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Abstract Near-surface remote sensing provides a novel approach to phenological 
monitoring. Optical sensors mounted in proximity to the land surface can be used 
to quantify changes in the spectral properties of vegetation associated with devel-
opment and senescence, as well as seasonal variation in activity. The resulting da-
ta are essentially continuous in time and cover a scale—intermediate between in-
dividual organisms and satellite pixels—that is unique and advantageous for a 
variety of applications. In this chapter, we review and discuss several approaches 
to near-surface remote sensing of phenology, including methods based on broad- 
and narrow-band radiometric sensors, and using consumer-grade digital cameras 
as inexpensive imaging sensors—with an emphasis on what has become known as 
the “phenocam” method.  

20.1 Introduction  

Traditionally, plant phenology data have been recorded by a human ob-
server, based on direct visual inspection of individual organisms in the field (e.g., 
Sparks and Menzel 2002). This approach is suited to the identification of dates at 
which specific phenophases (e.g., budburst or flowering) occur. The advent of sat-
ellite remote sensing in the 1970s opened up new opportunities for global-scale 
monitoring of seasonal changes in the spectral properties of vegetation. Vegetation 
indices, such as the normalized difference vegetation index (NDVI) and enhanced 
vegetation index (EVI), have been used to quantify vegetation greenness, and var-
ious algorithms have been developed to estimate the timing of phenological transi-
tions (e.g., start- and end-of-season) from time series of these indices (e.g., Zhang 
et al. 2018, Bolton et al. 2020).   

An alternative to these approaches exists in the form of near-surface re-
mote sensing, in which radiometric or imaging sensors, typically fixed to perma-
nent structures (e.g., towers, masts, or buildings), are used to observe and quantify 
changes in the land surface in a manner analogous to satellite-based remote sens-
ing, but at a spatial scale similar to ground observations by a human. 
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One advantage of near-surface remote sensing is its ability to serve as a 
bridge between direct observations and satellite data, and thus to facilitate scaling 
from organisms to landscapes. With near-surface remote sensing, spatial integra-
tion across the canopy is possible, thereby facilitating comparison with eddy co-
variance measurements of CO2 and H2O fluxes, and simplifying analysis of rela-
tionships between phenology and ecosystem processes. 

However, there are other reasons why near-surface remote sensing has 
great potential for routine phenological monitoring. For example, compared to ei-
ther direct or satellite-based observations, for which data are typically available 
only at intervals of days to weeks, automated sensors can provide data that are es-
sentially continuous in time.  

Additionally, near-surface remote sensing data provide quantitative in-
formation about the whole seasonal trajectory of vegetation development and se-
nescence for a well-defined group of organisms within the sensor footprint. By 
comparison, data collected by a human observer are potentially subjective, and in-
herently difficult to put on an ordinal scale. Satellite pixels, on the other hand, 
may integrate across heterogeneous species mixtures or different land cover types, 
which is valuable for some applications but complicates biological interpretation 
of the observed seasonal patterns or trends.  

Finally, by combining different types of near-surface sensor data, it may 
be possible to separate seasonal changes in canopy structure from changes in can-
opy function, especially as related to photosynthetic capacity or efficiency.  

In this chapter, we provide an overview of some of the different sensor-
based approaches to monitoring phenology. We discuss the instrumentation re-
quirements and data processing, review applications of different technologies, 
evaluate uncertainties and shortcomings, highlight publicly available datasets and 
tools, and identify future prospects.  

20.2 Instruments for Sensor-based Phenology  

Near-surface remote sensing technologies can be divided into two broad 
categories: radiometric sensors and imaging sensors.  

