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A B S T R A C T

The damage mechanics challenge (DMC) represents a critical step in predicting the damage
evolution and failure in rock-like materials displaying brittle/quasi-brittle characteristics. The
phase-field fracture (PFF) model is a type of damage mechanics model that is thermodynami-
cally consistent and is well suited for capturing complex crack patterns and interactions in 3D.
However, there are two main shortcomings: (1) the definition of the crack driving force function
and calibration of model parameters give rise to uncertainty in predictions of load–displacement
curves; and (2) the finite element implementation of the PFF model generally necessitates the
use of fine meshes, leading to higher computational costs. This study presents a novel numerical
methodology that employs 𝜔-adaptive algorithms in combination with the stress-based PFF
model, and demonstrates its validity against experimental data, as required by the DMC. The
core strength of our methodology lies in its computational efficiency derived from dynamically-
adaptive local mesh refinement. The potential of our methodology is further demonstrated
through calibration, verification, and validation studies. Our 2D and 3D simulation results show
good agreement with the benchmark laboratory data from three-point bending experiments,
within the bounds of data uncertainty. Our blind prediction of the 3D crack geometry for the
final challenge shows good agreement with the corresponding experimental data. We find that
the stress-based PFF model simplifies the parameter calibration process to a single critical stress
parameter, which reduces uncertainty.

1. Introduction

Assessment and prediction of material damage pose a persistent challenge that extends across a wide range of applications
in engineering and sciences, including biomedical, aerospace, marine, civil infrastructure, geothermal energy production, and
glaciology. Both natural and engineering materials are susceptible to the initiation and subsequent propagation of both visible
and non-visible cracks, influenced by varying operational and environmental conditions. The presence of cracks reduces the load
bearing capacity and durability, emphasizing the critical significance of accurate prediction and understanding of fractures and their
mechanisms. Numerous damage mechanics models and numerical methods have been proposed in the literature to predict fracture
mechanisms, including crack nucleation and subsequent propagation, branching, and coalescence. While modeling approaches have
become considerably advanced, their validation is somewhat limited by the lack of detailed experimental datasets.
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The DMC, as outlined in [1], provides an invaluable opportunity to assess, compare, and refine computational approaches
for damage prediction in brittle/quasi-brittle materials. The challenge provides a standardized laboratory dataset derived from
controlled three-point bending experiments on 3D printed model rock samples and offers a foundation for evaluating the accuracy
and reliability of damage models. This dataset offers a comprehensive overview of material behavior and failure mechanisms through
a combination of experimental techniques. Three point bending (TPB) experiments provide load–displacement calibration and digital
image correlation (DIC) data for observing crack evolution. Unconfined compressive strength (UCS) and Brazilian experiments assess
compressive and tensile strengths across different layer orientations, respectively. Ultrasonic measurements yield small-strain moduli
and material density, essential for understanding elastic properties. Laser profilometry and 3D X-ray tomography contribute detailed
analyses of surface roughness and crack geometry, including notch shapes. Altogether, this dataset integrates traditional mechanical
testing with advanced imaging and profiling methods. To accurately replicate the experimental results from the DMC using numerical
methods, we utilize the phase-field fracture (PFF) model, which belongs to the class of nonlocal continuum damage mechanics
models.

The PFF modeling approach [2–11] uses a diffused crack representation that provides certain advantages over other fracture
mechanics models using sharp crack representations, especially when it comes to capturing phenomena like crack nucleation,
propagation, branching, and coalescence. Due to its advantages, this approach has been extensively used over the last decade, so a
comprehensive review is beyond the scope of this article; instead, we refer the interested reader to recent review articles [12,13].
Here, we only cite a few studies that are relevant to our current implementation. The stress based PFF model considered herein was
used to simulate crevasse growth in glaciers [14]. Recently, PFF models were implemented within the open-source finite element
software FEniCS [15–20], which significantly reduces the burden of code development and so we use FEniCS here.

The non-convexity and non-linearity of the energy functional in PFF models add significantly to the computational cost. Addition-
ally, the requirement for a fine mesh within the damage/fracture process zone to accurately capture the crack topology has hindered
the application of PFF models in large-scale fracture simulations. To reduce computational time in brittle fracture simulations while
preserving accuracy, Gupta et al. [15] presented an auto-adaptive displacement stepping algorithm. The integration of adaptive mesh
refinement (AMR) algorithms with the finite element method leads to a powerful approach for tackling computational obstacles in
PFF simulations. As highlighted in [21–27], AMR algorithms dynamically adapt and optimize mesh resolution for diverse fracture
scenarios. Alternatively, machine learning based surrogates of the PFF model have been recently pursued with the aim of reducing
computation time without much loss of accuracy [28–30], but these surrogates necessitate the generation of large training and
test datasets. The AMR algorithms can offer a promising avenue for expediting the dataset generation process and accelerating the
training of machine learning surrogates.

To enhance the robustness and efficiency of AMR algorithms for PFF simulation, several refinement strategies have been recently
proposed. An 𝜔𝜀-adaptive discontinuous Galerkin finite element method guided by error estimators was recently introduced in [31].
A locally adaptive refinement strategy with just two types of elements (standard and refined) using the variationally consistent
interior penalty approach called Nitsche’s method was developed in [32,33]. Within the FEniCS framework, an AMR algorithm
was presented in [16] that significantly decreases computation time for brittle, cohesive, and dynamic fracture simulation. The
incorporation of a multi-level conditional AMR algorithm, detailed in [16], ensures precision and efficiency by dynamically adapting
the mesh to allocate computational resources where they are most critical. The purpose of this paper is twofold: (1) to calibrate and
validate the stress-based PFF model with the DMC experiments by leveraging the AMR algorithm of [16] within FEniCS; and (2) to
investigate sensitivity and uncertainty in predictions of load–displacement curves for the DMC experiments in relation to the model
parameters. To this end, we extend the implementation of the multi-level conditional AMR algorithm of [16] for the stress-based
PFF model.

The rest of this article is organized as follows: in Section 2, we introduce the approach, including details about our team,
the numerical methodology employed, and the problem definition; in Section 3, we present the results of our study along with
a comprehensive discussion; and in Section 4, we provide concluding remarks summarizing the key findings and insights from our
studies.

2. Approach information

This section discusses our approach to predict load–displacement response and crack trajectory based on the DMC experiment.

2.1. Numerical approach

In this subsection, we describe the stress-based criteria for the PFF model, the strong and weak forms of governing partial
differential equations, our solution strategy, and the AMR algorithm.

