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The homogeneous precession domain (HPD) of superfluid 3He has recently been identified as a detection
medium which might provide sensitivity to the axion-nucleon coupling gaNN competitive with, or
surpassing, existing experimental proposals. In this work, we make a detailed study of the statistical and
dynamical properties of the HPD system in order to make realistic projections for a full-fledged
experimental program. We include the effects of clock error and measurement error in a concrete readout
scheme using superconducting qubits and quantum metrology. This work also provides a more general
framework to describe the statistics associated with the axion gradient coupling through the treatment of a
transient resonance with a nonstationary background in a time-series analysis. Incorporating an optimal
data-taking and analysis strategy, we project a sensitivity approaching gaNN ∼ 10−12 GeV−1 across a
decade in axion mass.
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I. INTRODUCTION

Axions and axionlike particles are well-motivated
candidates for dark matter (DM) [1–3], and their phe-
nomenology is characterized by sub-eV masses and
weak couplings to photons and/or Standard Model
fermions [4]. The shift symmetry of the axion field a
(arising from its origin as a pseudo-Goldstone boson)
implies that its couplings to fermions must involve a
derivative; in the nonrelativistic regime relevant for DM,
this becomes a gradient coupling to nuclear spins σn in the
Hamiltonian [5],

H ⊃ gaNN∇a · σn; ð1Þ

where gaNN is a coupling constant with dimensions of
inverse energy in natural units.
Since the form of the Hamiltonian is identical to the way

an ordinary magnetic field couples to spins, H ⊃ γB · σn, it
is often convenient to think of this “axion wind” coupling
as an effective magnetic field

Ba ≡ gaNN

γ
∇a; ð2Þ

where γ is the gyromagnetic ratio of the nucleus in question.
There have been several theoretical ideas and a number of
recent experimental results aiming to detect this coupling by
exploiting nuclear magnetic resonance [5–17], including a
recent proposal to use the homogeneous precession domain
(HPD) of superfluid 3He in the B-phase [18].1 The HPD can
be understood as a Bose condensate of magnons [37], and
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1See Refs. [19,20] for a review of other experimental ap-
proaches, and Refs. [21–36] for proposals which exploit par-
ticular properties of condensed matter systems.
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its key feature is a linearly drifting Larmor precession
frequency ωL of the sample, which allows a broadband scan
over candidate axion masses ma.
In this paper, we extend the results of [18] by including a

full statistical treatment of the axion field. Our statistical
treatment is similar to that of [38,39], but differs in that we
develop complete time domain statistics of the axion
gradient field as a stochastic force driving a nonstationary
dynamical system. Due to its low mass and hence large
occupation number, a and its gradient may be treated as a
Gaussian random field characterized by its two-point
correlation function. Using this fact, we construct a like-
lihood function for the hypothetical axion signal in terms of
time-domain correlation functions of the precessing HPD
magnetization signal evolving under the Bloch equations,
and we incorporate the statistics of the stochastically
fluctuating background as well. We find that additional
signal-to-noise information may in principle be extracted by
considering the HPD signal well after the resonance
condition ωL ¼ ma, due to the distinctive beat frequencies
between the drifting precession frequency and the effective
axion magnetic field, though this requires fast measure-
ments of the instantaneous precession frequency which may
be difficult to realize in practice. A likelihood analysis leads
to practical prescriptions for optimizing experimental
parameters such as the magnetic field gradient and data-
taking procedures such as the frequency sampling rate,
which go beyond the initial analysis of [18]. In performing
such an optimization, we specify a concrete scheme for
measuring the HPD precession frequency (or equivalently,
the precession drift ω̇) using the techniques of quantum
metrology and optimal quantum control [40,41], where we
imagine that the signal is read out using an array of
superconducting transmon qubits time-stamped with a
high-precision atomic clock [42,43].
This paper is organized as follows. In Sec. II, we review

the statistics of the axion gradient field as a necessary input
for our calculations, with further details included in
Appendix A. In Sec. III, we evaluate in detail the dynamics
and statistics of the HPD system evolving under the Bloch
equations in the presence of a spatially varying magnetic
field and stochastic axion gradient. In Sec. IV, we character-
ize the statistics of the background evolution of the
precession frequency due to irreducible noise from stochas-
tic magnon loss; we join these statistics with those of the
axion field to develop a full statistical characterization of
HPD system and likelihood framework for projected sensi-
tivities and future analyses. In Sec. V, we evaluate the HPD
sensitivity to the axion coupling accounting for realistic
clock noise and measurement noise in addition to the
system’s stochastic dynamics. We determine projected
sensitivities for various experimental configurations, includ-
ing a strategy for collecting data suitable for the analysis we
construct. In Sec. VI, we also consider the impact of daily

and annual modulation for sensitivities. Finally, we provide
some concluding remarks in Sec. VII.
A particularly interesting feature of HPD experiments is

that, though they can be characterized via an effective
macroscopic description through the Bloch equations,
details such as the smooth precession frequency drift
appear deterministic only in the limit of coarse-graining
the stochastic loss of magnons in the condensate. These
stochastic fluctuations are the irreducible limiting back-
ground for axion searches. As a result, the dynamics of the
HPD—with and without an axion gradient field source—
are intrinsically stochastic. In Appendix B, we study this
feature of the system within the framework of stochastic
differential equations, finding the impact of the micro-
scopic stochastic dynamics to be negligible.

II. STATISTICS OF THEAXIONGRADIENT FIELD

In this section, we determine the time-domain statistics
of axion gradient field relevant for calculating the effect of
axion DM on the evolution of the HPD. The statistics of the
gradient field have been previously studied in several
contexts, including [15,17,38,39], but our treatment here
differs in that we develop general two-point correlators in
time between components of the gradient field rather than
making an equivalent treatment in the frequency domain or
considering time-time correlators in more directly observ-
able quantities. In particular, the two-point correlators in
time which we develop are the ones most relevant for
calculating the statistics of transient axion-induced shift in
the precession frequency, whereas previous works consid-
ered stationary processes.
We begin with a simple construction of a discretized

realization of the axion field, as in [44]:

aðx; tÞ ¼
ffiffiffiffiffi
ρa

p
ma

X
abc

αabc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðvabcÞðΔ3vabcÞ

q

× cos½ωabct − kabc · xþ ϕabc� ð3Þ

where ρa ≃ 0.4 GeV=cm3 is the DM energy density, abc is
a multi-index for a 3-dimensional discretization of the DM
velocity vabc in small volumes of size Δ3vabc, fðvÞ is the
DM velocity distribution, ωabc ¼ mað1þ v2abc=2Þ is the
DM frequency, and kabc ¼ mavabc is the wave number.
The stochastic nature of a is controlled by the random
variables αabc and ϕabc, which are Rayleigh-distributed on
½0;∞Þ and uniformly distributed on ½0; 2πÞ, respectively.2
The axion gradient evaluated at a single spatial point
follows immediately as

2Note that this construction is identical to that in [45], except
now the field is being constructed by integration over the full
three-dimensional velocity distribution, rather than the one-
dimensional speed distribution.
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∇aðtÞ ¼ ffiffiffiffiffi
ρa

p X
abc

αabc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðvabcÞðΔ3vabcÞ

q

× cos ½ωabctþ ϕabc�vabc ð4Þ

where we have absorbed any dependence on the chosen
position x into the uniformly distributed phase. As it is
constructed from summing uncorrelated plane waves with
uniformly distributed phases, ∇aðtÞ is a Gaussian process,
and hence its statistics are fully characterized by its
one- and two-point correlation functions. We proceed to
evaluate those defining moments. In Appendix A, we
present Monte Carlo tests which validate their expected

Gaussianity using a treatment adapted from [45] and
utilized in similar context for frequency domain statistics
of axion gradient signals in [39].
Evaluating the first moment of ∇a is actually trivial.

Since each phase is uncorrelated and drawn uniformly on
½0; 2πÞ, the expectation value of the contribution of any
plane wave mode to ∇a is zero, and thus

h∇iai ¼ 0: ð5Þ

Determining the covariance is somewhat more involved.
Working with our discrete realization,

Σijðt; t0Þ≡ h∇iaðtÞ∇jaðt0Þi ¼
�
ρa
X

abcpqr

αabcαpqr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðvabcÞfðvpqrÞðΔ3vabcÞðΔvpqrÞ3

q

× cos ½ωabctþ ϕabc� cos ½ωpqrt0 þ ϕpqr�viabcvjpqr
�
: ð6Þ

Since ϕabc and ϕpqr are uniform on ½0; 2πÞ and uncorre-
lated, the summand vanishes in the expectation value unless
the multi-indices are equal, abc ¼ pqr. After simplifying
trigonometric terms and keeping only those with nonzero
expectation value, we obtain

Σijðt; t0Þ ¼
ρa
2

X
abc

ðΔ3vabcÞviabcvjabcfðvabcÞ

× cos ½ωabcðt − t0Þ�hα2abci: ð7Þ

For a Rayleigh-distributed variable αabc, hα2abci ¼ 2, so the
covariance reduces to

Σijðt; t0Þ ¼ ρa
X
abc

ðΔ3vabcÞviabcvjabcfðvabcÞcos ½ωabcðt− t0Þ�:

ð8Þ

We can now take the continuum limit Δ3vabc → d3v and
ωabc → ωv ≡mað1þ v2=2Þ to obtain our final form for the
covariance,

Σijðt; t0Þ ¼ ρa

Z
dvFijðvÞ cos ½ωvðt − t0Þ�: ð9Þ

where we have defined for future notational convenience

FIG. 1. Preparation and evolution of the HPD. Superfluid 3He-B is subjected to an external magnetic field with a gradient along the
field direction, establishing an equilibrium magnetization (left), Eq. (16). The HPD is prepared by injecting angular momentum into the
system via a transverse magnetic field pulse; the resulting spin-1 magnons Bose-condense into the HPD (center), with volume VHPD
determined by the total number of magnons N as in Eq. (35). The spins in the HPD (blue) precess with a tip angle β0 ¼ 104° at a
frequency determined by the magnetic field BðzÞ at the domain wall between the HPD and the relaxed phase [Eq. (24)], while the
remainder of the sample (red) remains at its equilibrium magnetization. As time elapses (center right), magnon losses [Eq. (28)] lead to a
relaxation of the HPD on a timescale T1, shrinking the HPD volume and causing the precession frequency to drift as the domain wall
moves downward. The time-dependent transverse magnetization is sensed by a SQUID referenced to a frequency standard (right) to
enable the optimal quantum control measurement of the precession frequency drift; see Sec. V for more details.
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FijðvÞ≡
Z

dΩv2vivjfðvÞ; ð10Þ

with dΩv2 the measure on the unit sphere in velocity space.
We note in passing that the axion field is often charac-
terized by a coherence time defined along the lines of

τ ∼
2π

mav2
∼ 80 ms ×

�
50 neV
ma

�
ð11Þ

where v ∼ 300 km=s is a typical DM speed. Use of a
coherence time in our subsequent calculations is unneces-
sary, as it serves as merely a proxy for the full covariance
structure encapsulated in Eq. (9).