Radiometric sensors vary in their field of view, from wide (up to 180°) to 
narrow (<45°), and their spectral sensitivity, from broadband to narrowband (Bal-
zarolo et al. 2011). Broadband sensors include the Li-Cor LI-190 quantum sensor 
to measure photosynthetic photon flux density (PPFD, 400–700 nm) and the Kipp 
and Zonen CMP-6 pyranometer to measure total shortwave solar radiation (285–
2800 nm). Narrowband sensors target specific regions or bands of the electromag-
netic spectrum. These range in sophistication from Skye’s SKR1800 two-channel 
sensor with red (625–680 nm) and near-infrared (835–890 nm) bands, to multi-
channel spectrometers (e.g., ASD, Ocean Optics, or PP Systems) that can simulta-
neously measure hundreds of bands across an entire spectral range. Each of these 
sensors outputs a single number that averages across the measurement footprint. 
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Thus, there is typically no information about spatial variability (but see Tortini et 
al. 2015) and it is not possible to distinguish among objects or individual organ-
isms within the instrument’s field of view.   

Imaging sensors, on the other hand, produce digital pictures of a scene 
with which spatial variability can be analyzed and, if the pictures are of sufficient 
resolution, different organisms (or even organs) can be identified. These range 
from consumer-grade digital cameras (including networked cameras or webcams, 
e.g., StarDot, Axis) that record conventional RGB (red-green-blue) imagery, to 
hyperspectral cameras that yield information in as many as 128 specific wave-
bands (e.g., SOC 710, Surface Optics). Highly sophisticated imaging spectrome-
ters, such as HeadWall Photonics’ HyperSpec solar-induced fluorescence imager, 
also fall in this category.  

A key distinction between radiometric sensors and most imaging sensors 
is that the former can be calibrated to yield measurements of radiance (flux densi-
ty, or power per unit area), whereas the latter usually (imaging spectroradiometers 
are a noted exception) are not.  

Broadband sensors and inexpensive digital cameras have their limitations, 
but the challenges and expense of more sophisticated instruments also limit the 
broader use of this technology; ultimately the answer to “what approach is best?” 
depends on many competing factors, including the science question; the need for 
accuracy, precision, and traceable calibrations; and the application-specific need 
for ultrafine-resolution changes in reflected spectral radiance. 

20.3 Broadband Radiometric Sensors 

The foliage of terrestrial vegetation absorbs most (>80%) incident solar 
radiation in the visible region (400–700 nm) of the electromagnetic spectrum, be-
cause these are the wavelengths that are used to drive photosynthesis. Longer 
wavelengths in the near-infrared (700–1,400 nm), which are of little use for photo-
synthesis, are only weakly absorbed. Thus, both transmittance and reflectance of 
infrared wavelengths tend to be high. The distinction between low reflectance of 
visible wavelengths, and high reflectance of infrared wavelengths, is a spectral 
signature that can be used to distinguish healthy green vegetation from soil, 
branches, and senescent material. This is the basis of the commonly used normal-
ized difference vegetation index (NDVI), where r denotes reflectance:  

 

Huemmrich et al. (1999) noted that readily available broadband sensors 
could be used to measure quantities that would correspond approximately to rred 
and rNIR. Specifically, by measuring incident (Q¯) and reflected (Q-) PPFD with a  

NDVI = rNIR − rred
rNIR + rred
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Fig. 20.1 Time series of broadband NDVI, MODIS NDVI, and fAPAR at Bartlett Experi-
mental Forest (2019–2020). Broadband indices represent mid-day average values. MODIS 
data are from the MOD13Q1 product (16-day best available pixel values). Dominant vege-
tation is comprised of deciduous northern hardwood (maple-beech-birch) species. Snow-
melt date (blue line), budburst date (green line), and onset of autumn leaf coloration (red 
line), based on visual assessment of phenocam imagery from the same tower, are indicated.  

quantum sensor, rVIS (=Q-/Q¯) could be used as an estimate of rred. Subsequently, 
shortwave albedo, calculating from incident (R¯) and reflected (R-) solar radiation 
fluxes measured with upward and downward pointing pyranometers (α= R-/R¯), 
would provide an estimate of rVIS+NIR. Because PPFD is measured in µmol m-2 s-1, 
whereas shortwave solar radiation is measured in W m-2, estimation of rNIR itself 
requires some assumptions to standardize the units. These assumptions are dis-
cussed and evaluated more fully by Huemmrich et al. (1999) and Jenkins et al. 
(2007). One solution they describe is to estimate rNIR as:  

 

Calculated using these estimates of rred and rNIR, “broadband NDVI” has 
been used to monitor phenology in a number of different vegetation types (Fig. 
20.1; Jenkins et al. 2007, Wilson and Meyers 2007, Doughty and Goulden 2008, 
Wohlfahrt et al. 2010, Liu et al. 2019, Soudani et al. 2021). In many of these stud-
ies, broadband NDVI has compared favorably with NDVI calculated from satellite 
data, with the higher time resolution of broadband NDVI an obvious advantage 
(see also Fig. 20.1).  

