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The Linux kernel is highly-con�gurable, with a build system that takes a con�guration �le as input and

automatically tailors the source code accordingly. Con�gurability, however, complicates testing, because

di�erent con�guration options lead to the inclusion of di�erent code fragments. With thousands of patches

received per month, Linux kernel maintainers employ extensive automated continuous integration testing. To

attempt patch coverage, i.e., taking all changed lines into account, current approaches either use con�guration

�les that maximize total statement coverage or use multiple randomly-generated con�guration �les, both

of which incur high build times without guaranteeing patch coverage. To achieve patch coverage without

exploding build times, we propose krepair, which automatically repairs con�guration �les that are fast-building

but have poor patch coverage to achieve high patch coverage with little e�ect on build times. krepair works

by discovering a small set of changes to a con�guration �le that will ensure patch coverage, preserving most

of the original con�guration �le’s settings. Our evaluation shows that, when applied to con�guration �les

with poor patch coverage on a statistically-signi�cant sample of recent Linux kernel patches, krepair achieves

nearly complete patch coverage, 98.5% on average, while changing less than 1.53% of the original default

con�guration �le in 99% of patches, which keeps build times 10.5x faster than maximal con�guration �les.
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1 INTRODUCTION

The Linux kernel is a prototypical example of a highly-con�gurable system. Users can adapt the
Linux kernel to virtually endless combinations of hardware and software requirements by simply
selecting con�guration options, with no additional programming [11, 32, 39]. This high degree of
con�gurability allows the Linux kernel to be used in very diverse environments, including all of the
top 500 supercomputers [7], 40% of servers [62], and the majority of Internet-of-Things devices [27].
Nevertheless, this degree of con�gurability complicates testing, because di�erent con�guration
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options lead to the inclusion of di�erent code fragments and thus di�erent runtime behaviors.
Con�gurability is especially challenging when the software is rapidly changing, as changes must
be validated with respect to software con�gurations that actually do include the changed code.
The Linux kernel receives thousands of patches per month, and automated continuous integration
testing is extensively used to cope with this rate of change. To try to achieve patch coverage, i.e., that
all changed lines are taken into account, current continuous integration testing approaches either
use con�guration �les that select as many con�guration options as possible (for the Linux kernel,
make allyesconfig) or use multiple randomly generated con�guration �les (make randconfig),
both of which lead to high build times without guaranteeing success.

State-of-the-art approaches to generating con�guration �les target increasing feature-interaction
coverage or statement coverage, but are not designed for patch coverage. Approaches targeting
feature-interaction coverage systematically test many combinations of features [17, 64], e.g., all
pairs of features or all triples of features. But such approaches do not scale to testing software
with large numbers of con�guration options [50], and even for smaller systems they generate
thousands of con�guration �les, requiring enormous resources to build and test continuously. And
feature-interaction coverage does not guarantee patch coverage [50].

Statement-coverage approaches, in contrast, seek to cover the most code with the fewest con�g-
uration �les [50], which results in high build times, and can still fail to cover patches. Indeed, the
con�guration �le obtained using allyesconfig takes more than ten times longer to build than the
Linux kernel’s default con�guration (obtained using make defconfig), and the very large size of
allyesconfigmeans that it is not suitable for booting on some machines [48]. Statement-coverage
approaches are thus highly resource intensive for continuous integration testing, which needs to
test hundreds of patches several times a day. Moreover, when examining build-test reports from
the Linux kernel 0-day build testing service [22], the large majority (63%) are randomly-chosen
con�gurations (randconfig) compared to many fewer reports of allyesconfig (15%) (Section 2).

To achieve patch coverage while preserving the original con�guration �le and its build times, we
propose to construct con�gurations that are targeted to the speci�c changes found in a given patch.
We introduce a new algorithm, called krepair, to solve the problem of generating con�guration �les
for e�cient continuous integrating testing of highly-con�gurable software. It works by repairing a
user-provided con�guration �le to ensure patch coverage without resorting to maximal con�gura-
tions, and preserves most of the original con�guration �le’s settings. For instance, Linux’s small
default con�guration (make defconfig) rarely covers the code in patches but builds relatively
quickly. After repairing by krepair for a given patch, the repaired default con�guration almost
always covers the patch with only marginal additional build time, while in most cases, krepair
only takes a few minutes to �nd a covering con�guration �le. This approach thus retro�ts existing
continuous integration testing for highly-con�gurable software to provide high patch coverage
with little additional cost, since it repairs any existing con�guration �les already used or generated
by testers.

krepairworks by discovering, using automated reasoning, a small set of changes to a con�guration
�le that will ensure patch coverage. It �rst collects a set of patch coverage constraints for all changed
lines of code. This step draws on statement-coverage approaches [66], using existing line coverage
constraint extractors [31, 33, 53] and building on the VAMPYR algorithm [66] to �nd a set of patch-
covering constraints for a given patch. The challenge for krepair is to combine these constraints
with a test platform’s existing con�guration �le, which often has low patch coverage but fast build
times, without introducing contradictions; such contradictions indeed often arise because of the
many complex dependencies among the Linux kernel con�guration options. To overcome this
challenge, krepair uses an automated theorem prover to detect which con�guration �le settings
cause contradictions with the patch coverage constraints and removes these settings, little by
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little, until the resulting con�guration �le satis�es the constraints. Then, it repopulates missing
con�guration settings by querying the prover for a solution that preserves the patch constraints.
Since automated theorem proving is expensive, krepair employs several optimizations to reduce
the number of calls to the prover. When there are mutually-exclusive changes in a patch, i.e., no
one con�guration �le can cover the patch, krepair detects this and generates a small set of repaired
con�guration �les that collectively cover the whole patch. In practice, 97% of patches we have tested
produced just one con�guration �le. We have implemented krepair in Python as a command-line
tool that works on the Linux build system, a build system that is also used by other low-level
systems software, such as BusyBox [1] and coreboot [21].
We evaluate krepair by measuring how well it ensures that con�guration �les cover patches

while keeping the build times fast enough for continuous integration testing. We use a statistically
signi�cant sample of patches from one full of year of about 71,000 patches resulting in a sample
of 507 patches. We quantify patch coverage as the number of removed or added lines included
by the build con�guration divided by the total number of removed or added lines in the patch�le.
To measure patch coverage, we intercept the build system to check whether the �les and lines of
the patch have been included in the build, then we compare the coverage of each patch before
and after repair. To measure build time, we build the entire kernel from scratch on an AMD EPYC
compute server using the con�guration �le and record the wall clock time. We compare the patch
coverage and build time against the Linux default con�guration and its statement maximizing
con�guration �le allyesconfig. The set of con�guration �les generated by krepair achieves
98.5% patch coverage on average, compared to 21.7% for the default con�guration �le, defconfig.
krepair’s con�guration �les even have higher coverage than allyesconfig on average, which
covers 88.5%. But krepair’s set of defconfig-based con�guration �les are 10.5x faster to build
than allyesconfig and comparable in build time to defconfig. In short, krepair achieves the
patch coverage of statement-covering approaches without the cost in resources, taking only a small
fraction of the build time, while krepair itself �nds a patch-covering con�guration �le in a few
minutes in most cases.

krepair achieves fast build times, because it preserves most settings from its input con�guration
�le while still covering patches. We show that in 99% of patches, it only changes 1.5% or fewer
con�guration options to achieve patch coverage. Additionally, since random con�guration testing
is used by some of the largest industrial continuous testing infrastructures [20, 22], we also measure
how much patch coverage such testing can achieve. We show that a single random con�guration
�le only achieves 29.2% patch coverage on average, while adding more random con�guration �les
has diminishing coverage returns, plateauing at around 75% with 10 random con�guration �les.
Moreover, using multiple random con�guration �les to achieve patch coverage increases build
time, since each random con�guration �le needs to be built individually for testing. We even �nd
some build errors that were overlooked when the patches were integrated into the Linux kernel,
showing that krepair complements existing testing approaches. We describe the 18 build errors
found by repaired con�guration �les, including 2 errors that had not yet been �xed, one of which
has already had our patch accepted by the Linux developers.
This paper makes the following contributions:

• An algorithm that automatically repairs existing con�guration �les to cover patches with
little e�ect on build times (Section 3).
• The implementation of krepair, with caching to improve performance (Section 4).
• An evaluation of krepair for patch coverage, build times, and con�guration preservation, with
a comparison to statement-coverage maximizing and random con�guration-�le generation
approaches (Section 5).
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2 BACKGROUND