III. DYNAMICS OF THE HPD
WITH AN AXION SOURCE

As a Bose-Einstein condensate (BEC) of spin-1 mag-
nons, the dynamics of the HPD are intrinsically stochastic
and quantum mechanical in nature. However, as a macro-
scopic quantum system, the HPD dynamics can largely be
characterized by considering its effective description via the
Bloch equations, as was done in [18]. In this section, we
carefully account for the effects of the axion gradient
coupling in the Bloch description, before returning in the
following Sec. IV to the magnon picture that allows for a
much more detailed accounting of background processes
and their contribution to statistical uncertainties. Figure 1
illustrates the preparation of the HPD, background evolu-
tion of the HPD in the absence of an axion, and measure-
ment of the HPD.

A. Effective description in the Bloch equations

We begin with the Bloch equations developed in [18]
that describe the evolution of the HPD magnetization M
subject to an external (possibly time-varying and inhomo-
geneous) magnetic field B. Here, the magnetization M is
defined as M ¼ m=V tot where m is the HPD magnetic
moment and V tot is the total 3He volume (including both
the HPD and the relaxed domain). Assuming an equilib-
rium magnetization M̃0 in the z-direction, the parallel
magnetization Mz and transverse magnetizations Mx and
My evolve as

Ṁz ¼
iγ
2
ðMxyBxy − M̄xyBxyÞ −

Mz − M̃0

5T1

ð12Þ

Ṁxy ¼ −iγðMxyBz −MzBxyÞ −
Mxy

T1

ð13Þ

where Mxy ¼ Mx þ iMy, Bxy ¼ Bx þ iBy, and T1 is the
characteristic relaxation time of the system. We will
consider a system of total height h with cross-sectional

area A with the magnetic field pointing in the ẑ direction
varying as

BzðzÞ ¼ B0ð1þ αzÞ; ð14Þ

and convention, we will take α > 0 and B0 > 0 to be the
background magnetic field strength at z ¼ 0.

The equilibrium magnetization of the HPD system is
given by

M̃0 ¼ χBF ð15Þ

where χ ∼ 10−7 is the magnetic susceptibility for 3He [46],
F is the fraction of the sample in the HPD phase, and B is
the field strength in the ẑ direction at the location of the
domain wall which separates the relaxed and precessing
phases. For our geometry, the HPD fraction is F ¼ z=h
where z is the position of the domain wall. Assuming the
initial transverse pulse is sufficient for the HPD to initially
encompass the whole sample, the domain wall will descend
from the top of the container z ¼ h at t ¼ 0 to z ¼ 0 as
t → ∞. Then we can write

M̃0ðzÞ ¼ χB0ð1þ αzÞ z
h
; ð16Þ

suggesting that the domain wall height z is a natural
variable to use in the Bloch equations.
We choose the transverse magnetization phase θ as the

other variable. As noted in Ref. [18], since the HPD features
a transverse and longitudinal magnetization that are locked
together at the Leggett angle β0 ¼ cos−1ð−1=4Þ ≈ 104°,Mz
and Mxy do not evolve independently, and thus z and θ are
sufficient to fully characterize the evolution of the HPD.
In the presence of axion DM, the HPD couples to the

effective axion magnetic field BaðtÞ in Eq. (2), which will
affect the dynamics of the HPD system in Eq. (12) but
leaves the equilibrium magnetization M̃0 unchanged. Since
the axion coupling is small, it is then natural to expand
our dynamical variables zðtÞ and θðtÞ perturbatively to
first order in gaNN so that zðtÞ ≈ z0ðtÞð1þ zaðtÞÞ and
θðtÞ ≈ θ0ðtÞ þ θaðtÞ. Note that we have defined za as a
dimensionless shift in the domain wall location relative to
the free evolution z0.
In terms of our dynamical variables, we may write the

components of the magnetization as

MxðtÞ ¼ M̃0ðz0ðtÞð1þ zaðtÞÞÞ sin β0 cos½θ0ðtÞ þ θaðtÞ�;
MyðtÞ ¼ M̃0ðz0ðtÞð1þ zaðtÞÞÞ sin β0 sin½θ0ðtÞ þ θaðtÞ�;
MzðtÞ ¼ M̃0ðz0ðtÞð1þ zaðtÞÞÞ cos β0: ð17Þ

These magnetizations evolve subject to a magnetic field
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B ¼

2
64

Ba
xðtÞ

Ba
yðtÞ

B0½1þ αz0ðtÞð1þ zaðtÞÞ� þ Ba
z ðtÞ

3
75: ð18Þ

where Ba
i are the components of the axion effective

magnetic field Ba defined in Eq. (2). Substituting these
quantities into the Bloch equations and working to zeroth-
order in axion coupling, we obtain the equations of motion
for the background evolution of the HPD system

ż0ðtÞ ¼ −
z0ðtÞðαz0ðtÞ þ 1Þ
T1ð2αz0ðtÞ þ 1Þ ; ð19Þ

θ0ðtÞ ¼ γB0½1þ αz0ðtÞ�; ð20Þ

For completeness, we provide the solution

z0ðtÞ ¼
e−

t
2T1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e

t
T1 þ 4αhðαhþ 1Þ

q
− 1

2α
ð21Þ

for the domain wall height with boundary condition
z0ðt ¼ 0Þ ¼ h. An analytic solution for θ0 is straightfor-
wardly obtained by substituting into Eq. (19).
Next, the equation of motion at first-order in the axion

coupling for the axion-induced domain wall motion is

żaðtÞ ¼ ½Ba
xðtÞ sin ðθ0ðtÞÞ þ Ba

yðtÞ cos ðθ0ðtÞÞ�

× γ tan β0
1þ αz0ðtÞ
1þ 2αz0ðtÞ

; ð22Þ

and the shift it induces in the precession rate is given by

θ̇aðtÞ ¼ αγB0z0ðtÞzaðtÞ: ð23Þ

In deriving these equations, we have neglected slowly
varying terms which are suppressed by 1=T1 since already
we are already at first-order in the small coupling param-
eter. We have also neglected bare oscillatory terms of the
form sin½θðtÞ� or cos½θðtÞ� that average to zero over
intervals longer than the precession period. These terms
include those proportional to Ba

z , so the longitudinal
component of the axion gradient does not contribute to
the HPD dynamics over timescales longer than the pre-
cession period.

Thus, by expanding perturbatively, we have then
decoupled our two variables, such that after solving for
z0 and za, we may always compute ωLðtÞ≡ θ̇ðtÞ ¼
θ̇0ðtÞ þ θ̇aðtÞ, which is the experimentally measurable
observable of interest. We note that expressing the pre-
cession rate as the sum of the precession rates associated
with the background and axion-induced domain wall
motion is an artifact of our order-by-order expansion.
The precession can more simply be written as

ωLðtÞ ¼ γð1þ αzÞB0; ð24Þ

where z ¼ z0ð1þ zaÞ is the domain wall position.

B. Axion resonance in the Bloch equations

We now consider the dynamics of the resonance in our
Bloch treatment. We define the time of the resonance tr by
ωLðtrÞ ¼ ma, where ωL ≡ θ̇ðtÞ. We additionally denote the
precession frequency derivative at time tr by ω̇r. We may
then expand the background phase θ0 around the time of
the resonance by

θ0ðtÞ ≈ θ0ðtrÞ þmaðt − trÞ −
ω̇r

2
ðt − trÞ2: ð25Þ

For definiteness and convenience, we take θ0ðtrÞ ¼ 0,
which sets the orientation of the magnetization with respect
to the Earth’s peculiar velocity at the time of the resonance,
though this need not be true in a particular experimental
realization. We can substitute this expansion into our
equation for żaðtÞ, but first it is informative to consider
the statistics of za.
From Eq. (22), żaðtÞ depends linearly on Ba≡

ðgaNN=γÞ∇a. As we have established, ∇a follows a
multivariate Gaussian distribution, so żaðtÞ, which is
constructed from a weighted sum over components of
∇a, must be a Gaussian variate itself. Moreover, za, which
is the time integral of Gaussian variates, must also be a
Gaussian variate.3 Direct integration of ża then allows us to
evaluate the defining expectation values for zaðtÞ.
Since h∇ai ¼ 0, the mean of za vanishes as well

hzaðtÞi ¼ 0: ð26Þ

We can also calculate the 2-point correlator

hzaðtÞzaðt0Þi ¼ tan2 β0g2aNNρa

Z
dv
Z

t

0

dt̃
Z

t0

0

dt̃0 cosðωvðt̃ − t̃0ÞÞ 1þ αz0ðt̃Þ
1þ 2αz0ðt̃Þ

1þ αz0ðt̃0Þ
1þ 2αz0ðt̃0Þ

× ½FxxðvÞ sin θ0ðt̃Þ sin θ0ðt̃0Þ þ 2FxyðvÞ cos θ0ðt̃Þ sin θ0ðt̃0Þ þ FyyðvÞ cos θ0ðt̃Þ cos θ0ðt̃0Þ�; ð27Þ

3Recall that in this section, we are treating the background evolution z0 and θ0 as deterministic; see Sec. IV and Appendix B for the
effects of stochasticity.
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where we have used Eq. (9) to compute the 2-point
correlator of Ba. While Eq. (27) is not generally analyti-
cally tractable, it can be readily computed numerically.
Since hzai ¼ 0, Eq. (27) also gives covariance of the axion-
induced relative shift in the domain wall position.
In Fig. 2, we plot the covariance in Eq. (27) for a

representative set of values of the experimental parameters,
as well as several time-series realizations of such a signal.
Two notable features that are highly relevant to the analysis
scheme we will subsequently develop are readily apparent.
First, since the signal has zero mean, hzaðtÞi ¼ 0, an axion
search is necessarily a search for extra covariance above the
expected background scatter. Second, while the resonant
period does indeed induce large motion in the domain wall
position, with a covariance that grows quadratically with
time, the axion can still drive oscillations in the domain
wall position off-resonance. These oscillations can have
amplitude on the same order of magnitude as the total
resonant shift. Incorporating these oscillatory features in
the covariance and expected signal is critical for maximiz-
ing the sensitivity of an analysis.