In some studies, the broadband NDVI signal has been shown to be noisy 
during winter months (Fig. 20.1). Furthermore, there is a two-stage rise in NDVI 
that occurs with snowmelt (stage 1), and green-up (stage 2); failure to identify 
these as separate events will bias estimates of phenological dates. However, de-
spite these limitations, as well as the assumptions gone into the formulation of 

rNIR =
R↑−0.25×Q↑
R↓−0.25×Q↓
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broadband NDVI, the quality of data from spring through summer is generally 
sufficient to clearly distinguish leaf-on and leaf-off dates, and to track the rates of 
canopy development and senescence. 

Canopy phenology can also be monitored with continuous measurements 
of photosynthetically active radiation above (Q¯, Q-) and below (transmitted, QT) 
the canopy, thereby permitting its absorbed fraction (fAPAR) to be calculated (Fig. 
20.1; Jenkins et al. 2007, Wohlfahrt et al. 2010, Soudani et al. 2021). Ignoring the 
radiation that is reflected from the soil or forest floor:  

;  

APAR (absorbed photosynthetically active radiation) may be calculated 
in a number of different ways, including using mid-day data and daily integrals. 
However, both methods are subject to the effects of seasonal variation in solar el-
evation. One solution is to calculate APAR using measurements when the solar 
zenith angle is closest to 57°—at this angle the fraction of leaf area projected nor-
mal to the solar beam converges to one single value across all leaf angle distribu-
tions (Myeni et al. 1989), and thus multiple solar angle effects can be controlled 
for. This latter method is also useful if continuous estimates of leaf area index are 
to be made from calculated transmittance (=QT/Q¯) using gap fraction theory 
(Toda and Richardson 2018; see also Rogers et al. 2021).  

As with broadband NDVI, snow on upward-pointing sensors can be prob-
lematic during winter months (Fig. 20.1). Airborne dust may also in some cases 
necessitate frequent cleaning of sensors. Finally, spatial heterogeneity in the be-
low-canopy light environment (e.g., sunflecks) can be substantial, and adequate 
sampling is necessary to reduce uncertainties (Garrity et al. 2011).  

20.4 Narrowband Radiometric Sensors 

Narrowband radiometric sensors can also be used to measure vegetation 
indices such as NDVI (e.g., Eklundh et al. 2011, Soudani et al. 2012), and in this 
application narrowband sensors may be better than broadband sensors (sec. 20.3, 
above). An advantage to working with narrowband instruments is that the very 
same wavebands that are used in satellite remote sensing can be targeted. Alterna-
tively, specific wavelengths may be chosen because of their physiological rele-
vance. The photochemical reflectance index (PRI), which tracks diurnal changes 
in xanthophyll cycle pigments through narrowband reflectance measurements at 
531 and 570 nm, is one such example (Gamon et al. 1992, 1997). PRI is also in-
fluenced by seasonally changing carotenoid to chlorophyll pigment ratios (or vice-
versa), which tend to dominate its annual cycle (Wong and Gamon 2015b). A 
number of studies have used PRI in the latter sense to monitor seasonal variation 

APAR =Q↓−Q↑−QT fAPAR =
APAR
Q↓
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in vegetation function (photosynthetic capacity or efficiency) as opposed to sea-
sonal variation in vegetation structure (development and senescence of leaves) 
(Wong and Gamon 2015a, Springer et al. 2017, Eitel et al. 2020, Wong et al. 
2020). This approach might be especially useful in vegetation types that display 
large seasonality but remain green year-round. Gamon et al. (2016) developed a 
closely related chlorophyll/carotenoid index that can be calculated from MODIS 
wavebands with this objective in mind.  

