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ABSTRACT: Photocatalysis harnesses photon energy to drive
chemical reactions under mild conditions that would otherwise be
thermodynamically uphill. Nature provides a blueprint for designing
photocatalytic systems, as seen in photosynthesis, by assembling
light-harvesting antenna complexes, electron transport chains, and
catalytic enzymes to perform highly complex light-driven chemical
syntheses. While methods leveraging the synergy between
photosensitizers and catalytic complexes have been widely explored
in photocatalysis, the hierarchical assembly of these components in
material systems has been less studied. The emergence of
framework materials, including metal-organic frameworks and
covalent organic frameworks provides new opportunities for
designing advanced photocatalysts based on these molecular
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material platforms. This minireview focuses on the design of framework materials for sustainable photocatalysis. We will
discuss the design of framework materials for artificial photosynthesis and several important organic transformations and
highlight the advantages of these catalytic framework materials over their homogeneous counterparts. Framework material-
based photocatalysts are readily recovered from reactions and reused in multiple reaction runs, further contributing to the

development of sustainable photocatalytic processes.
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1 Introduction

Harnessing sunlight energy has long been a global scientific pursuit.
Photovoltaic (PV) cells, which convert sunlight into electricity, have
become one of the most reliable and widely available sources of
renewable energy. In contrast, chemical reactions heavily rely on
metal catalysts and heat but have not benefitted from the
advancements in PV technology. The direct conversion of sunlight
energy into chemical energy hinges on the development of
advanced photocatalytic systems.

Nature has provided a blueprint for designing photocatalytic
systems through photosynthesis. In this process, a light-harvesting
antenna molecule in photosystem II absorbs light and transports
high-energy electrons through an electron transport chain. Another
photon is absorbed by an antenna molecule in photosystem I in the
chain, which uses electrons for nicotinamide adenine dinucleotide
phosphate (NADPH) synthesis. Simultaneously, the holes
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generated from light irradiation are used to drive water oxidation>>.
Photosensitizers, electron shuttles, and catalytic species are
hierarchically organized in photosynthetic systems to convert solar
energy into chemical energy.

Studies combining photosensitizers and metal catalysts for
chemical reactions began in 1970s. Water splitting and CO,
reduction were achieved by leveraging the synergy between
Ru(bpy):** (bpy = 2,2’ -bipyridine) photosensitizers and transition
metal catalysts* °. The molecular design of photosensitizers and
transition metal catalysts with higher reactivities has led to
improved reaction performances® 7. However, less attention has
been given to designing assembled systems that enhance
photocatalysis efficiency.

A straightforward design to enhance photocatalysis efficiency is
to accelerate photoelectron transfer from photosensitizers. The
basic theory of electron transfer has been extensively studied and
described®. Pre-organizing a photosensitizer and an electron
acceptor, typically a secondary catalytic center or reaction substrate,
should reduce the kinetic barrier of electron transfer, thereby
improving the overall reaction performance. Methods such as
covalently linking a photosensitizer and a catalyst in a single
molecule, designing heterogeneous co-catalysts, or developing
hybrid catalysts, have demonstrated the potential of the pre-
organization strategy and significantly increased the efficiency of
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artificial photosynthesis”’®. Among them, assembling catalysts
within a supramolecular host provides a method of achieving
precise molecular control in the system, also allowing for detailed
characterization.

Framework materials, including metal-organic frameworks
(MOFs)!* and covalent organic frameworks (COFs)!® serve as ideal
supramolecular material platforms for designing photocatalytic
systems!® 7. Framework materials are crystalline porous materials
constructed through periodic bonding of building blocks. MOFs
are built via coordination between metals and organic ligands,
whereas COFs are formed through covalent bonding between the
building blocks. Since the first report on MOFs, pre-
functionalization of organic ligands has been employed to install
catalytic moieties'®>!. More recently, post-modification of open
metal sites has been explored to introduce additional catalytic
functions”?, This same strategy can be applied to COFs to
orthogonally integrate different functionalities in the building units.
Consequently, photosensitizing and catalytic components can be
pre-organized hierarchically in framework materials to accelerate
photoelectron transfer.