IV. STOCHASTIC DOMAIN WALL MOTION

While the Bloch description captures the expected
coarse-grained evolution of the HPD system, it does not
account for the stochasticity of the dissipation processes
that lead to magnon loss [47]. This is of critical importance
as it was estimated in [18] that stochastic magnon loss
represented the dominant noise floor for the search. We
now adapt our calculations above to account for the
microphysical description of the HPD in terms of magnon
statistics in order to precisely quantify its effect on our
sensitivity.

A. Domain wall motion from stochastic magnon loss

The HPD of 3He can be described as a BEC of Ni
magnons, with Ni jointly determined by VHPD and the
B-field at the domain wall location. Given Ni magnons in
the system at time ti, the expected number of magnons lost
over a small time intervalΔt will be NiΓΔtwhere Γ ¼ T−1

1 .
Hence, whatever the source of magnon loss, the evolution of
magnon number is a Markov process with Poisson statistics
in each step. Because the number of magnons in the system
is macroscopically large, Ni ∼ 1020 for the experimental
parameters we will consider, the expected number of
magnons lost even for Δt on the order of milliseconds is
sufficiently large to allow for a Gaussian approximation to
the Poisson statistics. We restrict our attention to small time
intervals t∈ ½t0; t0 þ Δt� containing the resonance time tr,
when the number of magnons at time t0 isN0. So long as the
number of magnons lost is small compared to N0, we may
characterize the Gaussian distribution of magnon loss by a
mean ΓΔtN0, which is also equal to the variance.
Subject to these assumptions and approximations, the

random variable Δi, the number of magnons lost between
times ti−1 and ti, has statistics

E½Δi� ¼ ΓN0ðti − ti−1Þ; ð28Þ

Cov½Δi;Δj� ¼ δijΓN0ðti − ti−1Þ; ð29Þ

where δij is the Kronecker delta. Next, we can write the
number of magnons Ni at ti as

Ni ¼ N0 −
Xi−1
j¼0

Δj: ð30Þ

FIG. 2. Behavior of the axion-induced signal in the HPD for times near the resonance, taken to be tr ≈ 5 s, for representative
parameters ma ≈ 70 neV, α ¼ 1 cm−1, h ¼ 10 cm, T1 ¼ 1000 s, and B0 ¼ 0.05 T. Left: the time-dependent covariance of the axion-
induced domain wall shift, Eq. (27), normalized with respect to the maximum variance in the relative displacement of the domain wall.
The behavior is approximately that of a step function modulated by beat frequency oscillations. Right: five realizations of the axion-
induced domain wall shift drawn from the multivariate Gaussian distribution specified by the covariance matrix for
gaNN ¼ 10−11 GeV−1. The horizontal gray band illustrates the variance of the measured ΔωL=ωL associated with stochastic magnon
loss and clock error. For details, see Sec. V.
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As the sum of Gaussian variates, Ni will be Gaussian-
distributed, with statistics

E½Ni� ¼ N0½1 − ðti − t0ÞΓ�; ð31Þ

Cov½Ni; Nj� ¼ N0½minðti; tjÞ − t0�Γ: ð32Þ

Assuming the ti are uniformly spaced by Δt, we have

E½Ni� ¼ N0ð1 − iΔtΓÞ; ð33Þ

Cov½Ni; Nj� ¼ minði; jÞN0ΓΔt: ð34Þ

To relate the statistics of the magnon number to the
statistics of the domain wall location (in absence of an
axion wind), we use that the total magnon number in
the system as a function of the domain wall position z is
given by

N ¼ 5

4

χB0ð1þ αzÞ
γ

VHPD; ð35Þ

where VHPD ¼ Az. Defining zðNÞ as the inverse of
Eq. (35), for our small time interval around the resonance,
we have

zðtiÞ ≈ zðt0Þ þ
dz
dN

Ni; ð36Þ

where dz=dN as evaluated at N ¼ N0. Since this is an
affine transformation, we have

E½z0ðtiÞ� ¼ zðt0Þ þ N0ð1 − iΓΔtÞ dz
dN

; ð37Þ

Cov½z0ðtiÞ; z0ðtjÞ� ¼ minði; jÞN0ΓΔt
�
dz
dN

�
2

: ð38Þ

Note that we have reintroduced subscript zeros indicating
that this is the covariance for the domain wall motion in
absence of an axion. It remains to modify this expression
in the context of an axion-induced resonance.

B. Domain wall motion from a stochastic axion wind

We now consider how the presence of an axion field
modifies the statistics of the domain wall motion.
Recalling that za was defined as the dimensionless domain

wall shift relative to z0 induced by the axion, we must
now calculate the mean and covariance of the quantity
zðtÞ ¼ z0ðtÞð1þ zaðtÞÞ. First, for the mean, we have

E½zðtÞ� ¼ E½z0ðtÞ� þE½z0ðtÞzaðtÞ�: ð39Þ

From Eq. (22), ża is linear in Ba, which has a magnitude
determined by the uniformly distributed axion phases and is
independent of all other variates. Computing any expect-
ation value linear in za is equivalent to computing the
expectation value of a weighted sum of quantities linear
in ża, which must vanish when taking the expectation value
over the axion phase. Thus, we find even in the presence of
an axion gradient, the mean domain wall position is equal to
its background value,

E½zðtiÞ� ¼ E½z0ðtiÞ�; ð40Þ

which is explicitly evaluated in Eq. (37).
Now we proceed to the more complicated covariance

term

Cov½zðtiÞzðtjÞ� ¼ Cov½z0ðtiÞz0ðtjÞ�
þCov½z0ðtiÞ; z0ðtjÞzaðtjÞ�
þCov½z0ðtiÞzaðtiÞ; z0ðtjÞ�
þCov½z0ðtiÞzaðtiÞ; z0ðtjÞzaðtjÞ�; ð41Þ

which we consider term-by-term. The first term is the
background covariance calculated in Eq. (38). The second
and third terms can be expanded into products of expect-
ation values which are linear in za, and thus vanish by the
arguments above. To deal with the fourth term, which is
quadratic in both z0 and za, we write out this covariance
explicitly in terms of expectation values

Cov½z0ðtiÞzaðtiÞ; z0ðtjÞzaðtjÞ�
¼ E½z0ðtiÞz0ðtjÞzaðtiÞzaðtjÞ�
−E½z0ðtiÞzaðtiÞ�E½z0ðtiÞzaðtjÞ�

¼ E½z0ðtiÞz0ðtjÞzaðtiÞzaðtjÞ�: ð42Þ

The last line follows because quantities which are linear
in za vanish. Defining δz0ðtiÞ≡ z0ðtiÞ − E½z0ðtiÞ�, we
may write

Cov½z0ðtiÞzaðtiÞ; z0ðtjÞzaðtjÞ�x ¼ E½z0ðtiÞz0ðtjÞzaðtiÞzaðtjÞ�
¼ E½ðE½z0ðtiÞ� þ δz0ðtiÞÞðE½z0ðtjÞ� þ δz0ðtjÞÞzaðtiÞzaðtjÞ�
¼ E½z0ðtiÞ�E½z0ðtjÞ�E½zaðtiÞzaðtjÞ� þE½z0ðtiÞ�E½δz0ðtjÞzaðtiÞzaðtjÞ�
þ E½z0ðtjÞ�E½δz0ðtiÞzaðtiÞzaðtjÞ� þ E½δz0ðtiÞδz0ðtjÞzaðtiÞzaðtjÞ�: ð43Þ
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Over a small time interval δT around the resonance,
δz0=z0 ∼ δT=T1 ≪ 1, and so neglecting terms which are
proportional to δT=T1, we have

Cov½z0ðtiÞzaðtiÞ; z0ðtjÞzaðtjÞ�
≈E½z0ðtiÞ�E½z0ðtjÞ�E½zaðtiÞzaðtjÞ�
¼ E½z0ðtiÞ�E½z0ðtjÞ�Cov½zaðtiÞ; zaðtjÞ� ð44Þ

at leading order in gaNN .
Collecting the above results, we obtain

Cov½zðtiÞ; zðtjÞ� ¼ Cov½z0ðtiÞ; z0ðtjÞ�
þE½z0ðtiÞ�E½z0ðtjÞ�Cov½zaðtiÞ; zaðtjÞ�:

ð45Þ

The covariance has nicely decomposed into the sum of
terms which do and do not depend on the axion gradient
field, which will facilitate a computation of the likelihood
function for our signal.