When testing tools do not ensure patch coverage, they cannot exhaustively test changes to the code.
For instance, syzbot performs continuous testing of the Linux kernel using the syzkaller [35]
fuzz-tester and was responsible for the majority of credited reports to the release v4.9 [19]. But it
relies on a small, �xed set of con�guration �les with the con�guration options necessary to run
syzbot [35]. These con�gurations provide no assurance that code in new patches gets compiled
before testing. A memory leak in the Linux kernel [63] that syzkaller can detect [2] remained in
the kernel for months, because the con�guration option controlling inclusion of the buggy code was
not enabled. syzkaller only found the bug months later, after the con�guration option happened
to be included by the default con�guration in a later version of Linux [3].
To understand the con�gurations that the Linux kernel developer community considers to be

useful to test, we study the e-mail history1 of the Linux kernel 0-day build testing service [22], a
continuous integration service developed by Intel. This service performs both performance tests and
build tests (including running various static analysis tools), and mails reports to patch developers on
any detected regressions. Accordingly, we only have access to information about the con�gurations
in which regressions were detected, but these are also the con�gurations that have been the most
useful. We downloaded all of the available build-test messages from October 1, 2019 through August
27, 2022, resulting in 36,115 reports from the 0-day service containing con�guration �les. Of these,
the largest proportion are created using make randconfig, amounting to 22,702 con�gurations, or
63% of the total. This is followed by make allyesconfig at 5,551 (15%), make defconfig at 2,708
(7%), and make allmodconfig (analogous to allyesconfig, but trying to select as many modules
as possible) at 2,446 (7%). The remaining 8% were miscellaneous con�guration �les. These results
indicate that while the 0-day service does �nd the statement-coverage targeting con�guration
allyesconfig to be useful, most of its results are derived from make randconfig, which typically
results in much smaller con�gurations. But, as we show (Section 5), randconfig provides little
guarantee of patch coverage, even when run many times.
To help understand the challenges of performing continuous testing of highly-con�gurable

software, we �rst overview the space of approaches to generating con�guration �les for testing
such software. Then we describe the Linux kernel build system, particularly focusing on the Kcon�g
language, and present a patch that raises con�guration challenges. We �nally consider how the
Linux kernel build-system design impacts the problem of achieving build coverage of the lines
a�ected by a given patch.

2.1 Configuration Testing Approaches

Fundamentally, the �rst challenge of testing of changes to highly-con�gurable software is to ensure
that changes are not excluded from the tested binary, i.e., that the patched lines of code are compiled
by the build system into the binary. Performing continuous testing requires �nding con�gurations
that cover patches fast enough so that the testing infrastructure can keep up with the rapid pace of
changes, which in Linux kernel development means hundreds of patches a day. There is a trade-o�
in build time, which can require hours of processor time, and patch coverage. Table 1 compares
state-of-the-art con�guration �le generation techniques along these two axes.
Con�guration �le generation approaches that cover many feature interactions require gener-

ating many con�guration �les. For instance, C-wise sampling ensures that each combination of C
con�guration options is covered by some con�guration �le. For 2-wise sampling, each of the four
possible combinations of two options set to on or o� needs to be covered by some con�guration
�le for all pairs of con�guration options. As the Linux kernel has over 15,000 con�guration options,

1https://web.archive.org/web/20221023104058/https://lists.01.org/hyperkitty/
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Table 1. Comparing configuration testing approaches for use in continuous testing.

Patch Coverage

Lower Higher

B
u
il
d
T
im

e

Sl
o
w
er t-wise [50, 64] allyesconfig [4]

Combinatorial testing [17] VAMPYR [66]
Fa
st
er randconfig [4]

defconfig [4]
krepair

2-wise coverage would require considering a very large number of pairs, implying that even the
most e�cient algorithms cannot cover all interactions for the Linux kernel [50]. Such approaches
are not designed for the problem of e�cient patch coverage, but rather to test feature interactions,
so repurposing them for patch coverage means very resource-intensive build times, due to the
many con�guration �les needed.
Random con�guration-�le generation for testing is popular in industrial testing tools [20, 22],

because each con�guration �le is much faster than using a statement-covering con�guration �le. But
our evaluation shows that individual randomly-generated con�guration �les have a low chance of
covering patches. Industrial tools compensate for a lack of coverage by generating multiple random
con�guration �les, dozens in some cases [15, 22]. But as our evaluation (Section 5) also shows,
adding more random con�guration �les has diminishing returns for patch coverage. The tenth
random con�guration �le adds less than a percent of additional coverage, and ten con�guration
�le collectively only achieve 74.6% patch coverage on average. Adding more con�guration �les
also in�ates build time, because the total build time is proportional to the number of con�guration
�les used.
Statement-maximizing approaches, such as allyesconfig, do have high patch coverage, since

they attempt to cover as much of the source code as possible in one or a few con�guration �les.
But this good patch coverage, 88.5% on average, comes at the cost of much slower build times,
around four hours on average on a typical development workstation, compared to the default
con�guration or to krepair’s con�guration �les, which take only around 20 minutes on average.
VAMPYR is a state-of-the-art statement coverage approach that improves on allyesconfig [66].
Based on presence conditions for all of the statements in a targeted code base, it employs a SAT
solver to �nd a set of con�guration settings to cover the lines not covered by allyesconfig, and
then exploits the Linux kernel’s make olddefconfig to extend each resulting set of con�guration
settings with default values to form a complete con�guration. VAMPYR thus produces a set of
con�guration �les covering more than allyesconfig, but at the cost of even slower build times,
since it requires building at least for allyesconfig as well as for its generated con�guration �les,
and the set of generated con�guration �les is not limited to what is needed for a speci�c patch.
While evaluated for maximal statement coverage, VAMPYR’s constraint covering approach can also
be applied to only cover a patch’s line constraints [67]. krepair builds on this constraint coverage
approach by adding con�guration repair, which automatically reconciles any existing con�guration
�le, even very small ones, with patch coverage constraints, resolving the trade-o� in build time
and patch coverage by simultaneously enforcing patch coverage constraints and preserving most
of the original con�guration �le’s settings.
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Fig. 1. Build system components handling configuration.

2.2 Linux Kernel Configuration

To help explain why the problem of �nding an e�cient, patch-covering con�guration �le is so
di�cult, let us �rst look at how the build system de�nes and uses con�guration options. The Linux
kernel build system takes a con�guration �le as input and determines what �les and lines of source
code to compile into the kernel binary. Figure 1 shows the relevant components of the build system.
The �rst component is a collection of Kcon�g �les spread across the Linux kernel code base

that formally describe the constraints on the con�guration options relevant to each subsystem.
Kcon�g is used to validate the input con�guration �le. Figure 2 shows a patch2 (Figure 2c) and
Kcon�g speci�cations (Figure 2a) for the options controlling the patched code. The option with
the simplest constraints is PM (Figure 2a, lines 11-12), which implicitly determines the value of the
con�guration variable CONFIG_PM. PM is declared as a Boolean (yes or no). The associated prompt
"Device power ..." indicates that the user will be asked with this prompt for the desired value.
ARCH_EXYNOS4 (line 16) is declared similarly, but it has a default value of y (yes, line 18). In contrast,
the constraints on ARM_GIC, ARM_GIC_PM, and GIC_NON_BANKED, indicate that, while these options
are also Booleans, they cannot be speci�ed directly by the user, as no prompt is provided. Such
con�guration options may be declared to depend on the selection of another con�guration option
or can be selected by some other option. ARM_GIC_PM depends on PM (line 5), and if it is selected,
then it also selects ARM_GIC (line 6). Likewise, selecting ARCH_EXYNOS4 selects GIC_NON_BANKED.
Finally, further constraints can be expressed using conditionals (e.g., if ... endif), as illustrated
on lines 15-20. A provided con�guration �le is checked to respect the various constraints speci�ed
by the Kcon�g �les, and is enhanced with any selected or dependent con�guration options based
on the options selected in the con�guration �le. The result is a con�guration that controls the rest
of the build process.

The second component is the collection of Kbuild Make�les spread across the Linux kernel code
base that describe how to build and link the various subsystems. As illustrated in Figure 2b, these
Make�les use the con�guration variables to determine what �les to include in the generated kernel.
For example, irq-gic.c is only compiled and included if CONFIG_ARM_GIC is set.

Finally, the third component is the source code itself. Illustrated by line 4 of the patch (Figure 2c),
source code may refer to con�guration variables directly via #ifdefs. These #ifdefs select the
speci�c lines of code that will be included in the compiled kernel. Changing the con�guration �le
changes requires rebuilding the whole kernel, i.e., make clean, because make has no visibility over
the #ifdefs used within C �les.

2.3 Motivating Example

We next look at the same con�guration constraints from the point of view of covering the changed
lines of a patch. The patch in Figure 2c a�ects the �le drivers/irqchip/irq-gic.c. It is formatted
in the standard uni�ed di� format [49], in which the - pre�x (lines 5, 8, 12, and 16) indicates a
line to remove and the + pre�x (lines 6, 9, 13, and 17) indicates a line to add. To cover the patch,
a con�guration must cause the modi�ed �le to be included in the build and ensure that all the
changed lines are included in the build.