The hierarchical integration of photosensitizing and catalytic
components can be characterized by both direct and indirect
methods. Direct methods, such as powder X-ray diffraction
(PXRD) and X-ray absorption spectroscopy (XAS), analyze the
structure and chemical composition of framework materials
without destroying the samples. Indirect methods use chemical
reagents to digest framework materials into separate building
blocks, which are then characterized with quantitative solution-
based techniques such as nuclear magnetic resonance spectroscopy
(NMR), ultraviolet-visible (UV-vis) light spectroscopy, and
inductively coupled plasma-mass spectrometry (ICP-MS).

Metal-organic layers (MOLs), a two-dimensional (2D) version of
MOFs, offer additional advantages as photocatalysts, including
larger surface areas and more modifiable sites. MOLs were first
reported in 2016 as fully dispersible materials with modifiable
surface sites equivalent in number to their bridging ligands”. Since
then, MOLs have been widely studied as site-isolated catalysts and
synergistic catalysts. The first reported COF had a 2D structure’,
but 2D COFs tend to stack along the third dimension, which
compromises the accessibility of the active sites to reactants when
compared to MOLs. 2D COFs have also been examined in a variety
of photocatalytic reactions?=".

In this minireview, assembled photocatalytic systems based on
framework materials with pre-functionalized photosensitizing
linkers and post-synthetically introduced synergistic catalysts are
discussed (Fig. 1). Significant enhancements in reaction efficiency
are observed in framework material-catalyzed artificial
photosynthesis and various organic transformations compared to
those catalyzed by simple mixtures of the corresponding
components. The tunable and well-defined active sites in
framework materials allow their rational design to optimize
photocatalytic efficiency, thus providing a basis for achieving
sustainable photocatalysis. Framework materials have also been
demonstrated to be stable and reusable under catalytic conditions,
further contributing to a more sustainable photocatalytic process.

2 Monolayered MOFs for artificial

photosynthesis

As previously discussed, photosensitizers, electron transfer chains,
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Fig.1. Framework materials for sustainable photocatalysis.
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and catalytic enzymes are intricately organized to achieve natural
photosynthesis. Numerous photocatalytic systems have been
developed to mimic this feature of natural photosynthesis!® 3273,
However, achieving effective synergy in artificial photosynthesis is
challenging without precise control over the assembly and
molecular structures of the photosensitizers and catalysts. The
structural features of framework materials have allowed the design
of efficient catalysts for artificial photosynthesis®’’. In this section,
we present a photocatalytic system based on MOLs, monolayered
MOFs, for artificial photosynthesis with enhanced activities through
rational design.

Photosensitizing linkers, specifically linear dicarboxylic acids
based on the bis(phenylpyridine)iridium(bipyridine) moiety (Ir-
PS), connect Hfj,-based SBUs to form MOLs as hexagonal
nanoplates. For water oxidation reactions, the surface of these
nanoplates was modified via carboxylate exchange with water
oxidation  catalysts, ie. (pentamethylcyclopentadienyl)-
iridium(bipyridine) complexes ([Ir]), and amino acids (AAs) (Fig.
2a). The AAs account for around 90% of the surface sites,
mimicking the secondary coordination environments known in the
active sites of natural enzymes. Similarly, the MOL for CO,
reduction was constructed with Ir-PS, hemin ([Fe] as a CO,
reduction catalyst), and AAs (Fig. 2a).

The reactivities of MOLs were systematically optimized through
screening AAs to tune the secondary environments of the catalytic
centers. For example, a library of MOLs for water oxidation was
created by loading 20 proteinogenic AAs onto the surface of the
MOLs. Examination of their reactivities towards photocatalytic
water oxidation, using sacrificial oxidant K,S,04, revealed a catalytic
efficiency trend correlated to the oxidation potentials of the AA side
chains (Fig. 2b). Glutamine (Q) and asparagine (N), which contain
amide side chains, were found to enhance the reaction most
effectively. Consequently, an artificial ligand featuring an N-aryl
amide group, Am-Cl, was designed and integrated into the MOL,
resulting in a turnover number (TON) of 1440 in 6 h.