C. Stochastic evolution of the precession frequency

Finally, we must relate the mean and covariance of the
domain wall position to the mean and covariance of the
precession frequency ωL. Since ωL;i ≡ θ̇ðtiÞ is given by

ωL;i ¼ γB0½1þ αzðtiÞ�; ð46Þ

its mean μ and covariance Σ are given by

μi ≡E½ωL;i� ¼ γB0½1þ αE½zi��; ð47Þ

Σij ¼ Bij þ Sij: ð48Þ

where we have split the covariance into a background term
B (not to be confused with the external magnetic field B)
and a signal covariance S

Bij ¼ ðαγB0Þ2Cov½z0ðtiÞ; z0ðtjÞ�; ð49Þ

Sij ¼ ðαγB0Þ2E½z0ðtiÞ�E½z0ðtjÞ�Cov½zaðtiÞ; zaðtjÞ�: ð50Þ

There exist some remaining subtleties that we have not
fully addressed. First, we have only calculated the first two
moments of ωL;i. These moments fully characterize
Gaussian distributions, but even for Gaussian z0 and za,
the product z0za will generically be non-Gaussian after
sufficiently long times, motivating careful choice of
duration of windows during which axion resonances are
searched for in data. Similarly, the only computationally
tractable way to calculate hzaðtÞzaðt0Þi is to fix z0ðtÞ ¼
E½z0ðtÞ�, which we expect to be accurate to at
Oðδz0=z0Þ ∼OðδT=T1Þ. Though we have been somewhat
schematic here, in Appendix B, we demonstrate with

numerical tests that our approximations are good ones.
Also, note that these caveats regarding Gaussianity and the
order of accuracy in δz0=z0 apply only to the contribution
of the axion-induced domain wall motion, and so in the
small signal limit, they are further suppressed relative to
the expected domain wall motion in absence of an axion by
the small axion coupling.
As a final comment, we point out that the covariance we

have developed describes only the stochasticity of the HPD
system and does not account for any variety of measure-
ment error, which will act as an additional source of
nonzero covariance.

D. Likelihood for HPD measurements

Since our data approximately follows a multivariate
Gaussian distribution, it has likelihood function

Lðd;M; θÞ ¼
exp

h
− 1

2
ðd − μÞTΣ−1ðθÞðd − μÞ

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2πÞN jΣðθÞj

p ; ð51Þ

where μ and Σ are the mean and covariance, respectively,
for a model M parameterized by θ, d is the observed data
consisting of N datapoints, and jΣj≡ detðΣÞ. From this
likelihood, we define a test statisticΘ for discovery in terms
of the signal parameter S,

ΘðSÞ ¼ 2½lnLðdjθ̂b; SÞ − lnLðdjθ̂b; S ¼ 0Þ�; ð52Þ

where θb are the nuisance parameters, which may include
T1, α, and any other parameters relevant for fully character-
izing the system and the measurement (such as clock noise,
discussed in Sec. V below). We note that incorporating
these and other relevant nuisance parameters enables a
characterization of the system in situ and in the specific
small interval in time relevant for a given axion signal.
However, for simplicity in our sensitivity estimates, we
assume that all nuisance parameters may be determined
with perfect accuracy so that θ̂b denotes the maximum
likelihood estimators of those nuisance parameters under
the null hypothesis.
Evaluating this likelihood, we have

ΘðSÞ ¼ ðd − μÞT ½B−1 − Σ−1�ðd − μÞ − ln

�jΣj
jBj
�
; ð53Þ

where B is the background-only covariance and Σ is the
covariance including the signal contribution. Next, follow-
ing the procedure of [48], we evaluate the Asimov expected
test statistic under the assumption of some true signal
strength St, as follows:
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Θ ¼ hðd − μÞT ½B−1 − Σ−1�ðd − μÞi − ln

�jΣj
jBj
�

¼ Trðhðd − μÞðd − μÞTi½B−1 − Σ−1�Þ − ln

�jΣj
jBj
�

¼ TrðΣt½B−1 − Σ−1�Þ − ln

�jΣj
jBj
�
; ð54Þ

where Σt is the true covariance of the data. Fixing the
background at its true value, we can write

Σt ¼ St þ B; ð55Þ

and expand to quadratic order in the signal strength to
obtain

Θ ≈ Tr

��
St −

1

2
S

�
B−1SB−1

�
; ð56Þ

where we have used the standard identity ln jMj ¼
TrðlnMÞ. Note that the test statistic in Eq. (56) takes
the same form as in the “axion interferometry” search of
Ref. [44]. This is because the formalism of Ref. [44] holds
for any positive-definite background covariance B, which
indeed is a requirement for a physically reasonable covari-
ance matrix.
The signal covariance can be written with canonical

normalization S → AS, for A ¼ g2aNN so the Asimov
expected sensitivity given the true value of the coupling
At becomes

ΘðAjAtÞ ¼ A
�
At −

1

2
A
�
Tr½ðSB−1Þ2�: ð57Þ

This is maximized for A ¼ At, which shows that our
likelihood is an unbiased estimator. Evaluating the
expected sensitivity to gaNN under the null hypothesis
(gtaNN ¼ 0) using the Fisher information [49,50], we obtain

σ−2A ¼ 1

2
Tr½ðSB−1Þ2�: ð58Þ

From here, we are able to compute the expected sensitivity
for arbitrary data collection and analysis schemes. For
instance, the expected 95th percentile upper limit on gaNN
is defined by

g95aNN ¼ ½Φ−1ð0.95ÞσA�1=2; ð59Þ

where Φ−1ðxÞ is the inverse of the standard normal
distribution.
We also note that the HPD relaxation time T1 is typically

larger than the axion coherence time in Eq. (11), and so
under these conditions, any repeated measurements will
probe effectively uncorrelated gradient field realizations.

As a result, N repeated measurements will add linearly in
the test statistic of Eq. (56), leading to a N1=4 enhancement
of the sensitivity of Eq. (59). Hence, we have g95aNN ∝ t−1=4int
where tint is the total integration time.4

In all subsequent examples and calculations, we take the
local DM velocity distribution to be given by Standard Halo
model ansatz of

fðvÞ ¼ 1

½2πσ2v�3=2
exp

�
−
jv − vobsj2

2σ2v

�
ð60Þ

where vobs is the lab velocity in the halo frame and σv is the
velocity dispersion of 155 km=s [51]. We initially take the
lab-frame velocity to be vobs ¼ 230 km=s in the x̂ direc-
tion, corresponding to the solar velocity with respect to the
galactic halo, but we relax this assumption when consid-
ering temporal modulation effects in Sec. VI.

V. HPD MEASUREMENT AND PROJECTED
SENSITIVITY

An important practical consequence of our analysis above
is that measuring the evolution of the precession frequency
with fine time resolution is particularly important for
maximizing the sensitivity of HPD-based searches for
axions. This is because although a resonance may induce
an overall shift in ωL with respect to the expectation (as was
considered to be the signal in Ref. [18]), the same effect is
produced by stochastic magnon loss. The variance in the
magnon loss over a finite time interval grows linearly with
the duration of that interval, as illustrated in the gray band of
Fig. 2, so our ability to identify a resonance at some time Δt
after it occurs degrades as

ffiffiffiffiffiffi
Δt

p
. Moreover, as we have seen

in Fig. 2, ringing features associated with beat frequency
effects appear in the axion-induced shift in ωL that are not
expected if the precession rate evolution is governed solely
by stochastic magnon loss. Good time resolution in mea-
surements of ωL enables identification of these features and
thus allows for improved sensitivities. We note that recent
work in [17] revealed previously unappreciated aspects of
the time-dependent scaling of the axion coupling sensitivity
of spin precession experiments. In our work, these details
are accounted for by construction by the explicit time-
integration of Eq. (22). In this section, we describe a
concrete proof-of-principle measurement and readout
scheme which accounts for imprecision in both the fre-
quency measurement and the reference clock, and show
how the interplay of these noise sources with the irreducible
stochastic noise informs our choice of measurement
cadence and scanning strategy.

4This behavior is consistent with the analysis of Ref. [17],
since in the HPD there is only one relaxation timescale T1, and
over multiple runs with tint ≫ T1, the overall scaling is t−1=4int .
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A. Frequency measurement with optimal
quantum control

Since the axion signal we are seeking appears only in the
precession frequency and not the amplitude, our goal is a
frequency measurement scheme which is as insensitive as
possible to amplitude noise but maximally sensitive to
frequency shifts. This implies that extracting the precession
phase from e.g. measurements ofMx andMy with orthogo-
nal pickup loops will be polluted by amplitude noise from
the pickup loops. Furthermore, simply performing a Fourier
transform on the resulting signal results in a frequency
resolution δω=ω which scales as 1=T, where T is the total
measurement time.
Both of these situations may be vastly improved with the

techniques of quantummetrology [40]. The precessing HPD
magnetization may couple to a quantum system (such as a
qubit) as a time-dependent Hamiltonian. The Heisenberg
bound implies that errors on estimates of a parameter from a
time-independent Hamiltonian scales at best like 1=T, but
for a time-dependent Hamiltonian, one may carefully
choose an additional time-dependent control Hamiltonian
HcðtÞ to manipulate the system and achieve in principle
arbitrary scaling with T, limited only by the specific time
dependence of the Hamiltonian to be estimated. In the
particular case of a frequency measurement, Ref. [40] shows
that with optimal quantum control (i.e., maximizing the
quantum Fisher information), the measurement of the
frequency of a rotating magnetic field using a single qubit
has errors that scale like 1=T2. Furthermore, Ref. [41]
demonstrated this scaling experimentally in a closely related
setup where an external Hamiltonian modulated the level
spacing in a qubit, and the task was to estimate the
modulation frequency ω. While these scalings only hold
up to the qubit coherence time Tq, Refs. [42,43] derived,
and confirmed experimentally, that a frequency error scaling

of 1=
ffiffiffiffiffiffiffiffiffiffiffi
TqT3

q
may be achieved for T > Tq with a hetero-

dyne readout scheme referenced to a stable external clock.
Since our goal is actually to measure a frequency drift ω̇,

it turns out we can achieve even more favorable scaling
with measurement time. Our readout scheme is as follows.
The transverse HPDmagnetization is sensed with a SQUID
oriented in the xy-plane. Rather than reading out the
SQUID directly and using it as a magnetometer, we
imagine coupling the SQUID to Nq transmon qubits.
The time-varying flux through the SQUID acts as a
time-dependent modulation of the qubit level splitting,
Hω̇ðtÞ ¼ A sinðωLtþ ω̇t2=2Þσz=2, exactly analogous to
Ref. [41]. The amplitude A of the level splitting modulation
is proportional to the amplitude M̃0 of the HPD magneti-
zation. With B0 ¼ 0.5 T, M̃0 ≃ 50 nT, and the size of
the modulation in frequency units is on the order of
A ≃ 2π × 10 MHz for a qubit with typical frequency
6 GHz [52]. The control Hamiltonian HcðtÞ is applied in

order to maximize the quantum Fisher information; see
Appendix C for details.
We then estimate the Hamiltonian parameter ω̇ by

reading out the state of the qubits at a measurement
cadence of time interval Δt, where the start and end of
each measurement interval are referenced to an external
clock. Following the derivation of Ref. [40], the error on ω̇
scales as

