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Vitamin B, conveys a protective advantage to phycosphere-
associated bacteria at high temperatures
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Many marine microbes require vitamin B;, (cobalamin) but are unable to synthesize it, necessitating reliance on other B,-
producing microbes. Thus, phytoplankton and bacterioplankton community dynamics can partially depend on the production and
release of a limiting resource by members of the same community. We tested the impact of temperature and B, availability on the
growth of two bacterial taxa commonly associated with phytoplankton: Ruegeria pomeroyi, which produces B;, and fulfills the B,
requirements of some phytoplankton, and Alteromonas macleodii, which does not produce B;, but also does not strictly require it
for growth. For B;,-producing R. pomeroyi, we further tested how temperature influences B;, production and release. Access to B,
significantly increased growth rates of both species at the highest temperatures tested (38 °C for R. pomeroyi, 40 °C for A. macleodii)
and A. macleodii biomass was significantly reduced when grown at high temperatures without B, 5, indicating that B, is protective
at high temperatures. Moreover, R. pomeroyi produced more B;, at warmer temperatures but did not release detectable amounts of
B;, at any temperature tested. Results imply that increasing temperatures and more frequent marine heatwaves with climate
change will influence microbial By, dynamics and could interrupt symbiotic resource sharing.

ISME Communications; https://doi.org/10.1038/s43705-023-00298-6

INTRODUCTION

Vitamin B;, (cobalamin) is required by many marine bacteria and
unicellular eukaryotes [1, 2] but is scarce throughout broad
regions of the global ocean, forcing microbes that cannot
synthesize B, to rely on others that can [3, 4]. Many
phytoplankton fulfill their B;, requirements through interactions
with Bj,-producing bacteria in the phycosphere [5, 6]. Some
phycosphere bacteria, like Ruegeria pomeroyi, are known B,
producers and require B;, for growth [6]. Other phycosphere
inhabitants, like Alteromonas macleodii, cannot produce B;, and
do not strictly require it for growth but benefit from its availability
[7], potentially competing with phytoplankton for B;; as has been
demonstrated for nitrate [8]. Climate-change-induced tempera-
ture increases will influence bacterial growth rates in the oceans
[9], but it is unclear how temperature will impact B;, quotas and
dynamics or downstream effects on microbial communities and
interactions. We investigated how temperature stress interacts
with B;, limitation in phycosphere residents with flexible (A.
macleodii MIT1002) and absolute (R. pomeroyi DSS-3) B, require-
ments and how temperature stress impacts production and
release of By, by a By,-producer (R. pomeroyi).

To determine the interaction effect of temperature and B,
availability on growth, A. macleodii and R. pomeroyi were grown in a
minimal media prepared with (replete) and without (-B,) B;, across a
range of temperatures from 15°C to 40 °C (Supplementary Informa-
tion; SI Table 1, SI Fig. 1). Lack of exogenous B, significantly
diminished A. macleodii growth at all temperatures, with the largest

effect at the highest temperature (Fig. 1). A. macleodii biomass was
reduced by 57% when grown without B,; at the highest temperature
in trial 1 (Fig. 1B, SI Fig. 2), and by 22% in trial 2 (Fig. 1A, B).
Withholding B;, also significantly decreased A. macleodii’s mean
maximum growth rate (Umax Trial 2): Pmax decreased by 0.32 at the
highest temperature (27%; p < 0.05), by 0.14 at the mid temperature
(14%; p < 0.05), and by 0.13 at the cool temperature (18%; p < 0.05)
(Fig. 1Q). Cell size was largely stable across treatments, but a significant
increase was observed at 24 h for cells grown without B;, at the
highest temperature in both trials (SI Figs. 6, 7), which is consistent
with a reduced growth rate [10] or an arrested cell cycle [11].

The observed changes in growth parameters suggest that B;,
has a protective or growth-promoting effect in A. macleodii at high
temperatures. While such observations have not been reported in
prokaryotes, B, is protective at high temperatures in the model
unicellular eukaryotic alga, Chlamydomonas reinhardtii [12]. Like A.
macleodii, the C. reinhardtii genome encodes B;,-independent
(MetE) and B;,-dependent (MetH) methionine synthases, meaning
it can grow with and without B;, [13]. However, exposing C.
reinhardtii to high temperatures (39°C) triggers heat shock,
chlorosis, and death if B, is unavailable [12]. If By, is available,
C. reinhardtii exhibits enhanced thermal tolerance, maintaining
growth at 42°C. At high temperatures, C. reinhardtii MetE had
decreased activity, indicating MetH is more temperature-stable
and suggesting a mechanism for thermal protection [12]. This may
also hold true for A. macleodii. Methionine, however, conveyed a
smaller boost in C. reinhardtii thermal tolerance than B,
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Fig. 1 Growth parameters for Alteromonas macleodii and Ruegeria pomeroyi grown in replete minimal media and minimal media without
a vitamin B, source across a range of temperature treatments. A Growth curves for both species from experimental trial 2. Colors represent
temperature treatments, with the exact temperature for each treatment included in the legend. Point and line shapes represent the media
treatment: replete (replete minimal media; circles and solid lines) and -B;, (minimal media without vitamin -B,,; triangles and dashed lines).
Each point is the mean log cell concentration of three biological replicates determined by flow cytometry, with error bars representing one
standard deviation of the mean. Black vertical lines indicated by arrowheads designate time points where R. pomeroyi cultures were harvested
for B;, measurements by mass spectrometry. B Maximum cell concentrations (biomass) reached by A. macleodii in experimental trials 1 and 2.
Horizontal marks represent the mean cell concentration for each treatment; vertical error bars are one standard deviation of the mean; open
circles are individual data points. The statistical significance of media treatment at each temperature was tested by t-test and p < 0.05 is
indicated on the plots by an asterisk (**'). There was a statistically significant reduction in maximum biomass by 57% and 22% in trials 1 and 2,
respectively, when A. macleodii was grown without vitamin B;, at the hottest temperature tested. C Maximum growth rates (Umax) for A.
macleodii and R. pomeroyi in each temperature and media treatment combination in experimental trial 2. Growth rates were calculated from
individual growth curves using the ‘growthrates’ package in the R computing environment. The statistical significance of media treatment on
mean maximum growth rate at each temperature was tested by t-test and p < 0.05 is indicated on the plots by an asterisk ("*). A. macleodii
cultures grown in replete media had a significantly higher maximum growth rate at all temperatures but the difference in mean maximum
growth rate (Umax) between media treatments was largest in the hot temperature treatment (0.32 (27%), compared to 0.14 (14%) in mid and
0.13 (18%) in cool). The impact of media treatment on maximum growth rate was more varied for R. pomeroyi with the maximum growth rate
significantly higher in replete media only at the highest temperature treatment.