The cost of narrowband instruments, which are targeted at a smaller end-
user market, has historically been higher than broadband instruments. Fortunately, 
low-cost sensors for measuring NDVI and PRI, such as filtered photodiodes, are 
now commercially available (e.g., Apogee). Other inexpensive alternatives have 
also been developed and are in use by specific research groups (Ryu et al. 2010, 
Soudani et al. 2012). As the momentum for open science builds and more papers 
are published with the details of building and calibrating a specific sensor (e.g., 
Ryu et al. 2010), we can expect to see more sensors custom-built using off-the-
shelf components being used to measure quantities that in the past could only be 
measured with sensors sold by commercial outfits. 

Various tower-mounted spectrometers have been deployed, many of 
which are specialized, custom-built instruments (Tortini et al. 2015). One applica-
tion that has been the focus of a number of recently developed instruments is the 
measurement of solar-induced fluorescence (SIF), a small emission of red and far-
red light (650–800 nm) from chlorophyll molecules during sunlight absorption for 
photosynthesis (Cogliati et al. 2015, Grossmann et al. 2018, Yang et al. 2018). 
The potential of using SIF to monitor phenology is that seasonal variation in vege-
tation activity can be directly measured (Magney et al. 2019, Pierrat et al. 2022). 
However, SIF measurement is a highly sophisticated process relative to the simple 
calculation of spectral indices. For example, accurate measurements require the 
use of a spectrometer with high spectral resolution (~0.1–0.3 nm) and high signal-
to-noise ratio to retrieve the small fluorescence signal from within narrow absorp-
tion bands in the solar spectrum. These include two oxygen absorption bands lo-
cated at around 687 nm (O2-B) and 760 nm (O2-A), as well as several nearby solar 
Fraunhofer lines. Although there are now some commercially available instru-
ments for continuous monitoring of SIF, such as the “FloX” (JB Hyperspectral 
Devices), these are still highly specialized instruments with research objectives 
that usually extend beyond simple monitoring of phenology.  

20.5 Monitoring Phenology with Imaging Sensors 

The use of standard digital cameras for monitoring phenology has grown 
substantially over the last dozen years or so, with most studies applying what has 
become known as the “phenocam” approach (Richardson 2019, 2023). The basic 
idea of this method is that with timelapse images, taken from a fixed location and 
with a set field of view and viewing geometry, changes in the characteristics of  
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Fig. 20.2 View of the Harvard Forest canopy, from a phenocam mounted on the EMS 
AmeriFlux tower (top), through winter, early spring, summer, and autumn (L to R). The 
time series of canopy greenness (2022–2023, bottom) has been quantified from phenocam 
images using the green chromatic coordinate. Both raw values from half-hourly images 
(small gray circles) and a summarized 3-day product, calculated using the 90th percentile 
approach (large black circles), are plotted. Ground observations of 50% budburst (green 
lines), 50% of leaves at final length (blue lines), and 50% autumn leaf color (red lines) are 
indicated for the dominant species (red oak) in the camera footprint.   

vegetation can be detected (Figs. 20.2 and 20.3). This idea is similar to using re-
peat photographs to track landscape change over decades (e.g., Webb et al. 2003), 
but is distinguished by the high frequency of image acquisition (one or more im-
ages per day) and the emphasis on quantitative data calculated from the images, 
especially color-based indices (Figs. 20.2 and 20.4; Sonnentag et al. 2012, Rich-
ardson et al. 2018a). The annual cycle of canopy greenness derived from camera 
imagery, for example, clearly reveals information on leaf development and senes-
cence (Fig. 20.2). One advantage of this approach over radiometric measurements 
is that archived images provide a permanent visual record of what the camera was 
looking at, at a specific place and time. Visually inspecting the images can be used 
to validate automated methods of quantifying phenology (Klosterman et al. 2014, 
Kosmala et al. 2016), or provide information that could help interpret the observed 
phenological patterns, including establishment, growth, and mortality; disturbance 
and recovery; and timing and duration of snowpack. The same level of interpreta-
bility is not possible with data from non-imaging sensors. 
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Fig. 20.3 Examples of phenocams installed in the field. (Top left) A camera installed at the 
University of Michigan Biological Station with an oblique landscape-level view of a decidu-
ous broadleaf forest. (Bottom left) A camera installed near ground level to monitor an ex-
perimental plot in a semi-arid grassland at the Sevilleta National Wildlife Refuge, New 
Mexico. (Right) A camera installed on an instrument tower in a woodland at Cedar Mesa, 
Utah together with an eddy covariance system (installed directly above at the end of the 
boom) for measuring canopy-level CO2 and H2O fluxes.  