2https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8594c3b85171b6f68e34e07b533ec2f1

bf7fb065
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1 config ARM_GIC

2 bool

3 config ARM_GIC_PM

4 bool

5 depends on PM

6 select ARM_GIC

7 config GIC_NON_BANKED

8 bool

9

10 // from kernel/power/Kconfig

11 config PM

12 bool "Device power management core functionality"

13

14 // from arch/arm/mach-exynos/Kconfig

15 if ARCH_EXYNOS

16 config ARCH_EXYNOS4

17 bool "Samsung Exynos4"

18 default y

19 select GIC_NON_BANKED

20 endif

(a) Kconfig specifications for options controlling the patched code, showing a few of the many dependencies.

1 // from drivers/irqchip/Makefile

2 obj-$(CONFIG_ARM_GIC) += irq-gic.o

(b) Relevant build specifications for the patched file.

1 --- a/drivers/irqchip/irq-gic.c

2 +++ b/drivers/irqchip/irq-gic.c

3 @@ -127,35 +124,27

4 #ifdef CONFIG_GIC_NON_BANKED

5 -static void *gic_get_common_base(union gic_base *base)

6 +static void enable_frankengic(void)

7 {

8 - return base->common_base;

9 + static_branch_enable(&frankengic_key);

10 }

11 #else

12 -#define gic_set_base_accessor(d, f)

13 +#define enable_frankengic() do while(0)

14 #endif

15 @@ -1165,7 +1149,7

16 - gic_set_base_accessor(gic, gic_get_percpu_base);

17 + enable_frankengic();

(c) Hunks from the patch to Linux source, edited for brevity.

Fig. 2. An example patch to the Linux source and the configuration specifications controlling its buildability.
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Fig. 3. Workflow of krepair.

We start with the �le. Checking the Make�le in the same directory (Figure 2b) shows that building
the �le requires selecting the ARM_GIC con�guration option. As previously noted, the user cannot
select this option directly; instead, it is necessary to trace across multiple Kcon�g �les to discover
that this option can be selected by the option ARM_GIC_PM. The latter option also cannot be selected
directly but depends on PM.

We next turn to the lines changed within the �le. Indeed, simply ensuring that the build includes
the �le does not ensure that the build includes the changed lines, because some of these lines are
under an #ifdef. The #ifdef involves the con�guration option GIC_NON_BANKED; another search
is needed to identify a selectable option that will cause this option to be selected. But for this patch
it is not su�cient to select GIC_NON_BANKED, because the patch modi�es code under the #else as
well. The changes are thus mutually-exclusive and therefore covering all the changed lines requires
at least two con�guration �les, one that selects GIC_NON_BANKED, and another that does not.
Still, even with all of the above collected information, the task of creating usable covering

con�guration �les is not complete. There are thousands of other options that need to be assigned,
some of which may even in�uence whether the two identi�ed options themselves are selectable.
Test cases that involve speci�c kernel features may introduce more con�guration con�icts.

Assessment. The challenges in �nding one or more con�gurations that cover a patch, as illustrated
by the motivating example, come from the design of the build system. Indeed, the build system
is designed to take a con�guration �le and determine what lines of code to build, but not the
other way around. We can think of the build system as de�ning logical constraints on each line of
source code [53], and a con�guration �le as one solution to those constraints. Determining the
inverse, i.e., what con�guration �les build a certain line of code, is equivalent to a satis�ability
problem, which is computationally expensive in the general case. Finding what repairs to make
to an existing con�guration �le requires determining what options directly control the patched
lines, then reconciling those options with their dependencies and the settings in the existing �le as
much as possible, favoring patch coverage when settings in the existing �le contradict the patch
coverage constraints.

3 THE KREPAIR ALGORITHM

krepair automatically repairs an existing con�guration �le to ensure complete coverage of buildable
code in a given patch. It works in two steps: (1) discover a covering set of constraints for the lines
changed (removed or added) by a patch and (2) �nd a set of changes to the existing con�guration
�le that will satisfy these constraints.
Figure 3 shows the high-level krepair work�ow. Constraint Analysis takes as input the patch

itself and the source code of the build system. The output of the Constraint Analysis is a set of patch
coverage constraints found by statically analyzing the build system code. Con�guration-File Repair
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Algorithm 1 Krepair(patchlines, configuration, commitid) - Repair an existing con�guration
�le to cover the patch.

Input: A list of (�le, line) pairs in patchlines from the patch and an existing con�guration �le
configuration.

Output: A set of repaired con�guration �les that cover that patch.
1: function Krepair(patchlines, configuration, commitid)
2: allrepaired← ∅

3: do

4: current← true

5: covered← ∅

6: for file,line ∈ patchlines do

7: constraints← GetConstraint(file, line, commitid)

8: if isSAT(current ∧ constraints) then

9: current← current ∧ constraints

10: covered← covered ∪ {(file,line)}

11: end if

12: end for

13: if covered ≠ ∅ then

14: repaired← Repair(configuration, current)

15: allrepaired← allrepaired ∪ {repaired}

16: patchlines← patchlines − covered

17: end if

18: while patchlines ≠ ∅ ∧ covered ≠ ∅

19: return allrepaired

20: end function

21: function Repair(configuration, constraint)
22: repair← configuration

23: repeat

24: unsat← UnsatCore(repair ∧ constraint)

25: repair← repair − unsat

26: until unsat = ∅

27: return SATSolve(repair ∧ constraint)

28: end function

then takes as input the existing con�guration �le to repair and produces one or more con�guration
�les that are close to the input �le but modi�ed to cover the patch.

Algorithm 1 describes krepair in pseudo-code. The algorithm takes as input a list of pairs of the
�le name and line number of those lines that are changed (added or removed) by a patch �le. The line
number of an added line re�ects its position after applying the patch. The line number of a sequence
of consecutive removed lines is the number of the line just preceding the removal after applying the
patch. The second input is the con�guration �le that needs repair. The third input is the version of
the code, as a commitid, that has had the patch applied to it. The output is a set of con�guration �les,
since some patches may touch lines depending on mutually-exclusive con�guration values. For
example, the patch in Figure 2c changes both arms of an #ifdef. Therefore, our algorithm cannot
just conjoin all patch line constraints. Instead, it tries to �nd a small set of satis�able con�gurations
that, together, cover the entire patch. In practice, we �nd a single con�guration for 97% of patches,
�ve or fewer for more than 99% of patches, and 23 in the worst case.
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3.1 Constraint Analysis

The algorithm �rst performs constraint analysis to partition the set of constraints controlling
each patched line into subsets of constraints that do not contradict each other. For this, it iterates
repeatedly over the set of patched lines (lines 3–18). Each iteration starts with an empty constraint
(line 4). krepair then iterates over each (�le, line) pair (lines 6–12), and greedily tries to cover as
many pairs as possible within a single constraint (current). This part of the algorithm draws from
VAMPYR [66], which achieves statement coverage by �nding covering constraints. Each (�le, line)
pair’s constraint is provided by third-party tools that analyze the build system (GetConstraint
on line 7).
If the (�le, line) pair’s constraint does not contradict the constraint accumulated so far (line 8),

the algorithm updates the current constraint with that of the (�le, line) pair (line 9). It keeps track
of which (�le, line) pairs have already been accumulated (line 10), so that the algorithm will remove
them from the set of candidates (line 16). Once as many (�le, line) pairs as possible have been
accumulated, the algorithm repairs the con�guration �le according to the accumulated current
constraint (line 14) and adds the result to a collection of repaired con�gurations (line 15). krepair
stops trying to cover patch lines when either there are no more patch lines left to cover, or when it
�nds that no other patch lines can be covered by any con�guration (line 18). The latter happens
when (�le, line) is uncon�gurable, e.g., if it is con�gurable in another architecture or dependent on
dead con�guration options.

Optimizations. This algorithm relies on third-party constraint collection tools (line 7) and satis�a-
bility solving to partition the set of patch line constraints (line 8), both of which are computationally
expensive. We make three optimizations. The �rst optimization checks whether the patched line is
inside any #ifdef block. If not, then there is no need to collect constraints from the source �le; the
line is always included if the �le is included. The second optimization checks whether a changed
line is within the same set of #ifdef blocks as an already-seen changed line. In this case, there is no
need to collect constraints for the current changed line. These optimizations reduce the number of
calls to the constraint-�nding tool. The third optimization targets nested #ifdef blocks. In this case,
if the constraints for the inner block are satis�able, then the constraints for the outer block must
also be satis�able. Conversely, if the constraints for the outer block are not satis�able, then the
constraints for the inner block are also not satis�able. This optimization reduces the number of
calls to the satis�ability checker.

