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Abstract

Chomsky and others have very directly claimed
that large language models (LLMs) are equally
capable of learning languages that are possible
and impossible for humans to learn. However,
there is very little published experimental ev-
idence to support such a claim. Here, we de-
velop a set of synthetic impossible languages of
differing complexity, each designed by system-
atically altering English data with unnatural
word orders and grammar rules. These lan-
guages lie on an impossibility continuum: at
one end are languages that are inherently impos-
sible, such as random and irreversible shuffles
of English words, and on the other, languages
that may not be intuitively impossible but are
often considered so in linguistics, particularly
those with rules based on counting word posi-
tions. We report on a wide range of evaluations
to assess the capacity of GPT-2 small models
to learn these uncontroversially impossible lan-
guages, and crucially, we perform these assess-
ments at various stages throughout training to
compare the learning process for each language.
Our core finding is that GPT-2 struggles to learn
impossible languages when compared to En-
glish as a control, challenging the core claim.
More importantly, we hope our approach opens
up a productive line of inquiry in which differ-
ent LLM architectures are tested on a variety of
impossible languages in an effort to learn more
about how LLMs can be used as tools for these
cognitive and typological investigations.

1 Introduction

Chomsky (2023), Chomsky et al. (2023), Moro
et al. (2023), and Bolhuis et al. (2024) make very
broad claims to the effect that large language mod-
els (LLMs) are equally capable of learning possible
and impossible human languages. For these au-
thors, it follows from this claim that LLMs cannot
teach us anything about language, and so the claim
(if true) would have significant consequences for
linguistic methodology and potentially also for the
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Figure 1: Partial impossibility continuum of languages
based on complexity. We assess the learnability of lan-
guages at different points in the continuum and push
the (currently unclear) boundary between possible and
impossible.

viability of LLMs as the basis for robust language
capabilities.

These authors state this claim in absolute terms.
For example, Chomsky et al. (2023) flatly assert
that LLMs “are incapable of distinguishing the pos-
sible from the impossible,” Chomsky (2023) says
this property “can’t be modified,” and Moro et al.
(2023) write that “the distinction between possible
versus impossible languages cannot be formulated
by definition for LLM.” Bolhuis et al. (2024) go so
far as to claim that “LLMs can produce ‘impossible’
languages [...] just as well as (if not better than)
natural language output.” One might expect such
strong claims to be supported by extensive formal
analysis and/or experimental evidence. However,
as far as we are aware, this is not the case. The
sole experimental paper cited by the above authors
is Mitchell and Bowers 2020—an important and
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inspiring paper but not one that can resolve these
questions on its own. In addition, linguists them-
selves do not even have an agreed upon notion of
what defines the possible or the impossible lan-
guages, to say nothing of having formal results
with respect to LLMs.

Here we provide extensive new experimental ev-
idence to inform the claim that LLMs are equally
capable of learning possible and impossible lan-
guages in the human sense. Arguably, the central
challenge for such work is the fact that there is
no agreed-upon way of distinguishing these two
groups. We do not feel positioned ourselves to as-
sert such a definition, so we instead offer some
examples of impossible languages on a contin-
uum of intuitive complexity (Figure 1). Some of
these examples seem intuitively impossible, such as
random sentence-level shuffling of English words.
Others operationalize less obvious but common
claims in the linguistics literature about rules that
are impossible, like those that depend on counting
words.

All of our examples are, we take it, uncontro-
versial instances of impossible languages. Thus,
our experiments can inform the core hypotheses
as follows: if LLMs learn these languages as well
as they learn natural languages, then the claims of
Chomsky and others are supported (for the specific
class of LLMs tested). Conversely, if LLMs do not
learn these languages as well as the possible ones,
it would call into question those assertions. In that
case, proponents of those claims ought to provide
examples of impossible languages that they find
more informative, which we can then evaluate us-
ing our approach to further advance the discussion.

Our experiments use GPT-2 small models (Rad-
ford et al., 2018, 2019), and our base training cor-
pus is the BabyLM dataset (Warstadt et al., 2023),
which we modify in various ways to implement
our impossible languages. What we find is that
these models indeed struggle to learn impossible
languages, shown through three core experiments:

• In Experiment 1, we train GPT-2 models on our
set of defined possible and impossible languages,
measuring their learning efficiency through test
set perplexities. We find that models trained on
possible languages learn more efficiently, evi-
dent from lower perplexities achieved in fewer
training steps.

• In Experiment 2, we more closely examine a
set of languages that exhibit count-based verb

marking rules, using surprisal comparisons to
target the relevant patterns. We find that GPT-2s
trained on possible languages are more sur-
prised by ungrammatical constructions, indicat-
ing that models disprefer agreement rules involv-
ing counting.

• In Experiment 3, we dive deeper into the in-
ternal mechanisms that models may develop
to learn such count-based grammar rules using
causal abstraction analysis. We find that models
develop natural, modular solutions to unnatural
grammatical patterns.
Overall, our experimental results strongly chal-

lenge the claims of Chomsky and others given
above, and we believe they pave the way for even
deeper discussions of LLMs as models of language
learning. At the same time, we recognize that mod-
els and humans exhibit fundamental differences,
but the extent to which models favor or disfavor
natural languages can be influenced by specific ar-
chitectural decisions (as demonstrated by our find-
ings on tokenization and positional encodings). We
hope this paper initiates a new line of work that
explores how different model architectures can dis-
tinguish between the possible and impossible lan-
guages.1

2 Background and Related Work

2.1 Impossible Human Languages and
Language Universals

The notion of an impossible human language is
elusive and difficult to define, in part due to a lack
of consensus on which properties are universal in
human language and which properties are “impos-
sible” (Comrie, 1989; Evans and Levinson, 2009;
Nefdt, 2024). For instance, recursion, or the prin-
ciple that all languages produce hierarchical syn-
tactic structures via recursive procedures, has been
claimed to be a universal property of human lan-
guage (Chomsky, 1957, 1965, 2002; Hauser et al.,
2002). However, the motivations for recursion have
been questioned, with empirical limits on the max-
imum depth of nested phrases (Karlsson, 2007;
Jin et al., 2018) and counterevidence from at least
one natural language that seems to lack embed-
ded structures (Everett, 2012). Still, if we grant
that possible languages are defined by hierarchi-
cal, recursive rules, what defines the impossible

1The code for this paper is available at https://github.
com/jkallini/mission-impossible-language-models.
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languages? Moro et al. (2023) claim that the class
of impossible languages would use the “opposite”
type of rules: those based on the linear order of
words. Musso et al. (2003) provide a few concrete
examples that involve counting word positions to
mark features like negation and agreement, and we
include languages with similar rules in our set of
tested impossible languages.

