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ABSTRACT: We report a multifunctional metal—organic frame-
work (MOF) photocatalyst for the CO, reduction reaction
(CO,RR) under visible light irradiation with high efficiency
(turnover number = 2638) and CO selectivity (97.0%). The short
distance (6.6 A) between bipyridine sites in the MOF allows the
integration of Ir photosensitizers and Ni catalysts in proximity,
thereby enhancing their electron transfer for photocatalytic
CO,RR. Isolation of these metal centers by the MOF structure
prevents their deactivation, leading to 54 times higher CO,RR
activity than the homogeneous system and allowing for easy
recovery for use in five consecutive cycles of photocatalytic CO,RR
without significant loss of catalytic activity.
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arbon dioxide (CO,) reduction reaction (CO,RR) to

CO represents a sustainable strategy to generate value-
added chemical feedstocks and chemical energy supplies from
greenhouse gases and can positively contribute to mitigatin%
climate change caused by the overexploitation of fossil fuels. ™
In a photocatalytic CO,RR, a photosensitizer harvests light
energy to enable electron transfer to a catalyst for CO,
conversion to chemical feedstocks or fuels.*”” However, the
efficiency of photocatalytic CO,RR is limited by suboptimal
energy and electron transfer between the molecular photo-
sensitizing and catalytic units. Bifunctional molecular systems
with both photosensitizing and catalytic units can potentially
address this limitation, but their synthesis remains a significant
challenge. Moreover, as photocatalytic CO,RR is performed by
metal centers at low oxidation states,® "' the active sites can
readily deactivate via multimolecular aggregation or formation
of metallic nanoparticles, which further limits the practical
application of photocatalytic CO,RR in sustainable chemical
feedstock production and solar energy conversion.'”"*

As an emerging class of crystalline molecular materials with
high porosity, metal—organic frameworks (MOFs) can
incorporate a wide variety of catalytically active species on
the periodically repeating nodes and organic linkers to catalyze
synthetically useful organic transformations.'*~"” The isolation
of catalytic sites by the framework inhibits deactivation
pathways to enhance the stability of active catalysts."*™>° By
taking advantage of their synthetic versatility, many MOFs
with multiple active species have also been developed to
synergistically combine different functions.”*™>" These features
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have spurred the development of MOFs as eflicient photo-
catalysts for the synthesis of chemical feedstocks and in solar
energy conversion.' > ">

Herein, we report the design and synthesis of a multifunc-
tional MOF with hierarchically integrated Ir photosensitizers
(Ir-PSs) and bipyridine-coordinated Ni(II) catalytic centers to
achieve photocatalytic CO,RR with high efficiency and CO
selectivity. The close distance between adjacent bipyridyl
linkers (6.6 A) facilitates electron transfer, which enhances the
overall efficiency of the photocatalytic process; additionally,
the inhibition of catalyst deactivation caused by aggregation
and the formation of nanoparticles by the isolation of active
sites in the framework further enhances the photocatalytic
efficiency. These advantages of MOFs have endowed simple
bipyridyl—nickel complexes as efficient catalysts for CO,RR.

The photocatalytic MOF-253-Ir/Ni was synthesized via
multiple-step postsynthetic modifications (PSMs) of the
previously reported MOF-253.°"%° A solvothermal reaction
between AI(NO;);-9H,0 and 2,2-bipyrdine-5,5'-dicarboxylic
acid (H,bpydc) in N,N-dimethylformamide (DMF) at 120 °C
produced MOF-253 as a crystalline white powder. MOF-253
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Figure 1. (a) Structural model of MOF-253 showing a parallel arrangement of closely spaced bipyridyl linkers. (b) Stepwise metalation of the bpy
sites in MOF-253 for the construction of the multifunctional photocatalyst MOF-253-Ir/Ni. (c) PXRD patterns of MOF-253 (purple), MOF-253-
Ir (yellow), and MOF-253-Ir/Ni (green), along with the simulated pattern for MOF-253. (d) TEM images of MOF-253 (left), MOF-253-Ir
(middle), and MOF-253-Ir/Ni (right).
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Figure 2. (2) Normalized Ni K-edge XAS spectra of MOF-253-Ir/Ni (red line) and Me,L-Ni (gray line). (b) EXAFS spectrum and fit in R-space
at Ni K-edge of MOF-253-Ir/Ni, as well as the contribution of different scatterers in the first coordination sphere. (c) Structural model of the Ni
site (d) Normalized Ir Ly-edge XAS spectra of MOF-253-Ir/Ni (red line) and Me,L-Ir (gray line). (e) EXAFS spectrum and fit in R-space at the Ir
L;-edge of MOF-253-Ir/Ni, as well as the contribution of different scatterers in the first coordination sphere. (f) Structural model of the Ir site.

was chosen as the platform for photocatalyst construction parallel arrangement, which was expected to enhance electron
because of the closely spaced bipyridine (bpy) linkers and their transfer in the CO,RR process (Figure 1a).

