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The homogeneous precession domain (HPD) of superfluid *He has recently been identified as a detection
medium which might provide sensitivity to the axion-nucleon coupling g,yy competitive with, or
surpassing, existing experimental proposals. In this work, we make a detailed study of the statistical and
dynamical properties of the HPD system in order to make realistic projections for a full-fledged
experimental program. We include the effects of clock error and measurement error in a concrete readout
scheme using superconducting qubits and quantum metrology. This work also provides a more general
framework to describe the statistics associated with the axion gradient coupling through the treatment of a
transient resonance with a nonstationary background in a time-series analysis. Incorporating an optimal
data-taking and analysis strategy, we project a sensitivity approaching g,yy ~ 10712 GeV~! across a

decade in axion mass.
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I. INTRODUCTION

Axions and axionlike particles are well-motivated
candidates for dark matter (DM) [1-3], and their phe-
nomenology is characterized by sub-eV masses and
weak couplings to photons and/or Standard Model
fermions [4]. The shift symmetry of the axion field a
(arising from its origin as a pseudo-Goldstone boson)
implies that its couplings to fermions must involve a
derivative; in the nonrelativistic regime relevant for DM,
this becomes a gradient coupling to nuclear spins 6, in the
Hamiltonian [5],

H:)gaNNva'o-n’ (1)
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where g,yy 1S a coupling constant with dimensions of
inverse energy in natural units.

Since the form of the Hamiltonian is identical to the way
an ordinary magnetic field couples to spins, H D yB - 5, it
is often convenient to think of this “axion wind” coupling
as an effective magnetic field

Ba = 9aNN va7 (2)
4

where y is the gyromagnetic ratio of the nucleus in question.
There have been several theoretical ideas and a number of
recent experimental results aiming to detect this coupling by
exploiting nuclear magnetic resonance [5—17], including a
recent proposal to use the homogeneous precession domain
(HPD) of superfluid *He in the B-phase [18].1 The HPD can
be understood as a Bose condensate of magnons [37], and

'See Refs. [19,20] for a review of other experimental ap-
proaches, and Refs. [21-36] for proposals which exploit par-
ticular properties of condensed matter systems.
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its key feature is a linearly drifting Larmor precession
frequency w; of the sample, which allows a broadband scan
over candidate axion masses 71,,.

In this paper, we extend the results of [18] by including a
full statistical treatment of the axion field. Our statistical
treatment is similar to that of [38,39], but differs in that we
develop complete time domain statistics of the axion
gradient field as a stochastic force driving a nonstationary
dynamical system. Due to its low mass and hence large
occupation number, a and its gradient may be treated as a
Gaussian random field characterized by its two-point
correlation function. Using this fact, we construct a like-
lihood function for the hypothetical axion signal in terms of
time-domain correlation functions of the precessing HPD
magnetization signal evolving under the Bloch equations,
and we incorporate the statistics of the stochastically
fluctuating background as well. We find that additional
signal-to-noise information may in principle be extracted by
considering the HPD signal well after the resonance
condition w; = m,, due to the distinctive beat frequencies
between the drifting precession frequency and the effective
axion magnetic field, though this requires fast measure-
ments of the instantaneous precession frequency which may
be difficult to realize in practice. A likelihood analysis leads
to practical prescriptions for optimizing experimental
parameters such as the magnetic field gradient and data-
taking procedures such as the frequency sampling rate,
which go beyond the initial analysis of [18]. In performing
such an optimization, we specify a concrete scheme for
measuring the HPD precession frequency (or equivalently,
the precession drift @) using the techniques of quantum
metrology and optimal quantum control [40,41], where we
imagine that the signal is read out using an array of
superconducting transmon qubits time-stamped with a
high-precision atomic clock [42,43].

This paper is organized as follows. In Sec. II, we review
the statistics of the axion gradient field as a necessary input
for our calculations, with further details included in
Appendix A. In Sec. III, we evaluate in detail the dynamics
and statistics of the HPD system evolving under the Bloch
equations in the presence of a spatially varying magnetic
field and stochastic axion gradient. In Sec. IV, we character-
ize the statistics of the background evolution of the
precession frequency due to irreducible noise from stochas-
tic magnon loss; we join these statistics with those of the
axion field to develop a full statistical characterization of
HPD system and likelihood framework for projected sensi-
tivities and future analyses. In Sec. V, we evaluate the HPD
sensitivity to the axion coupling accounting for realistic
clock noise and measurement noise in addition to the
system’s stochastic dynamics. We determine projected
sensitivities for various experimental configurations, includ-
ing a strategy for collecting data suitable for the analysis we
construct. In Sec. VI, we also consider the impact of daily

and annual modulation for sensitivities. Finally, we provide
some concluding remarks in Sec. VIIL.

A particularly interesting feature of HPD experiments is
that, though they can be characterized via an effective
macroscopic description through the Bloch equations,
details such as the smooth precession frequency drift
appear deterministic only in the limit of coarse-graining
the stochastic loss of magnons in the condensate. These
stochastic fluctuations are the irreducible limiting back-
ground for axion searches. As a result, the dynamics of the
HPD—with and without an axion gradient field source—
are intrinsically stochastic. In Appendix B, we study this
feature of the system within the framework of stochastic
differential equations, finding the impact of the micro-
scopic stochastic dynamics to be negligible.

II. STATISTICS OF THE AXION GRADIENT FIELD

In this section, we determine the time-domain statistics
of axion gradient field relevant for calculating the effect of
axion DM on the evolution of the HPD. The statistics of the
gradient field have been previously studied in several
contexts, including [15,17,38,39], but our treatment here
differs in that we develop general two-point correlators in
time between components of the gradient field rather than
making an equivalent treatment in the frequency domain or
considering time-time correlators in more directly observ-
able quantities. In particular, the two-point correlators in
time which we develop are the ones most relevant for
calculating the statistics of transient axion-induced shift in
the precession frequency, whereas previous works consid-
ered stationary processes.

We begin with a simple construction of a discretized
realization of the axion field, as in [44]:

a(x, t) = mpll Zaabc f(vabc)(A3vabc)

a abc

X COS[COab(,l‘ - kabc "X+ ¢ahc] (3)

where p, ~ 0.4 GeV/cm? is the DM energy density, abc is
a multi-index for a 3-dimensional discretization of the DM
velocity V. in small volumes of size A3v,;,., f(v) is the
DM velocity distribution, @,,. = m,(1 +v2,./2) is the
DM frequency, and k,,. = m,v,,. is the wave number.
The stochastic nature of a is controlled by the random
variables ;. and ¢,;., which are Rayleigh-distributed on
[0, c0) and uniformly distributed on [0,27), respectively.®
The axion gradient evaluated at a single spatial point
follows immediately as

*Note that this construction is identical to that in [45], except
now the field is being constructed by integration over the full
three-dimensional velocity distribution, rather than the one-
dimensional speed distribution.
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FIG. 1. Preparation and evolution of the HPD. Superfluid *He-B is subjected to an external magnetic field with a gradient along the
field direction, establishing an equilibrium magnetization (left), Eq. (16). The HPD is prepared by injecting angular momentum into the
system via a transverse magnetic field pulse; the resulting spin-1 magnons Bose-condense into the HPD (center), with volume Vypp
determined by the total number of magnons N as in Eq. (35). The spins in the HPD (blue) precess with a tip angle f, = 104° at a
frequency determined by the magnetic field B(z) at the domain wall between the HPD and the relaxed phase [Eq. (24)], while the
remainder of the sample (red) remains at its equilibrium magnetization. As time elapses (center right), magnon losses [Eq. (28)] lead to a
relaxation of the HPD on a timescale 7'y, shrinking the HPD volume and causing the precession frequency to drift as the domain wall
moves downward. The time-dependent transverse magnetization is sensed by a SQUID referenced to a frequency standard (right) to

enable the optimal quantum control measurement of the precession frequency drift; see Sec. V for more details.

va(t) = \/Ezaabc \/ f(vabc)(A3 Uabc)

abc

X Cos [wahct + ¢ahc]vahc' (4)

where we have absorbed any dependence on the chosen
position x into the uniformly distributed phase. As it is
constructed from summing uncorrelated plane waves with
uniformly distributed phases, Va(z) is a Gaussian process,
and hence its statistics are fully characterized by its
one- and two-point correlation functions. We proceed to
evaluate those defining moments. In Appendix A, we
present Monte Carlo tests which validate their expected

|

Gaussianity using a treatment adapted from [45] and
utilized in similar context for frequency domain statistics
of axion gradient signals in [39].