It is important to also distinguish what is impos-
sible from what is merely typologically marked,
such as the word order patterns listed in Green-
berg’s (1963) language universals. Previous work
has shown that such word order universals can arise
through a language’s optimization of communica-
tion efficiency, achieved by balancing complexity
and ambiguity (Hahn et al., 2020; Futrell and Hahn,
2022). While our current exploration does not en-
compass attested languages, various impossible
languages can similarly differ in their information-
theoretic complexity, informing the patterns that lie
at the boundary between possible and impossible.

2.2 Training Language Models with
Unnatural Word Orders

The only work cited by Chomsky that investigates
neural language models’ ability to learn impossi-
ble languages is Mitchell and Bowers 2020, which
finds that recurrent neural networks (RNNs; Elman,
1990) trained on various unnatural language con-
structs, such as reversed sentences and randomized
vocabularies, achieve high accuracy on a subject–
verb number agreement task. Other work turns to
more recent Transformer-based language models
(Vaswani et al., 2017), observing their sensitivity
to word order and phrase structure (Alleman et al.,
2021; Galke et al., 2023) as well as their surprising
ability to learn from syntactic information alone
(Huang et al., 2023). Studies by Sinha et al. (2021)
and Abdou et al. (2022) debate the impact of tok-
enization, pretraining adjustments, and positional
encodings in recovering word order information
from shuffled languages. Further investigations
into BERT’s (Devlin et al., 2019) reliance on word
order for grammatical role classification suggest
that lexical cues alone may not always be sufficient
for good performance (Papadimitriou et al., 2022;
see also Hessel and Schofield, 2021; Pham et al.,
2021).

2.3 Language Models and Formal Languages
A related line of research examines the abilities
of neural language models to express formal lan-

guages, as defined by the Chomsky hierarchy
(Chomsky, 1956, 1959). Human language is con-
sidered to be slightly more expressive than context-
free languages due to certain syntactic phenomena
that interleave constituents (Shieber, 1985; Joshi,
1985). Previous work has shown that RNNs or re-
lated models can represent variants of counter and
DYCK languages, which are context-free (Weiss
et al., 2018; Merrill, 2019; Merrill et al., 2020; He-
witt et al., 2020).2 Similar work on Transformer
architectures has shown that, while they are theoret-
ically Turing-complete provided arbitrary precision
and decoder steps (Pérez et al., 2021), they cannot
empirically model many regular and non-regular
languages (Hahn, 2020; Ebrahimi et al., 2020; Dele-
tang et al., 2023).

The inability of Transformer-based language
models to learn more complex languages in the
Chomsky hierarchy seems surprising, given their
impressive performance on natural language. This
could be interpreted as evidence that theoreti-
cally weak computational models are sufficient
for expressing human language. Alternatively,
Transformer-based models can be augmented to
have inductive biases for nested, hierarchical struc-
tures through architecture changes, like the addition
of a stack component (Hao et al., 2018; Murty et al.,
2023), or data-centered approaches, like structural
pretraining (Papadimitriou and Jurafsky, 2023).

3 Impossible Languages

Core to our experiments are the set of impossible
languages we synthesize. In constructing these ar-
tificial counterfactual languages, we consider their
information-theoretic attributes relevant to machine
learning, such as entropy rate, as well as their for-
mal linguistic characteristics, such as adherence
to hierarchical grammatical structures. We believe
that our choice of languages broadly spans the im-
possibility continuum hypothesized in Figure 1.

Concretely, we specify impossible languages
by defining perturbation functions of English sen-
tences. These perturbation functions map English
input sentences to sequences of tokens. We catego-
rize our languages into three classes: *SHUFFLE,
*REVERSE, and *HOP, defined in the next subsec-
tions. Each class has one control language that
represents unaltered English, or a pattern that is
very similar to English. Table 1 provides examples

2Though counter and DYCK languages are context-free,
some of the variants in the cited work are regular.
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Class Language Example 1 Example 2

*SHUFFLE

NOSHUFFLE He cleans his very messy books he lf . They clean his very messy books he lf .

NONDETERMINISTICSHUFFLE messy books his he very . lf He cleans his . very he They messy lf books clean

DETERMINISTICSHUFFLE(s = 21) cleans He messy books he lf very . his clean They messy books he lf very . his

DETERMINISTICSHUFFLE(s = 57) cleans his He messy . he very lf books clean his They messy . he very lf books

DETERMINISTICSHUFFLE(s = 84) He messy . lf his very books cleans he They messy . lf his very books clean he

LOCALSHUFFLE(w = 3) his He cleans books very messy . he lf his They clean books very messy . he lf

LOCALSHUFFLE(w = 5) his messy very He cleans lf books he . his messy very They clean lf books he .

LOCALSHUFFLE(w = 10) messy books his he very . lf He cleans messy books his he very . lf They clean

EVENODDSHUFFLE He his messy he . cleans very books lf They his messy he . clean very books lf

*REVERSE

NOREVERSE He cleans his very messy books R he lf . They clean his R very messy books he lf .