2.1.1. Stress-based phase field fracture model
The PFF model represents the damage state of a material point at position 𝝎 using a scalar field variable 𝜗(𝝎) ε [0, 1], where

𝜗 = 0 corresponds to the undamaged state and 𝜗 = 1 corresponds to the fully damaged state. As per Griffith’s theory of brittle
fracture [34], the total energy stored in a cracked solid body 𝜛 𝜚 R[2,3], illustrated in Fig. 1, can be defined based on contributions
from the bulk strain energy density 𝜍𝜑 and the regularized interface fracture energy 𝜍𝛻 . Accounting for the work done by external
tractions 𝜺 on boundary 𝜕𝜛 and body forces 𝝑, the total potential energy is given by,

ℵpot =
∱𝜛

[𝜍𝜑(𝝕,𝜗) + 𝜍𝛻 (𝜗)] dℶ ϑ
∱𝜛

𝝑 ⋛ 𝝕 dℶ ϑ
∱𝜕𝜛

𝜺 ⋛ 𝝕 dℷ, (1)
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Fig. 1. Schematic of the domain 𝜛 and the crack description within the framework of phase field fracture model.

where 𝝕 is the displacement field vector. With the stress-based criterion, the degraded elastic bulk energy is defined as [35]

𝜍𝜑(𝝕,𝜗) = [ℸ⊳ (𝜗)( ⊲𝜍𝜑(𝝕) ϑ 𝜍0 ) + 𝜍0 ], (2)

where the degradation function ℸ⊳ (𝜗) =
⌋

(1 ϑ𝜗)2 + 1
⌈

, 1 = 10ϑ4 is a numerical regularization parameter, ⊲𝜍𝜑 represents the effective
strain energy density within the undamaged material and 𝜍0 = 0.5220 ϖ3 is the critical strain energy density corresponding to the
critical stress 20 of the material that dictates damage initiation. The definition of the interface energy function 𝜍𝜑 depends on the
mechanisms of damage evolution (e.g., brittle, quasi-brittle, ductile) and loading conditions (e.g., cyclic fatigue). Here, we are only
concerned with the brittle fracture of 3D printed model rock, so we employ the stress-based criterion with the interface energy
expressed as [35]

𝜍𝛻 (𝜗) = 2𝜍0⋜04(𝜗), (3)

where 4 = 𝜗2

2⋜0
+

⋜0
2 ⌉ϱ𝜗⌉

2 is the surface density function, and ⋜0 is the length scale parameter.

Substituting Eq. (3) and Eq. (2) into Eq. (1), the total potential energy can be written as,

ℵpot =
∱𝜛

[ℸ⊳ (𝜗)( ⊲𝜍𝜑 ϑ 𝜍0 ) + 𝜍0 + 2𝜍0⋜04(𝜗)] dℶ ϑ
∱𝜛

𝝑 ⋛ 𝝕 dℶ ϑ
∱𝜕𝜛

𝜺 ⋛ 𝝕 dℷ. (4)

The phase-field evolution equation is obtained by minimizing the total potential energy functional with respect to the phase field
variable as,

5ℵpot
5𝜗

=
{ 5ℸ⊳ (𝜗)

5𝜗
( ⊲𝜍𝜑 ϑ 𝜍0 ) + 2𝜍0⋜0

54(𝜗)
5𝜗

}

= 0

(⋜2
0 6𝜗 ϑ𝜗) = ϑ(1 ϑ𝜗)

( ⊲𝜍𝜑 ϑ 𝜍0 )
𝜍0

(5)

From the right-hand side of the above equation, the crack driving force function is defined as,

∲ =
⦃ ⊲𝜍𝜑
𝜍0

ϑ 1
⦄

, (6)

where the Macaulay brackets ⟨7⟩ ς= (7 + ⌉7⌉)ϖ2 impose a threshold on ∲ such that it acts only when ⊲𝜍𝜑 > 𝜍0 . The crack driving
force could be rewritten in terms of stress to obtain a simple criterion for mixed tensile–compression states. To prevent compression
damage, only the effective tensile stress ( ⊲𝝔+) is considered, which is represented in terms of the principal stresses ( ⊲28) as,

⊲𝝔+ ς=
3
⟪

8=1
⟨ ⊲28⟩𝝇8 9 𝝇8. (7)

Following [35], the effective energy within the undamaged material is defined as,

⊲𝜍𝜑 =
1
23

⟫

⟫

⊲𝝔+
⟫

⟫

2 = 1
23

3
⟪

8=1
⟨ ⊲28⟩

2 , (8)
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Fig. 2. Uniaxial stress–strain response predicted by the stress-based model, illustrating the influence of the post-peak parameter . on the material’s damage
softening behavior.

and the crack driving function for the stress-based criterion is given by,

∲ =
❲

❳3
8=1 ⟨ ⊲28⟩

2

220
ϑ 1

/

. (9)

This criterion defines phase-field damage evolution to be related to the sum of the square of positive effective principal stresses.
It establishes a stress threshold for the crack driving force function such that it is zero so long as ⟫

⟫

⊲𝝔+
⟫

⟫

is less than the material
strength parameter, 20 .

An additional dimensionless parameter . > 0 was introduced in [35] to modify the slope of the stress–strain curve in the
post-critical range (Fig. 2). The final form of the crack driving force is given by,

∲ = .
⦃ ⊲𝜍𝜑
𝜍0

ϑ 1
⦄

= .

❲\

❳3
8=1 ⟨ ⊲28⟩

2

220

(

ϑ 1
/

. (10)

2.1.2. Material model
Our main assumption is that within the loading regime the 3D printed model rock material behaves like a linear elastic material

before damage initiation. Based on the hypothesis of strain equivalence, the effective stress can be defined as

⊲𝝔(𝝕) =
𝜕 ⊲𝜍𝜑
𝜕𝝋 = [, tr(𝝋)𝜵 + 2<𝝋], (11)

where 𝜵 represents the identity tensor, 𝝋 = sym(ϱ𝝕) is the small strain tensor, , and < are the Lamé parameters that can be calculated
using the Young’s modulus 3 and the Poisson’s ratio ℏ. The Cauchy stress tensor 𝝔 is defined as

𝝔(𝝕,𝜗) =
𝜕𝜍𝜑
𝜕𝝋 = ℸ⊳ (𝜗)[, tr(𝝋)𝜵 + 2<𝝋], (12)

where degraded elastic bulk energy (𝜍𝜑) is defined as per Eq. (2).

2.1.3. Strong form of governing equations
The crack propagation problem involves determining two unknown fields: the displacement field 𝝕 and the phase field variable

𝜗, representing isotropic damage. The displacement field 𝝕 is obtained by solving the strong form of the equilibrium equation as
given by:

ϱ ⋛ 𝝔 + 𝝑 = 𝛚 in 𝜛,
𝝕 = 𝝕ω on 𝜕𝜛u,

𝝔 ⋛ 𝝇 = 𝜺 on 𝜕𝜛t ,

(13)

where 𝝕ω represents a prescribed displacement enforced on the external boundary 𝜕𝜛u, 𝜺 is the traction acting on the external
boundary 𝜕𝜛t , the domain boundary 𝜕𝜛 = 𝜕𝜛u φ 𝜕𝜛t , and 𝝇 denotes the unit normal to the boundary of 𝜛, pointing outward from
𝜛. The above equation can be derived by minimizing the potential energy in Eq. (4) with respect to 𝝕. From Eq. (5), the strong
form of the scalar phase field equation along with the boundary conditions are:

⋜2
0 6𝜗 ϑ𝜗 + (1 ϑ𝜗)∲ = 0 in 𝜛,

ϱ𝜗 ⋛ 𝝇 = 0 on 𝜕𝜛.
(14)
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2.1.4. Weak form of governing equations
The Galerkin weak form for the governing partial differential equations is defined as: Find 𝝕 ε ∳ and 𝜗 ε ⨋ such that

∱𝜛
𝝔(𝝕,𝜗) ς ϱ𝝏 d𝜛 =

∱𝜛
𝝑 ⋛ 𝝏 d𝜛, (15)

∱𝜛
(1 +∲)𝜗> + ⋜0

2 ϱ𝜗ϱ> d𝜛 =
∱𝜛

∲> d𝜛, (16)

where 𝝕 and 𝜗 represent trial functions associated with the displacement and phase field variables, whereas 𝝏 and > represent the
corresponding test functions, respectively. The appropriate vector and scalar function spaces corresponding to displacement vector
and scalar phase field variable are represented by ∳ and ⨋, respectively. The crack driving function is evaluated on a discontinuous
Galerkin space with one degree of freedom per element, which alleviates the numerical issue of damage zone widening.

2.1.5. Solution strategy
In the PFF modeling approach, usually, a static displacement-controlled iterative technique known as alternate minimization [36]

is employed. This approach involves incrementally increasing the applied displacement and iteratively solving the coupled equations
Eqs. (15) and (16) until convergence is achieved. To guarantee the irreversibility of crack propagation, the crack driving force ∲⋆+1
at the displacement step ⋆ + 1 must satisfy the following condition:

∲⋆+1 =
)

∲⋆+1 if ∲⋆+1 > ∲⋆

∲⋆ otherwise.
(17)

Within the alternate minimization framework, the current approximations for the displacement and damage fields are determined
based on the approximations made in the preceding step. Let 𝝕≨ and 𝜗≨ denote the displacement and damage fields at the end of the
previous alternate minimization step, whereas 𝝕≨+1 and 𝜗≨+1 represent their approximations at the current alternate minimization
step. The ⨌

2 error norms 𝐴𝐵 and 𝐴⊳ corresponding to displacement and damage fields are defined as,

𝐴𝐵 = ⦅𝝕≨+1 ϑ 𝝕≨⦅2 and 𝐴⊳ = ⦅𝜗≨+1 ϑ𝜗≨
⦅2 (18)

where ⦅.⦅2 ς=
⦆

⨍ (.)2d7 represents the ⨌
2 norm. Alternate minimization iterations for displacement step ⋆+1 will proceed until the

following criteria [15] is met

max(𝐴𝐵, 𝐴⊳ ) < 10ϑ5 or ≨ > 10. (19)

After achieving convergence in the alternate minimization step, the applied displacement is incremented and the process of alternate
minimization is repeated. The number of iterations required for convergence depends on the load and displacement steps and the
boundary conditions.

2.1.6. Adaptive mesh refinement
Here, we employ and extend the AMR algorithm, originally introduced in Gupta et al. [16] for the strain-based PFF model, to the

proposed stress-based PFF model described in the previous section. The AMR algorithm instantiates with a coarse mesh configuration
and utilizes four refinement schemes (⨋1⋝⨋2⋝⨋3⋝⨋4). On a relatively coarse mesh, ⨋1 helps detect crack initiation and facilitates
proper crack propagation by refining the zone ahead of the crack tip. In contrast, ⨋2 prevents excessive refinement in the elastic zone
and ⨋3 ensures proper resolution of the damaged zone, whereas ⨋4 prevents over-refinement in areas that have already achieved
the targeted 𝜔min. Once the mesh is refined, damage field 𝜗 and crack driving force function ∲(𝝕,𝜗) are interpolated to the refined
mesh and the coupled system of equations are solved until convergence is achieved, as discussed in the previous section. Below we
elaborate on the four refinement schemes, which are illustrated in Fig. 3.

⨋1: The evolution of the damage in the PFF formulation is governed by ∲, as discussed in Section 2. Before crack initiation, the
solution of the equilibrium equation is unaffected by 𝜗, allowing for a reasonably accurate approximation of the displacement
field using a coarse mesh. Moreover, once crack initiation occurs, 𝜗 evolves predominantly in regions with high accumulation
of ∲. With the stress-based criterion, the threshold applied maintains ∲ = 0 until the effective strain energy exceeds the
critical strain energy. Based on these observations, the first refinement indicator

[

⨎1
]

evaluates the change in elastic energy
for each element in the mesh as,

⨎
ele
1 = ⊲𝜍 (≨+1)

ele ϑ ⊲𝜍≨
ele, ⊲𝜍ele ς=

∱ele
⊲𝜍 d𝝎. (20)

Here, ⊲𝜍 (≨+1)
ele represents the integral of ⊲𝜍 over the element during the (≨ + 1)th alternate minimization iteration, while ⊲𝜍≨

ele
represents the integral of ⊲𝜍 over the element in the previous ≨th alternate minimization iteration. This indicator is coupled
with the maximum value marking strategy, where all elements with ⨎

𝜑𝐶𝜑
1 values exceeding 𝐷1 ∇ max(∱1) are marked for

refinement; 0 ⨏ 𝐷1 ⨏ 1.
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Fig. 3. Multi-level conditional AMR algorithm: This adaptive strategy employs four distinct refinement indicators, ⨎1 to ⨎4, utilized sequentially in combination
with maximum value markers (parameter 𝐷1 in ⨎1) and threshold markers (parameters 𝐷2, 𝐷3, and 𝐷4 in ⨎2, ⨎3, and ⨎4).

⨋2: In this step, elements are unmarked based on the value of the positive component of elastic strain energy ⊲𝜍+
𝜑 . The refinement

indicator at the element level is defined as follows,

⨎
ele
2 = ⊲𝜍+

𝜑 . (21)

To prevent unnecessary refinement in the elastic zone, an unmark strategy is employed. Elements with ⊲𝜍+
𝜑 values lower than

the limiting strain energy 𝜍0 are unmarked from the set of marked elements. Elements are unmarked if ⊲𝜍+
𝜑 ⨏ 𝐷2𝜍0 , with a

typical value of 𝐷2 = 0.9 for this study.
⨋3: Once damage initiation occurs, it becomes necessary to appropriately resolve the post-crack initiation damage zone according

to the length scale parameter in the PFF model. To achieve this, we propose to use the damage field as a refinement indicator,
The ⨎3 is defined by,

⨎
ele
3 = 𝜗ele. (22)

The above scheme combined with a threshold based marking scheme marks elements with ⨎3 values greater than 𝐷3 for
refinement, where 𝐷3 ranges from 0 to 1.