Evaluating the first moment of Va is actually trivial.
Since each phase is uncorrelated and drawn uniformly on
[0,27), the expectation value of the contribution of any
plane wave mode to Va is zero, and thus

(V,a) = 0. (5)

Determining the covariance is somewhat more involved.
Working with our discrete realization,

Zij([’ t/) = <via(t)vja(t,)> = <pa Z aabcapqr\/f(vabc)f(qur)(A3vabc)(Aqur)3

abcpqr

X €08 [@4pct 4 Pape] COS [@ g, 1" + ¢,,q,]vgbcvj;q,>. (6)

Since ¢, and ¢, are uniform on [0,27) and uncorre-
lated, the summand vanishes in the expectation value unless
the multi-indices are equal, abc = pqr. After simplifying
trigonometric terms and keeping only those with nonzero
expectation value, we obtain

Pa i j
Zij(tv t,) = ?Z(A?}vab(‘)vabc ]abcf(vabc>

abc

x 08 [gpe (1 = 1)) {a2,). (7)

For a Rayleigh-distributed variable ., {(a?,.) = 2, so the
covariance reduces to

[
Eij(f, l/) :paZ(A3 Uabc)VZchizbcf(vubc) cos [a)ubc(t - t/)]‘

abc
(8)

We can now take the continuum limit A3v,,. — d°v and
Wgpe = Wy = m,(1 + v?/2) to obtain our final form for the
covariance,

Zy(tt) = o [ dvFy)coslanti=r)). (9)

where we have defined for future notational convenience
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F,»j(v)z/dﬁvzvivjf(v), (10)

with dQv? the measure on the unit sphere in velocity space.
We note in passing that the axion field is often charac-
terized by a coherence time defined along the lines of

T~ (11)

id ~80msx<

mgv?

50 neV>

m,

where v~ 300 km/s is a typical DM speed. Use of a
coherence time in our subsequent calculations is unneces-
sary, as it serves as merely a proxy for the full covariance
structure encapsulated in Eq. (9).

III. DYNAMICS OF THE HPD
WITH AN AXION SOURCE

As a Bose-Einstein condensate (BEC) of spin-1 mag-
nons, the dynamics of the HPD are intrinsically stochastic
and quantum mechanical in nature. However, as a macro-
scopic quantum system, the HPD dynamics can largely be
characterized by considering its effective description via the
Bloch equations, as was done in [18]. In this section, we
carefully account for the effects of the axion gradient
coupling in the Bloch description, before returning in the
following Sec. IV to the magnon picture that allows for a
much more detailed accounting of background processes
and their contribution to statistical uncertainties. Figure 1
illustrates the preparation of the HPD, background evolu-
tion of the HPD in the absence of an axion, and measure-
ment of the HPD.

A. Effective description in the Bloch equations

We begin with the Bloch equations developed in [18]
that describe the evolution of the HPD magnetization M
subject to an external (possibly time-varying and inhomo-
geneous) magnetic field B. Here, the magnetization M is
defined as M =m/V,,, where m is the HPD magnetic
moment and V, is the total *He volume (including both
the HPD and the relaxed domain). Assuming an equilib-
rium magnetization M, in the z-direction, the parallel
magnetization M, and transverse magnetizations M, and
M, evolve as

M,

M,, = —iy(M,,B, - M_B,,) — le (13)

xy*Hz

where M,, =M, +iM,, B,, = B, +iB,, and T is the
characteristic relaxation time of the system. We will
consider a system of total height 4 with cross-sectional

area A with the magnetic field pointing in the Z direction
varying as

B.(z) = By(1 + az), (14)

and convention, we will take a > 0 and B, > 0 to be the
background magnetic field strength at z = 0.

The equilibrium magnetization of the HPD system is
given by

M, = yBF (15)

where y ~ 1077 is the magnetic susceptibility for *He [46],
[ is the fraction of the sample in the HPD phase, and B is
the field strength in the Z direction at the location of the
domain wall which separates the relaxed and precessing
phases. For our geometry, the HPD fraction is F = z/h
where z is the position of the domain wall. Assuming the
initial transverse pulse is sufficient for the HPD to initially
encompass the whole sample, the domain wall will descend
from the top of the container z =h at t =0 to z =0 as
t — oo. Then we can write

My(z) = yBy(1 + az) -, (16)

S

suggesting that the domain wall height z is a natural
variable to use in the Bloch equations.

We choose the transverse magnetization phase 0 as the
other variable. As noted in Ref. [18], since the HPD features
a transverse and longitudinal magnetization that are locked
together at the Leggett angle 8y = cos™!(=1/4) ~ 104°, M,
and M, do not evolve independently, and thus z and 6 are
sufficient to fully characterize the evolution of the HPD.

In the presence of axion DM, the HPD couples to the
effective axion magnetic field B,,(¢) in Eq. (2), which will
affect the dynamics of the HPD system in Eq. (12) but
leaves the equilibrium magnetization M, unchanged. Since
the axion coupling is small, it is then natural to expand
our dynamical variables z(f) and 6(r) perturbatively to
first order in g,yy so that z(r) =~ zq(t)(1 + z,(f)) and
0(t) ~ 6y(t) + 0,(t). Note that we have defined z, as a
dimensionless shift in the domain wall location relative to
the free evolution z.

In terms of our dynamical variables, we may write the
components of the magnetization as

M (1) = Mo(20(£)(1 + 2,(1))) sin fig cos[by (1) + 6, (1)].
M, (1) = Mo(2(t)(1 + 2,(1))) sin iy sin[0o (¢) + 0,(1)],
M_(1) = Mo (20(1) (1 + 2,(1))) cos . (17)

These magnetizations evolve subject to a magnetic field

115020-4
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B3 (1)
By (1)
Byl + azo(1)(1 + z,(1))] + BZ (1)

(18)

where B¢ are the components of the axion effective
magnetic field B, defined in Eq. (2). Substituting these
quantities into the Bloch equations and working to zeroth-
order in axion coupling, we obtain the equations of motion
for the background evolution of the HPD system

(o) — 20Ol 1)

, 19
T, (2azo(t) + 1) (19)
00(t) = rBo[l + azo(1)]. (20)
For completeness, we provide the solution
e T\/ el + dah(ah + 1) — 1
wlr) = = 21

for the domain wall height with boundary condition
7o(t = 0) = h. An analytic solution for 6, is straightfor-
wardly obtained by substituting into Eq. (19).

Next, the equation of motion at first-order in the axion
coupling for the axion-induced domain wall motion is

2,(t) = [B{(t) sin (6p(1)) + By (1) cos (0p(1))]
1+ azy(2)

1+ 2azy(1r)’ (22)

X y tan f,

and the shift it induces in the precession rate is given by

0u(1) = arBozo(1)za(1). (23)
In deriving these equations, we have neglected slowly
varying terms which are suppressed by 1/T since already
we are already at first-order in the small coupling param-
eter. We have also neglected bare oscillatory terms of the
form sin[f(¢)] or cos[f(t)] that average to zero over
intervals longer than the precession period. These terms
include those proportional to Bf, so the longitudinal
component of the axion gradient does not contribute to
the HPD dynamics over timescales longer than the pre-
cession period.

|

(Calt20(0) =t iy [ v [t [t cosiani-7)

X [Fyy(v) sin 6y (7) sin 0y(7') + 2F ., (v) cos 0y (7) sin Oy (') + F,(v) cos Oy(7) cos Oy (7)),

Thus, by expanding perturbatively, we have then
decoupled our two variables, such that after solving for
7o and z,, we may always compute (f)=0(t) =
Oy(t) +0,(t), which is the experimentally measurable
observable of interest. We note that expressing the pre-
cession rate as the sum of the precession rates associated
with the background and axion-induced domain wall
motion is an artifact of our order-by-order expansion.
The precession can more simply be written as

(1) =y(1 + az)By, (24)

where z = zo(1 + z,) is the domain wall position.

B. Axion resonance in the Bloch equations

We now consider the dynamics of the resonance in our
Bloch treatment. We define the time of the resonance #, by
w,(t,) = m,, where w; = 0(r). We additionally denote the
precession frequency derivative at time ¢, by @,. We may
then expand the background phase 6, around the time of
the resonance by

B0() % 00(1,) + ma(t — 1,) = 2 (1= 1,7

> (25)

For definiteness and convenience, we take 6(t,) =0,
which sets the orientation of the magnetization with respect
to the Earth’s peculiar velocity at the time of the resonance,
though this need not be true in a particular experimental
realization. We can substitute this expansion into our
equation for z,(z), but first it is informative to consider
the statistics of z,.

From Eq. (22), z,(¢) depends linearly on B,=
(ganvn/7)Va. As we have established, Va follows a
multivariate Gaussian distribution, so z,(¢), which is
constructed from a weighted sum over components of
Va, must be a Gaussian variate itself. Moreover, z,,, which
is the time integral of Gaussian variates, must also be a
Gaussian variate.’ Direct integration of z,, then allows us to
evaluate the defining expectation values for z,(1).

Since (Va) = 0, the mean of z, vanishes as well

(za(2)) = 0. (26)
We can also calculate the 2-point correlator
1+ azo(f) 14 az(?)
1+ 2azy(7) 1 4+ 2azy(7')
(27)

*Recall that in this section, we are treating the background evolution z, and 6, as deterministic; see Sec. IV and Appendix B for the

effects of stochasticity.
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t [s]

=
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FIG. 2. Behavior of the axion-induced signal in the HPD for times near the resonance, taken to be 7. = 5 s, for representative
parameters m, ~ 70 neV, a = 1 cm™!, # =10 cm, T, = 1000 s, and B, = 0.05 T. Left: the time-dependent covariance of the axion-
induced domain wall shift, Eq. (27), normalized with respect to the maximum variance in the relative displacement of the domain wall.
The behavior is approximately that of a step function modulated by beat frequency oscillations. Right: five realizations of the axion-
induced domain wall shift drawn from the multivariate Gaussian distribution specified by the covariance matrix for
gany = 107" GeV~!. The horizontal gray band illustrates the variance of the measured Aw; /@, associated with stochastic magnon

loss and clock error. For details, see Sec. V.

where we have used Eq. (9) to compute the 2-point
correlator of B. While Eq. (27) is not generally analyti-
cally tractable, it can be readily computed numerically.
Since (z,) = 0, Eq. (27) also gives covariance of the axion-
induced relative shift in the domain wall position.

