCC Team. Statement exprs. https://gcc.gnu.org/onlinedocs/gcc/Statement-
Exprs.html, 2023.

[49] The Linux Kernel. Linux kernel coding style. https://github.com/torvalds/linux/
blob/master/Documentation/process/coding-style.rst, 2023. Section 12, "Macros,
Enums and RTL".

[50] The Linux Kernel. Linux Kernel drivers/staging, 2023.
[51] The Linux Kernel. Memory Allocation Guide. https://www.kernel.org/doc/

html/latest//core-api/memory-allocation.html, 2023.
[52] The Linux Kernel. Submitting patches: the essential guide to getting your code

into the kernel. https://github.com/torvalds/linux/blob/master/Documentation/
process/submitting-patches.rst, 2023.

[53] The Racket Team. Racket. https://racket-lang.org/, 2022.
[54] Weise, D., and Crew, R. Programmable syntax macros. In Proceedings of the ACM

SIGPLAN 1993 Conference on Programming Language Design and Implementation
(New York, NY, USA, 1993), PLDI ’93, Association for Computing Machinery,
p. 156–165.

	Abstract
	1 Introduction
	2 The Macro Inspector Framework
	2.1 Interface-Equivalent Properties
	2.2 Non-Interface-Equivalent Properties

	3 Implementation
	4 Evaluation
	4.1 Benchmark Program Selection
	4.2 Experimental Setup
	4.3 RQ1: Portability
	4.4 RQ2: Comparison
	4.5 RQ3: Alignment and Portability
	4.6 RQ4: Runtime
	4.7 RQ5: Accuracy

	5 Case Studies
	5.1 Patching Linux Kernel Macro Usage
	5.2 Porting All Macros in a Codebase

	6 Maki for Code Generation
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	References