PARTIALREVERSE He cleans his very messy books R . lf he They clean his R . lf he books messy very

FULLREVERSE . lf he R books messy very his cleans He . lf he books messy very R his clean They

*HOP

NOHOP He clean S his very messy books he lf . They clean P his very messy books he lf .

TOKENHOP He clean his very messy books S he lf . They clean his very messy books P he lf .

WORDHOP He clean his very messy books he lf S . They clean his very messy books he lf P .

Table 1: List of impossible languages with examples. Control (‘NO*’) languages have patterns that resemble
English. Differently colored blocks represent different GPT-2 tokens.

of perturbed sentences in each language.

3.1 *SHUFFLE Languages.
The first set of impossible languages, which we call
the *SHUFFLE languages, involve different shuffles
of tokenized English sentences.

1. NOSHUFFLE: The input sentence is tok-
enized, and the token sequence is unaltered.
This language is simply English, used for com-
parison with other *SHUFFLE languages.

2. NONDETERMINISTICSHUFFLE: The tok-
enized input sentence is randomly shuffled. A
different random shuffle is used for each input
sentence, with no consistency across inputs.

3. DETERMINISTICSHUFFLE(s): The tok-
enized input sentence is deterministically shuf-
fled based on the length of the token sequence.
For example, all token sequences of length 5
are shuffled in the same order. We create sev-
eral languages by varying the random seed s
that produces the shuffle.

4. LOCALSHUFFLE(w): The tokenized input
sentence is deterministically shuffled in local
windows of a fixed size w. We create several
languages by varying w.

5. EVENODDSHUFFLE: The tokenized input
sentence is reordered such that all even-
indexed tokens appear first, followed by all
odd-indexed tokens.

The random shuffling function that generates the
NONDETERMINISTICSHUFFLE language is irre-
versible, resulting in sentences that are purely bags
of words—any structural information in the orig-
inal linguistic signal is irretrievable. While the
DETERMINISTICSHUFFLE languages are created
using a reversible perturbation function, this func-
tion operates in an entirely non-linguistic manner;
words are ordered based solely on the random seed
and sentence length, without considerations for lin-
guistic features or information locality—the prop-
erty that, when parts of text predict each other, they
are often close together (Futrell, 2019; Mansfield
and Kemp, 2023). This method is arguably even
less humanly feasible than NONDETERMINISTIC-
SHUFFLE, as it relies on an arbitrarily complex yet
consistent rule to determine word order.3 The ques-
tion of ranking these two families of languages in
the impossibility continuum probes at the defini-
tion of impossibility and whether reversibility to an
attested language like English is a relevant quantity.

The LOCALSHUFFLE languages offer a finer-
grained testbed for the importance of information
locality, since we can observe the effects of dif-
ferent window sizes. Finally, EVENODDSHUF-
FLE also manipulates locality, but interestingly pre-
serves part of the linear word order of English while

3Even in the imaginable case of a language with com-
pletely free word order, it seems extremely unlikely that this
freedom would be totally insensitive to any clause bound-
aries while the language otherwise looks morphologically like
English does. It thus seems very safe to assume that our NON-
DETERMINISTICSHUFFLE language counts as impossible.
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introducing new long-distance dependencies.

3.2 *REVERSE Languages.
The *REVERSE impossible languages involve re-
versals of all or part of input sentences.

1. NOREVERSE: The input sentence is tok-
enized, and a special marker token R is in-
serted at a random position in the token list.
Like NOSHUFFLE, this language is most simi-
lar to English. We use it for comparison with
other *REVERSE languages.

2. PARTIALREVERSE: The input sentence is
tokenized, a special marker token R is inserted
at a random position in the list of tokens, and
the following tokens are reversed.

3. FULLREVERSE: The input sentence is tok-
enized, a special marker token R is inserted
at a random position in the token list, and all
tokens are reversed.

The PARTIALREVERSE language is inspired by
the experiments of Mitchell and Bowers (2020) on
partially reversed English data, though our exper-
iments are not a direct replication, since we use
a different model architecture and dataset. FULL-
REVERSE may seem like a plausible language syn-
tactically, but higher-level linguistic concepts like
anaphora would be highly disrupted. The R tokens
are placed at the same positions across the data in
all *REVERSE languages to control for the entropy
introduced by their random placement.

3.3 *HOP Languages.
The *HOP languages perturb verb inflection with
counting rules.

1. NOHOP: All 3rd-person present tense verbs
in the input sentence are lemmatized, and the
sentence is tokenized. For each 3rd-person
present tense verb, a special marker represent-
ing the verb’s number and tense is placed right
after the lemmatized verb. Singular verbs are
marked with a special token S , and plural
verbs are marked with P . Like the other con-
trol languages, NOHOP has a pattern that is
most similar to English.

2. TOKENHOP: Identical transformation to NO-
HOP, but the special number/tense markers
are placed 4 tokens after the verb.

3. WORDHOP: Identical transformation to NO-
HOP and TOKENHOP, but the special num-
ber/tense markers are placed 4 words after the
verb, skipping punctuation.

These languages specifically investigate GPT-2’s
ability to learn grammar rules that involve counting
the positions of words or tokens.

4 Experiments
We run several experiments to assess GPT-2’s learn-
ing of our impossible languages. Our first exper-
iment (Section 4.2) uses perplexities as a general
evaluation to compare how well each impossible
language model has learned its own perturbed lan-
guage and see whether this reflects the hypoth-
esized impossibility continuum. In our second
and third experiments, we conduct a closer exam-
ination of the *HOP languages. Given that their
count-based verb marking rules appear to be the
least clearly implausible among our proposed lan-
guages, we focus on examining these rules specifi-
cally through targeted assessments using surprisal
theory (Section 4.3). Finally, we dive deeper into
the mechanisms each *HOP model uses to predict
their respective verb marking rules using causal
abstraction analysis (Section 4.4). For all evalua-
tions, we run tests on several model checkpoints
to observe the learning process over intervals of
training steps.4

4.1 Implementation Details
For each impossible language, we apply its pertur-
bation function to each sentence of the BabyLM
dataset (Warstadt et al., 2023) to create a trans-
formed dataset. Appendix A provides details on
preprocessing and formatting, and describes the
language-specific filtering needed to achieve the
criteria that define each language.