In Fig. 2, we plot the covariance in Eq. (27) for a
representative set of values of the experimental parameters,
as well as several time-series realizations of such a signal.
Two notable features that are highly relevant to the analysis
scheme we will subsequently develop are readily apparent.
First, since the signal has zero mean, (z,(7)) = 0, an axion
search is necessarily a search for extra covariance above the
expected background scatter. Second, while the resonant
period does indeed induce large motion in the domain wall
position, with a covariance that grows quadratically with
time, the axion can still drive oscillations in the domain
wall position off-resonance. These oscillations can have
amplitude on the same order of magnitude as the total
resonant shift. Incorporating these oscillatory features in
the covariance and expected signal is critical for maximiz-
ing the sensitivity of an analysis.

IV. STOCHASTIC DOMAIN WALL MOTION

While the Bloch description captures the expected
coarse-grained evolution of the HPD system, it does not
account for the stochasticity of the dissipation processes
that lead to magnon loss [47]. This is of critical importance
as it was estimated in [18] that stochastic magnon loss
represented the dominant noise floor for the search. We
now adapt our calculations above to account for the
microphysical description of the HPD in terms of magnon
statistics in order to precisely quantify its effect on our
sensitivity.

A. Domain wall motion from stochastic magnon loss

The HPD of 3He can be described as a BEC of N;
magnons, with N; jointly determined by Vypp and the
B-field at the domain wall location. Given N; magnons in
the system at time ¢;, the expected number of magnons lost
over a small time interval A7 will be N;T'A¢ where I = T7!.
Hence, whatever the source of magnon loss, the evolution of
magnon number is a Markov process with Poisson statistics
in each step. Because the number of magnons in the system
is macroscopically large, N; ~10?° for the experimental
parameters we will consider, the expected number of
magnons lost even for Af on the order of milliseconds is
sufficiently large to allow for a Gaussian approximation to
the Poisson statistics. We restrict our attention to small time
intervals ¢ € [t,, t, + Af] containing the resonance time 7,,
when the number of magnons at time #( is N,. So long as the
number of magnons lost is small compared to N, we may
characterize the Gaussian distribution of magnon loss by a
mean ["AzN,, which is also equal to the variance.

Subject to these assumptions and approximations, the
random variable A;, the number of magnons lost between
times #;_; and ¢;, has statistics

E[A;] =TNy(t; —t,_y), (28)

Cov[A;, Aj] = 6;TNy(t; — t;_1), (29)

where §;; is the Kronecker delta. Next, we can write the
number of magnons N; at ¢; as

(30)

115020-6
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As the sum of Gaussian variates, N; will be Gaussian-
distributed, with statistics
E[N]

= No[l = (t; = 1), (31)

Cov[N;,N,] = Nymin(t;, ;) — to]T". (32)

irtj

Assuming the ¢; are uniformly spaced by Az, we have

E[N;] = No(1 — iAmT), (33)

Cov[N;,N,] = min(i, j))N[At. (34)

To relate the statistics of the magnon number to the
statistics of the domain wall location (in absence of an
axion wind), we use that the total magnon number in
the system as a function of the domain wall position z is
given by

SyBy(1l + az
= Z% Vapp, (35)

N

where Vypp = Az. Defining z(N) as the inverse of
Eq. (35), for our small time interval around the resonance,
we have

dz

t;) =~ z(t —N,, 36
Z( l) Z( 0) + dN ( )
where dz/dN as evaluated at N = N,. Since this is an

affine transformation, we have

Eleo(t)] = 2(i0) + No(1 — i) 5 (37)
Cov(z(1;). 20(t;)] = min(i, J)NOFAI<:;N>2 (38)

Note that we have reintroduced subscript zeros indicating
that this is the covariance for the domain wall motion in
absence of an axion. It remains to modify this expression
in the context of an axion-induced resonance.

B. Domain wall motion from a stochastic axion wind

We now consider how the presence of an axion field
modifies the statistics of the domain wall motion.

wall shift relative to z; induced by the axion, we must
now calculate the mean and covariance of the quantity
z(t) = zo()(1 + z,(¢)). First, for the mean, we have

Elz(1)] = Ezo(1)] + Elzo(t)za(1)]. (39)

From Eq. (22), z, is linear in B,, which has a magnitude
determined by the uniformly distributed axion phases and is
independent of all other variates. Computing any expect-
ation value linear in z, is equivalent to computing the
expectation value of a weighted sum of quantities linear
in z,, which must vanish when taking the expectation value
over the axion phase. Thus, we find even in the presence of
an axion gradient, the mean domain wall position is equal to
its background value,

Elz(1)] =

which is explicitly evaluated in Eq. (37).
Now we proceed to the more complicated covariance
term

Elzo(1:)], (40)

= Covlzy(t:)z0(2))]

+ Covlzo(1:). 20(1)24(1))]

+ Covlzo(#;)za(1): 20(1;)]

+ Covlzo(1:)za(1:). 20(1))za(17)].  (41)
which we consider term-by-term. The first term is the
background covariance calculated in Eq. (38). The second
and third terms can be expanded into products of expect-
ation values which are linear in z,, and thus vanish by the
arguments above. To deal with the fourth term, which is

quadratic in both z, and z,, we write out this covariance
explicitly in terms of expectation values

Covlzo(t;)z4(ti), 20(t))za(t))]
= E[z0(t;)z0(1))za(t1)24(1))]
— Ezo(1)24(1)|E[zo(t:)24(2))]
= E[z0(t;)z0(1))za(t)za(t))]- (42)

The last line follows because quantities which are linear
in z, vanish. Defining 6zy(t;) = zo(7;) — E[zo(2;)], we

Cov[z(t;)z(t;)]

Recalling that z, was defined as the dimensionless domain ~ may write
|
Covlzo(17)za(t:): 20(1)2a(1))]x = Elz0(1:)20(1))za(1:)za(1})]
= E[(E[zo(1;)] + 620(1;))(E[20(1;)] + 020(1)))za(1:)za(1))]
= Efz0(#)]E[20(2))|E[zq(1:)za(1)] + E[20(£:)[E[620 (1) 24 (1:) 24(1;)]
+ E[20(1))]E [620(1;)z4(t:)24(1))] + E[620(2:)620 (1)) 24 (1) 24 (2))]- (43)
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Over a small time interval 67 around the resonance,
0z0/z0 ~ 0T /Ty < 1, and so neglecting terms which are
proportional to 67/T;, we have

COV[Z ([i)Za( ) (t )le([j)]
Elzo(1:)]E[z0(;)]Ez4 (1) 24(1))]
Elzo(1:)|E[zo(1;)]CoV[za(1:). za(1))]  (44)

at leading order in g,yy-
Collecting the above results, we obtain

Cov(z(t;), z(t;)] = Cov]zo(t;). 20(2;)]

+ E[z(4;)|E[zo(2;)]Cov[z,(1;), z4(1))].
(45)

The covariance has nicely decomposed into the sum of
terms which do and do not depend on the axion gradient
field, which will facilitate a computation of the likelihood
function for our signal.

C. Stochastic evolution of the precession frequency

Finally, we must relate the mean and covariance of the
domain wall position to the mean and covariance of the
precession frequency @;. Since @, ; = 0(t;) is given by

wp; = yBo[l + az(t;)], (46)

its mean g and covariance X are given by
ui=Elw, ;] =yBy[l +aE[z]], (47)
;=B +S; (48)

where we have split the covariance into a background term
B (not to be confused with the external magnetic field B)
and a signal covariance S

B;; = (ayBy)*Covlz(t;), zo(1;)], (49)

Si; = (arBy)*E[zo(1;)|E[zo(1;)]CoV[z,(1;). z4(1)].  (50)

There exist some remaining subtleties that we have not
fully addressed. First, we have only calculated the first two
moments of @; ;. These moments fully characterize
Gaussian distributions, but even for Gaussian z, and z,,
the product zyz, will generically be non-Gaussian after
sufficiently long times, motivating careful choice of
duration of windows during which axion resonances are
searched for in data. Similarly, the only computationally
tractable way to calculate (z,(7)z,(7)) is to fix zo(7) =
E[zo(r)], which we expect to be accurate to at
O(6z9/z0) ~ O(8T/T,). Though we have been somewhat
schematic here, in Appendix B, we demonstrate with

numerical tests that our approximations are good ones.
Also, note that these caveats regarding Gaussianity and the
order of accuracy in 6z/z, apply only to the contribution
of the axion-induced domain wall motion, and so in the
small signal limit, they are further suppressed relative to
the expected domain wall motion in absence of an axion by
the small axion coupling.