AA optimization for CO, photoreduction revealed two
mechanisms that increase reaction rates (Fig. 2c). AAs with acidic
side chains accelerate CO, reduction via a proton-coupled electron
transfer (PCET) process. AAs with amide side chains function as
hydrogen bond donors, stabilizing the CO, radical anion
intermediate and thereby lowering the reaction barrier. The
hydrogen bonding effect offers a more significant enhancement.
Consequently, an artificial ligand featuring a urea group, Ur, was
designed and integrated into the MOL, achieving a TON of 1146 in
6h.
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Fig.2. Design of monolayered metal-organic frameworks for artificial photosynthesis. a, Z-scheme of artificial photosynthesis catalyzed by two MOL-based catalysts.
b, Optimization of secondary coordination provided by amino acids in water oxidation half reaction. ¢, Optimization of secondary coordination provided by amino acids
in CO, reduction half reaction. d, Summary of activities for photocatalytic conversion of CO, to CH, by the MOL and previously reported catalysts. Reproduced with

permission from Ref.*’, © Springer Nature 2022.

Integration of photosensitizers and catalytic complexes in the
MOLs significantly enhances their reaction efficiency compared to
corresponding homogeneous catalysts. For instance, the MOL
designed for water oxidation catalyzed the reaction 10 times faster
than a mixture of Ir-PS, [Ir], and Am-Cl. Similarly, the MOL
designed for CO, reduction catalyzed the reaction 28 times faster
(based on CH, production) than a mixture of Ir-PS, [Fe] and Ur. In
subsequent studies, a full reaction without sacrificial reagents was
explored using an electron mediator, Co(bpy),CL([Co]), to couple
catalytic cycles of water oxidation with CO, reduction, mimicking
the electron transport chain in natural photosynthesis (Fig. 2a).
This integrated photocatalytic system achieved an overall turnover
frequency (TOF) of 98 h™! for CO, to CH, conversion, with a
quantum yield of 1.1% at 350 nm, significantly outperforming other
reported systems at the time (Fig. 2d)*™!. Notably, the
homogeneous control for the full reaction failed to produce any
product.

3 Monolayered MOFs for photocatalytic
organic transformations

The tunability of MOLs enables the design of MOL-based catalysts
for other photocatalytic reactions. Recent advancements in
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photoredox catalysis, which involve dual catalytic cycles utilizing a
photosensitizer and a secondary catalytic center, have enabled
unique organic transformations that are not readily accessible with
ground-state catalysts®> 33, Moreover, earth-abundant metals, such
as cobalt™, nickel®, and copper™®, have proven effective in various
photoredox-catalyzed  cross-coupling —reactions, offering a
sustainable alternative to noble metals typically required for these
reactions.

Photocatalytic systems built with MOLs can pre-organize
photosensitizers and secondary catalysts, thereby accelerating
electron transfer between them and significantly reducing the
required catalyst loadings. Furthermore, MOL-based catalysts
exhibit stability under various catalytic conditions, enabling their
recycling and reuse, which further contributes to a more sustainable
photocatalytic process.

Fig. 3 summarizes a variety of reactions accomplished by MOL-
based photocatalysts and compares their efficiencies to those of
corresponding homogeneous catalysts. Reactions 3a-3d exemplify
the synergy between photosensitizers and organocatalysts, including
combinations of Ir-PS with Lewis acid (LA) assisted by
stoichiometric amount of reductant” or oxidant®, Eosin Y (EY)
with LA%, and pyridine (Py) nucleophiles®.

Carbon Future 2024, 1, 9200018
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Fig.3. A summary of photoredox reactions with MOL-based catalysts. a-g, Ene-carbonyl reduction coupling reaction (a), Minisci reaction (b), Giess addition
mediated by hydrogen atom transfer (c), radical dehydrogenative coupling reaction of alkyl halides with styrene derivatives (d), Ni-catalyzed C-S, C-O, and C-C coupling
reactions of aryl halides (e), Co-catalyzed dehydrogenative coupling reactions (photochemical aniline synthesis and radical Heck-type coupling reaction) (f), and gold-
catalyzed arylation of C-C unsaturated bonds (g). The catalysts in the MOLSs are shown as circles connected by a black line. h, Yields of MOL-catalyzed reactions (MOL,
pink columns) and homogeneously catalyzed reactions (Homo, purple columns) at the same catalyst loadings.