3.2 Configuration-File Repair

The repair part distinguishes krepair from previous coverage approaches by automatically tailoring
an existing con�guration �le so that it is patch covering without much change to the con�guration.
The Repair function in Algorithm 1 repairs the con�guration �le according to the given patch
coverage constraints (lines 21–28). It takes a con�guration �le and a constraint from krepair’s
constraint analysis and returns a con�guration �le close to the input �le, but modi�ed to satisfy
the patch coverage constraints. The repair algorithm repeatedly checks the con�guration �le
against the patch coverage constraints and gradually removes con�guration option settings until
the con�guration �le satis�es the constraints. Then, it repopulates any removed con�guration
option settings by taking a satisfying solution to the constraints.
The key trade-o� in the repair algorithm is the computational complexity of �nding the right

settings to remove to satisfy the constraints of the patch while limiting the number of removals
to keep the con�guration �le similar to the original. A naive optimal algorithm for �nding the
minimal number of removals would be to check all combinations of setting removals against the
constraints. But this is prohibitively expensive, having an exponential number of satis�ability
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checks, i.e., the power set of thousands of con�guration options. A faster approach would be to
remove some arbitrary number of options, check satis�ability after removing them, and repeat as
needed. But this approach might unnecessarily remove options that do not con�ict with the patch
coverage constraints.
Our algorithm has the better performance of the faster approach, while homing in on options

that are preventing satis�ability more quickly. For this, it repurposes feedback from the automated
theorem prover, called an unsatis�able core, to guide what settings to remove. The unsatis�able core
is a (not necessarily minimal) subset of the original clauses that is still unsatis�able [47]. By only
removing settings in the unsatis�able core, Repair gradually �nds a subset of the con�guration
�le options preventing satis�ability (lines 23-26). Each new satis�ability check produces a new
unsatis�able core (line 24), which provides new removal candidates (line 25). Since Krepair only
passes satis�able patch coverage constraints to Repair, the unsatis�able core always contains at least
one con�guration option as long as configuration ∧ constraint is unsatis�able, guaranteeing
termination. Finally, the missing constraints are repopulated by �nding a satisfying solution to the
reduced con�guration �le under the patch coverage constraints (line 27).

4 IMPLEMENTATION

krepair is implemented as a command-line utility in ∼3000 lines of python code. It relies on third-
party constraint-�nding tools [31, 33, 53] for GetConstraint. krepair runs from the root of a
Linux kernel source tree, so it can identify the build system source �les from its working directory.
It takes a patch�le and an existing con�guration �le on the command-line and produces output
con�guration �les in the format expected by the build system.

4.1 Processing Patch Files

Linux kernel patches are represented in the uni�ed di� format [49]. krepair parses a patch using
whatthepatch [5] and converts the patch into a set of after-patch (�le, line) pairs. krepair is
line-oriented, so a patch that adds a new �le requires checking coverage of all lines in the �le.
krepair does nothing when a �le is simply renamed, as no lines are changed. It also does nothing for
removed �les, as they are no longer buildable after the patch and therefore have no build constraints.
Removed lines, however, are considered changes just like added lines, since we can identify the
con�guration constraints a�ected by both by gathering the constraints for the �le and any #ifdef

that contain them.
The build system only explicitly de�nes constraints for compilation units. Therefore, krepair

provides limited support for patches to C header �les, since headers are only included indirectly by
other source �les. We use a simple heuristic to �nd covering constraints for lines in header �les:
krepair assumes the header �le has the same build constraints as the compilation units modi�ed
by the patch. While this heuristic has some success in our evaluation, it means that patches that
only modify header �les are not supported, which we only encountered in 2% of patches in our
evaluation.

4.2 Collecting Build Constraints

krepair uses third-party static analysis tools to collect build system constraints from each of
the three build components: kclause [53] for Kcon�g con�guration speci�cation constraints,
kmax [31] for Kbuild Make�le constraints, and SuperC [33] for preprocessor-level constraints in
C source code. Both kclause and kmax represent constraints in the SMT-LIBv2 format [12], a
standard representation of logical formulas for automated theorem provers. SuperC, however,
was not originally designed for reporting C preprocessor constraints, although its preprocessor
collects them internally. We forked the SuperC source code and added support for exporting the
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con�guration constraints of all #ifdef ranges and their constraints from a given source �le in the
SMT-LIBv2 format.

krepair’s constraint collection module interfaces with all three tools, providing python wrappers
around each to implement the GetConstraints function from Algorithm 1. For a given (�le, line)
pair, GetConstraint collects the results from each of the three tools, and then conjoins them into
a single constraint for the line.

4.3 Improving Performance

Our algorithm only needs access to per-line build constraints for a given patch. But the tools
we use to collect constraints were designed to run on the entire build system source �les. For
instance, kclause takes as input the entire 140,000+ lines of Kcon�g speci�cation and converts it
to about 60,000 logical clauses all at once. The tools are thus time-consuming to run, with kclause

typically taking 2-3 minutes, kmax 10-15 minutes, and SuperC about a minute or less on commodity
hardware, all to get a single line’s constraints, depending on the Linux kernel version and the target
architecture. To reduce the cost of constraint collection for a single patch, we modi�ed the kmax
interface to support collecting per-�le constraints on-demand. We also modi�ed SuperC to emit
per-line constraints for the entire source �le.
The Kcon�g con�guration speci�cation is a single large constraint for each of the supported

architectures. Since the Kcon�g speci�cations do not change with every patch, krepair manages an
on-disk cache of Kcon�g constraints indexed by a unique identi�er of the Kcon�g version that will
be reused as long as the Kcon�g speci�cation has not changed. Similarly, Kbuild Make�les, which
de�ne constraints on source �les, only need to be collected once for a given �le until the Make�le
source code changes.

4.4 Implementing Repair

As with build constraints, the con�guration �le is represented as a set of SMT-LIBv2 constraints.
krepair has functions to parse con�guration �les into constraints and to deparse satisfying solutions
to constraints back into the con�guration �le format. The implementation of the repair algorithm
(Algorithm 1) uses the z3 [23] automated theorem prover to check satis�ability (isSAT), �nd an
unsatis�able core (UnSATCore), and get a satisfying solution (SATSolver). z3 is not guaranteed to
provide a minimal unsatis�able core, but we �nd that the resulting cores are small enough that our
repairs incur little change, less than 2.23% change for 99% of repairs.

5 EMPIRICAL EVALUATION

We evaluate krepair on a representative sample of Linux kernel patches, measuring how well
it ensures that con�guration �les cover patches while keeping the build times fast enough for
continuous testing. We study patches from the Linux kernel, because it is large, highly-con�gurable,
very actively developed, and used in critical computing infrastructure.

5.1 Experimental Setup

Sampling patches. We have taken a random sample of 507 patches out of the approximately 71,000
patches from one recent whole year (2021/09/19–2022/09/18) of Linux kernel development, which
provides a 5% margin of error with a 98% con�dence level. We performed sampling by cloning
the mainline Linux kernel repository [4] and using git log on the above date range. We exclude
merge commits, which typically do not change code, and include only patches to buildable kernel
source �les, which excludes documentation text �les, example programs, build tools, and header
�les. Such �les are not covered by any con�guration �le, since they do not get compiled and linked
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into the kernel binary, although header �les may be indirectly covered when they are included in
other kernel source �les.
Con�guration �le collection. Our baseline for a fast-building con�guration �le is the default

con�guration �le distributed with the kernel source for the x86 platform. This con�guration �le,
created with make defconfig, is a small, quick-to-build kernel con�guration frequently recom-
mended as a starting point for building the kernel [35, 74] and frequently used in testing [22, 35].
Compiling with defconfig is fast, because it enables relatively few options, therefore covering very
little of the code. Our baseline for a statement-covering con�guration �le is make allyesconfig,
which attempts to enable as many con�guration options as possible. Although mutual exclusion
among con�guration options prevents coverage of all code, it still covers the large majority of
code (and therefore patches), at the cost of much longer build times. While VAMPYR improves on
allyesconfig’s coverage, it always builds allyesconfig plus additional con�guration �les [66].
Thus, it always causes even higher build times than allyesconfig. We repair defconfig by ap-
plying krepair to the con�guration �le to ensure patch coverage, which we expect to achieve the
best of both worlds, the high patch coverage of allyesconfig and the much faster build times
of defconfig. Additionally, we evaluate the patch coverage capability of randomly generated
con�guration �les, which is a lightweight method to attempt to increase code coverage. When eval-
uating random con�guration testing, we use Linux’s built-in random con�guration �le generator
(make randconfig). For evaluating how much change in the con�guration �le krepair causes, we
compare against defconfig as well as allnoconfig. allnoconfig is the Linux kernel’s minimal
con�guration �le that disables most con�guration options, and we use it as an extreme test case
for krepair since it covers few patches.
Metrics collection. To collect metrics for a con�guration �le on one patch from the sample, we