As a final comment, we point out that the covariance we
have developed describes only the stochasticity of the HPD
system and does not account for any variety of measure-
ment error, which will act as an additional source of
nonzero covariance.

D. Likelihood for HPD measurements

Since our data approximately follows a multivariate
Gaussian distribution, it has likelihood function

exp [~1(d — )= (0)(d - p)|
Fa M0 = errer Y

where u and X are the mean and covariance, respectively,
for a model M parameterized by @, d is the observed data
consisting of N datapoints, and |X| = det(X). From this
likelihood, we define a test statistic ® for discovery in terms
of the signal parameter S,

O(S) = 2[In L(d|8,. S) —In L(d|B,,S = 0)], (52)

where 6, are the nuisance parameters, which may include
T\, a, and any other parameters relevant for fully character-
izing the system and the measurement (such as clock noise,
discussed in Sec. V below). We note that incorporating
these and other relevant nuisance parameters enables a
characterization of the system in situ and in the specific
small interval in time relevant for a given axion signal.
However, for simplicity in our sensitivity estimates, we
assume that all nuisance parameters may be determined

with perfect accuracy so that 6, denotes the maximum
likelihood estimators of those nuisance parameters under
the null hypothesis.

Evaluating this likelihood, we have

0(s) = (@-w'I5" ~=@-w 1| |, (5

where B is the background-only covariance and X is the
covariance including the signal contribution. Next, follow-
ing the procedure of [48], we evaluate the Asimov expected
test statistic under the assumption of some true signal
strength S7, as follows:
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= Tr({(d - p)(d —p))[B" = =) = In [%}
= TI‘(ZZ[B—l _ Z_l]) —In [%} ’ (54)

where X' is the true covariance of the data. Fixing the
background at its true value, we can write

X =S8+ B, (55)
and expand to quadratic order in the signal strength to
obtain

®zTr[<S’—%S> B‘ISB‘l], (56)

where we have used the standard identity In|M|=
Tr(InM). Note that the test statistic in Eq. (56) takes
the same form as in the “axion interferometry” search of
Ref. [44]. This is because the formalism of Ref. [44] holds
for any positive-definite background covariance 13, which
indeed is a requirement for a physically reasonable covari-
ance matrix.

The signal covariance can be written with canonical
normalization S — AS, for A = g2,y so the Asimov
expected sensitivity given the true value of the coupling
A" becomes

O(AlA) =A <A’ - %A) Tr[(SB~1)2]. (57)

This is maximized for A = A’, which shows that our
likelihood is an unbiased estimator. Evaluating the
expected sensitivity to g,yy under the null hypothesis
(g,yny = 0) using the Fisher information [49,50], we obtain

1

2= ETr[(SB‘l)z]. (58)
From here, we are able to compute the expected sensitivity
for arbitrary data collection and analysis schemes. For
instance, the expected 95th percentile upper limit on g,yn
is defined by

P = [©71(0.95)5,]' (59)
where ®~!(x) is the inverse of the standard normal
distribution.

We also note that the HPD relaxation time 7' is typically
larger than the axion coherence time in Eq. (11), and so
under these conditions, any repeated measurements will
probe effectively uncorrelated gradient field realizations.

As a result, N repeated measurements will add linearly in
the test statistic of Eq. (56), leading to a N'/# enhancement
of the sensitivity of Eq. (59). Hence, we have g%,y « 7;1/*
where t;, is the total integration time.

In all subsequent examples and calculations, we take the
local DM velocity distribution to be given by Standard Halo
model ansatz of

|V - V0b52:| (60)

1

fv) = [2762)3/2 xp { 202
where v, is the lab velocity in the halo frame and o, is the
velocity dispersion of 155 km/s [51]. We initially take the
lab-frame velocity to be v, = 230 km/s in the X direc-
tion, corresponding to the solar velocity with respect to the
galactic halo, but we relax this assumption when consid-
ering temporal modulation effects in Sec. VL

V. HPD MEASUREMENT AND PROJECTED
SENSITIVITY

An important practical consequence of our analysis above
is that measuring the evolution of the precession frequency
with fine time resolution is particularly important for
maximizing the sensitivity of HPD-based searches for
axions. This is because although a resonance may induce
an overall shift in w; with respect to the expectation (as was
considered to be the signal in Ref. [18]), the same effect is
produced by stochastic magnon loss. The variance in the
magnon loss over a finite time interval grows linearly with
the duration of that interval, as illustrated in the gray band of
Fig. 2, so our ability to identify a resonance at some time A¢

after it occurs degrades as \/E Moreover, as we have seen
in Fig. 2, ringing features associated with beat frequency
effects appear in the axion-induced shift in w; that are not
expected if the precession rate evolution is governed solely
by stochastic magnon loss. Good time resolution in mea-
surements of w; enables identification of these features and
thus allows for improved sensitivities. We note that recent
work in [17] revealed previously unappreciated aspects of
the time-dependent scaling of the axion coupling sensitivity
of spin precession experiments. In our work, these details
are accounted for by construction by the explicit time-
integration of Eq. (22). In this section, we describe a
concrete proof-of-principle measurement and readout
scheme which accounts for imprecision in both the fre-
quency measurement and the reference clock, and show
how the interplay of these noise sources with the irreducible
stochastic noise informs our choice of measurement
cadence and scanning strategy.

*This behavior is consistent with the analysis of Ref. [17],

since in the HPD there is only one relaxation timescale 7'y, and

over multiple runs with #;, > T, the overall scaling is ti_ni/ *
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A. Frequency measurement with optimal
quantum control

Since the axion signal we are seeking appears only in the
precession frequency and not the amplitude, our goal is a
frequency measurement scheme which is as insensitive as
possible to amplitude noise but maximally sensitive to
frequency shifts. This implies that extracting the precession
phase from e.g. measurements of M, and M, with orthogo-
nal pickup loops will be polluted by amplitude noise from
the pickup loops. Furthermore, simply performing a Fourier
transform on the resulting signal results in a frequency
resolution dw/w which scales as 1/T, where T is the total
measurement time.

Both of these situations may be vastly improved with the
techniques of quantum metrology [40]. The precessing HPD
magnetization may couple to a quantum system (such as a
qubit) as a time-dependent Hamiltonian. The Heisenberg
bound implies that errors on estimates of a parameter from a
time-independent Hamiltonian scales at best like 1/7, but
for a time-dependent Hamiltonian, one may carefully
choose an additional time-dependent control Hamiltonian
H.(t) to manipulate the system and achieve in principle
arbitrary scaling with 7, limited only by the specific time
dependence of the Hamiltonian to be estimated. In the
particular case of a frequency measurement, Ref. [40] shows
that with optimal quantum control (i.e., maximizing the
quantum Fisher information), the measurement of the
frequency of a rotating magnetic field using a single qubit
has errors that scale like 1/72%. Furthermore, Ref. [41]
demonstrated this scaling experimentally in a closely related
setup where an external Hamiltonian modulated the level
spacing in a qubit, and the task was to estimate the
modulation frequency @. While these scalings only hold
up to the qubit coherence time T, Refs. [42,43] derived,
and confirmed experimentally, that a frequency error scaling

of 1/4/T,T* may be achieved for T > T, with a hetero-

dyne readout scheme referenced to a stable external clock.

Since our goal is actually to measure a frequency drift @,
it turns out we can achieve even more favorable scaling
with measurement time. Our readout scheme is as follows.
The transverse HPD magnetization is sensed with a SQUID
oriented in the xy-plane. Rather than reading out the
SQUID directly and using it as a magnetometer, we
imagine coupling the SQUID to N, transmon qubits.
The time-varying flux through the SQUID acts as a
time-dependent modulation of the qubit level splitting,
H,(t) = Asin(wt + @f*/2)0./2, exactly analogous to
Ref. [41]. The amplitude A of the level splitting modulation
is proportional to the amplitude M, of the HPD magneti-
zation. With By = 0.5 T, M, ~50 nT, and the size of
the modulation in frequency units is on the order of
A~27x 10 MHz for a qubit with typical frequency
6 GHz [52]. The control Hamiltonian H.(¢) is applied in

order to maximize the quantum Fisher information; see
Appendix C for details.

We then estimate the Hamiltonian parameter @ by
reading out the state of the qubits at a measurement
cadence of time interval A¢, where the start and end of
each measurement interval are referenced to an external
clock. Following the derivation of Ref. [40], the error on @
scales as

3z
A(Ar)3 /4N,

where the scaling with 1/,/N, is the standard spin
projection noise from N, independent qubits. The T3

5o = (Ar<T,), (61)

scaling for a measurement of @ compared to the 72 scaling
for a measurement of @ arises simply from an additional
factor of ¢ in the desired Hamiltonian d,,H ;. Following the
derivation of Ref. [43], for measurement cadences exceed-
ing T, we instead read out the qubit states at intervals of T,
record the results to disk with timestamps given by the
external clock, and obtain

V&
A(A0)2Ty* /AN,

S = (Ar>T,). (62)

For details, see Appendix C. Once we have measured @, we
then define our measured frequency stepwise over each
measurement cadence between f; and 7y + At as a linear
approximation

o(t) = w(ty) + & x (t —ty). (63)

From this point on, we reference to the rate 1/At at which
we make optimally controlled measurements of @ as the
measurement cadence f.