In reaction 3a, for example, the MOL catalyst was prepared from
HfCl, and Ir-PS ligands, and subsequently treated with
trimethylsilyl triflate (TMSOTY) to introduce strongly Lewis acidic
surface sites through post-modification. These Lewis acidic Hf sites
effectively bind and activate electron-deficient alkenes, facilitating
their interaction with ketyl radicals generated by adjacent Ir-PSs.
This configuration suppresses undesired dimerization, thereby
improving the selectivity for cross-coupling products by nine times.
A stoichiometric amount of reductant, Hantzsch ester, was added
to turnover the reaction.

Reactions 3e-3g illustrate the synergy between photosensitizers
and transition-metal catalysts, featuring combinations of Ir-PS with
a Ni(bipyridine) complex®!, Ir-PS with (pyridine)cobaloxime®?, and
Ru-based photosensitizer (Ru-PS) with a gold phosphine
complex®,

In reaction 3e, for example, the MOL catalyst was constructed
from Ir-PS ligands and then treated with Ni(MBA)Cl, [MBA =2-(4"-
methyl-[2,2'-bipyridin]-4-yl)acetate] to incorporate the Ni(bipyridine)
complex through post-modification. The proximity between
photosensitizing Ir centers and catalytic Ni centers (~ 0.85 nm)
facilitates single electron transfer, leading to a 15-fold increase in
photoredox reactivity. The MOL proves highly effectiveness in
catalytic C-S, C-O, and C-C cross-coupling reactions with broad
substrate scopes and turnover numbers of up to 4500, 1900, and
450, respectively.

Carbon Future 2024, 1, 9200018
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As shown in Fig. 3, MOLs enhance these reactions to varying
extents, with the highest enhancement being 15-folds in reaction 3e
and the lowest of 1.7-folds in reaction 3f. These variations suggest
different roles of photoelectron transfer in the reaction kinetics of
these transformations. Understanding the kinetics of each step in
the reaction cycle is crucial for designing efficient photocatalytic
systems. In reaction 3e, photoelectron transfer either reduces Ni(II)
to Ni(0) to facilitate oxidative addition or oxidizes Ni(II) aryl
complexes coordinated with S, O, or C-based nucleophiles to
Ni(Ill) to promote reductive elimination. These steps are rate-
limiting. Consequently, pre-organization of dual catalytic sites in
the MOL significantly boosts the reaction yield. Conversely, in
reaction 3f, the electron transfer between the photosensitizer and
the (pyridine)cobaloxime complex occurs rapidly and does not
significantly affect the overall reaction rate.

While these reactions were studied based on literature precedents
of homogeneous catalyses™ %%, reactions 3a and 3d are
particularly noteworthy because achieving a high reaction yield with
the same components in a homogeneous solution is challenging. As
previously discussed, reaction 3a competes with a side reaction,
pinacol coupling. The installation of Lewis acid sites near the
photosensitizer increases the local concentration of substrates,
thereby improving reaction selectivity. Reaction 3e involves
sequential Sy2 reaction (forming the pyridinium salt in-situ with the
pyridine catalyst and the alkyl halide substrate), single electron
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reduction, and radical dissociation (from the pyridinium salt). The
Sx2 reaction and the radical dissociation, however, have opposite
steric requirements on pyridine structures’’. Pre-organizing the
pyridine and the photosensitizer in the MOL accelerates single
electron reduction and radical dissociation steps, overcoming their
reliance on ortho-substituted pyridine structures and allowing the
use of non-substituted pyridines, which favors the Sy2 reaction.
This method tolerates a broader range of substrates and enhances
reaction efficiency.