�rst check out the kernel using the patch’s commit ID. We con�gure and build the kernel using
each of the tested con�guration �les, collecting patch coverage and build time. Patch coverage
is evaluated by saving the source code of the patched �les after they are con�gured by the build
system, i.e., the preprocessed .i �les, and checking which lines of the patch have been included
or excluded by the build system. We quantify patch coverage as the ratio of changed (added or
removed) lines included in the build over the total number of changed lines in the patch.3 When the
patch adds an entirely new �le, we consider each line in the �le as added by the patch. When the
patch removes a �le, we consider it as having no lines, since there is no way to build the a�ected
lines of code. Removed lines from an existing �le, however, are measured by looking at whether
the enclosing #ifdef block around the removed line (or the entire �le, if there is no #ifdef) is
included by the con�guration �le, since that controls the inclusion of the change and does get built.
We quantify build time by recording the wall clock time of the build process (make) using the UNIX
time utility.
Parallel builds. make supports parallel builds with the -j �ag, which allows make to compile

source �les in parallel when there are no dependencies between them. Parallel builds do not a�ect
patch coverage or build size, since the same �les are compiled with the same con�guration �le; they
only a�ect build time. For our build time comparisons, we use eight concurrent build threads, since
this re�ects the power of modern developer laptops, as well as a single thread to record sequential
build time. We show the e�ect on performance of parallel builds in Section 5.3 by comparing the
sequential and parallel build times of the kernels in the sample.
Cross-compilation.We run our experiments on a 64-bit x86 machine, but some patched source

code can only be built for non-x86 architectures. The patch format does not force the developer to

3Non-source �les, such as documentation or example source code, are not considered in the total lines, since they are

never compiled into the binary.
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Fig. 4. Patch coverage plo�ed against build times.

specify for what architecture the code is meant to be built; indeed, one patch may touch code built
for multiple architectures. krepair, however, can detect for which architecture(s) a patch is built by
exploring the space of con�guration constraints for each architecture’s Kcon�g speci�cation. To
build code for other architectures, we perform cross-compilation using the make.cross4 utility,
which automates downloading and installing build tools for most other architectures (2 patches
are from an architecture that is not supported, so we could not automatically evaluate their patch
coverage). We �nd that 11% of patches in our sample require cross-compilation.
Computing platform. All experiments were run on a server with dual AMD EPYC 7742 64-

Core Processors and 512GB of RAM running Ubuntu 22.04.03 LTS. Since this machine allows for
high parallelism and our builds are only using either one or eight threads, we parallelized the
experiment scripts. All experiment scripts are available in the code repository [6] as well as the
artifact archive [77] under scripts/krepair_evaluation/paper/.

5.2 Research �estions

We ask the following research questions (RQs) to evaluate krepair:

RQ1 (E�cient Patch Coverage) Does krepair produce con�guration �les with high patch coverage
and fast build times?

RQ2 (Performance) How fast is krepair?
RQ3 (Con�guration Preservation) How well does krepair preserve the settings of the repaired

con�guration �le?
RQ4 (Random Testing) How well does random con�guration testing cover patches compared to

krepair?
RQ5 (Build Errors) Can krepair help reveal build errors?

5.3 RQ1: E�icient Patch Coverage

In our experiment, we collect patch coverage and build-time metrics when building each commit in
the sample using con�guration �les made using make defconfig, krepair to repair defconfig,
and make allyesconfig (randconfigwill be evaluated in RQ4). Figure 4 compares patch coverage
(x-axis, higher is better) to the build time (y-axis, lower is better). Each point is the average of all

4https://github.com/fengguang/lkp-tests/blob/master/sbin/make.cross
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Table 2. Distribution of percent change incurred by krepair.

Comparisons Min 25th Median 99th Max

allnocon�g 0.46% 1.06% 1.48% 2.23% 4.98%
defcon�g 0.14% 0.21% 0.27% 1.53% 9.52%
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Fig. 6. Aggregate coverage of random configuration files.

In addition to evaluating krepair’s repair of defconfig, we also evaluate its e�ectiveness on
allnoconfig. allnoconfig is the Linux kernel’s minimal con�guration �le that disables most
con�guration options and therefore is an extreme test case for krepair since it covers few patches.
Table 2 is the percentile distribution of change, as a percentage of all con�guration options

available in the kernel, incurred by krepair when repairing both defconfig and allnoconfig. For
defconfig, it changes no more than 10% of the con�guration options at the extreme, and no more
than 1.53% for 99% of the patches in the sample.

Similarly, krepair �nds that only a relatively small amount of change is needed for allnoconfig,
in spite of it having few options enabled, in order to cover the patches in the sample. In the majority
of cases, allnoconfig requires more changes than defconfig, which is to be expected, given how
few options the con�guration selects initially. But at the extreme cases, defconfig requires more
changes; when a con�guration �le has comparatively more options enabled, there is a chance that
the enabled options contradict the dependencies needed for covering the patch, requiring krepair
to �rst disable these options, causing higher total change.

5.6 RQ4: Random Testing

Random con�guration �le testing is commonly used in continuous con�guration testing, so we also
evaluate how the patch coverage from multiple random con�guration �les compares to krepair’s
coverage. For each patch in our sample, we generate a series of ten random con�guration �les,
measuring their aggregate patch coverage. Figure 6 shows the aggregate patch coverage of 1 to 10
randomly generated con�guration �les for each patch in the sample. The error bars show the 95%
con�dence interval of the average for the sample.

Generating a single random con�guration �le results in low patch coverage, at 29.2%. Increasing
the number of con�guration �les increases coverage, but with diminishing returns; the amount of
additional coverage plateaus at 9 random con�gurations, which in aggregate only cover around
74.4% of patches on average. In contrast, krepair achieves much higher patch coverage, 98.5% on
average, and almost always with a single con�guration �le instead of having nine con�guration
�les requiring more build time.
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Table 3. Build errors found when evaluating krepair.

Build Error Commit ID(s)

Warnings treated as errors 3f977c57, c1318b39, 6ece49c5, c974f755, 5dee8bb8
Linker error 0258cb19, e0905322, 16dd1fbb, dfbdcda2, 661c399a
Implicit function declaration f9135821, b5054161, ae9fd76f, 4a46e5d2
Incompatible pointer type 800fe5ec, c8992c�
Frame size error 8763e4c1
Undeclared variable bce84458

5.7 RQ5: Build Errors

In our experiments, we found that some con�guration �les we generated for patch coverage failed
to build. This is unsurprising, since it is infeasible for developers to build all variants of the kernel.
While defconfig and allyesconfig are frequently tested and typically do not trigger build errors
in released code (code given a version number), small variations in a con�guration �le can expose
new bugs.

We found 18 build errors due to several bugs. Table 3 lists the build errors found, with the commit
ID(s) through which they were found. These bugs were not introduced by the corresponding com-
mits, but were present at the checkout of the commit. Ten were due to missing symbol declarations
(linker errors, implicit function declarations, undeclared variables). Missing declarations occur in
highly-con�gurable software when the declaration of a symbol is disabled by one con�guration
option and the use of the symbol is enabled by another. Five build errors were due to -Werror

being enabled by the con�guration �le, causing compiler warnings (which by default do not halt
compilation) to trigger a compiler error. Two commits failed due to pointer type mismatches, and
one due to a display mode subsystem error: “the frame size of 2112 bytes is larger than 2048”. We
patched one of two build errors still replicable in the recent v6.1-rc8 kernel. This patch has been
accepted for inclusion in mainline Linux, while we plan to patch the other. The rest of the bugs
were no longer in the most recent kernel.

Since we build non-x86 patches on x86 hardware, we could not cross-compile some of the patches
due to limitations of our cross-compilation tooling, make.cross. The make.cross script does not
support the newly-added loongarch architecture and some cross-compilers had incompatibility, for
instance, reporting unexpected assembly opcodes. These cross-compilation problems prevented us
from building seven patches: 8c4d1647, 0b452520, 7eafa6ee, 44c14509, 6982dba1, f62b7626, 54cfa910.
krepair determined the parisc 32-bit architecture for two commits, 53d862fa and db2b0d76, while
the con�guration �les instead required the parisc 64-bit cross-compiler, which is not available with
make.cross.