As we discuss in Appendix C, both @ and @& are
measured in the optimal control scheme by querying the
same set of qubit states. As a result, there exists some
degeneracy in measuring these quantities, and measure-
ment of @ at the precision we project requires a previous
measurement of @ at precision such that dw/At < é@
where Jw is the uncertainty on @ made in previous
measurements, At is the time interval of the measurement
cadence, and dw is the desired precision of the @ meas-
urement. In practice, the time necessary to make a
sufficiently precise measurement of @ is small compared
to the HPD relaxation times of interest in this work. As a
result, only a small fraction of the total integration time
must be dedicated to determining @, and this requirement
has a negligible impact on projected sensitivities.

Finally, since our measurement of @ relies on the timing
of our measurement cadence, imprecision in the external
clock acts as a noise floor that must be considered in
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tandem with the measurement noise on w. We account for
this imprecision by adding a diagonal covariance

AL (64)

Bzcyl'OCk = Bilock X (E) wp @ ;0i;.
Here B, is the relative clock variance over a 1 s interval,
and we have assumed the clock to be performing at the
white noise limit so that the variance is inversely related to
the integration time. We assume a clock precision B, =
3.6 x 1073! associated with a cryogenic sapphire micro-
wave oscillator, though even higher-performing alternatives
may be possible [53].°

B. Sensitivity as a function of measurement cadence

As a benchmark scenario, we consider an HPD system of
height 2 = 10 cm and total volume 100 cm? with relaxation
time 7y = 1000 s, which is longer than the 7'; which has so
far been measured in the HPD but was argued in Ref. [18] to
be a reasonable goal for an experimental program. We take
By =0.05T and @ = 1 cm™'. Therefore, Ny ~ 10?°. The
background covariance from the stochastic magnon loss is

B;; At —24 At
@0 j ~ 4T N, ~ 10 Ts

We take the domain wall to be initially located at z(#,) =
h=10cm at f,=0s and consider an axion mass
m, = 73 neV, corresponding to w; /(2zx) = 17.6 MHz at
the time of resonance.

We can determine the limit-setting power of an HPD
measurement as a function of our frequency-measuring
strategy, accounting for the joint effects of magnon
stochasticity, clock noise, and measurement imprecision.
Parametrically, the clock noise scales with the measure-
ment cadence as y/f while the magnon loss noise scales as
1/+/f. These are relatively slow scalings with f, and by
contrast, the measurement imprecision scales as either f°
or f3/2 depending on the choice of cadence with respect to
the qubit coherence time. Faster cadences allow for better
resolution of the resonance, effectively reducing the
magnon noise relevant for searching for a signal, but will
suffer from considerably larger clock and measurement
imprecision.

Figure 3 shows the sensitivity as a function of meas-
urement cadence for three illustrative scenarios. In an
optimistic scenario (solid curve), we project a measurement
performed using N, = 100 qubits, each with a coherence
time of 7, = 1.0 ms. This coherence time in superconduct-
ing qubits is presently achievable [54], with theoretical
upper bounds as large as 7,~3 ms [55]. In a more
conservative scenario (dashed curve), we assume a smaller

typically

Above 1 s, the sapphire oscillator precision scales less rapidly
than (A¢)~'/2. Assuming the precision scales like white noise for
integration times less than 1 s therefore represents a conservative
assumption.

. .
10-11 A
T !
> — T, = 1ms, N, =100
O““ === T, = 0.1ms, N, = 100
- Clock+Magnon Noise Only — SSsg..____--
E == Clock+Magnon Floor
10712 L 4
,,,,,,,,,,,,,,,, T
107! 10° 10!
Measurement Cadence [Hz
FIG. 3. The axion-coupling sensitivity of 1 month of HPD

measurement for an axion of mass m, = 73 neV as a function of
measurement cadence. Two different qubit measurement scenar-
ios for N, =100 and N, =1 are shown in solid black and
dashed black, respectively. To illustrate the importance of
measurement imprecision, we also show the sensitivity as a
function of cadence in the absence of measurement error in dotted
gray. In this idealized case, the coupling sensitivity would
continue to improve until it saturates at f~ 1 kHz at a floor
indicated by the gray dot-dashed line. For details, see the main
text in Sec. V B.

coherence time T, =0.1 ms, but with the same
N, = 100.° Finally, the dotted curve shows the unphysical
scenario in which the measurement imprecision is vanish-
ing and only the clock imprecision and magnon loss
stochasticity contribute to the noise. In the optimistic
scenario, the optimal measurement cadence is f~5 Hz
due to the rapid scaling of measurement imprecision with f.
This cadence is too slow to resolve either the axion
resonance, which lasts about 50 ms (see Fig. 2), or the
beat frequencies after the resonance, resulting in a loss of
sensitivity. To resolve the resonance at a cadence of 80 Hz,
one would need N, = 10° with T, =1ms, and to reach
the clock + magnon noise floor, one would need N, = 108,
which is (needless to say) unrealistic in the near future. That
said, additional improvements to the sensitivity may be
gained via an optimization of the qubit coupling parameter
A, though a careful analysis accounting for backaction
noise (which would affect 7',) is necessary.

C. Sensitivity as a function of B-field gradient

Axion DM experiments all suffer from the unfortunate
fact that the true axion mass is unknown. When aiming for
an integrated sensitivity across a range of possible axion
masses, the choice of @ must be made carefully. For large «,
a much larger range of precession frequencies are realized,
providing sensitivity at a larger range of masses, but

®Since the noise scales identically with 7, and N, the solid
curve may also be realized with 7, = 0.1 ms and N, = 1000.
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FIG. 4. Above: the coupling sensitivity assuming a single data
collection for time 7'; with an axion of mass m, = 73 neV, as a
function of the time on resonance in the scan relative to the axion
coherence time 7. We present this coupling sensitivity for our two
qubit scenarios, see text for details. The time on resonance for a
fixed T is set by the B-field gradient «, and so all three panels
share an x-axis. Middle: the figure of merit for axion coupling
sensitivity (see Sec. V C for details), as a function of the external
B-field gradient for our two qubit scenarios. Decreasing values
indicate improved integrated sensitivity due to the tradeoff
between scan time and scan range. For all scenarios, scan
sensitivity is generally saturated by ah = 1. Below: the optimal
measurement cadence as a function of ah, which we find is not a
strong function of the external B-field gradient.

generally at worse sensitivity for a given mass than if «
were small. On the other hand, smaller values of a will
require more scans to cover an identical range of masses for
a fixed total data-taking time. Defining A, = Z(Qmax -
Omin)/ (Brmax + Omin) as the relative size of the mass interval
reached by a single collection at a given @, a scanning
strategy can be roughly optimized by minimizing the
quantity g3y (a)/(Ay(@)"*.

To calculate the typical axion coupling sensitivity as a
function of a, we maintain our previous set of benchmark
parameters from Sec. VB when possible. We take
h =10 cm, total volume 100 cm?, and relaxation time
T, = 1000 s. As before, we consider two measurement
scenarios, T, =1 ms and 7, = 0.1 ms, each with N, = 100.

For each choice of @ and N, we independently optimize the

measurement cadence in computing the sensitivity. We
evaluate the coupling sensitivity for a mass m, = 73 neV
for a range of @, choosing B, self-consistently so that the
resonance occurs when the system is at a height of 9.99 cm
and the number of magnons in the system is the same at the
time of resonance for all choices of a.

We first consider the sensitivity at a fixed axion mass,
shown in Fig. 4 (top). The B-field gradient is inversely
proportional to the time on resonance, Af.,, which is
defined as the time interval over which w; has drifted by a
fraction 107® corresponding to the axion bandwidth. For
our parameters, ah ~ (.1 corresponds to At ~ 7, which
was the situation studied in Ref. [18]. We see that an
optimized measurement achieves the best sensitivity to a
single mass with the longest time on resonance, but that the
sensitivity changes only by a factor of 3 going from ah =
1072 to ah = 10'. This behavior as a function of resonance
timescale is significantly different than the scaling obtained
in Ref. [17] for an experiment such as CASPEr-Wind
which is limited by amplitude noise and for which the time
on resonance is simply given by the total measurement
time. In our setup, the combined effects of clock noise,
magnon noise and measurement noise intertwine time-
domain and frequency-domain phenomena, making the
scaling of the g,yy limits with Ar. less straightforward.

Next, we consider the figure of merit g,yy/ A,l/ * in the
middle panel of Fig. 4. We generally find that the figure of
merit is saturated by ah &~ 1, motivating somewhat larger
field gradients than considered in Ref. [18]. We find that
although sensitivity to an individual mass is improved by
increasing time on resonance, that the best integrated
sensitivity of a scan over a range of masses is achieved
by ah =~ 1. We caution, though, that by calculating only a
single representative axion coupling sensitivity, we have
neglected the dependence of coupling sensitivity on the
precise height of the domain wall at the time of the
resonance; an optimization of a full-fledged experimental
procedure would require a more detailed treatment. Finally,
we also show the optimal measurement cadence, finding
that f <10 Hz for essentially any reasonable choice of
external B-field gradient.