20.5.1 Camera Selection  

Many different inexpensive and commercially available digital cameras 
have been used as phenocams (which we define here as any digital camera used 
for phenological monitoring with the approach described above) (Sonnentag et al. 
2012). These include networked cameras or webcams that can be accessed over 
the Internet, as well as trailcams and point-and-shoot cameras, with prices ranging 
from $100 to $3,000. Webcams are widely used because the captured images can 
be viewed and archived off-site in real-time, and system uptime can be remotely 
verified. Many webcams are stand-alone and thus can operate in the field without 
additional hardware. In terms of the effect of camera brand and model on the 
quantitative assessment of phenology, Sonnentag et al. (2012) demonstrated that a 
number of readily available cameras are suitable for such analyses. However, it is 
essential that the selected camera has the option to turn off any automatic color or 
 



9 
 

 
Fig. 20.4 Time series of green chromatic coordinate (gCC) derived from phenocam images 
captured in diverse ecosystems. Left to right: a subalpine conifer forest at Niwot Ridge, 
Colorado; a C3/C4 grassland near Kamuela, Hawaii; and a salt marsh at the St. Jones Es-
tuarine Research Reserve, Delaware. The yellow polygons indicate the region of interest 
analyzed within each image. Phenophase transition dates are calculated from each green-
ness-rising and -falling stage as the date that the smoothed gCC (spline-fit; not shown) rises 
above or drops below 10% (dashed line), 25% (dash-dotted line), or 50% (dotted line) of the 
gCC amplitude for that cycle.  

white balancing, which changes the color sensitivity of the RGB (red-green-blue) 
channels from picture to picture (Seyednasrollah et al. 2019). A camera with min-
imal or no internal image processing is also desirable, and the acquired images 
should be of sufficient quality to capture relatively noise-free time series of color-
based indices. Lastly, investing in a durable and high-quality camera will overall 
maximize its lifetime in the field. This is especially crucial if long-term monitor-
ing is a research objective. Several long-running phenocams (including a StarDot 
NetCam SC that was installed by one of the authors over 15 years ago at Harvard 
Forest, Fig. 20.2) demonstrate that commercial-grade digital cameras can indeed 
be used as robust research instruments for long-term monitoring of phenology. 

20.5.2 Field Installation       

Most phenocams are installed on towers, masts, tripods, or the roofs of 
field stations, usually at heights taller than the vegetation of interest, with an 
oblique view that broadly captures the vegetation across the landscape (Figs. 20.2 
and 20.3). Phenocams have also been used to monitor individual experimental 
plots and many are installed alongside other instruments (Fig. 20.3). Cameras 
should be securely fastened to their mounting structure so that the same field of 
view and viewing geometry can be kept over time. Otherwise, image masks (de-
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scribed in sec. 20.5.3, below) may need to be constantly adjusted, compromising 
data quality and continuity (Richardson et al. 2018a). Cameras are oriented north 
(in the northern hemisphere) to minimize lens flare, forward scattering off the 
canopy, and deep shadows, and pointed somewhat below the horizon to include a 
mix of both vegetation (~80%) and some sky (~20%). With the exception of au-
tomatic exposure, it is recommended that all automatic camera settings be turned 
off. And while images need not be archived every minute, recording multiple im-
ages per day (such as every half hour) increases the likelihood of images being 
captured under ideal lighting conditions. At sites where there is no previously es-
tablished Internet connection, a cellular or satellite modem may be used for long-
distance telemetry of phenocam imagery.  