6 THREATS TO VALIDITY

Internal validity. Since krepair relies on existing constraint collection tools [31, 33, 53], any limita-
tions of these tools limit krepair. Speci�cally, these tools only collect constraints from the build
system, while other sources of constraints are not supported, such as run-time uses of con�guration
options, i.e., with C conditionals instead of #ifdef. Additionally, header �le inclusion constraints
are also not available from these tools, though future work on constraint collection could yield
analyses that discover all possible ways a header �le is included across the entire kernel source.
Even without the above limitations, 100% patch coverage may not necessarily be possible in all
cases, as some patches change dead code in #ifdef 0 blocks, which can never be included in any
build.
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External validity.We evaluate krepair on only one software system, the Linux kernel source code,
albeit one of the largest and most highly-con�gurable open-source software products. While our
implementation is targeted to the Linux build system, this build system is also used by numerous
systems and embedded open-source projects (BusyBox, coreboot, zephyr, etc.). krepair’s algorithm,
however, is independent of any particular build system, since it operates on any con�guration
constraints extracted from the software product. krepair focuses on the problem of patch coverage
to enable more e�cient continuous integration, since current approaches cannot even guarantee
that patched lines are built. Testing all the e�ects of a patch, however, goes beyond just line
coverage; succeeding in compiling does not guarantee a test suite will execute the code without
additional analysis. Patch coverage is the �rst step to any kernel testing, so we are exploring future
work on combining our repair approach with kernel fuzz-testing [35], change impact analysis [55],
con�guration interaction testing [76], and other testing strategies [28].

7 RELATED WORK

To the best of our knowledge krepair is the �rst technique to repair Linux con�guration �les for
patch coverage. We highlight work related to krepair and that addresses related problems in the
domain of con�gurable software.
Con�guration coverage. JMake [45] is a previous attempt to �nd a con�guration that covers

a patch. However, it tries only a �xed set of standard con�gurations. JMake also introduces a
mutation-based approach to determining if a line of code is covered. Acher et al. [9] explore the
e�ect of con�gurations on compiled Linux kernel sizes, and compare machine learning approaches
for predicting compiled size from con�gurations. They also explore small Linux builds and their
use cases. Tartler et al. [67] introduce a metric for how much of the source code is covered by a
con�guration. Motivated by the results obtained for this metric, Tartler et al. [66] created VAMPYR,
a statement-maximizing approach discussed in Section 2. Note that VAMPYR is an older tool and
no longer maintained. It only supports up to around Linux 3.2 (released in 2012).
Con�guration constraint �nding. krepair takes inspiration from prior work on collecting con-

straints from Linux build-system code to get patch-covering constraints during repair. Several prior
works extract constraints from Kcon�g speci�cations by translating Kcon�g language constructs
into logical formulas or feature models [24, 44, 53, 57, 58]. Kbuild Make�le analysis collects logical
constraints using both static and dynamic program analyses [13, 31, 51]. Several C preprocessor
static code analyzers model con�guration constraints in logic [30, 33, 40, 60, 72], albeit for parsing,
type-checking, refactoring, bug-�nding, etc., rather than constraint extraction. Prior work on local-
izing con�guration constraints per-line aggregates constraints from multiple sources, including
Kcon�g, Kbuild, and the C preprocessor [34, 41], although it does not scale to the Linux build system.
Collecting line constraints is not enough to create a valid Linux kernel con�guration �le, due to
the need to additionally incorporate basic system functionality and the possibility of con�icting
constraints. While krepair is the �rst tool we know of to automatically achieve patch coverage,
there are applications of con�guration constraints in prior work to other software engineering
problems, including attack surface reduction [42, 43], dead code elimination [68], statistical analysis
of build errors [8], con�guration tracing [29] and con�guration speci�cation bug-�nding [53].
Analyses for other con�guration systems. The Puppet deployment con�guration language has

formal veri�cation by Shambaugh et al. [56], automated repair by Weiss et al. [70], and a formal
model of the system call trace by Sotiropoulos et al. [59]. Formal models are also used for system
con�guration script and resource usage by Hanappi et al. to test if a system is recoverable [37],
as well as by Bouchet et al. [14] to check for public access to Amazon S3 instances. Horton et
al. [38] infer dependencies from Python code snippets to produce Docker speci�cations. Sun et
al. [61] introduce ctests to detect potential system failures from con�guration changes. Cheng
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et al. do con�guration test case prioritization [16]. Tamrawi et al. [65] introduce SYMake, which
performs static analysis of Make�les to detect errors like cyclic dependencies and can aid in
refactoring. MAKAO, by Adams et al. [10], can be used to create graphs of Make�le dependencies
for visualization. Zhang and Ernst explore retaining system behavior after changes [79].

Random sampling for con�guration testing.While random con�guration testing is di�cult to scale
to the Linux build system [50], sophisticated testing approaches for smaller systems include genetic
algorithms [36], pair-wise feature selection [64], and combinatorial interaction testing [18, 52, 75].

Tracking evolution of Linux patches. krepair’s evaluation looks at a sample of patches over time.
Prior work has also measured how the con�guration system evolves over time, in particular how
they relate to code size [46], what patterns are in the mapping between options and implemen-
tation [54], how con�guration options change over time [25], how patches a�ect con�guration
speci�cations [26], and how changes of Kcon�g impact source code [80].
Fixing con�guration errors. A related but distinct line of work addresses the problem of �xing

con�guration errors [69, 71, 73], such as those that appear after code evolution. In using the term
“repair” in our work on krepair, we are referring to automatically modifying a valid con�guration
�le to remedy its lack of patch coverage. But we do not address the problem of �xing erroneous
con�guration �les.

8 CONCLUSION

We have shown how krepair achieves much higher coverage of patches in kernel builds via auto-
mated repair of con�guration �les. Its algorithm’s design and implementation balance the expense
of satis�ability with tool performance to achieve patch coverage comparable to maximal con�gura-
tion �les while preserving most con�guration options settings from the repaired con�guration �le.
krepair keeps build times fast while retaining patch coverage, potentially reducing the energy costs
of con�guration testing which relies heavily on building many randomly-generated con�guration
�les. Our evaluation shows that krepair achieves 4.5x more patch coverage than default con�gura-
tion �les with 10.5x less build time than maximal con�guration �les on a statistically-signi�cant
sample of Linux kernel patches. For future work, we plan to extend krepair to other problems, such
as fuzz-testing, change impact analysis, con�guration bisection, and other testing and analyses for
highly-con�gurable software.

9 DATA AVAILABILITY

The krepair tool has been released as free-and-open-source software as part of the kmax tool
suite [6] and has also been archived on Zenodo [77]. The scripts to run experiments and the
resulting data has been archived on Zenodo [78].

ACKNOWLEDGMENTS

Wewould like to thank the anonymous referees for their valuable comments. This work is supported
in part by the National Science Foundation under grant CCF-1941816.

REFERENCES

[1] 2018. Busybox website. https://busybox.net/.

[2] 2020. syzkaller commit 67fa1f59b87f "executor: add support for USB fuzzing on NetBSD". https://github.com/google/sy

zkaller/commit/67fa1f59b87fed7268b465f7e9540a590a250c65, Last accessed May 4, 2022.

[3] 2020. syzkaller commit 80a0690249dc "dashboard/con�g: regenerate all con�gs". https://github.com/google/syzkaller/

commit/80a0690249dc4dbbbed95ba197192b99c73694c5, Last accessed May 4, 2022.

[4] 2021. Mainline Linux Git Repository. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git.

[5] 2021. whatthepatch. https://pypi.org/project/whatthepatch/.

[6] 2024. https://github.com/paulgazz/kmax. Accessed: 2024-02-06.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 20. Publication date: July 2024.



20:20 Necip Fazıl Yıldıran, Jeho Oh, Julia Lawall, and Paul Gazzillo

[7] Top 500. 2020. Sublist Generator. https://www.top500.org/statistics/sublist/.

[8] Mathieu Acher, Hugo Martin, Juliana Alves Pereira, Arnaud Blouin, Djamel Eddine Khelladi, and Jean-Marc Jézéquel.

2019. Learning from thousands of build failures of Linux kernel con�gurations. Technical Report. Inria ; IRISA. 1–12

pages. https://hal.inria.fr/hal-02147012

[9] Mathieu Acher, Hugo Martin, Juliana Alves Pereira, Arnaud Blouin, Jean-Marc Jézéquel, Djamel Eddine Khelladi,

Luc Lesoil, and Olivier Barais. 2019. Learning Very Large Con�guration Spaces: What Matters for Linux Kernel Sizes.

Research Report. Inria Rennes - Bretagne Atlantique. https://hal.inria.fr/hal-02314830

[10] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. 2007. Design recovery and maintenance

of build systems. In 23rd IEEE International Conference on Software Maintenance (ICSM 2007), October 2-5, 2007, Paris,

France. 114–123. https://doi.org/10.1109/ICSM.2007.4362624

[11] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-Oriented Software Product Lines: Concepts

and Implementation. Springer Publishing Company, Incorporated.

[12] Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard: Version 2.0. In Proceedings of the 8th

International Workshop on Satis�ability Modulo Theories (Edinburgh, UK), A. Gupta and D. Kroening (Eds.).