D. Projected sensitivities

We collect the results developed in Secs. V B and V C to
develop projections for extended HPD measurements in
search of axion dark matter. For our frequency measure-
ment scheme, we assume the cryogenic sapphire micro-
wave oscillator clock standard (a technology which
presently exists in commercial form) rather than a
higher-performing optical clock that may be viable in
the future. We assume a total height of the HPD system
of h = 10 cm, and we choose @ = 1 cm™! so that ah = 10.
Note that this implies that the magnetic field varies by an
order of magnitude between the top and bottom of the
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FIG. 5. Projected 95th percentile upper limits on g,yy for three benchmark scenarios (black, red, blue, in order of most to least

aggressive) which vary the total collection time, relaxation time, and system volume. In all scenarios, we fix zo(#y) = A = 10 cm and
a =1 cm™!. In solid lines, we assume a measurement precision provided by N, 4 = 100 qubits, each with a coherence time of 1 ms,
while in dashed lines, we assume only 7', = 0.1 ms. Otherwise identical parameters are used. We also indicate existing constraints from
SN 1987A [57] and neutron star cooling [58] as well as projected constraints for CASPEr-Wind from [8]. The gold band indicates the

expected couplings for the QCD axion [5].

sample container. When then consider three collection
scenarios, calculating the sensitivity assuming N, = 100
for both 7, = 0.1 ms and, more optimistically, 7, = 1 ms.

In the first and most conservative, we assume an HPD
system with a total volume of 10 cm? with a relaxation time
of Ty =10 s. We choose By = 0.05 T so that the field
strength over the HPD height varies between 0.05 T and
0.55 T; as noted in Ref. [18], stronger field strengths would
destabilize the HPD [56]. We assume that for a period of
tie = 1 month, the HPD system is prepared with the
domain wall at a height of # = 10 cm, then allowed to
relax for time T; before being reprepared. The projected
sensitivity for 7, = 1 ms (T, = 0.1 ms) are shown in solid
(dotted) blue in Fig. 5. The one-month projected sensitiv-
ities are obtained by rescaling the single scan coupling
sensitivity by (1 month/10 s)!/4. Even this modest setup
can lead to world-leading constraints on the axion-nucleon
coupling g,yn, €xceeding supernova [57] and neutron star
cooling [58] constraints.

In a more optimistic scenario, we take a HPD volume of
100 cm?® with a relaxation time of 7, = 100 s. Again, we
take By = 0.05 T, but now allow for a total collection time
of t;,, = 1.0 yrs with an otherwise identical data-collection
strategy. The projected sensitivity curves are shown in red in
Fig. 5. Finally, to estimate the ultimate sensitivity of an HPD
axion experiment, we assume an HPD volume of 100 cm?

with a relaxation time of 7; = 1000 s. We assume ¢, =
7.5 yrs of total collection time shared equally between 5
different B-field configurations set by B =0.55T x
(1+ah)™, i=1,2,...,5, leading to a competitive pro-
jected sensitivity across one decade of axion masses. Our
choice of 7.5 yrs is motivated by matching the collection
time of CASPEr-Wind over an equal mass range [5,17].
The projected sensitivities for both measurement cadences
are shown in black in Fig. 5. In particular, the projected
sensitivity of the HPD measurement is comparable to that of
CASPEr-Wind [8] at the highest frequencies accessible to
the HPD setup.7

VI. TEMPORAL MODULATION EFFECTS

An important feature of DM experiments is that
the Earth’s rotation and revolution have the effect of
making the lab-frame velocity distribution—and there-
fore the signal covariance—time-dependent. To account
for these phenomena, we revisit our expression in

"New aspects of the sensitivity calculation relevant for CAS-
PEr-Wind were pointed out in [17] which enhance the projected
sensitivities for m, = 10 neV relative to the calculations of [5].
Related modifications should be expected for the projected
sensitivities of [8], but depend in detail on unspecified exper-
imental parameters and scanning strategies.
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FIG. 6. Left: a comparison of the effects of daily modulation for two orientations of the rotational axis of Earth. In solid black, we
show the modulated sensitivity for 1 h of collection time expected for an orientation such that the Earth’s peculiar velocity rotates from
fully in the domain wall plane to fully orthogonal over a 6-h period. In solid red, we show the analogous modulation expected for the
more modest scenario in which the Earth’s peculiar velocity rotates only within the plane of the domain wall. Such a modulation effect
can only be detected if the phase under the background evolution is well-known at times well-before the axion-induced precession rate
shift becomes relevant. Dashed black and dashed red indicate the sensitivity integrated over a 24-h collection period, where the
difference has become marginal. Right: in solid lines, the 1-day sensitivities in our orthogonal and parallel scenarios as a function of the
date. In dashed lines, the sensitivity of those collections integrated over 1 yr of data-taking.

Eq. (58), promoting the signal covariance to be time-
dependent as

032 =) Tr[(S,B87") (65)

where i indexes the time of the collection, S, is the signal
covariance at collection time ¢,, and we have assumed
the background covariance is identical across all collec-
tions, i.e., T; is constant. As a benchmark, we choose
m, =73 neV, and we take the magnitude of Earth’s
peculiar velocity in the galactic frame to be vg =
220 km/s and adopt the Standard Halo Model velocity
dispersion vy = 155 km/s. For our HPD parameters, we
use the same fiducial parameters from Sec. V:a = 1 cm™,
T =1000s, By =0.05T, and zo(ty) = h =10 cm. We
also assume the cryogenic sapphire microwave oscillator
clock standard with N, = 100 and T, = 0.1 ms with an
optimized sampling cadence.

We first consider two daily modulation scenarios,
corresponding to different orientations of the experimental
apparatus. In the “out-of-plane” scenario, we parametrize
the daily modulation as

2nt %+ sin 2rt 5 (66)
€os 24 hours st 24 hours ’

where the peculiar velocity rotates in and out of the domain
wall plane. In the “in-plane” scenario, we instead have

2rt %+ sin 2mt R (67)
€3\ 24 hours S\ 24 hours )Y |

VQ):U@

Vea:v@

where the peculiar velocity rotates only within the plane of
the domain wall. The sensitivities to the axion coupling for
these two scenarios, both instantaneously and integrated
over a full 24-h data-collection period, are shown in the left
panel of Fig. 6. As expected, in the out-of-plane scenario,
the sensitivity is worst when the peculiar velocity is
orthogonal to the domain wall as this minimizes the
magnitude of the transverse axion gradient. In the in-plane
scenario, there is a small modulation associated with our
choice in the expansion of §y(7) to set @ = 0 at the time of
when 6, (t) = m,, which picks a preferred direction for the
system. This modulation would be inaccessible in a
realistic statistical analysis if 6, could not be determined
to sufficient accuracy. In total, the effect of daily modu-
lation appears to be, at most, an O(50%) effect on the
sensitivity to g,yn, and the best sensitivity is achieved in
the in-plane scenario when the magnitude of the axion
gradient is maximized at all collection times.

We take a similar approach to studying the effect of
annual modulation. Holding all HPD and axion parameters
fixed, we again consider two scenarios. Taking the speed
associated with Earth’s revolution velocity around the Sun,
Vrey = 30 km/s, and fixing the peculiar velocity to lie in
the X direction, we consider a “orthogonal” scenario

d

(68)

\4 X+ cos 2t X +sin 2mt
=v v — —
e "e e 365 days 365 days

in which the rotational axis of the Earth’s revolution
is orthogonal to the peculiar velocity of the Earth.
Alternatively, we have a “parallel” scenario in which
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v %+ 2t o s 2rt 5
=0 v COS| ———— SIN{ ————— .
® = PoX T Vrev | CO8\ 365" Jays )Y 365 days

(69)

wherein the rotational axis of the Earth’s revolution is
parallel to its peculiar velocity. Experimentally, these two
scenarios would correspond to rotating the experimental
apparatus on a daily basis in order to maintain the relative
orientation of the peculiar velocity. The axion-coupling
sensitivity of each of these scenarios is shown in the right
panel of Fig. 6. The bulk of the sensitivity comes from the
component of the gradient along the peculiar velocity
direction X direction. In the orthogonal scenario, modula-
tion of this boost leads to O(10%) changes in the sensitivity
over the course of the year. In the parallel scenario, there is
no modulation of the boost in the X direction, and so the
sensitivity is very nearly constant. Over the span of a year,
these modulation effects amount to a subpercent change in
the integrated sensitivity.

It is perhaps surprising that the “smoking gun” sig-
nature of a DM daily modulation has such a mild effect on
the sensitivity to axions. In fact, this behavior is character-
istic of searches for wavelike dark matter, where a
modulation is an excellent tool for confirming a signal,
but a mediocre one for excluding a signal. Indeed, as noted
in Ref. [44], daily modulation is a powerful statistical tool
in the sense that once a putative signal is seen, its DM
interpretation can often be confirmed at the same level of
statistical confidence within a few days. The same holds
true for our HPD setup. To achieve the best possible
exclusion, though, our analysis shows that one should
align the sample in the “in-plane” daily modulation
scenario to the extent possible.