20.5.3 Image Processing  

Almost without exception, current digital cameras use the red-green-blue 
(RGB) additive color model to represent colors perceived by the human eye. Basi-
cally, this means that digital images are comprised of three layers, with each layer 
corresponding to one of the color channels. For each color channel, there is a two-
dimensional array of pixels that represent the image in that color. The resulting 
color and brightness of a given pixel is then characterized by the intensity of the 
pixel in each color layer, which is stored as a digital number (DN) triplet. In 24-bit 
images, there are 8 bits per channel and thus DN values range from 0 to 255.  

The first step to processing phenocam imagery involves extracting the 
DN triplets for individual pixels, and then averaging the DN triplets across multi-
ple pixels within a user-defined region of interest (ROI) (Fig. 20.4). Selecting the 
ROI depends primarily on the research question being asked; an ROI may corre-
spond to, for example, an individual tree crown, or all trees in the foreground of 
the images. The pixels corresponding to the ROI are defined by an image mask (a 
binary array of zeros and ones). Masks may need to be adjusted during the moni-
toring period to keep the pixels being analyzed consistent, for example, if the 
camera’s field of view shifts over time, or if trees become toppled or defoliated 
from disturbance.  

Time series of RGB DN triplets are noisy and are of little use for pheno-
logical analyses because both external factors affecting scene illumination (clouds, 
aerosols, solar elevation/azimuth) and in-camera image processing (including ex-
posure control) confound the underlying phenological signal. This variability can 
be largely suppressed by converting the DN triplets (RDN, GDN, BDN) to their re-
spective chromatic coordinates (rCC, gCC, bCC) (Sonnentag et al. 2012, Richardson 
et al. 2018a). Numerous studies have demonstrated the value of the green chro-
matic coordinate gCC for characterizing the seasonal trajectory of vegetation color 
and extracting phenological data. As a result, gCC has become the standard vegeta-
tion index calculated from phenocam imagery.  
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Even after RGB DN triplets have been converted to chromatic coordi-
nates, substantial variability may remain. One method of extracting the best quali-
ty phenological signal is to use a moving-window quantile approach (Sonnentag et 
al. 2012). This method effectively discards the images taken under sub-optimal 
conditions, which tend to reduce the observed vegetation greenness (Figs. 20.2 
and 20.4). In most cases, the 90th percentile of each chromatic coordinate, extract-
ed from all images collected over a 3-day period, is calculated, and then assigned 
to the middle day. If outliers persist, other statistical procedures need to be used to 
clean the data (Richardson et al. 2018a).  

Lastly, while there are applications that use the entire annual cycle of cal-
culated canopy greenness, many others are focused only on the timing of specific 
phenological transitions (e.g., start- and end-of-season dates). Highly flexible 
spline-based curve fitting methods have been especially useful for quantifying 
these dates (Richardson et al. 2018a). Transition dates may be determined, for ex-
ample, as the date that the smoothed gCC rises above or drops below a threshold 
value, calculated as some percentage (e.g., 10, 25, or 50%) of the gCC amplitude 
(maximum minus minimum value) for that seasonal cycle (Fig. 20.4).  

We note that the approach described above is not the only method of 
quantifying phenology from repeat digital photographs. Many studies have used 
variations or extensions of this approach, while others have applied completely 
different methods. Some examples include pixel-level analyses (Ide and Oguma, 
2013), the use of textural metrics (Almeida et al. 2014), and the quantification of 
flowering phenology using image segmentation and deep learning (Andreatta et al. 
2023).  

20.5.4 Interpretation and Validation 

The seasonal pattern of color-based indices can be mostly explained by 
the combined effect of two main vegetation characteristics: (1) changes in canopy 
structure, especially as influenced by leaf development and senescence; and (2) 
changes in leaf-level traits, particularly those associated with leaf coloration. For 
example, Keenan et al. (2014) showed using a two-endmember mixing model that 
the gCC of a deciduous broadleaf forest was directly related to the amount of leaf 
area present and the color of individual leaves (which was measured on a flatbed 
scanner). Taking a more mechanistic approach, Wingate et al. (2015) were able to 
simulate the seasonal trajectory of all three chromatic coordinates (rCC, gCC, and 
bCC) by adjusting levels of leaf area index and the sizes of several major pigment 
pools within a radiative transfer model. The ability of color-based indices to repre-
sent aspects of both canopy structure and seasonal physiology makes it possible to 