[13] Thorsten Berger, Steven She, Rafael Lotufo, Krzysztof Czarnecki, and Andrzej Wasowski. 2010. Feature-to-Code

Mapping in Two Large Product Lines.. In SPLC. 498–499.

[14] Malik Bouchet, Byron Cook, Bryant Cutler, Anna Druzkina, Andrew Gacek, Liana Hadarean, Ranjit Jhala, Brad

Marshall, Dan Peebles, Neha Rungta, Cole Schlesinger, Chriss Stephens, Carsten Varming, and Andy War�eld. 2020.

Block public access: trust safety veri�cation of access control policies. In Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 281–291.

[15] Jesper Dangaard Brouer. 2016. Kernel Software Variability: From a kernel developer’s perspective: commonly known

as #ifdef challenges. https://people.net�lter.org/hawk/presentations/ifdef2016/ifdef_FOSD2016.pdf Keynote Talk,

Feature-Oriented Software Development (FOSD).

[16] Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021. Test-Case Prioritization for Con�guration

Testing. In Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis (Virtual,

Denmark) (ISSTA 2021). Association for Computing Machinery, New York, NY, USA, 452–465. https://doi.org/10.1145/

3460319.3464810

[17] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C. Patton. 1996. The combinatorial design approach to automatic test

generation. IEEE Software 13, 5 (Sept. 1996), 83–88. https://doi.org/10.1109/52.536462

[18] Myra Cohen, Matthew B. Dwyer, and Jiangfan Shi. 2008. Constructing Interaction Test Suites for Highly-Con�gurable

Systems in the Presence of Constraints: A Greedy Approach. Software Engineering, IEEE Transactions on 34 (09 2008),

633–650. https://doi.org/10.1109/TSE.2008.50

[19] Jonathan Corbet. 2020. Some 5.5 kernel development statistics. https://lwn.net/Articles/810639/.

[20] Jonathan Corbet. 2021. Some 5.12 development statistics. https://lwn.net/Articles/853039/.

[21] Coreboot. [n. d.]. https://www.coreboot.org.

[22] Intel Corporation. 2021. 0-Day Test Service. https://01.org/lkp/documentation/0-day-test-service.

[23] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An e�cient SMT solver. In International conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 337–340.

[24] Christian Dietrich, Reinhard Tartler, Wolfgang Schröder-Preikshat, and Daniel Lohmann. 2012. Understanding Linux

Feature Distribution. In Proceedings of the 2012 Workshop on Modularity in Systems Software (Potsdam, Germany) (MISS

’12). ACM, New York, NY, USA, 15–20. https://doi.org/10.1145/2162024.2162030

[25] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. 2017. Analysing the Linux kernel feature model changes

using FMDi�. Software & Systems Modeling 16, 1 (2017), 55–76.

[26] Nicolas Dintzner, Arie van Deursen, and Martin Pinzger. 2018. FEVER: An approach to analyze feature-oriented

changes and artefact co-evolution in highly con�gurable systems. Empirical Software Engineering 23, 2 (2018), 905–952.

[27] Eclipse Foundation. 2018. IoT Developer Survey Results. https://iot.eclipse.org/community/resources/iot-

surveys/assets/iot-developer-survey-2018.pdf. Accessed: 2020-06-10.

[28] The Linux Foundation. 2022. KernelCI. https://foundation.kernelci.org/, Last accessed 05/04/2022.

[29] Patrick Franz, Thorsten Berger, Ibrahim Fayaz, Sarah Nadi, and Evgeny Groshev. 2021. Con�gFix: Interactive con�gu-

ration con�ict resolution for the Linux kernel. In 2021 IEEE/ACM 43rd International Conference on Software Engineering:

Software Engineering in Practice (ICSE-SEIP). IEEE, 91–100.

[30] Alejandra Garrido and Ralph Johnson. 2005. Analyzingmultiple con�gurations of a C program. In 21st IEEE International

Conference on Software Maintenance (ICSM’05). IEEE, 379–388.

[31] Paul Gazzillo. 2017. Kmax: Finding All Con�gurations of Kbuild Make�les Statically. In Proceedings of the 2017 11th

Joint Meeting on Foundations of Software Engineering (Paderborn, Germany) (ESEC/FSE 2017). ACM, New York, NY,

USA, 279–290. https://doi.org/10.1145/3106237.3106283

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 20. Publication date: July 2024.



Maximizing Patch Coverage for Testing of Highly-Configurable So�ware without Exploding Build Times 20:21

[32] Paul Gazzillo. 2020. Inferring and Securing Software Con�gurations Using Automated Reasoning. In Proceedings

of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York, NY,

USA, 1517–1520. https://doi.org/10.1145/3368089.3417041

[33] Paul Gazzillo and Robert Grimm. 2012. SuperC: Parsing All of C by Taming the Preprocessor. In Proceedings of the 33rd

ACM SIGPLAN Conference on Programming Language Design and Implementation (Beijing, China) (PLDI ’12). ACM,

New York, NY, USA, 323–334. https://doi.org/10.1145/2254064.2254103

[34] Paul Gazzillo, Ugur Koc, ThanhVu Nguyen, and Shiyi Wei. 2018. Localizing con�gurations in highly-con�gurable

systems. In Proceedings of the 22nd International Systems and Software Product Line Conference-Volume 1. 269–273.

[35] Google. 2020. syzkaller. https://github.com/google/syzkaller/.

[36] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. 2011. A genetic algorithm for optimized feature

selection with resource constraints in software product lines. Journal of Systems and Software 84 (12 2011), 2208–2221.

https://doi.org/10.1016/j.jss.2011.06.026

[37] Oliver Hanappi, Waldemar Hummer, and Schahram Dustdar. 2016. Asserting reliable convergence for con�guration

management scripts. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications. 328–343.

[38] Eric Horton and Chris Parnin. 2019. Dockerizeme: Automatic inference of environment dependencies for python code

snippets. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, 328–338.

[39] IEEE. 2012. IEEE Standard for Con�guration Management in Systems and Software Engineering.

[40] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus Ostermann, and Thorsten Berger.

2011. Variability-aware Parsing in the Presence of Lexical Macros and Conditional Compilation. In Proceedings of the

2011 ACM International Conference on Object Oriented Programming Systems Languages and Applications (Portland,

Oregon, USA) (OOPSLA ’11). ACM, New York, NY, USA, 805–824. https://doi.org/10.1145/2048066.2048128

[41] Elias Kuiter, Sebastian Krieter, Jacob Krüger, Kai Ludwig, Thomas Leich, and Gunter Saake. 2018. PClocator: A Tool

Suite to Automatically Identify Con�gurations for Code Locations. In Proceedings of the 22nd International Systems and

Software Product Line Conference - Volume 1 (Gothenburg, Sweden) (SPLC ’18). Association for Computing Machinery,

New York, NY, USA, 284–288. https://doi.org/10.1145/3233027.3236399

[42] Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. 2020. Set the Con�guration for the Heart of the OS: On

the Practicality of Operating System Kernel Debloating. Proc. ACM Meas. Anal. Comput. Syst. 4, 1, Article 03 (may

2020), 27 pages. https://doi.org/10.1145/3379469

[43] Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin Rothberg, Andreas Ruprecht, Wolfgang

Schröder-Preikschat, Daniel Lohmann, and Rüdiger Kapitza. 2013. Attack SurfaceMetrics and Automated Compile-Time

OS Kernel Tailoring.. In NDSS.

[44] Christian Kästner. 2017. Di�erential Testing for Variational Analyses: Experience from Developing KCon�gReader.

arXiv:1706.09357 [cs.SE]

[45] Julia Lawall and Gilles Muller. 2017. JMake: Dependable Compilation for Kernel Janitors. In 47th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN). 357–366.

[46] Rafael Lotufo, Steven She, Thorsten Berger, Krzysztof Czarnecki, and Andrzej Wąsowski. 2010. Evolution of the Linux

kernel variability model. In International Conference on Software Product Lines. Springer, 136–150.

[47] Inês Lynce and João Marques-silva. 2004. On computing minimum unsatis�able cores. In In Proceedings of the Seventh

International Conference on Theory and Applications of Satis�ability Testing (SAT’04). 305–310.

[48] Alan Maguire. 2021. A Zoological guide to kernel data structures. https://blogs.oracle.com/linux/post/a-zoological-

guide-to-kernel-data-structures.

[49] GNUManual. 2022. GNUDi�utils: Uni�ed Format. https://www.gnu.org/software/diffutils/manual/html_node/Unified-

Format.html.