VII. CONCLUSION

In this paper, we have extended the proposal of
Ref. [18] for axion wind detection with the *He HPD
with a full statistical treatment of both the signal and
background. In doing so, we have quantified the effect
of clock noise and measurement error, and developed a
data-taking strategy closely related to one which has been
proven to be optimal for measuring a frequency of a
rotating magnetic field. We have also identified optimal
experimental characteristics in order to maximize overall
sensitivity, including order-1 external B-field gradients
and alignment of the sample with the Earth’s peculiar
velocity. Taken together, these optimizations lead to
projected exclusion limits that are competitive with the
CASPEr-Wind experiment for the same data-taking time.
More generally, we have, to our knowledge, presented the
first time-domain formalism for analysis in search of
transient axion signals (though in our case, the transient

nature comes from the detection medium, rather than the
axion source).

In our measurement scheme, the scaling of sensitivity
with qubit parameters is perhaps peculiar from the stand-
point of quantum information. The measurement noise is
relatively insensitive to qubit coherence time, but depends
strongly on the SQUID-qubit coupling, so we could likely
afford a reduction in coherence time if the benefit were
stronger coupling. Likewise, the qubit multiplicity is
simply used to reduce spin projection noise, and the
qubits are read out independently, so scaling to a large
number of qubits on a chip may be easier than quantum
computing applications which require the qubits to remain
entangled and coherent. Regardless, our experiment is
highly synergistic with improvements in superconducting
qubit technology, as increases in T, and N, can help
reduce noise down toward the magnon noise floor.

We emphasize, though, that even with all statistical
details and realistic sources of measurement error included,
our work confirms the expectation of Ref. [18]: world-
leading limits, surpassing all astrophysical bounds, can be
achieved with a month of data-taking using commercially
available frequency references and HPD and qubit param-
eters which can reasonably be achieved in the laboratory.
Compared to the axion-photon coupling (see Ref. [19] for a
review), the axion-nucleon coupling parameter space is
quite under-explored, and we hope our proposal provides a
path forward for rapid progress in this domain.
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FIG.7. A comparison of the correlations X, (left), Z,, (center), and X, (right) at arbitrary lag At = 1 — ¢ associated with the % and §
components of the axion gradient field as realized by an ensemble of 2,560 Monte Carlo simulations, compared with analytic
calculation. Above: in black, the correlation realized in Monte Carlo; in dashed gray, the analytic expectation. Below: in black, the
difference between the Monte Carlo and analytic calculations, with 1o (green) and 2o (yellow) containment intervals determined from
the Monte Carlo ensemble. The axion coherence time is 7 = 1/(m,v?), and so these results demonstrate good agreement between
analytic expectation and the Monte Carlo for multiple coherence times. The X, correlator (right panel) is analytically expected to be
identically zero, which is realized at floating point precision in the Monte Carlo.

APPENDIX A: GAUSSIAN STATISTICS
OF THE GRADIENT FIELD

In this appendix, we validate the statistical characteri-
zation of the axion gradient field developed in Sec. II using
a Monte Carlo procedure along the lines of that in Ref. [45].
In particular, we construct a time-series realization of an
axion gradient field at a single spatial point by performing
the sum

S (20 v?
Va(r) = Z oS [ma<1 +§l>t+¢,} v, (Al)

where N, is the number of axion wavemodes included in
the sum, v; is a velocity drawn from the Standard Halo
Model, and ¢; is a phase uniformly drawn between 0
and 2z. As in Refs. [44,45], we unphysically increase the
SHM velocity distribution parameters by a factor of 1000
for computational simplicity. We then construct the time
series by summing over 4 x 10> wavemodes, with a total
collection time which is 50 times that of the axion
coherence time at a resolution of At = 1/(10m,). We
use the definition of coherence time given in Eq. (11),
taking |vgys| 4 |o,| as the characteristic speed. An essen-
tially identical procedure was utilized in Ref. [39], but
with a focus on instead validating the frequency-domain

statistics of the gradient signal, while we focus here on
time-domain statistics.®

By creating many realizations of the axion gradient field,
we can measure with good precision the correlation func-
tions X;;(z,#') as defined in Eq. (9). Noting that X;;(z,7)
depends only on Ar=r— ¢, we measure the correlation
at arbitrary lag Az from 2,560 Monte Carlo realizations,
which are presented in Fig. 7 for X,,, X, and X,,. Our
simulations show excellent agreement with analytic expect-
ations. We obtain similar agreement between the ensemble
of Monte Carlo realizations and analytic expectations for
correlations involving the Z component, which we do not
present here in the interest of brevity.

APPENDIX B: DOMAIN WALL MOTION
AS A STOCHASTIC DYNAMICAL SYSTEM

In the main text, we have argued that stochasticity in the
magnon loss does not significant affect the resonant
dynamics of the HPD-axion system. In this appendix,
we formulate the dynamics of the HPD as a system of
stochastic differential equations (SDEs) so that we may
validate that claim.

SReference [38] also developed time-domain statistics, but for
the dot-product of the gradient field with a precessing dipole, and
focusing on the modulation of the signal when the axion
coherence time is much larger than 1 yr.
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We begin by considering the dynamics of the system in
the absence of an axion gradient field. The Itd6 SDE
describing the exponential decay of magnons in the system
is given by

dN,(t) = =T'N(t)dt + [TN(1)]'/?dW, (B1)

where I' is the instantaneous decay rate and dW,; is a
standard Wiener process.

With insight from the Bloch equations describing the
effective dynamics of the HPD, we note that the transverse
components of the magnetization may be directly evaluated
from the state variables N and 6, and we denote those
transverse magnetizations by M, (N, ) and M, (N, €). The
instantaneous rate of change of M, in the presence of an
axion gradient field is then

dM . = y[Bi(t)M(N.0) — By(1)M(N.0)]dr.  (B2)
The magnetization can be related to the total magnon
number, so that the instantaneous rate of change in the total
magnon number due to the axion is given by

S5hA
dN (1) ==——[Bi(t)M,(N.6) - By(1)M(N.0)]dt  (B3)
v )

where £ is the height of the sample container and A is its
cross-sectional area. We combine these results to obtain

dN(t) = dN,(t) + dN,(1) (B4)
describing the evolution of the magnon number in the
HPD system.

As in Sec. IV, for a given N() and known magnetic field
profile B(z), we may evaluate the domain wall height z as a
function of N, which we denote z(N). Since the precession
frequency w; is determined solely by the magnetic field
strength at the domain wall, we have the ordinary differ-
ential equation (ODE) for the phase

do(t) = yB[z(N(t))]dt. (B3)
Together the system of the SDE in Eq. (B4) and the ODE in
Eq. (B5) may be straightforwardly solved using standard
libraries, e.g., diffrax to study realizations of the
stochastic dynamics of the HPD system [59].

1. Toy parameters for computationally
tractable simulations

There remain computational challenges associated with
numerical simulation of the stochastic dynamics. For
realistic experimental parameters, the magnon number in
the HPD is very large, O(10?°). Even with the unphysical
DM velocity v ~ 0.1, accurately evolving the equations of
motion requires that we use a timestep Az < 1/(10m,) ~
1077s. For T; = 1000 s, the magnitude of the diffusion
term in the SDE is O(10'°). Hence, the typical change in

the magnon number associated with stochastic decay is
more than 16 orders of magnitude below the magnon
number, which is below floating-point precision. As a
result, our simulations will use physically unrealistic
parameters that reduce this hierarchy to be within float-
ing-point precision.’

As in Appendix A, we perform an unphysical rescaling
of the HPD parameters in order to bring the system into a
computationally tractable regime. In these toy simulations,
we reduce y from its realistic value of 10~7 to 10~ and
reduce the gyromagnetic ratio by a factor of 1000 by
y > 7 =y/1000. In total, this reduces the hierarchy
between the scatter in stochastic decay and the magnon
number to roughly 8 orders of magnitude, which is well
within floating-point precision. Reducing the precession
frequency through the rescaling of y has the additional
advantage of increasing the step size Af, making compu-
tations over a fixed time interval considerably faster.

For our subsequent comparisons of the fully nonlinear
SDE developed in this section and the linearized, fully
deterministic description developed in the main text, we
take zo(ty) = h = 10 cm, T; = 1000 s, @ = 1.0 cm™!, and
By = 0.05 T. We choose an axion mass m, ~ 73 peV so
that the resonance m, = 6 is expected at t, ~5 s. For
simplicity, we take the axion gradient field to be mono-
chromatic and point only in the X direction

_ 9aNNVV 2p
14

B4(1) = ==—=—"2cos(m,t), B{(r) =0, (B6)

with » = 300 km/s. For our toy model parameters, a
relatively large value of g,yy = 1.0x 107 GeV~! is
necessary in order to produce an observable effect.
Though this is not physically realistic (it is already
excluded by astrophysical constraints, see Fig. 5), it
suffices to demonstrate the effectiveness of the linear
deterministic framework.