rCC =
RDN

RDN +GDN +BDN
gCC =

GDN

RDN +GDN +BDN
bCC =

BDN
RDN +GDN +BDN
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quantify a range of phenological phenomena, across many different vegetation 
types, from phenocam imagery. Examples include dates of leaf development, au-
tumn coloration, and leaf drop, to seasonal variation in photosynthetic capacity 
and vegetation activity, particularly canopy-level CO2 fluxes (Keenan et al. 2014, 
Klosterman et al. 2014, Toomey et al. 2015, Kosmala et al. 2016, Bowling et al. 
2018, Seyednasrollah et al. 2021).  

20.5.5 Camera Networks, Open-source Data, and Applications 

Networks of digital cameras enable phenology to be monitored across 
multiple sites that cover gradients in climate and vegetation. For example, many 
researchers maintain mesonets of cameras within a specific geographic region. 
Several continental-level camera networks have also been established. These in-
clude a Phenological Eyes Network (Nasahara and Nagai 2015), European Phe-
nology Camera Network (Wingate et al. 2015), Australian Phenocam Network 
(Brown et al. 2016), and a PhenoCam Network made up of 700+ cameras across 
North America and the greater globe (Richardson 2023). The archive of Pheno-
Cam imagery is publicly available and updated in real time. Anyone can contrib-
ute to the network but must follow a standard protocol, such as the use of a stand-
ard camera and configuration. For each site, PhenoCam also processes the 
imagery (extraction of color-based indices and calculation of transition dates) and 
makes that data publicly available (Richardson et al. 2018a). These datasets are 
suited for a variety of applications, including the evaluation of satellite remote 
sensing products (Richardson et al. 2018b, Moon et al. 2021), phenological model 
development and testing (Seyednasrollah et al. 2021, Post et al. 2022, Schädel et 
al. 2023), and investigating relationships between phenology and ecosystem pro-
cesses (Young et al. 2021, 2022). Many sites are a part of other research networks 
(e.g., FLUXNET, NEON), thus facilitating the integration of PhenoCam data with 
other co-located observations. All PhenoCam imagery and datasets can be ac-
cessed from the PhenoCam website (https://phenocam.nau.edu) or obtained from 
the curated and documented data releases (Richardson et al. 2018a, Seyednasrol-
lah et al. 2019, Young et al. in preparation). A list of open-source tools for cus-
tomized image analyses and interacting with the archive of PhenoCam data can al-
so be found online (https://phenocam.nau.edu/webcam/tools/).  

20.5.6 Other Possibilities with Imaging Sensors  

Conventional digital cameras can be used in a number of other configura-
tions for phenological monitoring. For example, fisheye (180°) lenses have been 
used to record hemispherical photographs of vegetation from nadir (Nasahara and 
Nagai 2015), or from beneath the canopy pointing directly upward (Toda and 
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Richardson 2018, Brown et al. 2020). Upward- and downward-looking images can 
be analyzed to estimate leaf area index using gap fraction theory (Ryu et al. 2012, 
Liu et al. 2013). Cameras can also be installed close-up to specific plants for visu-
al assessment of phenology at the bud-to-branch scale, or on mobile platforms, 
such as remotely piloted aircraft systems, for extrapolation across the landscape 
(Klosterman et al. 2018, Atkins et al. 2020).  