⨋4: To avoid excessive refinement, we establish a specific mesh size denoted as 𝜔min, which serves as the threshold (𝐷4) for
marking elements. The selection of 𝜔min depends on the parameter ⋜0 , typically so that 𝜔min ∂ ⋜0ϖ5. Elements characterized
by a diameter of the circumcircle (2∇circum_radius) less than 𝜔min are unmarked, as further refinement of these elements
is deemed unnecessary. Consequently, the refinement indicator for this scheme can be expressed as follows,

⨎
ele
4 = 2 ∇ ⥳⥴⥵⥳⥶⥷_⥵⥸⥹⥴⥶⥺(ele). (23)

The complete multi-level conditional AMR algorithm is defined as the composition of the four schemes (ℷ4⋝ℷ3⋝ℷ2⋝ℷ1).
Importantly, the order of the schemes is significant to achieve an optimal outcome.

2.1.7. Analysis software
For the analysis, we utilized an in-house code for the stress-based PFF model developed using the open-source package FEniCS

v2019 [37–39]. The key selling point of FEniCS is that it uses a domain-specific language embedded into Python to specify the
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Fig. 4. Experimental setup and coordinate system orientation. (a) Cylindrical rods of dia = 4.762mm are used to apply load and supports. (b) The coordinate
system is centered on the rod on the top of the sample.

differential equation to be solved. Being open source, we are not restricted by commercial software license issues, so FEniCS can be
run on massively parallel computing architectures [40,41]. The software then automatically transforms the high-level specification
into an efficient, parallel C code to evaluate residual vectors and their derivatives. Under the hood, the C code uses data structures
and solvers from the Portable Extensible Toolkit for Scientific Computation (PETSc), the industry standard tool for solving large
systems of linear and nonlinear equations in parallel. This overall architecture allows users to write code in an environment that
offers greater interactivity and immediate feedback than running batch-processed compiled programs, while still achieving the high
performance of writing in a lower-level language (e.g., C or Fortran). From a performance standpoint, FEniCS includes a sophisticated
optimizing compiler that can carry out loop transformations, such as sum-factorization, that are difficult to code by hand. From a
usability perspective, the domain-specific language used in FEniCS maps almost directly onto the mathematical description of the
variational form of the differential equation and obviates cumbersome derivations of tangent matrix and force vector.

2.1.8. Visualization software
For mesh generation, we use the open-source package Salome [42]. The simulated load–displacement response from the analysis

was written to a ‘CSV’ file and was plotted using the open-source software VEUSZ [43]. The field variables were written to XDMF
files to facilitate comprehensive visualization and post-processing. We employed an open-source multiple-platform application
ParaView [44] to effectively visualize the results in 2D and 3D. Thus, we use all open-source software for both analysis and
visualization, because we adhere to FAIR [45] (findability, accessibility, interoperability and reusability) principles for scientific
software management.

2.2. Defining the problem

In this section, we describe the material model, boundary conditions (BCs) and mesh discretization. The fracture challenge
specimen geometry with detailed dimensions is shown in Fig. 4. Three-point bending tests were conducted on 3D-printed gypsum
specimens with dimensions of 25.4 ∇ 76.2 ∇ 12.7 mm3. Four different notch specimens were considered, as described in Fig. 7. The
challenge problem is to employ a robust damage mechanics based approach to predict failure loads and crack propagation paths
influenced by intentionally designed notches using the calibration, validation and blind challenge datasets.

2.2.1. Boundary conditions
In the experimental setup, Liyang et al. [1] incorporated three aluminum rods, as depicted in Fig. 4. These rods have a diameter

of 4.7625 mm and a length of 19.05 mm. Precisely, one rod was placed at the top center of the sample, while the other two were
positioned at the bottom, with each rod located 10% of the sample’s length away from the respective end (Fig. 4). When dealing
with modeling the cylindrical rod contact, addressing stress concentration at contact points is crucial. One practical approach to
mitigate this concern is the utilization of Hertz contact theory [46], which deals with the contact behavior between non-conforming
surfaces by considering elastic deformation to prevent infinite stresses in forced contacts and maintaining frictionless, non-adhesive
interactions (see Fig. 5).

Here, we consider the support aluminum cylinders are characterized by Young’s modulus 31 = 70, 000 MPa and Poisson’s ratio
ℏ1 = 0.33. The beam under consideration is 3D printed using gypsum, characterized by a lower Young’s modulus 3 = 400 MPa and
a Poisson’s ratio ℏ2 = 0.2. Utilizing Hertz contact theory, which addresses the behavior of non-conforming surfaces in contact, we
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Fig. 5. Idealization of the loading and contact conditions. Point boundary condition (PBC) simplifies the representation of support and load application from
cylinders by considering them as point forces and constraints. In contrast, the contact boundary condition (CBC) distributes the forces and constraints over the
contact width. The latter approach provides a more accurate representation of stress and deformation distribution within the contact area.

Table 1
Load error convergence study upon mesh refinement for 2D plain strain for specimen-HC. Material properties: (3 = 400MPa, and
ℏ = 0.2). The errors are calculated between consecutive refined meshes. Point boundary condition (PBC) has a relative error of
more than 5% at the finest level meshes, whereas, for contact boundary condition (CBC), we get a relative error of less than
5% at the coarsest level meshes, thus illustrating the benefit of CBC over PBC.
Maximum mesh PBC CBC

resolution (mm) Reaction (N) rel. error (%) Reaction (N) rel. error (%)

8 109.7 – 88.25 –
4 94.47 13.9 84.83 3.9
2 85.23 9.8 82.72 2.5
1 78.59 7.8 81.59 1.4
0.5 73.31 6.7 80.89 0.9

analyze the interaction between these two distinct materials — aluminum cylinders and gypsum beam. The contact width (0𝐸) for
a cylinder and flat surface in contact is given by,

0𝐸 = 2 ∇

⟦

2𝐹
𝐺𝐶

(1 ϑ 𝐻21)ϖ31 + (1 ϑ 𝐻2)ϖ3
1ϖ⊳1

(24)

where ⊳1 is the diameter of the aluminum cylinder, 𝐹 = 400 N is the applied force (which is the maximum observed load in
experiments, see Fig. 7) and 𝐶 = 12.7 mm is the contact length along the 𝐼-axis.

With the assumed material properties, the Hertz contact condition in Eq. (24) yields a contact width of approximately 0.96mm.
The maximum contact pressure 𝐽 over the contact area is given as

𝐽 = 4𝐹
𝐺0𝐸𝐶

. (25)

We next conduct a convergence study to assess whether it is appropriate to replace the cylindrical rods with point loads and
constraints or to treat them as Hertzian contact pressure and constraints with a width equal to 0𝐸 = 0.96mm. We discretize the
contact zone with five elements to resolve the contact area. Table 1 presents the load error convergence study with mesh refinement
using two different idealizations of loading and contact conditions for specimen HC. When we employ point conditions, stress tends to
accumulate and concentrate at the discrete points where the load and support conditions are applied. In contrast, contact conditions
distribute the loading over a finite width, eliminating unrealistic stress concentration and leading to more accurate results, even
when the mesh is not very fine. From Table 1, it is evident that contact conditions outperform point conditions in terms of accuracy,
especially for coarser mesh resolutions. This suggests that for the experimental setup involving cylindrical contacts for loading and
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Fig. 6. Mesh quality in 2D and 3D is determined by a metric known as the ‘‘quality factor’’, which is calculated as twice the ratio of the radius of the incircle
or insphere (𝐴⋆) to the radius of the circumcircle or circumsphere (𝐴0 ). A perfect triangle possesses a quality factor of 1, while a flat triangle would exhibit a
quality factor of 0. Mesh containing poor quality elements can introduce errors and inaccuracies into the FEM analysis.

support, using Hertzian contact conditions with a coarser mesh provides more reliable results than point conditions with a finer
mesh.