advancing the hypothesis that By, enhances thermal tolerance Exogenous B, had a smaller effect on R. pomeroyi's growth,
through additional pathways [12]. Notably, B;, increases growth in presumably because it is a By,-producer. Withholding B;, did not
bacteria exposed to other stressors, including oxidative stress [14], impact the maximum biomass reached by R. pomeroyi at any

low-temperature, and copper stress [15], demonstrating that temperature (Sl Fig. 3) but did significantly decrease growth rates
methionine synthesis at higher temperatures is not the only at the highest temperature (Fig. 1C). We detected elevated
growth-promoting benefit provided by B;, [16]. intracellular By, levels in mid and hot temperatures compared to
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Fig. 2 Concentrations of intracellular and extracellular vitamin
B2 normalized to cell counts in Ruegeria pomeroyi cultures grown
without an exogenous B;, source across three temperature
treatments. R. pomeroyi cultures in early stationary phase were
harvested for cyanocobalamin (B;,) measurements by mass spectro-
metry. Measured values were normalized to the number of cells in
the originating culture volume (i.e, the number of cells in a cell
pellet or the number of cells removed from a supernatant).
Horizontal marks represent the mean B;, concentration per cell
for each treatment; vertical error bars are one standard deviation of
the mean; open circles are individual data points. Pelleted cells
contained significantly more B;, than was present in supernatants
(p < 0.05, t-test). While not a statistically significant difference, cells
grown in the mid and hot-temperature treatments tended to have
higher intracellular vitamin B;, concentrations than cells grown in
the cool-temperature treatment.

the cool treatment, although not statistically significant (Fig. 2).
Thus, R. pomeroyi may produce more B;, at warmer temperatures
to maintain similar biomass and growth rates as when exogenous
Bi, is supplied, but B;, synthesis cannot keep up with growth
requirements at extremely high temperatures. This suggests B,
plays a similar growth-promoting or protective role in R. pomeroyi
as observed for A. macleodii. In future studies, this could be tested
by growing R. pomeroyi mutants incapable of synthesizing B,, at
high temperatures and determining if growth is diminished when
B, is withheld. Of note, extracellular B;, was not detected in any
of the warm or hot treatment replicates and only trace amounts
were detected in two cool treatment replicates (Fig. 2). These
results imply that little to no B,, is released by R. pomeroyi in our
experimental conditions and that temperature does not have a
measurable effect on B;, release. While many B,,-producing
bacteria do not release By, [17], these results were surprising
because R. pomeroyi fulfills the B,, requirement of the diatom
Thalassiosira pseudonana when grown in co-culture [6]. While co-
culture with T. pseudonana does not influence R. pomeroyi
expression of the By, biosynthetic pathway [6], our study suggests
that a cue from symbiotic phytoplankton may be required for R.
pomeroyi to release By,.

This study demonstrates that B;, conveys a protective or
growth-promoting effect at high temperatures for two bacterial
species commonly associated with phytoplankton. While the
highest temperatures in the study are rare in the current global
ocean, they are found in tide pools in subtropical and tropical
regions [18], and summer sea surface temperatures (SST) in the
Persian Gulf regularly exceed 37 °C [19]. Marine heatwaves—such
as the 2023 heatwave affecting the Florida Keys, the Bahamas, and
Cuba that caused SST to reach 38°C (ndbc.noaa.gov)—are
expected to become more frequent and severe due to climate
change [20]. Our results suggest that increasing temperatures will
increase the biochemical need for B;, among marine microbial
consortia. Shifting By, dynamics may impact symbiotic relation-
ships that sustain phytoplankton and other organisms. Future
work should investigate protective mechanisms for B;, in marine
microbes and the impact of inter-species interactions on B,
production and release with changing temperatures.
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DATA AVAILABILITY

The raw flow cytometry data generated for this project are publicly available from
https://doi.org/10.5281/zenodo.8133026. Vitamin B;, mass spectrometry data, inter-
mediate data products, and code used for this study are available in the GitHub
repository https://github.com/maggimars/bactB12. The full analysis pipeline is further
available as an interactive document: https://maggimars.github.io/bactB12/
Flow_Cytometry_Analysis.html.
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