We train standard GPT-2 small models (Radford
et al., 2018, 2019) on each impossible language. To
produce confidence intervals for our experiments,
we train 5 sets of models for each language us-
ing different random seeds, which affect the model
parameter initialization and dataset shuffling dur-
ing training. Training and model hyperparameter
choices are detailed in Appendix B. The primary
set of GPT-2 models we train have absolute posi-
tional encodings. We also train a set of GPT-2 small

4We also conduct a constituency probing experiment to test
effects on GPT-2’s implicit understanding of syntax, with min-
imal observed differences among models (see Appendix D).
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Figure 2: Perplexities on a sample of 10K test sentences for each impossible language model over training steps.
Error bars indicate 95% confidence intervals across 5 training runs initialized with different random seeds and
evaluated on different test samples.

models with an architecture in which the positional
encodings are removed, so that the models’ only no-
tion of word order is derived from GPT-2’s causal
language modeling learning objective (Kazemnejad
et al., 2023). Results for these additional experi-
ments supported our main findings on the unaltered
GPT-2 architecture. These results are provided in
Appendix C.

4.2 Experiment 1: Language Models Reflect
the Impossibility Continuum

We train GPT-2 models on all of the languages
described in Table 1, and evaluate each model’s
perplexities on a test set over the course of training.
Test perplexities provide a general metric for the
extent to which a model has learned a language.

Setup. We sample 10K sentences from the
BabyLM test set and perturb this sample for each
impossible language. For a given impossible lan-
guage model, we report the geometric mean of the
individual sentence perplexities in the correspond-
ing test sample.

Hypothesis. Models trained on possible languages
will achieve lower average perplexities more
quickly (as measured in training steps) than those
trained on impossible languages.

Results. Our results are in Figure 2. There are
clear distinctions between model perplexities af-
ter about 500 training steps. First considering
the *SHUFFLE models, the NONDETERMINISTIC-
SHUFFLE model has the highest perplexities, fol-
lowed by the three DETERMINISTICSHUFFLE mod-
els, indicating that GPT-2 is better at learning shuf-
fling patterns when they are deterministic, invert-

ible functions.5 The prevalence of certain sentence
lengths in the corpus could also limit the variety of
sentence shuffles in the DETERMINISTICSHUFFLE
languages, potentially resulting in similarly func-
tioning words frequently occupying the same token
positions, thus increasing their predictability.

Following the sentence-level shuffles, the next
models in the order of decreasing perplexity are the
three LOCALSHUFFLE models, with smaller win-
dow sizes having lower perplexities. LOCALSHUF-
FLE(w = 3) and EVENODDSHUFFLE have per-
plexities closest to the NOSHUFFLE model (which
represents unaltered English), but NOSHUFFLE
consistently has the lowest perplexities through-
out the training process.

Compared to the *SHUFFLE models, the exper-
imental *REVERSE models have perplexities that
are much closer to the NOREVERSE model, and
PARTIALREVERSE is slightly better than FULLRE-
VERSE. For the *HOP languages, their respective
control model again has the lowest perplexities,
although differences among the models are quite
minimal. This warrants our deep-dive into the par-
ticular verb marking patterns for this set of models.

4.3 Experiment 2: Language Models
Disprefer Counting Rules

In Experiment 1, we show that impossible lan-
guages are harder for GPT-2 to learn. However,
perplexity is a coarse-grained metric of language
learning, and the question remains: do language

5This result is also supported by separate evaluations of
each DETERMINISTICSHUFFLE model on test data from other
shuffles (see Appendix E). Each model has lower perplexities
on its own deterministic shuffle.
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(a) Test 1: mean surprisals of the verb marker token ( S or P )
for each *HOP model.

(b) Test 2: mean surprisal difference between the verb marker
token ( S or P ) and the following token for each *HOP model.

Figure 3: Surprisal tests for each *HOP model over training steps. Error bars indicate 95% confidence intervals
across 5 training runs initialized with different random seeds and evaluated on different test samples.

models learn natural grammatical structures better
than impossible grammars?

The structure of the *HOP languages invites
a finer-grained evaluation of their verb marking
rules. We use surprisals to measure how well
each *HOP model can predict the placement of
its verb marker tokens, S and P . The surprisal
S(wi) of a word wi is the negative log probability
of wi given the context words w1, . . . , wi�1 that
precede it: S(wi) = � log2 p(wi|w1, . . . , wi�1).
Surprisals have been used as acceptability judg-
ments from neural language models to probe for
their processing of syntactic information (Wilcox
et al., 2018; Futrell et al., 2019; Hu et al., 2020;
Wilcox et al., 2023) and have been shown to cor-
relate with human sentence processing difficulty
(Hale, 2001; Levy, 2008).

Setup. To test the *HOP models’ sensitivity to
marker placement, we conduct two tests on a sam-
ple of 10K sentences extracted from the BabyLM
dataset containing the verb marker tokens (S or
P ). As an example, consider the following pair of
sentences for the NOHOP language shown in (1).

(1) a. He clean S his very messy books he lf .

b.*He clean__ his very messy books he lf .

Sentence (1-a) is an example in the NOHOP lan-
guage, and (1-b) is an ungrammatical counterfac-
tual in which the marker token does not appear.