2.2.2. Meshing
We use first-order Lagrangian finite elements to discretize the domain and represent the primary field variables, displacement

(a vector), and damage (a scalar), using appropriate function spaces. For the displacement variables in 2D, we utilize three-noded
triangular elements, each associated with a vector function space featuring two degrees of freedom (DOFs) per node; whereas, in
3D, we use four-noded tetrahedral finite elements, each associated with a vector function space featuring three displacement DOFs
per node. On the other hand, the damage variable in 2D and 3D is associated with a scalar function space, providing one damage
DOF per node.

Mesh quality assessment is of paramount importance for alleviating numerical artifacts and achieving accurate results in
finite element simulations. A well-designed mesh (see Fig. 6) with appropriate element sizing, shape, and connectivity ensures
that the physical domain is properly represented in the discretized domain. Poor mesh quality, characterized by poor aspect
ratio (elongated/distorted looking) elements or excessive element size variation between neighboring elements, can introduce
numerical errors, inaccuracies, and convergence issues. In our analysis with the AMR algorithm, we placed a significant emphasis
on establishing a good quality initial mesh based on the ‘‘quality factor’’ metric. We have adopted the refinement strategy proposed
by Plaza and Carey [47] to enhance the mesh quality, which allows us to generate additional mesh elements during the refinement
process while improving mesh quality.

2.2.3. Model calibration data
The calibration dataset, detailed in [1], include a collection of experimental fracture scenarios. These scenarios cover a wide

range of fracture modes, including pure Mode I in the HC case and mixed-mode situations combining Mode I and II in the HA and
HB cases, and likely combining Mode I, II and III in the H45 case (see Fig. 7). The primary difference between these specimens lies
in where the notches are located and how they are aligned in the out-of-plane direction.

The samples employed in this calibration process were fabricated using a ProJet CJP 360 3D printer. These samples are made up
of layers of calcium sulfate hemihydrate powder bonded together with a proprietary water-based binder, resulting in well-defined
geometric dimensions: 25.4 ∇ 76.2 ∇ 12.7 mm3 (height ∇ length ∇ width) with a deliberately designed 5.08mm (long) ∇ 1.0mm
(wide) notch.

While plotting the experimental load–displacement curves for these various fracture scenarios (Fig. 7), we found anomalies in
specific datasets (set-4 in HA and HC, set-3 in H45), where the load–displacement responses deviated noticeably from the other
datasets. In these anomalous data, we notice that the load–displacement curve is shifted to the right by up to one-tenth of a
millimeter. We suspect these deviations could have been caused by discrepancies in the testing process, such as the loss of contact
between the sample and the strain gauge. To ensure reliability of our analysis, we chose to exclude these anomalous data from
further consideration. For example, in our calibration study we only use datasets 3, 5 and 6 to estimate our model parameters
and ignore dataset 4. This decision was made to maintain the consistency and trustworthiness of the dataset, ensuring that our
subsequent conclusions are free from anomalies that could introduce inaccuracies to our findings.

2.2.4. Uncertainty in the model
Experimental data inherently has aleatoric or statistical uncertainty stemming from measurement errors, boundary condition

variations, and material heterogeneity; this is evident from the load–displacement plots presented in Fig. 7. To capture the full
spectrum of experimental and material variability and motivated by the significant scatter observed in the experimental data, we
considered the lower and upper bounds of the load–displacement data to calibrate the Young’s modulus 3 and critical stress 20 . By
considering these bounds in Section 3, we ensure that the outcomes from our model account for the statistical uncertainty inherent
to the experimental data. In addition, due to the simplifying assumption of isotropic linear elasticity and isotropic damage in the
stress-based PFF model, there can be epistemic or systematic uncertainty arising from the lack of knowledge of model parameters,
namely the length scale ⋜0 . We address this epistemic uncertainty through parametric sensitivity studies in Section 3.1.
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Fig. 7. Experimental load–displacement data from sets 3–6 and the specimen geometry for the HA, HB, HC, and H45 fracture scenarios. Note that anomalies in
specific datasets (set-4 in HA and HC and set-3 in H45) are neglected here.

2.2.5. Model set-up and run times
All model simulations were conducted on a Windows 10 workstation equipped with 8 CPU cores and 96 GB of RAM. Our code

is not parallelized and only one CPU core was utilized for the simulations. Creating all five models and meshing them in Salome
required approximately four hours. Subsequently, the system was solved using an in-house code using FEniCS, and the run times
for each simulation are listed in Table 3.
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Fig. 8. Uniaxial bar: (a) Geometry and loading (b) Reaction force vs. displacement graph for different length scale. Phase field model based on stress-based
crack driving function, displays a linear pre-peak behavior. Additionally, this model exhibits a finite damage band and showcases length scale independence.

3. Results and discussion

In this section, we present the results obtained from the PFF model and AMR algorithm for the verification, calibration, validation
and challenge problems. The goal is to demonstrate that it is possible to achieve a good match with experimental results with
fewer computational resources and/or at a lesser cost using the adaptive PFF algorithm. Unless otherwise specified, the plane-strain
assumption is made in all 2D simulations. In all examples, unless otherwise specified, the following marking parameters are used
in the AMR algorithm: 𝐷1 = 0.6, 𝐷2 = 0.9, 𝐷3 = 0.01, and 𝐷4 = 𝜔min = ⋜0ϖ5 for schemes ⨋1 to ⨋4, respectively.

3.1. Length scale sensitivity

The sensitivity of a model’s response to its parameters is a critical aspect in material modeling and simulation. When calibrating
with experimental data, the model must exhibit a level of robustness, meaning that it should not be susceptible to spurious sensitivity
to its input parameters. Such sensitivity complicates the calibration process, making it difficult to match model predictions with
experiments. An ideal model strikes a balance where it remains responsive to changes in physical parameters that genuinely influence
material behavior while maintaining a degree of insensitivity to numerical or regularization parameters that only serve the purpose of
improving convergence or efficiency. This balance ensures that the model can be reliably calibrated for predicting material response
under different conditions.

As described by Eq. (10), the crack driving force function in the stress-based PFF model is dependent only on two parameters
20 and . . The parameter . ⨐ 1 controls the post peak softening behavior of the load–displacement response (Fig. 2). However, our
primary focus lies on accurately capturing the peak load and crack path, which . does not influence. To simplify the calibration
process and reduce the complexity associated with multiple parameters, we take . = 1 as a constant across all simulations. Crack
initiation occurs when the stress state of the material point surpasses a failure surface in the principal stress space, which is
determined by the material strength, 20 as described in Section 2.1.