[50] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel. 2016. A Comparison of 10 Sampling

Algorithms for Con�gurable Systems. In Proceedings of the 38th International Conference on Software Engineering

(Austin, Texas) (ICSE ’16). Association for Computing Machinery, New York, NY, USA, 643–654. https://doi.org/10.114

5/2884781.2884793

[51] Sarah Nadi and Ric Holt. 2012. Mining Kbuild to detect variability anomalies in Linux. In Software Maintenance and

Reengineering (CSMR), 2012 16th European Conference on. IEEE, 107–116.

[52] Jeho Oh, Paul Gazzillo, and Don Batory. 2019. T-Wise Coverage by Uniform Sampling. In Proceedings of the 23rd

International Systems and Software Product Line Conference - Volume A (Paris, France) (SPLC ’19). Association for

Computing Machinery, New York, NY, USA, 84–87. https://doi.org/10.1145/3336294.3342359

[53] Jeho Oh, Necip Fazıl Yıldıran, Julian Braha, and Paul Gazzillo. 2021. Finding broken Linux con�guration speci�cations

by statically analyzing the Kcon�g language. In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE 2021). Association for

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 20. Publication date: July 2024.



20:22 Necip Fazıl Yıldıran, Jeho Oh, Julia Lawall, and Paul Gazzillo

Computing Machinery, 893–905.

[54] Leonardo Passos, Leopoldo Teixeira, Nicolas Dintzner, Sven Apel, Andrzej Wąsowski, Krzysztof Czarnecki, Paulo

Borba, and Jianmei Guo. 2016. Coevolution of variability models and related software artifacts. Empirical Software

Engineering 21, 4 (2016), 1744–1793.

[55] Barbara G. Ryder and Frank Tip. 2001. Change impact analysis for object-oriented programs. In Proceedings of the

2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (Snowbird, Utah, USA)

(PASTE ’01). Association for Computing Machinery, New York, NY, USA, 46–53. https://doi.org/10.1145/379605.379661

[56] Rian Shambaugh, Aaron Weiss, and Arjun Guha. 2016. Rehearsal: A con�guration veri�cation tool for Puppet. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara,

CA, USA) (PLDI ’16). ACM, New York, NY, USA, 416–430. https://doi.org/10.1145/2908080.2908083

[57] Steven She. 2013. Feature model synthesis. (2013).

[58] Julio Sincero, Reinhard Tartler, Daniel Lohmann, and Wolfgang Schröder-Preikschat. 2010. E�cient extraction and

analysis of preprocessor-based variability. In Proceedings of the ninth international conference on Generative programming

and component engineering. 33–42.

[59] Thodoris Sotiropoulos, Dimitris Mitropoulos, and Diomidis Spinellis. 2020. Practical fault detection in puppet programs.

In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. 26–37.

[60] Diomidis Spinellis. 2010. CScout: A refactoring browser for C. Science of Computer Programming 75, 4 (2010), 216–231.

[61] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen, and Tianyin Xu. 2020. Testing con�gu-

ration changes in context to prevent production failures. In 14th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 20). USENIX Association, 735–751. https://www.usenix.org/conference/osdi20/presentation/sun

[62] W3Techs World Wide Web Technology Surveys. 2019. Usage statistics of Unix for websites. https://w3techs.com/tech

nologies/details/os-unix/all/all. Accessed: 2020-06-10.

[63] syzbotreport 2021. syzbot report "memory leak in dvb_create_media_graph". https://syzkaller.appspot.com/bug?exti

d=7f09440acc069a0d38ac, Last accessed May 4, 2022.

[64] Kuo-Chung Tai and Yu Lei. 2002. A test generation strategy for pairwise testing. IEEE Transactions on Software

Engineering 28, 1 (Jan. 2002), 109–111. https://doi.org/10.1109/32.979992

[65] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N. Nguyen. 2012. SYMake: A build code analysis

and refactoring tool for make�les. In Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering (Essen, Germany) (ASE 2012). ACM, New York, NY, USA, 366–369. https://doi.org/10.1145/2351676.2351749

[66] Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-Preikschat, and Daniel Lohmann. 2014. Static

analysis of variability in system software: The 90,000 #ifdefs issue. In USENIX Annual Technical Conference (USENIX

ATC). USENIX Association, 421–432.

[67] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and Julio Sincero. 2011. Con�guration

coverage in the analysis of large-scale system software. InWorkshop on Programming Languages and Operating Systems,

PLOS@SOSP. ACM, 2:1–2:5.

[68] Reinhard Tartler, Daniel Lohmann, Julio Sincero, and Wolfgang Schröder-Preikschat. 2011. Feature Consistency in

Compile-Time-Con�gurable System Software: Facing the Linux 10,000 Feature Problem. In Proceedings of the 6th

European Conference on Computer Systems. 47–60. http://dx.doi.org/10.1145/1966445.1966451

[69] Bo Wang, Leonardo Passos, Yingfei Xiong, Krzysztof Czarnecki, Haiyan Zhao, and Wei Zhang. 2013. SmartFixer:

�xing software con�gurations based on dynamic priorities. In Proceedings of the 17th International Software Product

Line Conference (Tokyo, Japan) (SPLC ’13). Association for Computing Machinery, New York, NY, USA, 82–90. https:

//doi.org/10.1145/2491627.2491640

[70] Aaron Weiss, Arjun Guha, and Yuriy Brun. 2017. Tortoise: Interactive system con�guration repair. In 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 625–636.

[71] J. White, D.C. Schmidt, D. Benavides, P. Trinidad, and A. Ruiz–Cortés. 2008. Automated Diagnosis of Product-

Line Con�guration Errors in Feature Models. In 2008 12th International Software Product Line Conference. 225–234.

https://doi.org/10.1109/SPLC.2008.16

[72] Norman Wilde and Michael C Scully. 1995. Software reconnaissance: Mapping program features to code. Journal of

Software Maintenance: Research and Practice 7, 1 (1995), 49–62.

[73] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki. 2012. Generating range �xes for software

con�guration. In 2012 34th International Conference on Software Engineering (ICSE). 58–68. https://doi.org/10.1109/IC

SE.2012.6227206

[74] Karim Yaghmour. 2003. Building Embedded Linux Systems. O’Reilly Media, Inc.

[75] C. Yilmaz, S. Fouché, M. B. Cohen, A. Porter, G. Demiroz, and U. Koc. 2014. Moving forward with combinatorial

interaction testing. Computer 47, 2 (Feb. 2014), 37–45. https://doi.org/10.1109/MC.2013.408

[76] X. Yuan, M. B. Cohen, and A. M. Memon. 2011. GUI interaction testing: Incorporating event context. IEEE Transactions

on Software Engineering 37, 4 (July 2011), 559–574.

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 20. Publication date: July 2024.



Maximizing Patch Coverage for Testing of Highly-Configurable So�ware without Exploding Build Times 20:23

[77] Necip Fazıl Yıldıran, Jeho Oh, Julia Lawall, and Paul Gazzillo. 2024. Artifact from "Maximizing Patch Coverage for

Testing of Highly-Con�gurable Software without Exploding Build Times". https://doi.org/10.5281/zenodo.10626343

[78] Necip Fazıl Yıldıran, Jeho Oh, Julia Lawall, and Paul Gazzillo. 2024. Experimental data for "Maximizing Patch Coverage

for Testing of Highly-Con�gurable Software without Exploding Build Times". https://doi.org/10.5281/zenodo.10626233

[79] Sai Zhang and Michael D. Ernst. 2014. Which con�guration option should I change?. In Proceedings of the 36th

International Conference on Software Engineering (Hyderabad, India) (ICSE 2014). Association for Computing Machinery,

New York, NY, USA, 152–163. https://doi.org/10.1145/2568225.2568251

[80] Andreas Ziegler, Valentin Rothberg, and Daniel Lohmann. 2016. Analyzing the impact of feature changes in Linux. In

Proceedings of the Tenth International Workshop on Variability Modelling of Software-intensive Systems. 25–32.

Received 2023-09-28; accepted 2024-01-23

Proc. ACM Softw. Eng., Vol. 1, No. FSE, Article 20. Publication date: July 2024.


	Abstract
	1 Introduction
	2 Background
	2.1 Configuration Testing Approaches
	2.2 Linux Kernel Configuration
	2.3 Motivating Example

	3 The krepair Algorithm
	3.1 Constraint Analysis
	3.2 Configuration-File Repair

	4 Implementation
	4.1 Processing Patch Files
	4.2 Collecting Build Constraints
	4.3 Improving Performance
	4.4 Implementing Repair

	5 Empirical Evaluation
	5.1 Experimental Setup
	5.2 Research Questions
	5.3 RQ1: Efficient Patch Coverage
	5.4 RQ2: Performance
	5.5 RQ3: Configuration Preservation
	5.6 RQ4: Random Testing
	5.7 RQ5: Build Errors

	6 Threats to Validity
	7 Related Work
	8 Conclusion
	9 Data Availability
	References