2. Realizations of nonlinear SDE and linear
ODE descriptions

In Fig. 8, we show the evolution of the domain wall
position, comparing the linear deterministic ODE frame-
work developed in the main text and the stochastic non-
linear ODE framework developed in this Appendix. In the
top panel of Fig. 8, we show the difference between the a
realization of the stochastic domain wall motion and the
expected (deterministic) domain wall position in two
scenarios. In the first (gray), we assume no axion gradient
field so that the difference between the realization and the
expected solution is purely due to stochasticity in magnon
loss. In the second (black), we include the effect of a

9Alternatively, a implementation of an SDE-solver at long
double precision would suffice.
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FIG. 8. Top: a comparison of the difference between the

stochastic evolution of the domain wall position with and without
the axion gradient and the expected domain wall position in
absence of an axion gradient. Bottom: a comparison of the axion-
induced of the axion-induced shift in the domain wall position
computed within the nonlinear SDE framework of this Appendix
and the linear deterministic ODE framework developed in Sec. III.
For details, see text.

realization of an axion gradient field so that the difference
between the realization and the expectation is due to the
cumulative effect of the gradient field and stochastic
magnon loss. Both realizations are solved using an identical

‘COVSDE(t, t/)’
0.4 0.6

0.2

0.8

1.0

seed for the pseudorandom number generator used in the
diffusion (stochastic magnon loss) term. The order-1
difference between the black and gray curves in the
neighborhood of the resonance clearly shows the effect
of the axion source.

The bottom panel of Fig. 8 plots zy(#)z,(¢), which is the
axion-induced domain wall motion. For the SDE treatment
(solid black), we evaluate this quantity from the difference
between the realizations which have identical magnon loss
but are evaluated with and without an axion gradient
field, as shown in the top panel. This difference is then
the contribution to the domain wall motion induced by the
axion gradient field including all effects associated with
the interplay between axion dynamics and stochastic
magnon loss. We can also evaluate this quantity in our
linear deterministic treatment by taking z,(z) = (zo(1));
this result is presented in dashed gray.

The excellent agreement between the two approaches
confirms that our linear deterministic approach accurately
captures the dynamics of the axion-induced domain wall
motion and hence the precession frequency shift. This
agreement is remarkable despite the fact that the axion-
induced shift in our simulations is even larger than the
stochastic shift, i.e., we are simulating the regime in which
a signal would be highly detectable. For physical parameter
values, such as larger values of y, the magnon number will
be larger, further reducing the size of the diffusion term
relative to the expected drift. Moreover, for larger values of

|Covspr(t,t') — Covaet (£, )]

0.001 0.002 0.003 0.004

FIG. 9. Left: the covariance matrix calculated from 512 realizations of axion-induced domain wall motion in the SDE treatment. The
covariance matrix is normalized to have maximum value 1. Right: the difference between the covariance matrices calculated in the SDE
and linear deterministic treatment, subject to an identical normalization. Good agreement is observed over the range of relevant times.

115020-18



STATISTICS AND SENSITIVITY OF AXION WIND ...

PHYS. REV. D 110, 115020 (2024)

m,, the duration over which the axion gradient can drive
non-negligible domain wall motion is shorter. Hence the
size of the relevant stochasticity will be smaller.

Taken as a whole, we interpret our numerical results as
strong evidence for the accuracy of our approximations in
Secs. IIT and IV. Indeed, in the evaluation of the SDE, no
approximations regarding slowly varying or rapidly oscil-
lating terms was made. In particular, in our derivation of the
HPD equations of motion in Sec. III, we neglected bare
cos 6 and sin @ terms as they oscillate rapidly and average to
zero on the finite interval over which measurements are
made; our simulation results validate that approximation
for our unrealistic parameters, and for realistic parameters,
the precession frequency is 1000 times larger, making this
an even better approximation. Similarly, in Sec. IV, we
argued that terms that depend on oz in Eq. (43) would be
suppressed relative to those that depend on (zg) by 6t/T}.
Once again, the good agreement in our simulations validate
this approximation over a time interval 100 times larger
than for physical parameters; thus, for physical parameters,
neglecting terms at order 62,/ (zo) ~ dt/T) is an even better
approximation than we are able to depict in this unphysical
example.

3. Signal covariance from SDEs

We now extend our toy model beyond that of a
monochromatic velocity distribution, though for continued
simplicity, we will take the distribution to only have
support in the X direction. In particular, we take

1 [ (Ux - Uobs)z]
exp | =55
\/ 2702 20,

with 6, = 1550 km/s and v, = 2200 km/s, enabling us
to generate the time-resolved gradient field directly from its
defining covariance and use this as an input for our
integration of the domain wall motion.

We then repeat our procedure from Appendix B 2 over
many independent realizations of the axion field and the
stochastic magnon loss. From 512 realizations, we con-
struct a time-time covariance matrix, which we compare to
one calculated via our linear deterministic treatment. In
Fig. 9, we present a summary of these realizations, finding
the difference in the covariance matrix between the SDE
treatment and the linear deterministic treatment to agree at
the sub-percent level.

f(oe) = (B7)

APPENDIX C: MEASURING DRIFTING
FREQUENCIES WITH OPTIMAL CONTROL

Here, we demonstrate how an optimal control scheme
may be utilized to make a measurement of a drifting
frequency. Consider a time-dependent Hamiltonian for a
two-level system:

H, (1) = Asin(or +0r/2) 7 (C1)
where the subscript emphasizes that we consider H as a
function of the parameter @. We are interested in the
fundamental limit on the uncertainty @ of our desired
parameter @, given some measurement time 7" and a perfect
knowledge of w. This is related to the quantum Fisher
information (QFI) which can be formulated as

19 = ([ - wonar)

where . are the maximum and minimum eigenvalues of
the operator 9, H

(€2)

@

AP
pi(t) ==+ Tcos(wt + wi*/2). (C3)
It can be show that without any Hamiltonian control, the
QFI scales as T2 for large T.
Following the treatment of Ref. [41], a superposition of
eigenvalues of H,; maximizes the QFI

1

V2

Under the action of H,, the two eigenstates will acquire a
relative (time-dependent) phase ¢,,;(¢). The optimal con-
trol Hamiltonian H . will consist of z pulses at the antinodes
of (C1), such that the roles of s, and u_ are reversed at each
antinode and the QFI integrand is positive-definite

%)y (10) + e[1)). (C4)

2
yZ‘(t) = :tATt | cos(wt + wt?/2)|. (C5)
We note that since the operator structure of (Cl) is
independent of @ and @, with both parameters appearing
only in the amplitude of o, the same state preparation can
be used to make the optimal measurements of @ which feed
into the measurement of @. In either case, the QFI under

optimal control is given by
T AP o’
I((UQ) = |:A dtT COS (a)t+w2)

It is convenient to perform a change of variable to ¢ =
t+ bt?> with b = @/2w. So long as bt' < 1, the QFI is
approximately

T At/Z 2
I(E,Q) ~ {/ dt’T|cos(a)t’)|] ,
0

which is a good approximation for typical HPD experi-
ments in which the measurement interval over which @ is
examined is shorter than the relaxation time 7.

]2. (C6)

(C7)
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For convenience, we define 7, = 27/w and assume the
measurement interval 7" to be an integer multiple N of T
Then the QFI may be rewritten as

(I+4T(l
24 / "% cos(wt')dt’

nT,
+ 1% cos(wt')dt’
(n=D)T,+3T,

(n-1)T,+3T,, 2
- / 1* cos(wt')dr
(n=1)T,+1T,

without any absolute values. These integrals are trivial to
evaluate and ultimately we find

3\ 2
19~ (%5)
3z

at leading order, which is a marked improvement over the
T? scaling in the absence of control.

The QFI is a measure of the distinguishability of two
states |¥),, and [¥), 4, and thus can be given in terms of
the Bures distance

w*

(C8)

(©9)

I(Q) - 4dS2

[ da)2 ’ (ClO)

where ds? = 2(1 — [(¥4|¥4,a4)|). Given the state prepa-
ration in (C4), we have

1. o¢?
ds? =2(1—|z+=e%| ) x =—+ O(5¢* Cl1
: ( ]2+2e ) T+o@st)  (cn)
and we get for the QFI
5¢
19 C12

Equating (C12) with (C9), we have

1
AT321/

where we used 6¢p = 1/, /4N, as an estimate of the phase
noise for N, independent measurements. In our scheme, the
independent measurements may be either the number of
repeated experimental measurements or the number of
independent qubits.

This derivation above only holds for a measurement time
during which the qubit remains coherent. Following
Ref. [43], suppose now the qubit is characterized by a
coherence time T, and measurement of the frequency drift
is made over a duration 7= N, T,. Then the QFI accu-
mulates as

-3 (] " Gt =)

n=1 (n—1

6 o —

T3 (C13)

(C14)

To evaluate the QFI, we make the simplifying assumption
that 7, = NT,, with N > 1. We then have

@

A [nT, B
19 = [—/ t2]cos(wt)|dt]
2 Jin-nr

q

AN </(n—1)Tq+(n’—1)Tw+%Ta, ) >]2
=|= t*cos(wt)dt+ - - -
[2 ; (n=D)T,+('=1)T,

A2
~—T, T°

= (C15)

at leading order. Following identical reasoning using the
Bures metric to relate the 6¢p and 6w, we now find

P (C16)

2AT%, /T N,

Hence we see the effect of qubit incoherence is to only
slightly soften the scaling of our precision with time from
T3 to T2
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