δω̇ ¼ 3π

AðΔtÞ3 ffiffiffiffiffiffiffiffiffi
4Nq

p ðΔt ≤ TqÞ; ð61Þ

where the scaling with 1=
ffiffiffiffiffiffi
Nq

p
is the standard spin

projection noise from Nq independent qubits. The T3

scaling for a measurement of ω̇ compared to the T2 scaling
for a measurement of ω arises simply from an additional
factor of t in the desired Hamiltonian ∂ω̇Hω̇. Following the
derivation of Ref. [43], for measurement cadences exceed-
ing Tq we instead read out the qubit states at intervals of Tq,
record the results to disk with timestamps given by the
external clock, and obtain

δω̇ ¼
ffiffiffi
5

p
π

AðΔtÞ5=2T1=2
q

ffiffiffiffiffiffiffiffiffi
4Nq

p ðΔt ≥ TqÞ: ð62Þ

For details, see Appendix C. Once we have measured ω̇, we
then define our measured frequency stepwise over each
measurement cadence between t0 and t0 þ Δt as a linear
approximation

ωðtÞ ¼ ωðt0Þ þ ω̇ × ðt − t0Þ: ð63Þ

From this point on, we reference to the rate 1=Δt at which
we make optimally controlled measurements of ω̇ as the
measurement cadence f.
As we discuss in Appendix C, both ω and ω̇ are

measured in the optimal control scheme by querying the
same set of qubit states. As a result, there exists some
degeneracy in measuring these quantities, and measure-
ment of ω̇ at the precision we project requires a previous
measurement of ω at precision such that δω=Δt ≪ δω̇
where δω is the uncertainty on ω made in previous
measurements, Δt is the time interval of the measurement
cadence, and δω̇ is the desired precision of the ω̇ meas-
urement. In practice, the time necessary to make a
sufficiently precise measurement of ω is small compared
to the HPD relaxation times of interest in this work. As a
result, only a small fraction of the total integration time
must be dedicated to determining ω, and this requirement
has a negligible impact on projected sensitivities.
Finally, since our measurement of ω relies on the timing

of our measurement cadence, imprecision in the external
clock acts as a noise floor that must be considered in
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tandem with the measurement noise on ω̇. We account for
this imprecision by adding a diagonal covariance

Bclock
ij ¼ Bclock ×

�
1 s
Δt

�
ωL;iωL;jδij: ð64Þ

Here Bclock is the relative clock variance over a 1 s interval,
and we have assumed the clock to be performing at the
white noise limit so that the variance is inversely related to
the integration time. We assume a clock precision Bclock ¼
3.6 × 10−31 associated with a cryogenic sapphire micro-
wave oscillator, though even higher-performing alternatives
may be possible [53].5

B. Sensitivity as a function of measurement cadence

As a benchmark scenario, we consider an HPD system of
height h ¼ 10 cm and total volume 100 cm3 with relaxation
time T1 ¼ 1000 s, which is longer than the T1 which has so
far been measured in the HPD but was argued in Ref. [18] to
be a reasonable goal for an experimental program. We take
B0 ¼ 0.05 T and α ¼ 1 cm−1. Therefore, N0 ∼ 1020. The
background covariance from the stochastic magnon loss is

typically Bij

ωL;iωL;j
∼ Δt

4T1N0
∼ 10−24 Δt

1 s.

We take the domain wall to be initially located at zðt0Þ ¼
h ¼ 10 cm at t0 ¼ 0 s and consider an axion mass
ma ¼ 73 neV, corresponding to ωL=ð2πÞ ¼ 17.6 MHz at
the time of resonance.
We can determine the limit-setting power of an HPD

measurement as a function of our frequency-measuring
strategy, accounting for the joint effects of magnon
stochasticity, clock noise, and measurement imprecision.
Parametrically, the clock noise scales with the measure-
ment cadence as

ffiffiffi
f

p
while the magnon loss noise scales as

1=
ffiffiffi
f

p
. These are relatively slow scalings with f, and by

contrast, the measurement imprecision scales as either f6

or f5=2 depending on the choice of cadence with respect to
the qubit coherence time. Faster cadences allow for better
resolution of the resonance, effectively reducing the
magnon noise relevant for searching for a signal, but will
suffer from considerably larger clock and measurement
imprecision.
Figure 3 shows the sensitivity as a function of meas-

urement cadence for three illustrative scenarios. In an
optimistic scenario (solid curve), we project a measurement
performed using Nq ¼ 100 qubits, each with a coherence
time of Tq ¼ 1.0 ms. This coherence time in superconduct-
ing qubits is presently achievable [54], with theoretical
upper bounds as large as Tq ≈ 3 ms [55]. In a more
conservative scenario (dashed curve), we assume a smaller

coherence time Tq ¼ 0.1 ms, but with the same
Nq ¼ 100.6 Finally, the dotted curve shows the unphysical
scenario in which the measurement imprecision is vanish-
ing and only the clock imprecision and magnon loss
stochasticity contribute to the noise. In the optimistic
scenario, the optimal measurement cadence is f ≈ 5 Hz
due to the rapid scaling of measurement imprecision with f.
This cadence is too slow to resolve either the axion
resonance, which lasts about 50 ms (see Fig. 2), or the
beat frequencies after the resonance, resulting in a loss of
sensitivity. To resolve the resonance at a cadence of 80 Hz,
one would need Nq ¼ 106 with Tq ¼ 1 ms, and to reach
the clockþmagnon noise floor, one would needNq ¼ 108,
which is (needless to say) unrealistic in the near future. That
said, additional improvements to the sensitivity may be
gained via an optimization of the qubit coupling parameter
A, though a careful analysis accounting for backaction
noise (which would affect Tq) is necessary.

C. Sensitivity as a function of B-field gradient

Axion DM experiments all suffer from the unfortunate
fact that the true axion mass is unknown. When aiming for
an integrated sensitivity across a range of possible axion
masses, the choice of αmust be made carefully. For large α,
a much larger range of precession frequencies are realized,
providing sensitivity at a larger range of masses, but

FIG. 3. The axion-coupling sensitivity of 1 month of HPD
measurement for an axion of mass ma ¼ 73 neV as a function of
measurement cadence. Two different qubit measurement scenar-
ios for Nq ¼ 100 and Nq ¼ 1 are shown in solid black and
dashed black, respectively. To illustrate the importance of
measurement imprecision, we also show the sensitivity as a
function of cadence in the absence of measurement error in dotted
gray. In this idealized case, the coupling sensitivity would
continue to improve until it saturates at f ≈ 1 kHz at a floor
indicated by the gray dot-dashed line. For details, see the main
text in Sec. V B.

5Above 1 s, the sapphire oscillator precision scales less rapidly
than ðΔtÞ−1=2. Assuming the precision scales like white noise for
integration times less than 1 s therefore represents a conservative
assumption.

6Since the noise scales identically with Tq and Nq, the solid
curve may also be realized with Tq ¼ 0.1 ms and Nq ¼ 1000.
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generally at worse sensitivity for a given mass than if α
were small. On the other hand, smaller values of α will
require more scans to cover an identical range of masses for
a fixed total data-taking time. Defining Δa ¼ 2ðθ̇max −
θ̇minÞ=ðθ̇max þ θ̇minÞ as the relative size of the mass interval
reached by a single collection at a given α, a scanning
strategy can be roughly optimized by minimizing the
quantity g95aNNðαÞ=ðΔaðαÞÞ1=4.
To calculate the typical axion coupling sensitivity as a

function of α, we maintain our previous set of benchmark
parameters from Sec. V B when possible. We take
h ¼ 10 cm, total volume 100 cm3, and relaxation time
T1 ¼ 1000 s. As before, we consider two measurement
scenarios, Tq¼1ms and Tq¼0.1ms, each with Nq ¼ 100.
For each choice of α and Nq we independently optimize the

measurement cadence in computing the sensitivity. We
evaluate the coupling sensitivity for a mass ma ¼ 73 neV
for a range of α, choosing B0 self-consistently so that the
resonance occurs when the system is at a height of 9.99 cm
and the number of magnons in the system is the same at the
time of resonance for all choices of α.
We first consider the sensitivity at a fixed axion mass,

shown in Fig. 4 (top). The B-field gradient is inversely
proportional to the time on resonance, Δtres, which is
defined as the time interval over which ωL has drifted by a
fraction 10−6 corresponding to the axion bandwidth. For
our parameters, αh ≃ 0.1 corresponds to Δtres ≃ τ, which
was the situation studied in Ref. [18]. We see that an
optimized measurement achieves the best sensitivity to a
single mass with the longest time on resonance, but that the
sensitivity changes only by a factor of 3 going from αh ¼
10−2 to αh ¼ 101. This behavior as a function of resonance
timescale is significantly different than the scaling obtained
in Ref. [17] for an experiment such as CASPEr-Wind
which is limited by amplitude noise and for which the time
on resonance is simply given by the total measurement
time. In our setup, the combined effects of clock noise,
magnon noise and measurement noise intertwine time-
domain and frequency-domain phenomena, making the
scaling of the gaNN limits with Δtres less straightforward.
Next, we consider the figure of merit gaNN=Δ

1=4
a in the

middle panel of Fig. 4. We generally find that the figure of
merit is saturated by αh ≈ 1, motivating somewhat larger
field gradients than considered in Ref. [18]. We find that
although sensitivity to an individual mass is improved by
increasing time on resonance, that the best integrated
sensitivity of a scan over a range of masses is achieved
by αh ≈ 1. We caution, though, that by calculating only a
single representative axion coupling sensitivity, we have
neglected the dependence of coupling sensitivity on the
precise height of the domain wall at the time of the
resonance; an optimization of a full-fledged experimental
procedure would require a more detailed treatment. Finally,
we also show the optimal measurement cadence, finding
that f ≲ 10 Hz for essentially any reasonable choice of
external B-field gradient.