To investigate the behavior of the stress-based PFF model, we utilize the 1D bar under displacement controlled uniaxial tension,
as depicted in Fig. 8. This problem serves as a cost-effective benchmark frequently employed to evaluate PFF implementations and
was used in other studies [48,49]. In this test case, the bar is fixed at one end and subjected to displacement in positive 7 direction
from the other end, as illustrated in Fig. 8. The geometric and material parameters are adopted from [16]. The critical stress 20 is
assumed to be 3 MPa and the cross-sectional area is assumed to be 1 mm2, resulting in a peak load capacity of 3 N. As shown in
Fig. 8, the stress-based PFF model accurately predicts the peak load, exhibiting a linear elastic response prior to reaching the peak.
This linear response is attributed to the presence of a threshold in the crack driving force function.

As per Eq. (10), the crack driving force in the stress-based PFF model is independent of the length scale parameter. The practical
implications of this length scale independence are profound. It streamlines the calibration process, by reducing it to one material
parameter that is directly related to material strength, namely the critical stress 20 . Thus, the stress-based PFF model offers a more
reliable approach as it alleviates spurious sensitivity to the length scale parameter.
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Fig. 9. Specimen HC: The three-point bending specimen with a center crack was loaded and supported using cylindrical rods having a diameter of 4.7625 mm.

3.2. Model calibration

The calibration process involves a simple trial-and-error approach to adjust the material and PFF model parameters to match
the load–displacement response observed in the experimental data. Here, we perform model calibration using the HC specimen
data. We begin with the determination of the material model parameters, Young’s modulus 3, by matching the linear (pre-damage)
portion of the load–displacement curve. Subsequently, we calibrate the critical stress for damage initiation 20 , by matching the
peak load and the corresponding displacement. Importantly, the stress-based PFF model must capture the steep drop in load in the
post-peak softening region of the load–displacement curve. The analysis is carried out under the assumption of 2D plane strain,
and the cylindrical rods used for support and loading (see Fig. 9(a)) are idealized as line sub-domains with a length of 0.96 mm,
as discussed in Section 2.2.1. The mesh is locally refined at the support and load locations with an element size of 0.1mm, and a
maximum element size of 5mm elsewhere in the domain.

3.2.1. Calibration of Young’s modulus
We presume that the gypsum’s mechanical behavior resembles that of a typical rock, which generally exhibits a Poisson’s ratio

ranging from 0.1 to 0.3 [50,51]. To simplify calibration, we adopt a Poisson’s ratio of 0.2 for the material. We calibrate Young’s
modulus 3 using experimental data and conduct a parametric study using displacement-controlled loading. Other than of the notch
location, the beam geometry along with its boundary conditions and loading remain the same throughout all experiments. The
Young’s modulus, which is a property of the material, must be consistent across all tests, which is evident from the experimental
curves, where the initial slope of the load–displacement curves is the same for all experiments, within the bounds of experimental
uncertainty (Fig. 10). Consequently, we first calibrate Young’s modulus using the unnotched geometry (Fig. 4) with the experimental
results of HC specimen (Fig. 10(a)) and then validate it using HA, HB and H45 specimens (Fig. 10(b)). To initiate the analysis, a
prescribed displacement of 0.1mm was applied at mid-span on the top surface of the specimen in one step. This displacement
induced the corresponding reaction load at the supports, allowing us to capture the pre-damage response for different Young’s
modulus values.

By conducting a series of simulations, we investigated the model’s ability to reproduce the experimental data with different
Young’s modulus values. After thorough investigation, we determined that the optimal value for Young’s modulus must lie within
the range 3 = 430MPa (lower bound) and 3 = 630MPa (upper bound) for HC specimen (Fig. 10a). However, we find that load
predictions with the lower bound value match better with the data from HA, HB and H45 specimens (Fig. 10b).

3.2.2. Calibration of critical stress
The precise calibration of 20 is crucial for fracture simulation, as it significantly impacts the PFF model’s ability to accurately

predict the peak load capacity of the structure. By comparing our computational predictions with experimental data, here we aim
to identify the most appropriate value for 20 .

We vary 20 while keeping ⋜0 constant at a value of 0.5 mm. The selection of a characteristic length scale parameter, ⋜0= 0.5 mm,
is based on the understanding that the stress-based model exhibits insensitivity to the length scale and given that the notch width
is significantly smaller than the size of the domain, we have selected the length scale to be half the width of the notch. For this
study, we perform a displacement-controlled alternate minimization analysis with a step size of 0.06 mm, ultimately reaching a
final displacement of 0.6 mm. Following a thorough investigation, we determined the most suitable parameter pairs to capture the
upper bound data are 3 = 630MPa and 20 = 8.8MPa, and those for the lower bound data are 3 = 430MPa and 2 = 7.7MPa, as
shown in Fig. 11 (see Table 2).



Engineering Fracture Mechanics 306 (2024) 110252

13

A. Gupta et al.

Fig. 10. Calibration study for Young’s modulus 3. (a) The optimal range for 3 that yields the closest match between our computational predictions and
experimental data lies between 3 = 430MPa (lower bound) and 3 = 630MPa (upper bound). (b) Lower bound of 3 coincides well with the experimental data
from other specimen geometries.

Fig. 11. Calibration study for critical stress parameter 20 based on peak load capacity. (a) For 3 = 430 MPa, 20 = 7.7 MPa, and (b) For 3 = 630 MPa, 20 = 8.8 MPa.

Table 2
Calibrated material properties.
Bound 30 [MPa] ℏ0 [–] 2c [MPa] . [–]

Lower 430 0.2 7.7 1
Upper 630 0.2 8.8 1

3.3. Model validation

To establish the validity of the calibrated parameters, we consider the experimental data from all four specimens HA, HB, HC,
and H45. In Fig. 12, the upper and lower bounds of the load–displacement responses and crack/damage trajectories, obtained using
the stress-based PFF model, are compared with the corresponding experimental data. Given that no significant change in the crack
path was observed between the upper and lower bound simulations, a single figure details the crack comparison. The match between
our simulation results and the experimental data is quite good. These results provide compelling evidence of the robustness of the
PFF model in faithfully reproducing a wide range of experimental observations involving mixed-mode scenarios.