In the first test, we compare the average sur-
prisals of the marker tokens across the three *HOP
languages, using grammatical examples like (1-a).
In the case of (1-a), the marker is singular, and its

surprisal S( S ) is defined as:

S( S ) = � log2 p( S | He clean )

We average this surprisal value for instances of S

or P in the test sample.
In the second test, we construct minimal pairs

from the example sentences in which the marker to-
ken appears and does not appear, and then compare
the surprisal of the marker token to the surprisal of
the token that follows it, both conditioned on the
same context. In example (1-b), the surprisal of the
following token S( his ) is defined as:

S( his ) = � log2 p( his | He clean )

We expect S( his )�S( S ) to be a large positive
value. We average such surprisal differences over
instances of the marker tokens in the test sample
and similarly define marker surprisals and minimal
pair configurations for the other *HOP languages.

Hypothesis. For the first surprisal test, our hypoth-
esis is that the mean surprisal of the marker tokens
across test examples will be smaller for the control
language than for the impossible languages. For
the second test, our hypothesis is that the mean sur-
prisal difference across all test pairs will be larger
for possible languages than for impossible ones.

Results. Our results are presented in Figure 3. The
NOHOP model, which has the verb marking pattern
most similar to English, consistently has the low-
est mean marker surprisal across training steps in
test 1 (Figure 3a). The NOHOP model also has the
highest mean surprisal difference across training
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steps in test 2 (Figure 3b). Both of these results in-
dicate that GPT-2 has learned to expect the marker
tokens when they follow a more natural grammati-
cal pattern and was very surprised when they did
not appear at the correct positions.

GPT-2 learns to expect marker tokens at the right
locations in the other *HOP models, just not as
well as the control. TOKENHOP tends to have a
lower marker surprisal and a higher mean surprisal
difference compared to WORDHOP across training
steps, indicating that GPT-2 is better at learning the
verb marking rule when the units being counted are
tokens instead of words.

4.4 Experiment 3: Language Models Develop
Natural Solutions to Unnatural Patterns

Experiment 2 demonstrates that, while GPT-2 fa-
vors natural grammar rules, it is also capable of
acquiring count-based grammar rules like those
seen in the verb marking patterns of our *HOP
languages. But what sorts of internal mechanisms
does it implement to learn such grammar rules, and
how do these mechanisms compare to the more
natural control? To address this, we conduct a fi-
nal experiment using causal abstraction analysis,
which offers an interpretability framework for iden-
tifying and examining causal mechanisms within
neural models (Geiger et al., 2020, 2021; Wu et al.,
2022, 2023a,b; Geiger et al., 2023). We employ the
interchange intervention technique on our *HOP
models. To perform a basic interchange interven-
tion on a neural model M , we create two instances
of M that are provided two different inputs, the
base input b and the source input s. Then, we inter-
change representations created while processing b
with representations created while processing s and
observe the effect on the output of M . Such inter-
ventions allow us to piece together a causal under-
standing of how the model processes inputs.

Setup. We use interchange interventions to iden-
tify representations in our *HOP models that
have causal effects on their output behaviors on
a subject–verb agreement task. In our experimental
setup, b is a sentence prefix with a singular subject
and s is an identical prefix with the plural form of
the subject. These prefixes include all tokens up to
but not including the markers (S and P ). We inter-
change the GPT-2 block outputs from processing b
with GPT-2 block outputs from processing s and
observe whether the probability of plural marker P

is higher than the probability of singular marker S

The man be The men be

base source

Figure 4: An interchange intervention on the NOHOP
model with base input b = The man be and source
input s = The men be. The intervention is performed
at the second layer and second token position, causing a
change in prediction from S to P .

after the intervention. This is shown more con-
cretely in Figure 4.

We run such interventions at each GPT-2 layer
and token position to see which parts of the model
cause a change in the marker prediction. We run
all of these interventions over several test exam-
ples and report the interchange intervention ac-
curacy (IIA), a metric that represents the subject–
verb agreement accuracy if the counterfactual (i.e.
plural) were the ground truth. The test examples
for each *HOP model are extracted from their
respective versions of the BabyLM test set, and
minimally-different counterfactual examples are
created by changing the singular subjects to plural
subjects. To ensure that interventions on different
examples are analogous, we use regular expres-
sions to locate examples that follow the same struc-
ture (i.e. subjects and verbs at the same positions).

Results. Our results are presented in Figure 5. The
IIA graphs demonstrate how information about the
marker tokens flows through the models. We can
see that, in all three *HOP models, IIA is high
at the token position of the subject up until about
layer 3; then there is a transition to the position of
the last token in the prefix, preceding the location
where the marker should be predicted. All models
develop the same modular solution to the task by
tracking agreement through the representations at
the relevant positions, but the NOHOP model ob-
tains nearly 100% IIA earlier during training, at
about 1,500 training steps, supporting the previous
surprisal results.
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Figure 5: Subject–verb agreement interchange intervention accuracies (IIA) for each *HOP model over training
steps. Vertical axes denote the GPT-2 layer of the intervention, and horizontal axes denote the token position of the
intervention. td, ts, and tv represent the tokens for the determiner, subject, and verb, respectively. t1 . . . t4 represent
the four tokens/words between the verb and its marker for TOKENHOP and WORDHOP. IIA values are averaged
over results from 5 models initialized on different random seeds. See Appendix F for confidence intervals.

5 Discussion and Conclusion

Contra claims by Chomsky and others that LLMs
cannot possibly inform our understanding of hu-
man language, we argue there is great value in
treating LLMs as a comparative system for human
language and in understanding what systems like
LLMs can and cannot learn. Prior explorations of
neural language models have already been fruitful
for understanding the generalization of syntactic
principles from data (Wilcox et al., 2018; Marvin
and Linzen, 2018; Futrell et al., 2019; Prasad et al.,
2019; Hu et al., 2020). Our paper complements
this line of work. We have shown that GPT-2 mod-
els do not master our set of synthetic impossible
languages as well as natural ones, challenging the
unfounded assertions stated previously.