The sustainability of MOL-catalyzed reactions is further
bolstered by the ease of catalyst reuse (Fig. 4). For instance, MOL-
catalyzed reaction 3f has been successfully applied in eight
consecutive rounds of vesnarinone synthesis without loss of
reactivities. After each reaction run, the well-dispersed material was
recovered from the reaction mixture by centrifugation. The MOL
was then washed and directly reused in the next reaction cycle. The
PXRD pattern of the recovered MOL matched that of the as-
synthesized material, demonstrating the durability of MOL catalysts
under catalytic conditions. This recycling procedure was also
applied to the other reactions listed in Fig. 3.

g

Catalyst recycle

Product

Starting materials

Irradiation |
| &

Fig.4. MOL catalyst reuse for photochemical aniline synthesis.
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Fig.5. Two COFs for photocatalytic organic transformations. a, Planar COF
for energy transfer catalysis. b, Non-planar COF for photoredox catalysis.
Reproduced with permission from Ref”®, © Wiley 2023 and Ref.’’, © American
Chemical Society 2023.

4 COFs for
transformations

photocatalytic  organic

The design principles of MOL-based photocatalysts can be adapted
for designing COF-based photocatalysts. Recent studies have
investigated the use of COFs in photoredox cross-coupling
reactions to form C-C, C-N, C-O, and C-S bonds’'™”% We
hypothesize that pre-organizing photosensitizers and transition
metal complexes in COFs will significantly enhance photocatalytic
efficiency, potentially allowing the use of less reactive yet more
sustainable organic photosensitizers in place of noble metal-based
photosensitizers. Additionally, most reported COFs to date are two-
dimensional systems with in-plane conjugation, a result of the use
of m-m interactions in driving COF synthesis. By modifying the
conjugation structures, the photosensitizing properties of COFs can
be tuned, potentially improving their efficiency for photocatalytic
applications.

In this section, we discuss two COFs, one planar and one non-
planar, both incorporating photosensitizers and Ni-bipyridine
complexes (Fig. 5)”> 7. The planar COF, containing a pyrene
chromophore and a Ni-bipyridine, shows high reactivity in radical
borylation and trifluoromethylation reactions of aryl halides. This is
attributed to the efficient in-plane energy transfer from the pyrene
to the Ni-aryl intermediate upon irradiation’””. On the other hand,
the non-planar COF, featuring a spirobifluorenyl chromophore and
a Ni-bipyridine, efficiently catalyzes photoredox C-N and C-O
coupling reactions’ 7. Both COFs exhibit enhanced reactivities
compared to their homogeneous counterparts, with the planar COF
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showing a 2.7-fold improvement and the non-planar COF showing
a23-fold improvement.

The reactivity difference between the two COFs can be intuitively
attributed to their difference in conjugation. The planar COF has
strong conjugation, facilitating rapid exciton diffusion and
benefiting energy transfer, while the non-planar COF with less
efficient conjugation slows excited-state quenching. Additionally,
the photoredox properties of pyrene and spirobifluorene differ.
Spirobifluorene possesses strong photooxidation power that favors
electron transfer in the reaction instead of energy transfer.

5 Conclusions

Framework materials provide an ideal platform for designing
photocatalytic systems with precise molecular control. Mimicking
natural photosynthesis, pre-organization of photosensitizers and
catalytic centers in framework materials significantly enhance the
overall reaction efficiency. Successful demonstrations of the strategy
in artificial photosynthesis and photoredox reactions have been
achieved at the laboratory scale. Owing to the pre-organization of
functional units in framework materials, their reaction kinetics can
be significantly improved when photo-initiated electron or energy
transfer becomes the rate-limiting step. Additionally, competing
side reactions of photo-generated radicals are suppressed by
substrate pre-organization in framework materials. Furthermore,
recyclability of the framework materials and use of non-noble metal-
based photosensitizers in the materials contribute to sustainability
of these photocatalytic processes.

While scaling up the reactions discussed in this minireview may

Carbon Future 2024, 1, 9200018
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pose challenges, the fundamental principles learnt in these examples
will benefit the design of other photocatalytic systems aimed at
achieving high-efficiency sustainable photocatalysis. Besides
developing photocatalysts with longer excited state lifetimes (or
hole-electron separation efficiency), integration of a co-catalyst that
rapidly consumes the exciton offers an alternative method to
enhance photocatalytic efficiency.
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