The complex 3D shape of specimen H45 requires 3D simulation, as a 2D representation is insufficient to accurately capture
the notch details. However, conducting 3D simulations presents formidable challenges for meshing and analysis due to the small
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Fig. 12. Load–displacement curves and crack morphologies for HA, HB, HC, and H45 geometries. The red lines represent the cracks as the overlay of phase-field
damage over actual experimental photographs. We also show the corresponding mesh generated by the AMR algorithm. The good match between simulation
results and experimental data establishes the viability of the stress-based PFF model.

element size requirement of the PFF model. The requirement to employ small element sizes arises from a constraint imposed by
the length scale parameter in the PFF model. This parameter mandates that the element size be less than one-fourth of the length
scale at the least, with some researchers using an element size equal to one-tenth of the length scale for linear triangles [49]. In
the case of specimen H45, attempting to refine the entire computational domain with elements as small as 0.1 mm (= ⋜0ϖ5) would
result in a highly refined mesh comprising a staggering 209 million elements, which can be prohibitively expensive. To mitigate
this computational burden, local refinement can be applied specifically within the zone where crack propagation occurs, situated
between the two crack faces on the front and back of the specimen. This approach significantly reduces the number of elements in
the finite element mesh to a more manageable 41 million. Even this analysis still demands substantial computational resources, but
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Fig. 13. Simulation results for H45 specimen. (a) 3D crack morphology. (b) Adaptively refined mesh at the final step. The elements are omitted for the sake
of visibility; only the nodes are shown as a point cloud.

Fig. 14. 3D geometry and load–displacement curves for the challenge problem. The lower and upper bound values of the parameters, obtained from our
calibration exercise, yielded a predicted peak load of 287 N and 330 N, respectively.

more importantly it requires a priori knowledge of the final crack path. It is therefore likely that the user refines the mesh based on
a guestimate of the final crack path, and if wrong must rerun the analysis with a more appropriate mesh discretization.

In contrast, our AMR algorithm, implemented with a target mesh size of 0.1 mm, reduces the number of elements in the finite
element mesh to a modest 2.5 million. Consequently, we are able to run the simulation in 17 h using a single core (Table 3).
Parallelization maybe necessary to further enhance the efficiency of our implementation, especially in cases where multiple cracks
can nucleate and propagate simultaneously and/or where the domain size is much larger than the crack width (or damage length
scale). Fig. 13 shows the 3D crack path and the adaptively refined mesh, where the elements are omitted for the sake of visibility;
only the finite element nodes are shown as a point cloud.

3.4. Challenge problem

The geometry of the challenge specimen features an off-center notch, and the height of the notch varies across the width of the
beam, ranging from 0.4 W to 0.2 W, as illustrated in Fig. 14. The width of the notch is 1 mm and uniform along its length. The
notch is positioned at a distance of 4 W from the left edge on the front face and 3.5 W on the back face. The boundary conditions
applied to this specimen are identical to those used for all the calibration and validation specimens. Due to this unique geometry,
it is likely that the fracture propagation occurs under general mixed-mode conditions, with Mode I still dominant over Mode II or
Mode III owing to the brittle nature of the 3D printed model rock.

We used the stress-based PFF model along with the AMR algorithm to improve computational performance. The mesh was
dynamically refined, finally achieving a mesh with more elements concentrated around the crack path and a minimum element size
of 𝜔min = ⋜0ϖ5. The model predicts a peak load with a lower bound of 287 N and an upper bound of 330 N, which have about 6%
relative error compared to the experimentally observed peak loads of 304 N and 350 N (see Fig. 14b). The predicted lower bound
curve (3 = 430 MPa, 2c = 7.7 MPa) matches better with its experimental counterpart, but the upper bound curve (3 = 630 MPa,
2c = 8.8 MPa) shows premature failure at a smaller displacement that its experimental counterpart. Fig. 15 shows the overlay
comparison between the crack paths obtained from experiments and the PFF simulation. The experimental crack path obtained
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Fig. 15. Crack morphology in various perspective views for the challenge problem, showing a good match between experiments and model predictions.
The numerical crack zone represents the area where the damage exceeds a value of 0.99. For an interactive 3D version of this result, please visit
https://abhigupta.io/llnl-damage-challenge/.

using laser profilometry was reported in [1] using the coordinate system shown in Fig. 4. The crack surface was tracked along the
7-axis on a y-z grid with a 0.1 mm resolution, which is visualized as a surface plot in ParaView. The numerical crack is a damage
zone that refers to an area where the damage exceeds a value of 0.9. We are able to get a good match between the experimental
and numerically predicted crack paths, except that the damage zone is a bit wider than the actual crack. Thus, the simple stress-
based PFF model along with an isotropic linearly elastic material model can reasonably capture both the 3D crack morphology
and load displacement response observed in the experiments. However, it may be important to consider material nonlinearity and
damage-induced anisotropy to further improve the PFF model and capture the nonlinearity in the load–displacement data observed
in experiments.

3.5. Discussion

This work combined the stress-based phase-field fracture (PFF) model with an AMR algorithm to address the damage mechanics
challenge of accurately predicting crack propagation in 3D printed rock using the provided experimental datasets. Predicting how
cracks initiate, propagate, and interact under different loading modes and specimen geometries in a precise and efficient manner
is a formidable task. Although the proposed PFF model can capture crack propagation in 2D and 3D, it is important to note its
strengths and limitations, as discussed below:

(i) On calibration data: Accurately calibrating the material model parameters is crucial for enabling predictive simulation. In
this work, the Poisson’s ratio of the 3D printed model was simply assumed, but data from experimental tests is needed to
estimate this parameter. The calibration of the Young’s modulus was based on the initial slope of the load–displacement
plots provided in the calibration data. We note that a better experimental method for quantifying the Young’s modulus and
the Poisson’s ratio is to use elastic wave propagation [52]. In most of the experimental load–displacement plots provided
in the calibration dataset, an increase in the slope (stiffness) is observed with applied displacement before the load peak.
This nonlinearity in stiffness of 3D printed rock was not accounted for in our study. In the rock mechanics literature, this
nonlinear elastic behavior has been attributed to the presence of defects [53]; consequently, the Young’s modulus of rock is
different under tension and compressive stress states. However, with the simplistic assumption that 3D printed rock is linearly
elastic, we calibrated the critical stress parameter in the stress-based PFF model using the provided load–displacement data.
Considering material nonlinearity and damage-induced anisotropy could further improve the PFF model; however, this would
also require more experimental data from different loading conditions.

(ii) On computational cost: The high computational cost of PFF simulations is a well-known issue; however, the AMR algorithm
allowed us to conduct simulations efficiently, significantly reducing the cost. It facilitated the calibration of the model
parameters through simple trial-and-error procedure, by expediting the simulations. The capability to try several parameter
values and assess their impact on the model predictions was essential to ensuring model reliability. Furthermore, AMR
played a pivotal role in our ability to predict the 3D crack morphology in the challenge problem case. Without AMR, the
computational cost for achieving such predictions using uniformly refined meshes could be cost-prohibitive, both in terms of
time and resources. From Table 3 it is evident that the calibrated PFF model often produced predictions that closely match
with experimental results, with less than 5 percent error in HA, HB and HC cases, and around 10 percent relative error in
the H45 and challenge problem cases. Thus, using AMR allowed us to accomplish our goal of establishing the viability of the
stress-based PFF model for brittle/quasi-brittle fracture in rocks.