9218 https://doi.org/10.1021/acscatal.4c02326
ACS Catal. 2024, 14, 9217-9223


https://pubs.acs.org/doi/10.1021/acscatal.4c02326?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c02326?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c02326?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c02326?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c02326?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c02326?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c02326?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acscatal.4c02326?fig=fig2&ref=pdf
pubs.acs.org/acscatalysis?ref=pdf
https://doi.org/10.1021/acscatal.4c02326?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Catalysis

pubs.acs.org/acscatalysis

As shown in Figure 1b, MOF-253-Ir/Ni was synthesized via
stepwise metalation of MOF-253. After treatment of MOF-253
with [Ir(ppy),(MeCN),]PF, in dichloromethane for 48 b, the
white powder turned orange, suggesting the successful
installation of Ir-PSs via coordination of Ir centers to the
bpy sites of MOF-253 to obtain MOF-253-Ir. The '"H NMR
spectrum of digested MOF-253-Ir demonstrated 10% loading
of [Ir(ppy),] in MOF-253, which shows complete coordina-
tion of the [Ir(ppy),(MeCN),]PF, precursor. The remaining
bpy sites (90%) in MOF-253-Ir were subsequently converted
to (bpy)NiBr, via treatment with Ni(dme)Br, (dme = 1,2-
dimethoxyethane) to afford MOF-253-Ir/Ni. Inductively
coupled plasma mass spectrometric (ICP-MS) analysis of
MOF-253-Ir/Ni showed a Ni/Al ratio of 0.9 consistent with
complete coordination of Ni to the bpy sites in MOF-253-Ir.

Powder X-ray diffraction (PXRD) experiments showed that
the crystallinity of MOF-253 was retained after postsynthetic
installation of Ir-PS and bpy-NiBr, moieties (Figure 1lc).
Transmission electron microscopy (TEM) revealed that the
rodlike morphology of MOF-253 remained unchanged
throughout stepwise metalation processes (Figure 1d).
Thermogravimetric analysis (TGA) supported the chemical
compositions of the synthesized MOF-253, MOF-253-Ir, and
MOF-253-Ir/Ni as Al(OH)(bpydc), Al(OH)(bpydc)[Ir-
(ppPy)2PFeloy, and Al(OH)(bpydc)[Ir(ppy),PFelo1(NiBry)os,
respectively (Figures S6, S10, and S12). N, sorption isotherms
demonstrated a decrease of Brunauer—Emmett—Teller surface
area from 1576 + 35 m’/g for MOF-253 to 1033 + 26 m’/g
for MOF-253-Ir and 400 + 8 m?®/g for MOF-253-Ir/Ni
(Figures S7, S11, and S13), which is consistent with the
introduction of bulky Ir-PSs and bpy-NiBr, moieties upon
sequential metalation of the bpy sites in MOF-253. Fourier
transform infrared (FT-IR) spectra of MOF-253, MOF-253-Ir,
and MOF-253-Ir/Ni were compared. After Ir installation, a
new peak appeared at 1696 cm™" with a low intensity because
of a low loading (10%) of Ir. Comparisons of the FT-IR
spectra of MOF-253-Ir and MOF-253-Ir/Ni showed peak
changes at 1700—1300 cm™' due to the bpy conformational
change from trans to cis after Ni loading.°" All new peaks can
be found in the FTIR spectra of homogeneous model
complexes (Me,bpydc)Ir(ppy),PFs (Me,L-Ir) and
(Me,bpydc)NiBr, (Me,L-Ni).