The imaging sensors in most conventional digital cameras are sensitive to 
infrared radiation (700–1000 nm). A cut filter over the sensor normally blocks 
these wavelengths, but this filter can be removed altogether, resulting in compo-
site RGB + IR images. Some cameras allow the IR filter to be triggered, enabling 
back-to-back RGB and RGB + IR images to be recorded (Fig. 22.5). Petach et al. 
(2014) leveraged this capability to calculate “camera NDVI”, and their method has 
since been incorporated into the PhenoCam Network’s standard protocol (Young 
et al. in preparation). To test the utility of the added information, Filippa et al. 
(2018) compared the seasonal trajectories of gCC and camera NDVI in a number of 
different vegetation types. At most sites, the two patterns were overall compara-
ble, with slight lags and slightly lower signal-to-noise ratio in NDVI (see also Fig. 
22.5). In evergreen vegetation, the difference was greater, with NDVI being more 
sensitive to the formation of new needles and seed cones than gCC, which was 
more indicative of canopy color. Camera NDVI was thus concluded to be com-
plementary (rather than redundant) to color-based indices, and there may be use 
cases where camera NDVI would be favored over gCC. One example is the evalua-
tion of satellite remote sensing products. We note that camera NDVI is not com-
pletely identical to satellite NDVI and has its own limitations. For example, cam-
era NDVI is calculated from exposure-corrected DN values corresponding to two 
separate images acquired at slightly different times (e.g., 30 s apart). 
 

 
Fig. 20.5. Consecutive RGB and RGB + IR images captured using an infrared-enabled 
phenocam at Hart Prairie near Flagstaff, Arizona. Annual cycles of green chromatic coor-
dinate (gCC black circles) and camera NDVI (gray triangles) are plotted for ROIs corre-
sponding to the background deciduous broadleaf forest (DB) and foreground grassland 
(GR). gCC and NDVI have both been normalized (converted to a scale of 0–1) to enable side-
by-side comparison. 
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There are also commercially available cameras that can be used to cap-
ture continuous IR imagery. For example, Yang et al. (2017) used Tetracam’s 
ADC (Agricultural Digital Camera) with red, green, and near-infrared channels to 
monitor the NDVI of a deciduous forest canopy. De Moura et al. (2017) analyzed 
hyperspectral imagery acquired using a tower-mounted camera to investigate 
changes in canopy reflectance with leaf flushing of three tropical tree species. 
However, there do not appear to be published studies where hyperspectral cameras 
have been used for continuous year-round phenological monitoring. 

Finally, thermal infrared cameras that are responsive to 8–14 µm wave-
lengths have been used to make continuous estimates of canopy temperature (Au-
brecht et al. 2016). While not directly related to monitoring phenology, such data 
should still be relevant to interpreting and modeling phenological processes and 
may provide improvements over the simplified use of air temperature in phenolog-
ical studies. 

20.6 Future Prospects         

Much of the remote sensing technology needed for basic phenological 
monitoring has already been developed and to some extent made commercially 
available. The development of low-cost alternatives that are available in accessible 
packaging would help expand established technologies to an even wider user au-
dience, while also facilitating new science applications. Even a low-cost alterna-
tive to relatively affordable (but not completely inexpensive) digital cameras 
would be beneficial. One solution might be something along the lines of a Rasp-
berry Pi camera system, which is already in use by several research groups (e.g., 
https://hackaday.io/project/5865-phenopi). An integrated near-surface remote 
sensing system that could facilitate the acquisition of many different types of data 
at once might be particularly valuable. For example, Kim et al. (2019) developed a 
“Smart Surface Sensing System” for monitoring NDVI and fAPAR, as well as ac-
quiring continuous RGB imagery, at a cost of less than $250. More publicly avail-
able protocols on the best practices for instrument selection and deployment 
would help generate the best possible data, while expanding the number of open-
source software tools would facilitate standardization of methods across studies. 
Lastly, advances in artificial intelligence, such as deep learning, would introduce 
new methods for data processing and analysis. We can think of a number of appli-
cations to phenocam imagery, including automated and objective ROI selection, 
filtering images taken under sub-optimal conditions, and identifying and mapping 
phenological stages.  
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20.7 Conclusions 

Sensor-based approaches to monitoring phenology have been widely 
adopted over the last decade, especially the use of inexpensive digital cameras as 
phenocams. Studies have been conducted in diverse ecosystems of the globe and 
long-term (10–20 year) datasets from many monitoring sites are now available. 
Continental-level observation networks have been developed and a number of 
open-source datasets and tools are available to facilitate a wide variety of applica-
tions. We anticipate the use of this approach to continue to grow with more acces-
sible technology, improvements to and standardization of best practices, a wider 
adoption of open-science principles, and an ever-pressing need to predict shifts in 
phenology under global change. 
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