Even in the absence of a clear definition of what
constitutes a possible or impossible language, we
believe that our investigations advance this debate
regarding LLMs. The lack of a definition does not
hinder inquiry into this topic; in fact, it beckons
further explorations of the boundary between the
possible and impossible languages, as shown in
our hypothesized continuum in Figure 1. We be-
lieve that the *HOP languages we propose closely
approach this boundary.

At the same time, conclusions about LLMs’ lin-
guistic competence and preferences for natural lan-
guages should be informed by an understanding
of the ways that models fundamentally differ from
humans. For instance, we saw that models can
perform operations that involve counting tokens
because LLMs rely on tokens as basic units. While
humans are sensitive to morpheme boundaries and
word boundaries, it is unlikely humans rely on
atomic tokens in the way that LLMs do. This does

not mean that LLMs can fundamentally tell us noth-
ing about human language. Rather, as we did here,
it is valuable to consider and control for this differ-
ence before making generalizations.

Since at least the 1950s, a major line of linguis-
tic inquiry has focused on what aspects of syntac-
tic structure can be learned just from data, with-
out domain-specific innate priors (e.g. a Universal
Grammar). LLMs lack strong in-built linguistic
priors, yet they can learn complex syntactic struc-
tures. While many LLMs are trained with vastly
more data than children see, there is increasing evi-
dence that even systems trained on smaller amounts
of data can learn interesting linguistic information
(Warstadt et al., 2023). The current paper raises fur-
ther questions along similar lines. Since we do find
that real languages are more learnable by GPT-2,
this leads us to wonder what inductive bias of GPT
language models matches natural language. We
believe that this inductive bias is related to infor-
mation locality, the tendency for statistical correla-
tions in text to be short range. Information locality
arises in GPTs due to their autoregressive training
objective and has been argued to arise in humans
due to the incremental nature of real-time language
processing (Futrell, 2019; Hahn et al., 2021).

Since LLMs have been shown to learn the com-
plex structures of human language and have a pref-
erence for learning such structures over unnatural
counterfactuals, it follows that they are clearly rel-
evant to investigations and claims about the nec-
essary innate priors for language learning. Argu-
ments that they are “by design, unlimited in what
they can ‘learn”’ and “incapable of distinguishing
the possible from the impossible” (Chomsky et al.,
2023) do not offer convincing evidence otherwise.
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7 Limitations
Due to resource constraints, we exclusively use the
GPT-2 architecture to train models on our various
synthetic impossible languages. Each of our ex-
periments involves training a GPT-2 model from
scratch on a different language dataset, and for ev-
ery such language, we train multiple GPT-2 models
to establish confidence intervals for our evaluation
metrics. Applying this approach to several differ-
ent model architectures would be quite resource-
intensive, so we opted to choose a single architec-
ture in this paper. Future work could apply our
methodology to models trained with different ar-
chitectures or training objectives.

Our impossible languages are derived by manip-
ulating an English dataset. While we do not con-
duct experiments that use other natural languages
as a starting point, our experimental choices (i.e.
the synthetic languages we design) are informed
by linguistic diversity and typology, distinguishing
our impossible languages from those that are rare
but attested. However, future work might involve
deriving impossible languages from base languages
other than English and include more morphological
manipulations.

8 Ethics Statement
While this work makes the case for language mod-
els as useful tools for cognitive science and lin-
guistics research, these models learn and generate
language through processes that are fundamentally
different from those employed by humans. Mak-
ing direct claims about human language learning
based on the results of this paper could pose po-
tential risks and harms. This research merely aims
to explore the learnability of different languages
(specifically, those languages that cannot be ac-
quired by humans and are not representative of any
known human language) through the lens of neural
models.
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Supplementary Materials

A Dataset Filters

The BabyLM dataset (Warstadt et al., 2023) is
an English-language dataset of about 100 million
words intended to approximate the amount of lin-
guistic data available to an English-speaking child.
To create a dataset for an impossible language, we
first pre-process the BabyLM dataset using Stanza
(Qi et al., 2020). We perform sentence segmen-
tation on each dataset file and then extract part-
of-speech (POS) and morphological feature tags
for all the sentences, which are required for the
*HOP transformations. We transform each tagged
sentence in the original BabyLM dataset using the
impossible language’s rule-based perturbation func-
tion, as described in Section 3. Depending on the
class of the impossible language and the specific
features of the input sentence, perturbed sentences
may be included or excluded from the final dataset
used for model training (see below for details on
this filtering). Since we apply these filters, the lan-
guage classes have datasets of slightly different
sizes. The *SHUFFLE and *REVERSE languages
have training sets of about 9.69 million sentences,
and the *HOP languages have training sets of about
8.43 million sentences.

*SHUFFLE FILTERS For the *SHUFFLE lan-
guages, we filter sentences from the BabyLM
dataset such that the set of token sequence lengths
seen in the validation and test sets are also seen in
the training set. This ensures that any shuffles for
the DETERMINISTICSHUFFLE perturbation (which
are determined by the token sequence length) in the
test set have also occurred at least once in the train-
ing set. We apply these filters for all *SHUFFLE
languages such that their datasets are comprised of
the same subset of original sentences.

*REVERSE FILTERS For the *REVERSE lan-
guages, we do not apply any sentence filtering,
so their models are trained on the entire BabyLM
dataset.

*HOP FILTERS For the *HOP languages, we filter
out sentences from the BabyLM dataset that would
not allow the special markers to fully complete 4
hops in the TOKENHOP or WORDHOP perturba-
tions, i.e. sentences in which a 3rd-person present
tense verb is too close to the end of the sentence.
We again filter out these sentences from all pertur-
bations, so TOKENHOP, WORDHOP, and NOHOP

are comprised of the same subset of original sen-
tences from the BabyLM dataset.