X-ray absorption spectroscopy (XAS) was used to probe the
oxidation states and coordination environments of photo-
sensitizing Ir centers and catalytic Ni centers in MOF-253-Ir/
Ni. Both MOF-253-Ir/Ni and the homogeneous model
complex Me,L-Ni showed a Ni K-edge energy of 8343.4 eV
(Figure 2a—c), which is within the reported range for Ni(II).
This result demonstrated a +2 oxidation state for the Ni
centers in MOF-253-Ir/Ni.%* Moreover, MOF-253-Ir/Ni
exhibited an almost identical X-ray absorption spectrum at
the Ni K-edge as Me,L-Ni, thereby suggesting their similar
Ni(II) coordination environments. Extended X-ray absorption
fine structure (EXAFS) analysis showed strong Ni—Ny,, and
Ni—Br single scattering signals, which suggested coordination
of the Ni(II) center to the two nitrogen atoms of the bpydc
linker and two bromine atoms. Fitting of the EXAFS data to
the DFT-optimized structural model gave Ni—N,,, and Ni—Br
bond lengths of 2.06 and 2.34 A, respectively. MOF-253-Ir/Ni
and Me,L-Ir showed similar Ir L;-edge values of 11218.0 and
11217.5 eV (Figure 2d—f), respectively, which indicated a +3
oxidation state for the Ir centers.””** The peak intensity
difference is likely caused by slight distortion of the bulky Ir
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moiety in the MOF due to steric hindrance. EXAFS analysis
and fitting to the DFT-optimized model indicated the
coordination of Ir(II) centers to one bpy and two ppy ligands
with Ir—C and Ir—N bond distances of 2.03 and 2.07/2.18 A,
respectively. These results show that the Ir and the Ni centers
in MOF-253-Ir/Ni exhibit the same oxidation states and
coordination environments as their homogeneous model
complexes.

With photosensitizing Ir(III) and catalytic Ni(II) centers in
close proximity in MOF-253-Ir/Ni, we tested its performance
as a photocatalyst in the CO,RR. A Xe lamp with a 300 nm
cutoff was used as the light source, and acetonitrile was used as
the solvent for the CO,RR. After the optimization of reaction
conditions, we found that MOF-253-Ir/Ni efliciently
promoted CO,RR with 1,3-dimethyl-2-phenyl-2,3-dihydro-
1H-benzo[d]imidazole (BIH) as a sacrificial agent to afford
an outstanding turnover number (TON) of 2638 and a high
CO selectivity of 97% (Figure 3a). Only trace amounts of H,
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Figure 3. (a) Photocatalytic production of CO and H, by MOF-253-
Ir/Ni, Me,L-Ir plus Me,L-Ni, MOF-253-Ir plus Me,L-Ni, and MOF-
253-Ni plus Me,L-Ir. (b) Time-dependent CO TONs of MOF-253-
Ir/Ni and Me,L-Ir plus Me,L-Ni homogeneous control.

and CH, were detected as byproducts of the CO,RR by gas
chromatography (GC), and no formic acid was detected by
NMR after the CO,RR (Figure S22). A control experiment
with a N, atmosphere showed negligible CO generation, which
excluded the possibility of CO generation from the
decomposition of the catalyst or the solvent. Additionally,
isotope tracer experiments using *CO, gave *CO as the only
product, thereby indicating that CO was generated from the
photoreduction of CO, (Figure S24).
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Figure 4. (a) Emission spectra of Me,L-Ir (30 uM) after the addition of different amounts of BIH (From top to bottom: 0, 5, 10, 20, 30 £M), with
the linear fitting giving a Stern—Vdlmer quenching constant of (13.2 + 0.5) X 10> M. (b,c) CVs of Me,L-Ir (b) and Me,L-Ni (c) in acetonitrile.
(d) Proposed mechanism of MOF-253-Ir/Ni-catalyzed CO,RR with CO as the product. (e) DFT-calculated energy profiles of the Ni cycle of

MOF-253-Ir/Ni-catalyzed CO,RR.

We conducted a series of control experiments to
demonstrate CO,RR enhancement via hierarchical integration
of Ir photosensitizers and Ni catalytic centers in the MOF.
Under the same conditions, a mixture of homogeneous Me,L-
Ir and Me,L-Ni at the same Ir and Ni loadings as MOF-253-
Ir/Ni showed a TON of 49 and CO selectivity of 51%. Thus,
MOF-253-Ir/Ni outperformed its homogeneous control by
S4-folds. Changing the photosensitizer from homogeneous
Me,L-Ir to MOF-253-Ir further decreased the TON to 39,
likely because of less efficient electron transfer between Me,L-
Ni and the Ir-PS in the MOF. Using a combination of MOF-
253-Ni and Me,L-Ir as catalysts, the TON (CO) was
determined to be 89, which was also significantly lower than
that of MOF-253-Ir/Ni. This result further supported
enhanced electron transfer in the bifunctional MOF catalyst.
MOF-253 and MOF-253-Ir gave lower TONs of 29 and 26,
respectively, indicating the important role of the Ni catalyst in
photocatalytic CO,RR. Time-dependent CO,RR experiments
showed that the catalytic performance of the homogeneous
control decreased significantly over time and leveled off after
the first 6 h with a TON of 40, which indicated rapid catalyst
deactivation in the homogeneous system (Figure 3b). In
contrast, MOF-253-Ir/Ni showed unchanged CO generation
rate in 24 h, which demonstrated stabilization of both Ir-PS
and Ni catalyst in the MOF via site isolation. The durability of
MOF-253-Ir/Ni was further demonstrated by a nearly
constant catalytic performance in five runs of the CO,RR
(Figure S23).