D. Projected sensitivities

We collect the results developed in Secs. V B and V C to
develop projections for extended HPD measurements in
search of axion dark matter. For our frequency measure-
ment scheme, we assume the cryogenic sapphire micro-
wave oscillator clock standard (a technology which
presently exists in commercial form) rather than a
higher-performing optical clock that may be viable in
the future. We assume a total height of the HPD system
of h ¼ 10 cm, and we choose α ¼ 1 cm−1 so that αh ≈ 10.
Note that this implies that the magnetic field varies by an
order of magnitude between the top and bottom of the

FIG. 4. Above: the coupling sensitivity assuming a single data
collection for time T1 with an axion of mass ma ¼ 73 neV, as a
function of the time on resonance in the scan relative to the axion
coherence time τ. We present this coupling sensitivity for our two
qubit scenarios, see text for details. The time on resonance for a
fixed T1 is set by the B-field gradient α, and so all three panels
share an x-axis. Middle: the figure of merit for axion coupling
sensitivity (see Sec. V C for details), as a function of the external
B-field gradient for our two qubit scenarios. Decreasing values
indicate improved integrated sensitivity due to the tradeoff
between scan time and scan range. For all scenarios, scan
sensitivity is generally saturated by αh ≈ 1. Below: the optimal
measurement cadence as a function of αh, which we find is not a
strong function of the external B-field gradient.
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sample container. When then consider three collection
scenarios, calculating the sensitivity assuming Nq ¼ 100

for both Tq ¼ 0.1 ms and, more optimistically, Tq ¼ 1 ms.
In the first and most conservative, we assume an HPD

system with a total volume of 10 cm3 with a relaxation time
of T1 ¼ 10 s. We choose B0 ¼ 0.05 T so that the field
strength over the HPD height varies between 0.05 T and
0.55 T; as noted in Ref. [18], stronger field strengths would
destabilize the HPD [56]. We assume that for a period of
tint ¼ 1 month, the HPD system is prepared with the
domain wall at a height of h ¼ 10 cm, then allowed to
relax for time T1 before being reprepared. The projected
sensitivity for Tq ¼ 1 ms (Tq ¼ 0.1 ms) are shown in solid
(dotted) blue in Fig. 5. The one-month projected sensitiv-
ities are obtained by rescaling the single scan coupling
sensitivity by ð1 month=10 sÞ1=4. Even this modest setup
can lead to world-leading constraints on the axion-nucleon
coupling gaNN , exceeding supernova [57] and neutron star
cooling [58] constraints.
In a more optimistic scenario, we take a HPD volume of

100 cm3 with a relaxation time of T1 ¼ 100 s. Again, we
take B0 ¼ 0.05 T, but now allow for a total collection time
of tint ¼ 1.0 yrs with an otherwise identical data-collection
strategy. The projected sensitivity curves are shown in red in
Fig. 5. Finally, to estimate the ultimate sensitivity of an HPD
axion experiment, we assume an HPD volume of 100 cm3

with a relaxation time of T1 ¼ 1000 s. We assume tint ¼
7.5 yrs of total collection time shared equally between 5
different B-field configurations set by Bi

0 ¼ 0.55 T ×
ð1þ αhÞ−i, i ¼ 1; 2;…; 5, leading to a competitive pro-
jected sensitivity across one decade of axion masses. Our
choice of 7.5 yrs is motivated by matching the collection
time of CASPEr-Wind over an equal mass range [5,17].
The projected sensitivities for both measurement cadences
are shown in black in Fig. 5. In particular, the projected
sensitivity of the HPDmeasurement is comparable to that of
CASPEr-Wind [8] at the highest frequencies accessible to
the HPD setup.7

VI. TEMPORAL MODULATION EFFECTS

An important feature of DM experiments is that
the Earth’s rotation and revolution have the effect of
making the lab-frame velocity distribution—and there-
fore the signal covariance—time-dependent. To account
for these phenomena, we revisit our expression in

FIG. 5. Projected 95th percentile upper limits on gaNN for three benchmark scenarios (black, red, blue, in order of most to least
aggressive) which vary the total collection time, relaxation time, and system volume. In all scenarios, we fix z0ðt0Þ ¼ h ¼ 10 cm and
α ¼ 1 cm−1. In solid lines, we assume a measurement precision provided by Nq ¼ 100 qubits, each with a coherence time of 1 ms,
while in dashed lines, we assume only Tq ¼ 0.1 ms. Otherwise identical parameters are used. We also indicate existing constraints from
SN 1987A [57] and neutron star cooling [58] as well as projected constraints for CASPEr-Wind from [8]. The gold band indicates the
expected couplings for the QCD axion [5].

7New aspects of the sensitivity calculation relevant for CAS-
PEr-Wind were pointed out in [17] which enhance the projected
sensitivities for ma ≳ 10 neV relative to the calculations of [5].
Related modifications should be expected for the projected
sensitivities of [8], but depend in detail on unspecified exper-
imental parameters and scanning strategies.
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Eq. (58), promoting the signal covariance to be time-
dependent as

σ−2A ¼
X
n

Tr½ðSnB−1Þ2� ð65Þ

where i indexes the time of the collection, Sn is the signal
covariance at collection time tn, and we have assumed
the background covariance is identical across all collec-
tions, i.e., T1 is constant. As a benchmark, we choose
ma ¼ 73 neV, and we take the magnitude of Earth’s
peculiar velocity in the galactic frame to be v⊕ ¼
220 km=s and adopt the Standard Halo Model velocity
dispersion v0 ¼ 155 km=s. For our HPD parameters, we
use the same fiducial parameters from Sec. V: α ¼ 1 cm−1,
T ¼ 1000 s, B0 ¼ 0.05 T, and z0ðt0Þ ¼ h ¼ 10 cm. We
also assume the cryogenic sapphire microwave oscillator
clock standard with Nq ¼ 100 and Tq ¼ 0.1 ms with an
optimized sampling cadence.
We first consider two daily modulation scenarios,

corresponding to different orientations of the experimental
apparatus. In the “out-of-plane” scenario, we parametrize
the daily modulation as

v⊕ ¼ v⊕

�
cos

�
2πt

24 hours

�
x̂þ sin

�
2πt

24 hours

�
ẑ

�
; ð66Þ

where the peculiar velocity rotates in and out of the domain
wall plane. In the “in-plane” scenario, we instead have

v⊕ ¼ v⊕

�
cos

�
2πt

24 hours

�
x̂þ sin

�
2πt

24 hours

�
ŷ

�
; ð67Þ

where the peculiar velocity rotates only within the plane of
the domain wall. The sensitivities to the axion coupling for
these two scenarios, both instantaneously and integrated
over a full 24-h data-collection period, are shown in the left
panel of Fig. 6. As expected, in the out-of-plane scenario,
the sensitivity is worst when the peculiar velocity is
orthogonal to the domain wall as this minimizes the
magnitude of the transverse axion gradient. In the in-plane
scenario, there is a small modulation associated with our
choice in the expansion of θ0ðtÞ to set θ ¼ 0 at the time of
when θ̇0ðtÞ ¼ ma, which picks a preferred direction for the
system. This modulation would be inaccessible in a
realistic statistical analysis if θ0 could not be determined
to sufficient accuracy. In total, the effect of daily modu-
lation appears to be, at most, an Oð50%Þ effect on the
sensitivity to gaNN , and the best sensitivity is achieved in
the in-plane scenario when the magnitude of the axion
gradient is maximized at all collection times.
We take a similar approach to studying the effect of

annual modulation. Holding all HPD and axion parameters
fixed, we again consider two scenarios. Taking the speed
associated with Earth’s revolution velocity around the Sun,
vrev ¼ 30 km=s, and fixing the peculiar velocity to lie in
the x̂ direction, we consider a “orthogonal” scenario

v⊕ ¼ v⊕x̂þvrev

�
cos

�
2πt

365 days

�
x̂þ sin

�
2πt

365 days

�
ẑ

�
ð68Þ

in which the rotational axis of the Earth’s revolution
is orthogonal to the peculiar velocity of the Earth.
Alternatively, we have a “parallel” scenario in which

FIG. 6. Left: a comparison of the effects of daily modulation for two orientations of the rotational axis of Earth. In solid black, we
show the modulated sensitivity for 1 h of collection time expected for an orientation such that the Earth’s peculiar velocity rotates from
fully in the domain wall plane to fully orthogonal over a 6-h period. In solid red, we show the analogous modulation expected for the
more modest scenario in which the Earth’s peculiar velocity rotates only within the plane of the domain wall. Such a modulation effect
can only be detected if the phase under the background evolution is well-known at times well-before the axion-induced precession rate
shift becomes relevant. Dashed black and dashed red indicate the sensitivity integrated over a 24-h collection period, where the
difference has become marginal. Right: in solid lines, the 1-day sensitivities in our orthogonal and parallel scenarios as a function of the
date. In dashed lines, the sensitivity of those collections integrated over 1 yr of data-taking.
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v⊕ ¼ v⊕x̂þ vrev

�
cos

�
2πt

365 days

�
ŷ þ sin

�
2πt

365 days

�
ẑ

�
:

ð69Þ

wherein the rotational axis of the Earth’s revolution is
parallel to its peculiar velocity. Experimentally, these two
scenarios would correspond to rotating the experimental
apparatus on a daily basis in order to maintain the relative
orientation of the peculiar velocity. The axion-coupling
sensitivity of each of these scenarios is shown in the right
panel of Fig. 6. The bulk of the sensitivity comes from the
component of the gradient along the peculiar velocity
direction x̂ direction. In the orthogonal scenario, modula-
tion of this boost leads toOð10%Þ changes in the sensitivity
over the course of the year. In the parallel scenario, there is
no modulation of the boost in the x̂ direction, and so the
sensitivity is very nearly constant. Over the span of a year,
these modulation effects amount to a subpercent change in
the integrated sensitivity.
It is perhaps surprising that the “smoking gun” sig-

nature of a DM daily modulation has such a mild effect on
the sensitivity to axions. In fact, this behavior is character-
istic of searches for wavelike dark matter, where a
modulation is an excellent tool for confirming a signal,
but a mediocre one for excluding a signal. Indeed, as noted
in Ref. [44], daily modulation is a powerful statistical tool
in the sense that once a putative signal is seen, its DM
interpretation can often be confirmed at the same level of
statistical confidence within a few days. The same holds
true for our HPD setup. To achieve the best possible
exclusion, though, our analysis shows that one should
align the sample in the “in-plane” daily modulation
scenario to the extent possible.