B GPT-2 Training Details and
Hyperparameters

We train GPT-2 small models with a standard train-
ing regime (Radford et al., 2018, 2019) using the
library of Karamcheti et al. (2021). We mostly use
the default GPT-2 small hyperparameters to train
our models (context length of 1024, batch size of
512, etc.). We only change the total number of
training steps and the number of warm-up steps.
We train with a learning rate that linearly warms
up from 0 to 6e-4 over 300 steps. While 10% of
steps for warm-up is typical for LLM training, we
acknowledge that the best warm-up may be differ-
ent when using a small pretraining dataset, so we
also tried 1,000 warm-up steps and 4,000 warm-up
steps. (4,000 steps is the GPT-2 default. Since we
only train for 3,000 steps, this effectively means we
have a learning-rate that linearly warms up from
0 to 4.5e-4.) Using a different warm-up did not
change the ranking of impossible language model
perplexities.

We train the models for 3,000 training steps,
which equates to about 11.03 epochs for the
*SHUFFLE languages, 10.05 epochs for the *RE-
VERSE languages, and 12.04 epochs for the *HOP
languages. The vocabulary set also varies based
on the language. The *SHUFFLE languages use
the standard GPT-2 vocabulary containing 50,257
tokens; the *REVERSE languages add one special
token R , for a vocabulary size of 50,258; and the
*HOP languages add two special tokens S and P

for verb inflection, for a vocabulary size of 50,259.
We train on NVIDIA RTX 3090 (24GB) GPUs and
NVIDIA RTX A6000 (48GB) GPUs. The runtime
for each pretraining experiment was ⇠24 hours
(for one language and one random seed), for a total
experiment runtime of ⇠1800 hours.

C Results for Models without Positional
Encodings

Here, we present results for each of our experi-
ments using GPT-2 models we trained without po-
sitional encodings. All other aspects of the experi-
ments are the same, including the impossible lan-
guage datasets and training hyperparameters. We
again train 5 sets of models initialized using differ-
ent random seeds. Figure 6 presents the perplexity
results; Figure 7 presents the surprisal results; and
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Figure 8 presents the causal intervention results.

D Constituency Probing Evaluation

We also test how perturbations might influence la-
tent linguistic properties in sentences that are seem-
ingly unaffected by the perturbations. For this, we
develop a constituency probing experiment to ex-
amine whether the contextual representations gen-
erated by different models are effective in classi-
fying a sequence of tokens with an appropriate
constituent label, similar to the edge probing ex-
periments of Tenney et al. 2019. For example, if
the input sentence is “I enjoy strawberry ice cream”
and the span of tokens in question represents the
constituent “strawberry ice cream,” the span should
be labeled as a noun phrase (NP).

Setup. We conduct these experiments for *RE-
VERSE and *HOP languages, since these languages
have constituents in contiguous token sequences.
For NOREVERSE and PARTIALREVERSE, we take
a sample of unaltered BabyLM test sentences and
omit the reversal token R . For FULLREVERSE, we
use the same sample sentences, but reverse the to-
kens. For the *HOP languages, we use a sample of
BabyLM test sentences that are unaffected by the
perturbation, which are sentences that do not con-
tain 3rd-person present tense verbs. To extract con-
stituents for testing, we parse the sample sentences
using Stanza’s BERT-based consituency parser. We
include noun phrases (NP), verb phrases (VP), ad-
jective phrases (ADJP), adverb phrases (ADVP),
and prepositional phrases (PP), and we stratify the
samples so that there are equal numbers of example
constituents for each phrasal category. We obtain a
total of 10K examples for probe training and test-
ing for each language class, where an example is
comprised of a tokenized sentence, indices of the
constituent span, and the constituent label.

Our probes are L2-regularized logistic regres-
sion classifiers trained on the span representations
of the tokens corresponding to constituents in the
examples. To obtain span representations for train-
ing the probes, we mean-pool the representations
of the tokens within the span. We try extracting rep-
resentations from GPT-2 by averaging the last four
hidden layers of the model or using different layers
individually. We train each probe for a maximum
of 10 iterations and hold out 20% of constituent
examples for testing.

Hypothesis. Constituency probes will achieve
higher accuracy for possible languages than impos-
sible ones, in virtue of the fact that the impossible
languages are defined by some rules that do not
respect constituency boundaries.

Results. The results of the probing experiment us-
ing the average of the last four GPT-2 layers are pre-
sented in Figure 9. Across *REVERSE and *HOP
models trained with positional encodings, there are
not any clear trends indicating that certain models
have better representations of constituents than oth-
ers, as differences among probe accuracies are min-
imal and unstable across training steps. However,
looking closely at the *REVERSE models without
positional encodings, we can see that PARTIALRE-
VERSE has significantly lower probe accuracy than
the other models up until 2K training steps. We
found similar results when using different layers for
span representations, as shown in Figure 10. These
results might indicate that the *HOP perturbations
were too weak to fundamentally affect the models’
representations of latent linguistic structure, but
quite unnatural reversal rule of the PARTIALRE-
VERSE language disturbed consituency boundaries
in a way that could not be recovered by GPT-2
models without positional encodings.

E Additional DETERMINISTICSHUFFLE
Results

In addition to perplexities of each impossible lan-
guage model on its own test data, we also obtain
perplexities for each DETERMINISTICSHUFFLE
model on the NONDETERMINISTICSHUFFLE test
sample and all other DETERMINISTICSHUFFLE
test samples. This measures whether these models
have learned to distinguish their own shuffles from
other shuffles. We found that this was indeed the
case, as shown in the results in Figure 11.

F Confidence Intervals for Interchange
Intervention Accuracies

We present the same results of our causal abstrac-
tion experiments from Section 4.4, but include con-
fidence intervals for results across models initial-
ized on different random seeds. Figure 12 presents
the results for NOHOP; Figure 13 presents the re-
sults for TOKENHOP; and Figure 14 presents the
results for WORDHOP. Figures 15, 16, and 17
show the same plots for each *HOP model trained
without positional encodings, respectively.
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Figure 6: Perplexities on a sample of 10K test sentences for each impossible language model trained without
positional encodings. Error bars indicate 95% confidence intervals across 5 training runs initialized with different
random seeds and evaluated on different test samples.