Photophysical and electrochemical experiments were con-
ducted to probe the mechanism of the MOF-253-Ir/Ni-
catalyzed CO,RR. First, MOF-253-Ir displayed increased
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absorption at 350—450 nm over MOF-253 (Figure S25).
This absorption is similar to that of Me,L-Ir, which suggests
the retention of the photosensitizing ability of Ir-PS upon
installation in the MOF. A luminescence quenching experi-
ment was next conducted to probe the interaction between
photoexcited Ir-PS and the sacrificial agent. Luminescence
measurements showed that the emission of Ir-PS was
quenched by BIH, which was well fitted with the Stern—
Volmer equation to give a quenching constant (Kgy) of (13.2
+ 0.5) X 10> M™" (Figure 4a). This indicates that the excited
state of Ir-PS can be reduced by BIH to generate the
(bpy- " )Ir(ppy), species, which then injects electrons into the
adjacent Ni catalytic centers for the CO,RR.

Cyclic voltammograms (CVs) of Me,L-Ir and Me,L-Ni
were examined to further support electron transfer between the
(bpy-")Ir(ppy), and Ni(II) centers in the MOF. CV scans of
Me,L-Ir in acetonitrile showed two reduction peaks with E,
1.27 and —1.71 V vs Fc'/Fc (Figure 4b), which were
assigned to the bpy”~ and ppy ™/ redox couples.”> Me,L-Ni
displayed irreversible peaks at E,;, = —1.18 and —1.52 V vs
Fc*/Fc (Figure 4c) corresponding to the Ni'" and Ni"/ redox
couples. These redox potentials demonstrate that the reduced
Ir-PS [(bpy-")Ir(ppy).] can undergo single electron transfer to
reduce Ni(II) to Ni(I) but it cannot further reduce Ni(I) to
Ni(0). Under a CO, atmosphere, the reduction current clearly
increased, which supports the reduction of CO, by Ni(I)
centers (Figure $26).

Based on the photophysical and electrochemical exper-
imental results, we propose the following mechanism for
MOF-253-Ir/Ni-catalyzed CO,RR (Figure 4d). The Ir-PS is
first photoexcited and reduced by BIH to generate (bpy-~)-
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Ir(ppy), and BIH*. The proximity of the Ir-PS and Ni centers
facilitates electron transfer from (bpy-~)Ir(ppy), to the nearby
Ni(II) center to generate the Ni(I) species, which binds CO,
and undergoes proton-coupled electron transfer (PCET) with
BIH* to generate a Ni(I[)~COOH species, which is the key
intermediate in the CO production pathway. The acid—base
reaction of Ni(I)~COOH with proton generates the Ni(II)—
CO intermediate and H,O. Dissociation of CO from the
Ni(II) center produces CO as the final product and
regenerates the Ni(II) catalyst. Ir-PS mediated photosensitiza-
tion cycle and Ni-mediated catalytic cycle are effectively
coupled to enhance electron transfer in the MOEF. DFT
calculations with the B3LYP functional were conducted to
determine the feasibility of the proposed mechanism from the
perspective of free energy changes. The electron injection from
(bpy-)Ir(ppy), to Ni(II) causes a free energy decrease of 75.8
keal/mol (Figure 4e). The free energy changes for the
subsequent CO, binding/PCET step, acid—base reaction
step, and CO release step are 1.5, —57.7, and —7.6 kcal/mo],
respectively. These calculation results support the feasibility of
the proposed CO,RR mechanism.

In summary, we rationally constructed multifunctional
MOF-253-Ir/Ni with hierarchically assembled photosensitiz-
ing Ir centers and catalytic Ni centers via stepwise
postsynthetic metalation of MOF-253. The proximity between
adjacent Ir-PS units and catalytic Ni centers enhanced electron
transfer to boost photocatalytic CO,RR. Simultaneously, the
active sites were isolated from each other in the MOF to
prevent undesired deactivation under the CO,RR conditions.
As a result, MOF-253-Ir/Ni showed excellent CO,RR activity
under visible light irradiation with a TON of 2638 and a CO
selectivity of 97.0%. This catalytic activity is 54 times higher
than that of the homogeneous control. This work highlights
the potential of MOFs as a tunable platform to construct
multifunctional catalysts for photocatalysis and solar energy
conversion.
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