VII. CONCLUSION

In this paper, we have extended the proposal of
Ref. [18] for axion wind detection with the 3He HPD
with a full statistical treatment of both the signal and
background. In doing so, we have quantified the effect
of clock noise and measurement error, and developed a
data-taking strategy closely related to one which has been
proven to be optimal for measuring a frequency of a
rotating magnetic field. We have also identified optimal
experimental characteristics in order to maximize overall
sensitivity, including order-1 external B-field gradients
and alignment of the sample with the Earth’s peculiar
velocity. Taken together, these optimizations lead to
projected exclusion limits that are competitive with the
CASPEr-Wind experiment for the same data-taking time.
More generally, we have, to our knowledge, presented the
first time-domain formalism for analysis in search of
transient axion signals (though in our case, the transient

nature comes from the detection medium, rather than the
axion source).
In our measurement scheme, the scaling of sensitivity

with qubit parameters is perhaps peculiar from the stand-
point of quantum information. The measurement noise is
relatively insensitive to qubit coherence time, but depends
strongly on the SQUID-qubit coupling, so we could likely
afford a reduction in coherence time if the benefit were
stronger coupling. Likewise, the qubit multiplicity is
simply used to reduce spin projection noise, and the
qubits are read out independently, so scaling to a large
number of qubits on a chip may be easier than quantum
computing applications which require the qubits to remain
entangled and coherent. Regardless, our experiment is
highly synergistic with improvements in superconducting
qubit technology, as increases in Tq and Nq can help
reduce noise down toward the magnon noise floor.
We emphasize, though, that even with all statistical

details and realistic sources of measurement error included,
our work confirms the expectation of Ref. [18]: world-
leading limits, surpassing all astrophysical bounds, can be
achieved with a month of data-taking using commercially
available frequency references and HPD and qubit param-
eters which can reasonably be achieved in the laboratory.
Compared to the axion-photon coupling (see Ref. [19] for a
review), the axion-nucleon coupling parameter space is
quite under-explored, and we hope our proposal provides a
path forward for rapid progress in this domain.
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APPENDIX A: GAUSSIAN STATISTICS
OF THE GRADIENT FIELD

In this appendix, we validate the statistical characteri-
zation of the axion gradient field developed in Sec. II using
a Monte Carlo procedure along the lines of that in Ref. [45].
In particular, we construct a time-series realization of an
axion gradient field at a single spatial point by performing
the sum

∇aðtÞ ¼
XNa

i

ffiffiffiffiffiffiffi
2ρa
Na

s
cos

�
ma

�
1þ v2i

2

�
tþ ϕi

�
vi ðA1Þ

where Na is the number of axion wavemodes included in
the sum, vi is a velocity drawn from the Standard Halo
Model, and ϕi is a phase uniformly drawn between 0
and 2π. As in Refs. [44,45], we unphysically increase the
SHM velocity distribution parameters by a factor of 1000
for computational simplicity. We then construct the time
series by summing over 4 × 105 wavemodes, with a total
collection time which is 50 times that of the axion
coherence time at a resolution of Δt ¼ 1=ð10maÞ. We
use the definition of coherence time given in Eq. (11),
taking jvobsj þ jσvj as the characteristic speed. An essen-
tially identical procedure was utilized in Ref. [39], but
with a focus on instead validating the frequency-domain

statistics of the gradient signal, while we focus here on
time-domain statistics.8

By creating many realizations of the axion gradient field,
we can measure with good precision the correlation func-
tions Σijðt; t0Þ as defined in Eq. (9). Noting that Σijðt; t0Þ
depends only on Δt≡ t − t0, we measure the correlation
at arbitrary lag Δt from 2,560 Monte Carlo realizations,
which are presented in Fig. 7 for Σxx, Σyy and Σxy. Our
simulations show excellent agreement with analytic expect-
ations. We obtain similar agreement between the ensemble
of Monte Carlo realizations and analytic expectations for
correlations involving the ẑ component, which we do not
present here in the interest of brevity.

APPENDIX B: DOMAIN WALL MOTION
AS A STOCHASTIC DYNAMICAL SYSTEM

In the main text, we have argued that stochasticity in the
magnon loss does not significant affect the resonant
dynamics of the HPD-axion system. In this appendix,
we formulate the dynamics of the HPD as a system of
stochastic differential equations (SDEs) so that we may
validate that claim.

FIG. 7. A comparison of the correlations Σxx (left), Σyy (center), and Σxy (right) at arbitrary lag Δt≡ t − t0 associated with the x̂ and ŷ
components of the axion gradient field as realized by an ensemble of 2,560 Monte Carlo simulations, compared with analytic
calculation. Above: in black, the correlation realized in Monte Carlo; in dashed gray, the analytic expectation. Below: in black, the
difference between the Monte Carlo and analytic calculations, with 1σ (green) and 2σ (yellow) containment intervals determined from
the Monte Carlo ensemble. The axion coherence time is τ≡ 1=ðmav2Þ, and so these results demonstrate good agreement between
analytic expectation and the Monte Carlo for multiple coherence times. The Σxy correlator (right panel) is analytically expected to be
identically zero, which is realized at floating point precision in the Monte Carlo.

8Reference [38] also developed time-domain statistics, but for
the dot-product of the gradient field with a precessing dipole, and
focusing on the modulation of the signal when the axion
coherence time is much larger than 1 yr.
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We begin by considering the dynamics of the system in
the absence of an axion gradient field. The Itô SDE
describing the exponential decay of magnons in the system
is given by

dNdðtÞ ¼ −ΓNðtÞdtþ ½ΓNðtÞ�1=2dWt ðB1Þ
where Γ is the instantaneous decay rate and dWt is a
standard Wiener process.
With insight from the Bloch equations describing the

effective dynamics of the HPD, we note that the transverse
components of the magnetization may be directly evaluated
from the state variables N and θ, and we denote those
transverse magnetizations by MxðN; θÞ and MyðN; θÞ. The
instantaneous rate of change of Mz in the presence of an
axion gradient field is then

dMz ¼ γ½Ba
xðtÞMyðN; θÞ − Ba

yðtÞMxðN; θÞ�dt: ðB2Þ
The magnetization can be related to the total magnon
number, so that the instantaneous rate of change in the total
magnon number due to the axion is given by

dNaðtÞ¼−
5hA
γ

½Ba
xðtÞMyðN;θÞ−Ba

yðtÞMxðN;θÞ�dt ðB3Þ

where h is the height of the sample container and A is its
cross-sectional area. We combine these results to obtain

dNðtÞ ¼ dNdðtÞ þ dNaðtÞ ðB4Þ
describing the evolution of the magnon number in the
HPD system.
As in Sec. IV, for a given NðtÞ and known magnetic field

profile BðzÞ, we may evaluate the domain wall height z as a
function of N, which we denote zðNÞ. Since the precession
frequency ωL is determined solely by the magnetic field
strength at the domain wall, we have the ordinary differ-
ential equation (ODE) for the phase

dθðtÞ ¼ γB½zðNðtÞÞ�dt: ðB5Þ
Together the system of the SDE in Eq. (B4) and the ODE in
Eq. (B5) may be straightforwardly solved using standard
libraries, e.g., diffrax to study realizations of the
stochastic dynamics of the HPD system [59].

1. Toy parameters for computationally
tractable simulations

There remain computational challenges associated with
numerical simulation of the stochastic dynamics. For
realistic experimental parameters, the magnon number in
the HPD is very large, Oð1020Þ. Even with the unphysical
DM velocity v ∼ 0.1, accurately evolving the equations of
motion requires that we use a timestep Δt≲ 1=ð10maÞ≈
10−7 s. For T1 ¼ 1000 s, the magnitude of the diffusion
term in the SDE is Oð1010Þ. Hence, the typical change in

the magnon number associated with stochastic decay is
more than 16 orders of magnitude below the magnon
number, which is below floating-point precision. As a
result, our simulations will use physically unrealistic
parameters that reduce this hierarchy to be within float-
ing-point precision.9

As in Appendix A, we perform an unphysical rescaling
of the HPD parameters in order to bring the system into a
computationally tractable regime. In these toy simulations,
we reduce χ from its realistic value of 10−7 to 10−15 and
reduce the gyromagnetic ratio by a factor of 1000 by
γ → γ̃ ¼ γ=1000. In total, this reduces the hierarchy
between the scatter in stochastic decay and the magnon
number to roughly 8 orders of magnitude, which is well
within floating-point precision. Reducing the precession
frequency through the rescaling of γ has the additional
advantage of increasing the step size Δt, making compu-
tations over a fixed time interval considerably faster.
For our subsequent comparisons of the fully nonlinear

SDE developed in this section and the linearized, fully
deterministic description developed in the main text, we
take z0ðt0Þ ¼ h ¼ 10 cm, T1 ¼ 1000 s, α ¼ 1.0 cm−1, and
B0 ¼ 0.05 T. We choose an axion mass ma ≈ 73 peV so
that the resonance ma ¼ θ̇ is expected at tr ≈ 5 s. For
simplicity, we take the axion gradient field to be mono-
chromatic and point only in the x̂ direction

Ba
xðtÞ ¼

gaNNv
ffiffiffiffiffiffiffi
2ρa

p
γ

cosðmatÞ; Ba
yðtÞ ¼ 0; ðB6Þ

with v ¼ 300 km=s. For our toy model parameters, a
relatively large value of gaNN ¼ 1.0 × 10−9 GeV−1 is
necessary in order to produce an observable effect.
Though this is not physically realistic (it is already
excluded by astrophysical constraints, see Fig. 5), it
suffices to demonstrate the effectiveness of the linear
deterministic framework.