(iii) On uncertainty: Even though 3D printed rock was produced under controlled laboratory conditions, it seems that the inherent
lack of uniformity in the binding process may have lead to heterogeneity in the porous rock microstructure. This coupled
with the uncertainties in specimen geometries and other practical boundary conditions could have resulted in the variability

https://abhigupta.io/llnl-damage-challenge/
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Table 3
Peak load values for all specimen configurations. A comparison is made between the upper and lower bounds from experiments
(exp) and simulations (sim). Relative errors and run times are also reported.

Lower bound Upper bound Run-time

exp (N) sim (N) Rel. err% exp (N) sim (N) Rel. err%
Specimen - HA 368 380 3.2 410 430 4.88 723 s
Specimen - HB 234 241 2.99 280 276 ϑ1.42 912 s
Specimen - HC 207 209 0.97 236 236 0.0 745 s
Specimen - H45 257 229 ϑ10.89 297 261 ϑ12.12 17 h
Specimen - DMC 304 287 ϑ5.59 350 330 ϑ5.71 20 h

observed in the load–displacement data. To account for it in the simplest manner, we calibrated the PFF model parameters
using upper and lower bounds of the load–displacement data. While this simple approach acknowledges and accommodates
the variability and uncertainty present in the experimental data, to address both statistical and systematic uncertainty in
a sophisticated manner would involve probabilistic multi-scale modeling with micro-scale spatial randomness [54,55] and
Bayesian approaches for parameter identification (e.g., [56]). Such approaches can quantitatively account for variability by
considering probability distributions for model parameters and input variables. In future, as we deploy our AMR algorithm on
high performance computing clusters, the stress-based PFF model offers a promising avenue to delve deeper into uncertainty
in material modeling, including the issues of statistical and energetic size effects on material fracture strength [57,58].

4. Conclusion

In this work, we employed the stress-based phase-field fracture model to achieve the goals of the damage mechanics challenge.
To enhance the computational efficiency of our numerical approach, we implemented a novel adaptive mesh refinement (AMR)
algorithm that allows for the automatic tracking of crack trajectories and dynamically refines the mesh in the vicinity of the
anticipated fracture zones.

Our participation in this challenge provided valuable insights into the capabilities and limitations of the stress-based PFF model.
Numerical investigations revealed that this model is adequately robust for predicting various fracture mechanisms in complex mixed-
mode fracture problems, despite the simple definition of the crack driving force function based on positive principal stresses. The
model’s simplicity, relying on just two parameters, Young’s modulus and critical stress reduces uncertainty with calibrating to load–
displacement data. In most cases, our calibrated model provided load predictions that were less than 5% or 10% relative error, which
is generally acceptable for engineering, geology and geoscience applications. The combination of AMR algorithm with the PFF model
brings down the computational cost significantly; for example, from an excessively refined mesh with 209 million elements to a
more manageable mesh with only 2.5 million elements in the specimen-H45 case. The computational cost is often the more pressing
concern for large scale simulations in engineering and science applications. For computational efficiency, we used a staggered scheme
that may cause damage widening in our results. While this issue may be resolved using monolithic schemes [31,59], they can be
costly and pose challenges for implementing AMR algorithms.

As we scale our model implementation to high performing computing, we are excited about the prospect of addressing challenging
fracture and localized corrosion problems involving multi-scale and multi-physics interactions [60,61]. The AMR algorithm can also
enable us to conduct computationally intensive Monte Carlo simulations and quantify uncertainty, which are otherwise infeasible
due to the computational cost of uniformly structured meshes. This opens up opportunities to test the predictive limits of existing PFF
models, and ultimately advancing them to achieve robust fracture predictions. Moreover, the implementation of our model within
the open source software FEniCS ensures findability, accessibility, inter-operability and reusability (FAIR) principles, thus making
computational fracture mechanics research more inclusive and broaden participation from diverse groups, including undergraduate
and minority students.
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Appendix A. Computational expense using adaptive and non-adaptive phase field fracture simulations

The computational expense associated with PFF simulations is a significant concern, especially for three-dimensional problems
or scenarios involving multiple cracks. In PFF models, the crack is smeared over a zone characterized by the length scale parameter.
This smearing requires the mesh to be sufficiently refined in the crack zone to accurately resolve the phase field variable. A significant
challenge in simulating crack propagation is the unpredictability of the crack path in practical scenarios. Without prior knowledge
of the crack path, local refinement strategies become ineffective for complex problems. Applying global refinement across the entire
domain incurs a significant computational cost, making the problem virtually impractical to solve. Our proposed adaptive refinement
strategy addresses this limitation by dynamically adjusting the mesh refinement based on the evolving phase field variable. This
approach does not require any pre-refinement of the damage zone; instead, it automatically detects regions where the mesh needs
to be refined based on the simulation’s current state.

To demonstrate the benefits of our adaptive approach over the non-adaptive approach we consider the HA-specimen (Fig. 12
(a)). The mesh size for the non-adaptive case and the target mesh size for the adaptive case are kept 𝜔𝐾⋆𝐿 = ⋜ϖ5. We start the
simulation with a relatively coarse initial mesh (4421 DoF), which gets refined by the proposed AMR algorithm when the crack
starts to initiate (see Fig. A.16), thus the approach is computationally much more efficient in the initial iterations. As the crack
propagates, the number of degrees of freedom (DoFs) increases, leading to longer run times per iteration due to the increased
mesh resolution. The final mesh for the adaptive simulation consists of 44,097 DoFs, in contrast to the 157,618 DoFs required for
the non-adaptive simulation. Owing to the significant computational efficiency gained in the pre-peak-load regime of the adaptive
simulation, the total simulation time is reduced to 723 s, compared to 3233 s for the non-adaptive approach. In the non-adaptive

Fig. A.16. Specimen-HA: comparing results using adaptive and non-adaptive (locally refined) PFF. Minimum element size 𝜔𝐾⋆𝐿 = ⋜ϖ5 with ⋜ = 0.5 mm. As the
crack propagates, the number of degrees of freedom (DoF) increases, leading to longer run times. The adaptive PFF model achieves the same response as its
non-adaptive counterpart in 723 s, compared to the 3223 s required by the non-adaptive model.
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simulation, the domain must be pre-refined along the expected crack path, whereas our proposed AMR algorithm eliminates the
need for any pre-refinement. Thus, this study showcases the AMR algorithm’s efficiency in accurately capturing crack initiation, and
its ability to provide significant computational gains, as it allows for targeted refinement only in areas where the crack develops,
optimizing both computational resources and simulation time.

Appendix B. The team

Our research team comprises Dr. Abhinav Gupta, a postdoctoral researcher at Vanderbilt University, and Mr. Duc Tien Nguyen,
a Ph.D. student, along with their advisor Prof. Ravindra Duddu at Vanderbilt University, and a collaborator Prof. Hirshikesh at
the Indian Institute of Technology Jodhpur. Prof. Duddu’s group specializes in computational modeling of material degradation,
contributing to strain and stress-based poro-damage phase field models. Dr. Gupta is an expert in computational tools for fracture
problems using FEniCS, and Dr. Hirshikesh focuses on adaptive phase field methods. Together, our expertise drives the application
of the PFF model to address the DMC.
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