(a) Mean surprisals of the verb marker token ( S or P ) for each
*HOP model.

(b) Mean surprisal difference between the verb marker token
( S or P ) and the following token for each *HOP model.

Figure 7: Surprisal tests for each *HOP model over training steps (trained without positional encodings). Error bars
indicate 95% confidence intervals across 5 training runs initialized with different random seeds and evaluated on
different test samples.

Figure 8: Subject–verb agreement interchange intervention accuracies (IIA) for each *HOP model trained without
positional encodings. Vertical axes denote the GPT-2 layer of the intervention, and horizontal axes denote the token
position of the intervention. td, ts, and tv represent the tokens for the determiner, subject, and verb, respectively.
t1 . . . t4 represent the four tokens/words between the verb and its marker for TOKENHOP and WORDHOP. IIA
values are averaged over results from 5 models initialized on different random seeds. See Figures 15, 16, and 17 for
confidence intervals.
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(a) Probe accuracy for *REVERSE and *HOP models. (b) Probe accuracy without positional encodings.

Figure 9: Constituency probe accuracy for *REVERSE and *HOP models over training steps. Span representations
were extracted by averaging the last four hidden layers of GPT-2. Error bars indicate 95% confidence intervals
across 5 training runs initialized with different random seeds and evaluated on different test samples.

(a) Probe accuracy for *REVERSE models.

(b) Probe accuracy for *HOP models.

(c) Probe accuracy for *REVERSE models without positional encodings.

(d) Probe accuracy for *HOP models without positional encodings.

Figure 10: Constituency probe accuracy for *REVERSE and *HOP models using span representations extracted
from different GPT-2 layers (1, 3, 6, 9, 12) over training steps. Error bars indicate 95% confidence intervals across 5
training runs initialized with different random seeds and evaluated on different test samples.
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(a) Test perplexities for models with positional encodings.

(b) Test perplexities for models without positional encodings.

Figure 11: Test perplexities for each DETERMINISTICSHUFFLE model (s = 21 left, s = 57 middle, s = 84 right) on
the NONDETERMINISTICSHUFFLE test sample and all other DETERMINISTICSHUFFLE test samples. Perplexities
were taken on a sample of 10K test sentences from each shuffled test set. Error bars indicate 95% confidence
intervals across 5 training runs initialized with different random seeds and evaluated on different test samples.
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(a) 300 Training Steps. (b) 600 Training Steps. (c) 900 Training Steps.

(d) 1200 Training Steps. (e) 1500 Training Steps. (f) 3000 Training Steps.

Figure 12: Subject–verb agreement interchange intervention accuracies (IIA) for NOHOP, with confidence intervals
across models trained on 5 different random seeds. Vertical axes denote the GPT-2 layer of the intervention, and
horizontal axes denote the token position of the intervention. td, ts, and tv represent the tokens for the determiner,
subject, and verb, respectively.
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(a) 300 Training Steps. (b) 600 Training Steps.

(c) 900 Training Steps. (d) 1200 Training Steps.

(e) 1500 Training Steps. (f) 3000 Training Steps.

Figure 13: Subject–verb agreement interchange intervention accuracies (IIA) for TOKENHOP, with confidence
intervals across models trained on 5 different random seeds. Vertical axes denote the GPT-2 layer of the intervention,
and horizontal axes denote the token position of the intervention. td, ts, and tv represent the tokens for the
determiner, subject, and verb. t1 . . . t4 represent the four tokens/words between the verb.
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(a) 300 Training Steps. (b) 600 Training Steps.

(c) 900 Training Steps. (d) 1200 Training Steps.

(e) 1500 Training Steps. (f) 3000 Training Steps.

Figure 14: Subject–verb agreement interchange intervention accuracies (IIA) for WORDHOP, with confidence
intervals across models trained on 5 different random seeds. Vertical axes denote the GPT-2 layer of the intervention,
and horizontal axes denote the token position of the intervention. td, ts, and tv represent the tokens for the
determiner, subject, and verb. t1 . . . t4 represent the four tokens/words between the verb.
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(a) 300 Training Steps. (b) 600 Training Steps. (c) 900 Training Steps.

(d) 1200 Training Steps. (e) 1500 Training Steps. (f) 3000 Training Steps.

Figure 15: Subject–verb agreement interchange intervention accuracies (IIA) for the NOHOP model trained without
positional encodings, with confidence intervals across models trained on 5 different random seeds. Vertical axes
denote the GPT-2 layer of the intervention, and horizontal axes denote the token position of the intervention. td, ts,
and tv represent the tokens for the determiner, subject, and verb, respectively.
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(a) 300 Training Steps. (b) 600 Training Steps.

(c) 900 Training Steps. (d) 1200 Training Steps.

(e) 1500 Training Steps. (f) 3000 Training Steps.

Figure 16: Subject–verb agreement interchange intervention accuracies (IIA) for the TOKENHOP model trained
without positional encodings, with confidence intervals across models trained on 5 different random seeds. Vertical
axes denote the GPT-2 layer of the intervention, and horizontal axes denote the token position of the intervention.
td, ts, and tv represent the tokens for the determiner, subject, and verb. t1 . . . t4 represent the four tokens/words
between the verb.
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(a) 300 Training Steps. (b) 600 Training Steps.

(c) 900 Training Steps. (d) 1200 Training Steps.

(e) 1500 Training Steps. (f) 3000 Training Steps.

Figure 17: Subject–verb agreement interchange intervention accuracies (IIA) for the WORDHOP model trained
without positional encodings, with confidence intervals across models trained on 5 different random seeds. Vertical
axes denote the GPT-2 layer of the intervention, and horizontal axes denote the token position of the intervention.
td, ts, and tv represent the tokens for the determiner, subject, and verb. t1 . . . t4 represent the four tokens/words
between the verb.
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