2. Realizations of nonlinear SDE and linear
ODE descriptions

In Fig. 8, we show the evolution of the domain wall
position, comparing the linear deterministic ODE frame-
work developed in the main text and the stochastic non-
linear ODE framework developed in this Appendix. In the
top panel of Fig. 8, we show the difference between the a
realization of the stochastic domain wall motion and the
expected (deterministic) domain wall position in two
scenarios. In the first (gray), we assume no axion gradient
field so that the difference between the realization and the
expected solution is purely due to stochasticity in magnon
loss. In the second (black), we include the effect of a

9Alternatively, a implementation of an SDE-solver at long
double precision would suffice.
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realization of an axion gradient field so that the difference
between the realization and the expectation is due to the
cumulative effect of the gradient field and stochastic
magnon loss. Both realizations are solved using an identical

seed for the pseudorandom number generator used in the
diffusion (stochastic magnon loss) term. The order-1
difference between the black and gray curves in the
neighborhood of the resonance clearly shows the effect
of the axion source.
The bottom panel of Fig. 8 plots z0ðtÞzaðtÞ, which is the

axion-induced domain wall motion. For the SDE treatment
(solid black), we evaluate this quantity from the difference
between the realizations which have identical magnon loss
but are evaluated with and without an axion gradient
field, as shown in the top panel. This difference is then
the contribution to the domain wall motion induced by the
axion gradient field including all effects associated with
the interplay between axion dynamics and stochastic
magnon loss. We can also evaluate this quantity in our
linear deterministic treatment by taking z0ðtÞ ¼ hz0ðtÞi;
this result is presented in dashed gray.
The excellent agreement between the two approaches

confirms that our linear deterministic approach accurately
captures the dynamics of the axion-induced domain wall
motion and hence the precession frequency shift. This
agreement is remarkable despite the fact that the axion-
induced shift in our simulations is even larger than the
stochastic shift, i.e., we are simulating the regime in which
a signal would be highly detectable. For physical parameter
values, such as larger values of χ, the magnon number will
be larger, further reducing the size of the diffusion term
relative to the expected drift. Moreover, for larger values of

FIG. 8. Top: a comparison of the difference between the
stochastic evolution of the domain wall position with and without
the axion gradient and the expected domain wall position in
absence of an axion gradient. Bottom: a comparison of the axion-
induced of the axion-induced shift in the domain wall position
computed within the nonlinear SDE framework of this Appendix
and the linear deterministic ODE framework developed in Sec. III.
For details, see text.

FIG. 9. Left: the covariance matrix calculated from 512 realizations of axion-induced domain wall motion in the SDE treatment. The
covariance matrix is normalized to have maximum value 1. Right: the difference between the covariance matrices calculated in the SDE
and linear deterministic treatment, subject to an identical normalization. Good agreement is observed over the range of relevant times.
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ma, the duration over which the axion gradient can drive
non-negligible domain wall motion is shorter. Hence the
size of the relevant stochasticity will be smaller.
Taken as a whole, we interpret our numerical results as

strong evidence for the accuracy of our approximations in
Secs. III and IV. Indeed, in the evaluation of the SDE, no
approximations regarding slowly varying or rapidly oscil-
lating terms was made. In particular, in our derivation of the
HPD equations of motion in Sec. III, we neglected bare
cos θ and sin θ terms as they oscillate rapidly and average to
zero on the finite interval over which measurements are
made; our simulation results validate that approximation
for our unrealistic parameters, and for realistic parameters,
the precession frequency is 1000 times larger, making this
an even better approximation. Similarly, in Sec. IV, we
argued that terms that depend on δz0 in Eq. (43) would be
suppressed relative to those that depend on hz0i by δt=T1.
Once again, the good agreement in our simulations validate
this approximation over a time interval 100 times larger
than for physical parameters; thus, for physical parameters,
neglecting terms at order δz0=hz0i ≈ δt=T1 is an even better
approximation than we are able to depict in this unphysical
example.

3. Signal covariance from SDEs

We now extend our toy model beyond that of a
monochromatic velocity distribution, though for continued
simplicity, we will take the distribution to only have
support in the x̂ direction. In particular, we take

fðvxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2v

p exp

�
−
ðvx − vobsÞ2

2σ2v

�
ðB7Þ

with σv ¼ 1550 km=s and vobs ¼ 2200 km=s, enabling us
to generate the time-resolved gradient field directly from its
defining covariance and use this as an input for our
integration of the domain wall motion.
We then repeat our procedure from Appendix B 2 over

many independent realizations of the axion field and the
stochastic magnon loss. From 512 realizations, we con-
struct a time-time covariance matrix, which we compare to
one calculated via our linear deterministic treatment. In
Fig. 9, we present a summary of these realizations, finding
the difference in the covariance matrix between the SDE
treatment and the linear deterministic treatment to agree at
the sub-percent level.

APPENDIX C: MEASURING DRIFTING
FREQUENCIES WITH OPTIMAL CONTROL

Here, we demonstrate how an optimal control scheme
may be utilized to make a measurement of a drifting
frequency. Consider a time-dependent Hamiltonian for a
two-level system:

Hω̇ðtÞ ¼ A sinðωtþ ω̇t2=2Þ σz
2
; ðC1Þ

where the subscript emphasizes that we consider H as a
function of the parameter ω̇. We are interested in the
fundamental limit on the uncertainty δω̇ of our desired
parameter ω̇, given some measurement time T and a perfect
knowledge of ω. This is related to the quantum Fisher
information (QFI) which can be formulated as

IðQÞ
ω̇ ¼

�Z
T

0

ðμþðtÞ − μ−ðtÞÞdt
�

2

; ðC2Þ

where μ� are the maximum and minimum eigenvalues of
the operator ∂ω̇Hω̇

μ�ðtÞ ¼ �At2

4
cosðωtþ ω̇t2=2Þ: ðC3Þ

It can be show that without any Hamiltonian control, the
QFI scales as T2 for large T.

Following the treatment of Ref. [41], a superposition of
eigenvalues of Hω̇ maximizes the QFI

jΨiϕ ¼ 1ffiffiffi
2

p ðj0i þ eiϕj1iÞ: ðC4Þ

Under the action of Hω̇, the two eigenstates will acquire a
relative (time-dependent) phase ϕω;ω̇ðtÞ. The optimal con-
trol HamiltonianHc will consist of π pulses at the antinodes
of (C1), such that the roles of μþ and μ− are reversed at each
antinode and the QFI integrand is positive-definite

μHc
� ðtÞ ¼ �At2

4
j cosðωtþ ω̇t2=2Þj: ðC5Þ

We note that since the operator structure of (C1) is
independent of ω and ω̇, with both parameters appearing
only in the amplitude of σz, the same state preparation can
be used to make the optimal measurements of ωwhich feed
into the measurement of ω̇. In either case, the QFI under
optimal control is given by

IðQÞ
ω̇ ¼

�Z
T

0

dt
At2

4

				 cos
�
ωtþ ω̇t2

2

�				
�
2

: ðC6Þ

It is convenient to perform a change of variable to t0 ¼
tþ bt2 with b≡ ω̇=2ω. So long as bt0 ≪ 1, the QFI is
approximately

IðQÞ
ω̇ ≈

�Z
T

0

dt0
At02

4
j cosðωt0Þj

�
2

; ðC7Þ

which is a good approximation for typical HPD experi-
ments in which the measurement interval over which ω̇ is
examined is shorter than the relaxation time T1.
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For convenience, we define Tω ≡ 2π=ω and assume the
measurement interval T to be an integer multiple N of Tω.
Then the QFI may be rewritten as

IðQÞ
ω̇ ≈

"XN
n¼1

A
4

 Z ðn−1ÞTωþ1
4
Tω

ðn−1ÞTω

t02 cosðωt0Þdt0

þ
Z

nTω

ðn−1ÞTωþ3
4
Tω

t02 cosðωt0Þdt0

−
Z ðn−1ÞTωþ3

4
Tω

ðn−1ÞTωþ1
4
Tω

t02 cosðωt0Þdt0
!#

2

ðC8Þ

without any absolute values. These integrals are trivial to
evaluate and ultimately we find

IðQÞ
ω̇ ≈

�
AT3

3π

�
2

ðC9Þ

at leading order, which is a marked improvement over the
T2 scaling in the absence of control.
The QFI is a measure of the distinguishability of two

states jΨiϕ and jΨiϕþdϕ, and thus can be given in terms of
the Bures distance

IðQÞ
ω̇ ¼ 4ds2

dω̇2
; ðC10Þ

where ds2 ¼ 2ð1 − jhΨϕjΨϕþdϕijÞ. Given the state prepa-
ration in (C4), we have

ds2 ¼ 2

�
1 −

				 12þ 1

2
eiδϕ
				
�
≈
δϕ2

4
þOðδϕ4Þ ðC11Þ

and we get for the QFI

IðQÞ
ω̇ ≈

�
δϕ

δω̇

�
2

: ðC12Þ

Equating (C12) with (C9), we have

δω̇ ≈
3π

AT3
δϕ →

3π

AT3

1

2
ffiffiffiffiffiffi
Nq

p ðC13Þ

where we used δϕ ¼ 1=
ffiffiffiffiffiffiffiffiffi
4Nq

p
as an estimate of the phase

noise forNq independent measurements. In our scheme, the
independent measurements may be either the number of
repeated experimental measurements or the number of
independent qubits.
This derivation above only holds for a measurement time

during which the qubit remains coherent. Following
Ref. [43], suppose now the qubit is characterized by a
coherence time Tq, and measurement of the frequency drift
is made over a duration T ¼ NmTq. Then the QFI accu-
mulates as

IðQÞ
ω̇ ¼

XNm

n¼1

�Z
nTq

ðn−1ÞTq

ðμþðtÞ − μ−ðtÞÞdt
�

2

: ðC14Þ

To evaluate the QFI, we make the simplifying assumption
that Tq ¼ NTω with N ≫ 1. We then have

IðQÞ
ω̇ ¼

�
A
2

Z
nTq

ðn−1ÞTq

t2jcosðωtÞjdt
�
2

¼
�
A
2

XN
n0¼1

�Z ðn−1ÞTqþðn0−1ÞTωþ1
4
Tω

ðn−1ÞTqþðn0−1ÞTω

t2 cosðωtÞdtþ�� �
��2

≈
A2

5π2
TqT5 ðC15Þ

at leading order. Following identical reasoning using the
Bures metric to relate the δϕ and δω̇, we now find

δω̇ ≈
ffiffiffi
5

p
π

2AT5=2
ffiffiffiffiffiffiffiffiffiffiffi
TqNq

p : ðC16Þ

Hence we see the effect of qubit incoherence is to only
slightly soften the scaling of our precision with time from
T−3 to T−5=2.
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